
BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 1 OF 7

InRoads Group of Products

Creating ASCII Output Style Sheets

BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 2 OF 7

1. Introduction

This document describes steps to create style sheets that produce ASCII output or plain text
files. ASCII output style sheets differ from HTML output style sheets in a number of ways and,
in some cases, the steps are much easier but more difficult in others.

This procedure applies to any application within the InRoads Group of products being
developed by the Civil Engineering Development group.

This document cannot teach everything needed to create XML style sheets. There are a
number of excellent books available on the subject and Bentley also offers a 3-day class on
InRoads Reporting with XML. This document will describe only the steps necessary to create
ASCII output style sheets.

2. Workflow

When you send the output directly to text rather than formatting it as HTML, HTML tags, such
as tables and paragraphs, are not available to assist in laying out the report. This means that
any column alignment or white space must be specified by the style sheet. Even line breaks
must be specified by the style sheet. The following sections explain how to do this.

2.1. A Look at a Simple Text Output Style Sheet

The following lines of code show a simple ASCII text output style sheet. This is the
style sheet called ListCoordinatesGeodimeterFormat.xsl, found in your \XML

Data\DataCollection directory. The next two sections discuss the elements that make
up this style sheet, including the minimum elements that must be included in each text
output style sheet. Subsequent sections show additional useful techniques and the
code snippets to accomplish them.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsl:stylesheet version="1.1" xmlns:xsl=http://www.w3.org/1999/XSL/Transform

xmlns:fo=http://www.w3.org/1999/XSL/Format xmlns:msxsl="urn:schemas-microsoft-com:xslt"

xmlns:inr="http://mycompany.com/mynamespace">

3 <xsl:include href="../format.xsl"/>

4 <!-- Coordinate List Geodimeter Format -->

5 <xsl:output method="text" media-type="text/plain" encoding="iso-8859-1"/>

6 <xsl:template match="/">

7 <xsl:variable name="gridOut" select="inr:SetGridOut(number(InRoads/@outputGridScaleFactor))"/>

8 <xsl:for-each select="//GeometryPoint[@name]">

9 <xsl:text/>

10 <xsl:text>5=</xsl:text>

11 <xsl:value-of select="@name"/>

12 <xsl:text></xsl:text>

13 <xsl:text>4=</xsl:text>

14 <xsl:value-of select="@description"/>

15 <xsl:text></xsl:text>

16 <xsl:text>37=</xsl:text>

17 <xsl:value-of select="inr:northingFormat(number(@northing), $xslNorthingPrecision)"/>

18 <xsl:text></xsl:text>

19 <xsl:text>38=</xsl:text>

20 <xsl:value-of select="inr:eastingFormat(number(@easting), $xslEastingPrecision)"/>

21 <xsl:text></xsl:text>

22 <xsl:text>39=</xsl:text>

23 <xsl:value-of select="inr:elevationFormat(number(@elevation), $xslElevationPrecision)"/>

24 <xsl:text></xsl:text>

25 </xsl:for-each>

26 </xsl:template>

27 </xsl:stylesheet>

BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 3 OF 7

2.2. Line by Line Details

The first line is an XML declaration and must be included as the first line in any XML
document. Required.

The second and last lines contain the starting and ending tags of the xsl:stylesheet

element. The xsl:stylesheet element also contains several attributes on Line 2, all
of which are required for InRoads reports. Required.

Line 3 uses the xsl:include element to include the format.xsl style sheet containing
the special functions we use to format and manipulate XML data for display in the final
output report. Required.

Line 4 contains a comment. Comments are useful for indicating the style sheet
function and for communicating other logic and design information to users of the style
sheet. This comment simply indicates the name of the report.

Line 5 contains the xsl:output element. This element tells the Report Browser to
display plain text rather than HTML-formatted text, the default output. Notice that our
output encoding is ISO-8859-1. This encoding is appropriate for English and nearly all
characters contained in most Western European languages. Other languages may
need to change the encoding for proper output. Required.

Line 6 and 26 contain the starting and ending tags of the xsl:template element.

Every style sheet must contain at least one xsl:template element. This one matches

the root of the XML source document, which is specified by the shorthand "/".
Required.

Line 7 uses the xsl:variable element to specify a special variable required by
InRoads style sheets for grid factors. Required.

Lines 8 and 25 contain the starting and ending tags of the xsl:for-each element.

Every style sheet needs either an xsl:for-each element or and xsl:apply-

templates element or a combination of the two. These two elements are the
mechanism for “walking” through the data contained in the XML source file. Most
InRoads style sheets begin with an xsl:for-each element that selects the InRoads
element from the XML document, but this one is selecting geometry points from any
level in the XML document that contain a name attribute. Required.

Line 9 begins the actual output for this report. An empty xsl:text element is

recommended as the first element of any text output.

Lines 10, 13, 16, 19 and 22 are examples of pieces of text that will be placed into the
output. Each piece of text must be enclosed within an xsl:text element. If white

space is required, it must also be contained inside an xsl:text element.

Lines 11, 14, 17, 20 and 23 contain xsl:value-of elements to retrieve various pieces
of data from the XML file. Some of the data has had formatting applied to it as well
using functions from format.xsl.

Lines 12, 15, 18, 21 and 24 once again contain xsl:text elements, but each one

contains only the hexadecimal entity for the carriage return character, . In ASCII
output style sheets, even the line feeds must be specified. The carriage return
character does not have to be in an xsl:text element by itself. It can be specified in

an xsl:text element along with other text, but it cannot be included in other XSL

elements, such as xsl:value-of or xsl:for-each, for example.

BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 4 OF 7

2.3. Sample Output

The output from the style sheet detailed above looks like this:

5=1

4=

37=1832869.47

38=524713.50

39=0.00

5=2

4=power pole

37=1833234.52

38=525919.38

39=0.00

2.4. Aligning Columns

One of the most common requirements for reports is to align columns of data.
Although it sounds simple enough, it is less simple when the incoming data is of
variable length or the data has six places of decimal precision and the desired output
requires only four. Two functions have been included in format.xsl to help solve this

issue.

The first function, columnFormat, takes a string and a length as its input parameters
and pads the string with leading spaces until it is the specified length. Here are two
examples where the strings are specified as X Coord and Y Coord and the column
widths are given as 13 and 16, respectively:

<xsl:value-of select="inr:columnFormat('X Coord', 13)"/>

<xsl:value-of select="inr:columnFormat('Y Coord', 16)"/>

The output from these two lines is shown below. There are six leading spaces and
nine leading spaces, respectively, in front of the two 7-character strings.

 X Coord Y Coord

The second function, columnDoubleFormat, takes a number, a precision and a length
as its input parameters. The number is first rounded to the specified precision, then
converted to a string and finally padded with leading spaces until it is the specified
length. Here are examples where the numbers to be formatted are the easting and

northing attributes, the precision is set by the Northing/Easting Precision specified on
Tools > Format Options and the column width in both cases is 16:

<xsl:value-of select="inr:columnDoubleFormat(number(@easthing), $xslEastingPrecision, 16)"/>

<xsl:value-of select="inr:columnDoubleFormat(number(@northing), $xslNorthingPrecision, 16)"/>

The output from these two lines is shown below. There are seven and six leading
spaces, respectively, in front of the 9-character string and the 10-character string. Of
course, the output will be different depending on the precision set in Tools > Format
Options.

 522796.49 1832163.48

BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 5 OF 7

Sometimes, additional formatting of the number is required before it can be passed to
one of the above functions. An example is a direction, which not only has precision, it
also has a direction mode, an angular mode and a direction format. Since the
columnDoubleFormat function only accepts a number and a precision in addition to the
length, the number must be formatted and stored in a variable as a string before
passing it to the columnFormat function. Notice that the variable, $fmtDirection,
does not have single quotes around it like the examples above do. This is because
variables are automatically assumed to be strings in XML. If there is any doubt that the
value will be treated as a string, you can enclose it in the string() function similarly to

the way you see the number() function used in the first line below.

<xsl:variable name="fmtDirection" select="inr:directionFormat(number(@direction),

$xslDirectionFormat, $xslDirectionPrecision, $xslDirectionModeFormat, $xslAngularMethod)"/>

<xsl:value-of select="inr:columnFormat($fmtDirection, 22)"/>

The output from these two lines is shown below:

 N 44°27'59.6" E

Note: If an xsl:text element contains nothing but white space, the white space will
be condensed to a single space. To overcome this, use a combination of normal
spaces and the hexadecimal value for a space as in the following example:

<xsl:text> </xsl:text>

Here is another style sheet that shows some of these concepts in practice. This is the
style sheet called SimpleListCoordinates.xsl, found in your \XML Data\DataCollection
directory.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.1" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format" xmlns:msxsl="urn:schemas-microsoft-com:xslt"

xmlns:inr="http://mycompany.com/mynamespace">

 <xsl:include href="../format.xsl"/>

 <!-- Simple List Coordinates -->

 <xsl:output method="text" media-type="text/plain" encoding="iso-8859-1"/>

 <xsl:template match="/">

 <xsl:variable name="gridOut" select="inr:SetGridOut(number(InRoads/@outputGridScaleFactor))"/>

 <xsl:for-each select="InRoads">

 <xsl:text/>

 <xsl:text>* Name X Y Z Style</xsl:text>

 <xsl:for-each select="//CogoPoints/GeometryPoint">

 <xsl:value-of select="inr:columnFormat(string(@name), 8)"/>

 <xsl:value-of select="inr:columnDoubleFormat(number(@easting), $xslEastingPrecision, 16)"/>

 <xsl:value-of select="inr:columnDoubleFormat(number(@northing), $xslNorthingPrecision, 16)"/>

 <xsl:choose>

 <xsl:when test="@elevation">

 <xsl:value-of select="inr:columnDoubleFormat(number(@elevation),

 $xslElevationPrecision, 13)"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="inr:columnFormat(' ', 13)"/>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:text> </xsl:text>

 <xsl:value-of select="@style"/>

 <xsl:text></xsl:text>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

And here is example output from the above style sheet:

* Name X Y Z Style

 1 524713.503 1832869.473 0.000 default

 2 525919.380 1833234.520 0.000 plants

 3 523747.468 1833237.343 0.000 default

 4 524777.361 1832978.392 0.000 default

BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 6 OF 7

 5 524852.255 1833080.039 0.000 default

 6 524937.363 1833173.300 0.000 default

 7 525031.754 1833257.155 0.000 default

 8 525134.392 1833330.684 0.000 default

 9 525244.155 1833393.081 0.000 default

 10 525320.632 1833428.125 0.000 default

 12 525546.985 1833002.379 0.000 default

 13 525400.127 1833461.249 0.000 default

 16 524690.498 1832825.059 0.000 default

 18 525784.577 1832314.690 0.000 default

 19 525320.632 1833428.125 0.000 default

 20 526002.258 1832858.509 0.000 default

2.5. Truncating Strings

There are times when a string is too long and it must be truncated to fit a particular
output format. Here is an example of how to accomplish this:

<xsl:value-of select="substring(@name, 1, 6)"/>

The built-in XSL function, substring, accepts a value, the starting position, and the

length. If the XML data had Rim Road in the name attribute, this function call would

truncate it to Rim Ro.

Here is an example where the string must be padded with leading zeros if it is less than
16 characters long, but truncated to 16 characters if it is longer than 16. If it is exactly
16 characters, it is output untouched.

<xsl:choose>

 <xsl:when test="string-length(@name) > 16">

 <xsl:value-of select="substring(@name, 1, 16)"/>

 </xsl:when>

 <xsl:when test="string-length(@name) < 16">

 <xsl:value-of select="substring('0000000000000000', 1, 16 - string-length(@name))"/>

 <xsl:value-of select="@name"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="@name"/>

 </xsl:otherwise>

</xsl:choose>

2.6. Specialized Functions

If a function contained in format.xsl is close but not quite what is needed for a particular
output format, the function can be rewritten only in the style sheet that needs it. Here is
an example of the date function that has been rewritten to output the date in SDR
format instead of the format contained in format.xsl:

<msxsl:script implements-prefix="inr" language="JScript">

 <![CDATA[

 // This function gets the current date and formats it for SDR

 // Timestamp.

 function SDRdate()

 {

 var today = new Date();

 var monthName = new Array ("JAN", "FEB", "MAR", "APR", "MAY", "JUN",

 "JUL", "AUG", "SEP", "OCT", "NOV", "DEC");

 var dayOfMonth = today.getDate();

 var year = today.getFullYear();

 var minutes = today.getMinutes();

 if (dayOfMonth < 10)

 {

 dayOfMonth = "0" + dayOfMonth;

 }

 return dayOfMonth + "-" + monthName[today.getMonth()] + "-" + year;

 }

]>

</msxsl:script>

BENTLEY SYSTEMS, INC CIVIL ENGINEERING

CREATING ASCII OUTPUT STYLE SHEETS PAGE 7 OF 7

Other examples of specialized function are in the Leica style sheets. These style
sheets each have the columnFormat and columnDoubleFormat functions rewritten as

zeroFormat and zeroDoubleFormat. This is because the Leica format requires
leading zeros rather than leading spaces for its output.

3. References

Harold, Elliotte Rusty. XML Bible. IDG Books Worldwide, Inc, Foster City, CA, 1999.

Kay, Michael. XSLT Programmer's Reference 2nd Edition. Wrox Press, Ltd, Birmingham, UK,
2001.

4. Glossary

Terms used in this document are:

ASCII American Standard Code for Information Interchange – the character set
upon which most text files used by modern computers is based

Attribute A component of an XML or HTML element that provides additional
information about a specific instance of the element in the form of a
name="value" pair

Child element An element that is nested (contained) within another element

Comment An item in an XML or HTML document that is used to carry extraneous
information that is not part of the data; written between the delimiters <!--

and -->.

Element A markup tag, consisting of a start tag and an end tag, and the content, text,
or data, contained within the tag

Empty element An element with no content, although it may have attributes

HTML Hypertext Markup Language – an SGML application created for Web
documents

ISO-8859-1 International Standards Organization character set 8859, Latin 1 – the base
character set of HTML; based on ASCII, but extended to include most of
the characters needed for Western European languages

Markup Tags added to a document to define the pieces and parts of the document
and to describe the role they play; markup works on any computer

Meta language A language used for defining other languages

Parent element An element that has one or more elements nested within it

Root element The upper level parent element of which all other elements in the document
are children

SGML Standard Generalized Markup Language – a meta language created for
general document structuring

Tag HTML and XML code that delineates elements; tags can have three kinds of
meaning – structure, semantics and style

UTF-8 Unicode Transformation Format, 8-bit – a variable-length multi-byte Unicode
representation scheme using a coded character set; often used by XML

XML Extensible Markup Language – a text format for storing structured data; a
meta language based on simplified SGML created for Web use

XML style sheet Well-formed XML document that uses XSLT to transform XML data for
presentation

XSL / XSLT Extensible Style Sheet Language: Transformations – an advanced style
sheet mechanism that provides browsers with formatting and display
information

