LAB 11 - Draw a Bridge Typical Section

In this lab, you'll practice all of the drawing concepts you've learned so far to create a bridge typical section.

Chapter Objectives:

After completing lab 11, you will know how to:

- Use the CDOT Menu to set active attributes (level, color, line style, weight).
- Use basic drawing tools (AccuDraw, AccuSnap, Modify and Manipulation tools, cells, patterns, etc.) to draw a bridge typical section and a reinforcement detail.
- Use Selection Sets to group graphics.

Lab 11.1 - Create a Bridge Model File for Details

Note: Since you have already selected $x x$ Multi-Discipline from the Select Group utility, you have access to all Bridge levels. However, you could also select the Bridge Group before starting MicroStation to limit your levels to just those needed for Bridge.

1. Start MicroStation.
2. In the MicroStation Manager dialog box, re-set Project to 12345.
3. Set the directory path to \Bridge\ Drawings Reference_Fies.
4. Select the file 12345BRDG_Model.dgn and then select Open.

The blank model file opens.
5. Select File >Save As... and set the directory to the project's \Bridge\Working folder.
6. Rename the file CU12345BRDG_Detail.dgn and select Save.

Note: Note that you are renaming this file from "Model" to "Detail".

The file is copied to the working folder with the initials $\mathbf{C U}$ (CDOT User, for training purposes).
7. Select Settings $>$ Design File $>$ Working Units and set the Format to MU:SU.

8. Select $\mathbf{O K}$ to change the coordinate readout. Your readout will now show values in feet and inches.

Lab 11.2 - Draw a Bridge Typical Section

In the next series of steps, you'll use AccuDraw and MicroStation tools (drawing tools, manipulation and modify tools, grouping tools, etc.) to create the bridge typical section shown.

You'll begin by drawing construction lines on a drafting level, and then create the final detail on the appropriate bridge level.

Draw the slab construction lines

You'll draw the right side of the top of slab starting at the crown point of the road. The right side consists of a 12 ft . travel lane and a 6 ft . shoulder, both at a 2% cross slope.

1. On the CDOT Menu Drafting group select the Linework category.
2. Set the filter to WTand select Weight 1.

This sets the active level to DRAFT_WT-1.
3. $\boldsymbol{D}>$ anywhere to place the first point.
4. Make sure your AccuDraw compass is in Rectangular mode. If it is not press <spacebar>.
5. In the SmartLine Tool Settings box, make sure Rotate AccuDraw to Segments is turned Off.

This will keep the X axis horizontal as you draw SmartLine segments.
6. Move your cursor down and to the right to establish the direction of the SmartLine.
7. In AccuDraw, key in $\mathbf{1 2}$ for \boldsymbol{X}, then $\langle\mathbf{T A B}>$.
8. In AccuDraw, key in 12*. $\mathbf{0 2}$ for \boldsymbol{Y}, then <TAB>.
9. $\langle\mathbf{D}>$ to place the first SmartLine segment.
10. Zoom In if needed to see the line.

Note: Do not reset out of the SmartLine command. This will break the SmartLine, which you do not want to do. You want the top slab line to be all one element.

This creates the 12 ft . travel lane at a 2% slope.
11. For the next shoulder segment, move your cursor down and to the right to establish the direction of the SmartLine.
12. In AccuDraw, key in $\boldsymbol{\sigma}$ for \boldsymbol{X}, then $<\mathbf{T A B}$.
13. In AccuDraw, key in $\mathbf{6}^{*}$. $\mathbf{0 2}$ for \boldsymbol{Y}, then <TAB>.

14. $\mathbf{D}>$ to place the second SmartLine segment, this creates the 6 ft . shoulder at a 2% slope.
15. $\langle R>$ out of the SmartLine command.

Create the bottom slab construction line

Vertically copy the top slab line down 8 inches for the bottom of slab on the right side.

1. Select the Copy command from the Main task toolbar.

2. AccuSnap on the right end of the top slab to identify the element to copy.
3. Move your cursor down and lock on to the -Y AccuDraw axis to establish the copy direction. In $\boldsymbol{A c c u D r a w}$, key in $\boldsymbol{\boldsymbol { 8 }}$ for \boldsymbol{Y} and the press <TAB> to accept the entry. The value converts to 0.667 feet.

Note: Don't forget to key in the colon before the 8 to specify 8 inches.

4. $\langle\boldsymbol{D}\rangle$ to place the copy, then $\langle\boldsymbol{R}\rangle$ to complete.

Create the slab left side

Since the right and left sides of the road are symmetrical, you can mirror the right side to create the left side.

1. Select the Element Selection command and set the Tool Settings as shown.

2. Place a fence around the slab graphics ($\boldsymbol{\mathbf { D }} \boldsymbol{>}$ for upper left corner and then $\langle\mathbf{D}\rangle$ for lower right corner).

3. Select the Mirorcommand from the Main task toolbar:

- Set Mirror About to Vertical.
- Toggle on Make Copy.

4. $\boldsymbol{D} \boldsymbol{>} \boldsymbol{\circ}$ on the left endpoint of the upper slab line (the crown point) for the mirror copy.

5. $\langle\mathbb{R}\rangle$ when done.
6. Select the Element Selection command again and select the Clearicon from the tool settings window to remove the selection set.

7. Fitthe view.

Place the girders

1. On the CDOT menu, select the Bridge Group.

- Set the Category to Bridge Levels
- Set the Type to Basic
- Select the Outline item

Note: This changes the active level from a DRAFT level to the BRIDGE_OUTLINE level for placing the girders.

```
Z (none' * BRDG_OUTLINE
```

2. On the CDOT menu, select the Bridge Group.

- Set the Category to Cells
- Set the Type to Girders-BT
- Select the BT54 item

Note: This automatically selects the correct girder cell from the bridge cell library and activates the Place Cell command.
3. On the CDOT menu, select the Settings button

- Set Active Scale to $\mathbf{1}$
- Set Active Angle to \boldsymbol{O}
- $\boldsymbol{D}>$ Close to exit the Settings window

4. Using AccuDraw we can establish an orientation point from which to place the first girder. With the girder cell attached to your cursor, hover over right endpoint of the bottom slab line (don't AccuSnap, just hover and lock on to the point).

5. Click into the AccuDraw box to set it active and press the letter \boldsymbol{O} on the keyboard to move the AccuDraw compass origin to this point.

6. Move you cursor to the left to establish the placement direction, and key in 3:6 in the \boldsymbol{X} field.

7. With your cursor locked on the \boldsymbol{X} axis $\boldsymbol{D}>$ to place the girder cell.

This places the first girder 3 ft . -6 in . from the right side of the slab. You'll later move the girder down for the proper haunch depth.

Place additional girders

Copy the girder cells to space them 7 ft .3 in on center.

1. Select the Copy command.
2. In the Tool Settings box, key in $\mathbf{4}$ for the number of copies.

3. Click into the AccuDraw window to set it active.
4. $\boldsymbol{D}>$ on the girder at the top midpoint.
5. Move your cursor to the left to establish the copy direction and key in $\mathbf{7 : 3}$ in the \boldsymbol{X} field in AccuDraw.

6. With your cursor locked on the \boldsymbol{X} axis, $\langle\mathbf{D}>$ to place the copies.

Move the girders down to establish the haunch depth

1. Select the Move command from the Main task toolbar.

2. Click into the AccuDraw window to set active.
3. $\quad \mathbf{D}>$ on the right end girder at the top midpoint for the move from location.
4. Move your cursor up and lock on the \boldsymbol{Y} axis to establish the direction, then press \&Enter> on the keyboard.

By pressing <Enter>you "smartlock" the AccuDraw \boldsymbol{X} and \boldsymbol{Z} axes, so that you can only move in the \boldsymbol{Y} direction.

5. Press \boldsymbol{N} on the keyboard for the Nearest snap mode.
6. Hover over (do not data point) at the nearest snap point on the bottom slab line.

7. Press the letter \boldsymbol{O} on the keyboard to move the AccuDraw origin to this point.

8. Move your cursor down to establish the move direction, lock on to the $\boldsymbol{-} \boldsymbol{Y}$ axis and key in $: \mathbf{4}$ in the AccuDraw \boldsymbol{Y} field.

9. $\langle\boldsymbol{D}>$ to move the girder.

This moves the girder down 4 inches from the bottom of the slab for the correct haunch thickness.
10. Repeat the above steps to vertically move the remaining girders down 4 inches from the bottom of the slab.
印

Place the Bridge Rail

1. On the CDOT menu, select the Bridge Group.

- Set the Category to Bridge Rail
- Select the Rail Type 7 item

2. AccuSnap on the left end of the top of slab as shown.

3. For the right-side rail, select the Place Active cell command again.
4. In the Tool Settings box, Unlock the XYZ lock and set the \boldsymbol{X} scale to $\mathbf{- 1}$.

Note: -1 X-axis scale will mirror the cell about the X axis.
5. Place the cell as shown.

6. $\langle\boldsymbol{R}>$ when done.

Extend elements

Extend the slab lines to join up with the bridge rail. To do this, you'll need to drop the bridge rail cell to its original elements.

1. Select the Drop Elementcommand from the Main task toolbar.

2. Toggle on Complex (the cell is considered a complex element).
3. $\langle\mathbb{D}>$ on the right-side bridge rail cell.
4. The cell is dropped to its original elements.
5. Select the Trim to Intersection from the Main task toolbar.

6. $\boldsymbol{D}>$ on the bottom slab line and then $\langle\boldsymbol{D}>$ on the back of rail line to extend these elements.

7. Repeat the above steps for the right side.

Draw the slab

1. With the active level set to BRIDGE_OUTUNE select the Place Smartine tool.
2. Click in the AccuDraw window to set it active.
3. Starting on the left side, AccuSnap on the bottom of the bridge rail.
4. You want the next point to be 1 " below the left-top of the first girder. To do this, you'll need to move the AccuDraw origin to the top of the girder and then locate 1 " down.
5. Hover over the left-top of the girder as shown, click in the AccuDraw box and press the letter \boldsymbol{O} on the keyboard to move the AccuDraw origin to this point.

6. Move your cursor down, lock on the \boldsymbol{Y} axis and key in a value of $\boldsymbol{:} \mathbf{1}(1 \mathrm{inch})$.

7. $\langle\mathbf{D}>$ to place the SmartLine segment.
8. AccuSnap on the left-top of the girder as shown.

Note: Remember, if you make a mistake, Undo ${ }^{n}$ the last data point, don't reset out of the SmartLine command.
9. AccuSnap on the right-top of the girder as shown.

10. Move your cursor up, lock on to the \boldsymbol{Y} axis and press <Enter> to smartlock the axis. You can now only move in the \boldsymbol{Y} direction.
11. Press \boldsymbol{N} on the keyboard for the nearest snap point.

12. $\boldsymbol{\mathbf { D }}>$ on the bottom slab line as shown.
13. Hover over the next girder's top-left endpoint as shown.

14. Press $\boldsymbol{O}_{\text {on }}$ the keyboard to move the AccuDraw origin to this point (do not data point).
15. Move your cursor up, lock on to the \boldsymbol{Y} axis, and press $<$ Enter $>$ to smartlock the axis.
16. Press \boldsymbol{N} for the nearest snap point.
17. $\boldsymbol{D}>$ on the bottom slab line as shown.

18. $\mathbf{D}>$ on the top left girder edge as shown.

19. Continue these steps on each girder to place SmartLine segments as shown until you get to the last girder location shown below.

Remember to Undo, not reset, if you make a mistake on a segment.
20. On the last girder (far right), move your cursor down, lock on to the \boldsymbol{Y} axis and key in a Y value of : $\mathbf{1}$ (1 inch$)$.
21. $\langle\mathbf{D}>$ to place the point.

22.
$<\boldsymbol{D}>$ on the right end of the bottom slab line.

23. $<\boldsymbol{R}>$ out of the Place SmartLine command.
24. Select the Tim to Element tool from the Main task toolbar.

25. $<\boldsymbol{D}>$ on the blue top of slab line and then $<\boldsymbol{D}>$ on the back of bridge rail line to extend these elements.

26. Repeat for the left side.
27. Delete the blue bottom of slab lines.
28. Fit the view.

Create the top of pavement

1. Fitthe view.
2. Select the Copy command.
3. $\boldsymbol{C D}>_{\text {on }}$ the right-side top slab line (blue construction line) at the crown point to select it for copying.

Note: If you select the bridge slab shape (red element), $\langle\mathbf{R}\rangle$ until the top slab line highlights.
4. Move your cursor up and lock-in on AccuDraw's \boldsymbol{Y} axis.
5. In Ac cuDraw, key in a \boldsymbol{Y} value of $\boldsymbol{: 3}(3$ inches $)$.

6. $\quad \mathbf{D}>$ to copy the top slab line.
7. Repeat for the left side.

Note: You can move your cursor up and lock in on the last distance tic mark of 3 inches, eliminating the need to key in the Y value.
8. On the CDOT menu, select the Bridge Group.

- Set the Category to Bridge Levels
- Set the Type to Outine
- Select the Outline-Asphaltitem

This sets the active level to the asphalt level.
9. Change the top of pavement lines to the active asphalt level.

Clean-up lines at the rails

You now need to trim the top of pavement lines that run through the bridge rails, as well as the bottom of the rail that extends below the top of slab.

1. Select the IntelliTimim command from the Main task toolbar.

2. Set the Mode to Quick and the Operation to Trim.

3. $\boldsymbol{D}>$ on the vertical edge of the rail to select it as the cutting element, as shown below.
4. Draw a crossing line on the top of pavement line inside the rail as the portion to trim.

5. Repeat the above steps for the left-side rail.

Lab 11.3 - Complete the Bridge Rail Graphics

Since you dropped the bridge rail cell to trim the graphics it is no longer one entity. Instead it was dropped to individual lines. You will now group the lines into a complex chain.

1. Select the SmartMatch command and $\langle\mathbf{D}>$ on any red bridge line to match it.

This sets the active level to Bridge_Outline to match the slab.
\qquad
2. Select Create Complex Chain from the Groups toolbar.
3. Set the Method to Automatic and toggle on Simplify Geometry.

Note: With the Automatic method, you do not have to individually identify each element to add to the complex chain. The elements are found automatically within a maximum gap range. Simplify geometry will make the new element a SmartLine instead of a complex element.

4. $\quad \mathbb{D}>$ on the first segment of the bridge rail as shown.

5. $\boldsymbol{\square}>$ anywhere above this element to define the direction for adding elements. The remaining bridge rail elements are added to the chain and placed on the active Bridge_Outline level.
6. $\langle\mathbf{D}>$ to accept.
7. Repeat for bridge rail on other side of bridge.

Note: With some MicroStation commands (like the Complex Chain command), if you hover over the complex element it will still show you the individual elements that make up the chain. However, notice that pop-up information tells you it really is a complex chain. When you use the Copy command in the next step, you'll see the chained elements behave as one element.

8. Select the Copy command from the Primary toolbar and copy the bridge rail to a clear area of the design file.

The individual graphics are now chained together into one element.
9. Undo the copy.

Note: You can use the Create Complex Shape in a similar fashion to create closed shapes from individual graphics.

Lab 11.4-Create a Selection Set of the Bridge Section

1. Fitthe view.
2. Choose the Element Selection tool from the Main task toolbar.
3. Hold down the data button $\langle\mathbf{D}>$ and drag across the bridge section (corner to opposite corner). Be sure to include all of the section graphics in this area.

Note: The elements are added to the selection set and are highlighted purple (the selection set color). To change the color, choose Settings > Design File >Color $>$ Selection Set Color. The lower right corner of the status bar shows how many elements are now in the selection set.
4. $\langle\mathbf{D}>$ in the center of the typical section, hold down the data button and drag the selection set to a new location in the file.
5. Drag the selection set back to its original location.
6. $\langle\mathbf{D}>$ anywhere in a clear area of your design file to remove the selection set.

Note: The selection set is a temporary group of graphics until you drop the set.

Lab 11.5 - Create a Graphic Group of the Bridge Section

1. Use the Element Selection tool and place the bridge typical section graphics into a selection set again.
2. From the Main task toolbar, select Add to Graphic Group.

3. $\quad \boldsymbol{D}>$ to accept the selection set element to add to the group.
4. $\langle\mathbb{R}>$ out of the command.
5. $\boldsymbol{D} \boldsymbol{D} \boldsymbol{\text { anywhere in a clear area of your design file to remove the selection set. The elements }}$ "un-highlight" and return to their normal symbology.
6. On the status bar, check your locks and make sure Graphic Group lock is On.

Full	
	Toggles
	Axis
Grid	
	Unit
\checkmark	Association
Level	

7. Select the Move command.
8. $\boldsymbol{D}>$ on the bridge typical section graphics. All elements in the graphic group highlight.
9. Move the graphics and a new location and $\langle\mathbf{D}>$ to accept. With Graphic Group lock On, the elements behave as a group.
10. On the status bar, turn the Graphic Group lock Off.
11. Select the Move command again.
12. $\mathbf{D}>$ on one of the BT 54 girders. Only the girder highlights.
13. Move it to a new location and $\langle\boldsymbol{D}>$ to accept.

With the Graphic Group lock Off, you can manipulate the individual elements in the group.
14. Undo the Move command on the girder.
15. Turn the Graphic Group lock back On.
16. Move the bridge typical section graphics back to their original location.

Note: When working in design model files, most InRoads graphics are displayed as graphic groups (e.g. contours, profiles, cross sections).

Pattern pavement and slab

1. Fitthe view.
2. From the CDOTMenu Explorer:

- Select Drafting.
- Set the Category to Patteming.
- Select the Concrete item.

3. In the Pattern Area Tool Settings box set the Method to Food, Active Scale to $\mathbf{1}$ and the Active Angle to \boldsymbol{O}.

4. Make sure the entire region to flood is shown in your view. Then, $\langle\boldsymbol{D}>$ anywhere inside the bridge slab region. The region to flood with the pattern highlights.

5. $\quad \mathbf{D}>$ to accept. The shape is patterned with the concrete cell.

6. Select the Hatch Area command from the Patterns task toolbar.

7. In Tool Settings, select the Food method, set Spacing to $: \mathbf{3}$ and the Angle to $\mathbf{4 5}$.

8. $\langle\mathbf{D}>$ anywhere inside the pavement area. A dynamic display shows the flooded area.

9. $\langle\mathbf{D}>$ to accept. The region is flooded with the hatch pattern.

10. Save Settings

11. ExitMicroStation.
