Scour Critical Bridge Plan of Action and Recommendations

for

SH 30 (Havana Street) Bridge over Cherry Creek

Structure F-17-AE

Prepared for FHWA & Colorado Department of Transportation

Prepared by Region 6 Hydraulics Unit

September 2009
Table of Contents

I. Introduction
II. Channel Description
III. Location Map
IV. Hydrologic Analysis
V. Hydraulic Analysis
VI. Geology Report
VII. Stream Stability
VIII. Scour Analysis
IX. Bridge Pier Scour Protection
X. Bridge Abutment Slope Protection
XI. Summary of Recommendations
XII. References

List of Figures

Figure 1 Project Location Map – Havana St. (SH 30) Over Cherry Creek, Structure F-17-AE
Figure 2 Existing Bridge Structure – CDOT As Built Drawings

List of Tables

Table 1 Hydrology – Peak Discharge Summary
Table 2 Hydraulic Analysis Summary

Appendices

APPENDIX A – Scour Critical Bridge, Plan Of Action Form
APPENDIX B – Hydrology
APPENDIX C – Geology
APPENDIX D – HEC-RAS Analysis
I. Introduction

Structure F-17-AE is located at mile post 3.098 on Havana Street (SH 30) in Denver County. The structure crosses Cherry Creek approximately 1 mile downstream of Cherry Creek Reservoir. Structure F-17-AE has a Sufficiency Rating of 41.2 and is found to be in good condition. Visual monitoring during large storm events is the current scour countermeasure for the bridge. Structural changes to the channel such as armoring with rip rap, and slope protection, are not required at this time and are not recommended. The “Scour Plan of Action” recommendation is to monitor the structure during periods when Cherry Creek is experiencing high flows. At a stream elevation of 5476, or within 3 feet of the low chord of the substructure, it is recommended that the bridge be closed to traffic. A detour for traffic is to be made at the intersection of Hampden Avenue (SH 30) and I-25. Traffic should be routed south on I-25 to I-225, then west on I-225 to Parker Road (SH 83), then north on Parker Road (SH 83) to Havana Street. This detour should be used until the Cherry Creek stage subsides.

II. Channel Description

Cherry Creek Channel in this segment is relatively flat and located in an open terrain that is bordered by the Kennedy Golf Course and Open Space. The bed consists of silt and sand. The overbank areas adjacent to the active channel are vegetated in various wetland and riparian species of grasses, shrubs, and trees.

Structure F-17-AE has experienced erosion in the channel, at its abutments, and piers. The structure is rated as scour critical, Item Number 113 in the Structure Inventory and Appraisal of the Nation’s Bridges (Item 113 = 5). The Colorado Department of Transportation (CDOT) Bridge Inspection personnel make biennial inspections of this structure. Records indicate Cherry Creek has experienced a lowering in elevation, at abutments and piers, between 3 inches and 2 feet due to scour. The berm at Abutment 1 has eroded exposing up to 15 inches of piles. The berm at Abutment 5 is up to 3 inches low for the full length with some exposed piles. Piers 2 has experienced scour which has exposed approximately 2 feet of piles. A concrete footer was place below the pier wall to stabilize this condition. The Pier 3 wall has been undercut exposing 6 inches to 1 foot of pipe piles.
III. Location Map

![Project Location Map – Havana St. (SH 30) Over Cherry Creek](image)

Figure 1 Project Location Map – Havana St. (SH 30) Over Cherry Creek

IV. Hydrologic Analysis

The basin that contributes runoff to the bridge crossing Cherry Creek at Havana Street is controlled by the Cherry Creek Dam just upstream of the bridge. Construction of Cherry Creek Dam was completed in 1950. The basin between Cherry Creek Dam and Structure F-17-AE is urbanized with highways, golf courses, open space, commercial and residential land uses.

The Flood Insurance Study for the City and County of Denver, in which CDOT Structure F-17-AE is found, defines the 100 year flow rate for Cherry Creek as 1,500 cfs. The Cherry Creek Dam just upstream of Structure F-17-AE is design for a maximum allowable release rate of 5,000 cfs which could be sustained for 5 to 10 days. The channel downstream from the dam may handle the maximum allowable release without flooding areas outside the channel, however, sustained flows could severely erode the sandy channel and scour structures at piers and abutments.

The Plan of Action (POA) for Scour Critical Bridges and Bridges with Unknown Foundations requires a hydraulic analysis for the 50-yr, 100-yr, 250-yr, and 500-yr flood frequency events. Because Structure F-17-AE is located downstream from Cherry Creek Dam and flow is controlled by the outlet works for the dam, flow rates associated...
with a traditional return interval frequency do not apply for this structure. However, there is an existing gage station on Cherry Creek approximately ½ mile upstream of Structure F-17-AE which was analyzed to estimate flow rates for the required flood frequency events. The largest peak flow rate recorded, from 1950 through 2004, was 1,600 cfs. For this study, the estimated peak flow rates used in the HEC-RAS model for Cherry Creek are as follows:

<table>
<thead>
<tr>
<th>Flood Frequency Event</th>
<th>Peak Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-yr</td>
<td>1,900</td>
</tr>
<tr>
<td>100-yr</td>
<td>2,300</td>
</tr>
<tr>
<td>250-yr</td>
<td>2,800</td>
</tr>
<tr>
<td>500-yr</td>
<td>3,200</td>
</tr>
<tr>
<td>Maximum Release Rate</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Table 1 Hydrology – Peak Discharge Summary

(1) Peak stream flow data for USGS 06713000, Cherry Creek below Cherry Creek Lake, CO was obtained from the National Water Information System. All streamflow data is affected by Cherry Creek Dam outlet release. The data was analyzed by Dennis Cress, CDOT R-2 Hydraulics Unit, using techniques outlined in the Interagency Advisory Committee On Water Data, Guidelines for Determining Flood Flow Frequency, Bulletin #17B, 1982. A Log-Pearson Type III Distribution flood frequency analysis was used to determine flood frequency/discharge values.

V. Hydraulic Analysis

Bridge scour analysis will be based upon four selected events; the 50 year, 100 year, 250 year, and the 500 year using the procedures outlined in HEC 18 and HEC 23, 2001 Edition.

The Cherry Creek channel is modeled using the Watershed Modeling Software (WMS) and with topographic data taken from CDOT field survey of the channel approximately 1000’ upstream and downstream of the bridge, shown below.

The existing bridge structure is modeled with a total span of 125 feet, a length of 72 feet, and with abutment slopes of 1.5 to 1. The distance between the deck and bottom chord of the structure is estimated at 3.39 feet. The bridge was constructed in 1956 with abutments and piers set on 10 ¾ inch steel pipe piles filled with concrete. As-built drawings show the length of the pipe piles at 40 to 42 feet and extending down to approximate elevation 5440. The structure was widened in 1968 with abutments and piers set on 12 ¾ inch steel pipe piles filled with concrete. As-built drawings show the estimated length of the pipe piles at 42 feet.
The plans note that piles are end bearing and that the average terminal depths for piles are as follows:

- Abut 1: 5435.35
- Pier 2: 5435.30
- Pier 3: 5446.28
- Pier 4: 5447.58
- Abut 5: 5422.70

Figure 2 Existing Bridge Structure – CDOT As Built Drawings

The bridge is modeled without ineffective flow areas because the bridge opening is very nearly the same width as the approaching channel flow area. This is also the case downstream of the bridge.
A steady flow, mixed flow regime was used to model the river. The Cherry Creek thalweg, and banks, were established on the CDOT survey terrain model. After setting the thalweg alignment, the cross sections were extracted at key locations along the creek. The thalweg, the bank geometries, and the cross sectional information, were exported from the WMS software into the river modeling software, HEC-RAS. Results from HEC-RAS were imported back to WMS to depict flood delineations overlain on the FIRM panel.

The channel n values are taken from "Flood Plain Modeling Using HEC-RAS" first edition, Table 5.7. The internal bridge cross sections were assigned an n value of 0.025 for the creek and banks. After modeling the water surface profile and mapping the flood plain, the n values were accepted as they produced results that are very consistent with the values shown on the FEMA FIRM map panel.

VI. Geology Report

Geotechnical field activities were completed on April 27th through 30th, 2009. The general geology consists of loose to dense, clayey to well graded sand overlying firm to very hard sandy claystone bedrock. Bedrock was encountered between 5,436 to 5,455 feet above mean sea level (amsl). Bedrock characteristics were consistent among borings.

VII. Stream Stability

Low flows are conveyed in a sandy active channel which is usually devoid of vegetation. Over the years, channel degradation has become apparent. The channel degradation is a consequence of increased runoff due to urbanization, and Cherry Creek Dam, which traps all of the incoming sediment supply from the upstream watershed. The average channel slope downstream of the dam is approximately 0.4%.
VIII. Scour Analysis

The results of the water surface mapping for the required flood flow frequencies are shown in Table 2. The HECRAS model produced a very similar water surface profile for the proposed structure as compared to the existing structure. The flow area under the bridge is roughly the same and the result of the proposed design on the water surface profile is only slightly increased over the existing.

<table>
<thead>
<tr>
<th>Flood Frequency Event</th>
<th>Water Surface Elevation (ft)</th>
<th>Distance to Low Chord (ft)</th>
<th>Depth of Scour (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Chord Elevation(2)</td>
<td>5479.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-yr</td>
<td>5476.20</td>
<td>2.95</td>
<td>10.24</td>
</tr>
<tr>
<td>100-yr</td>
<td>5476.70</td>
<td>2.45</td>
<td>11.05</td>
</tr>
<tr>
<td>250-yr</td>
<td>5477.25</td>
<td>1.90</td>
<td>17.30</td>
</tr>
<tr>
<td>500-yr</td>
<td>5477.67</td>
<td>1.48</td>
<td>18.29</td>
</tr>
<tr>
<td>Max. Release Rate</td>
<td>5479.29</td>
<td>-0.14</td>
<td>21.73</td>
</tr>
</tbody>
</table>

Table 2 Hydraulic Analysis Summary

(2) Low chord elevation taken at Pier 3 (center pier).

The depth of scour predicted by the scour model under the structure is moderate. The soil type and the large flow rate discharge from the reservoir combine to produce a deep scour under the structure. Since the structure is on piles the bridge may experience the hydraulic scour and removal of the embankment soils on both abutments, piers and in the channel. The results of the scour model are shown in the scour appendix.

IX. Bridge Pier Scour Protection

There are no bridge pier scour protection recommendations at this time.

X. Bridge Abutment Slope Protection

There are no bridge abutment slope protection recommendations at this time.

XI. Summary Recommendations for Structure F-17-AE

The recommended “Scour Plan of Action” to monitor the structure during periods when Cherry Creek is experiencing high flows. At a stream elevation of 5476, or within 3 feet of the low chord of the substructure, it is recommended that the bridge be closed to traffic. The recommended detour for traffic is at the intersection of Hampden Avenue (SH 30) and I-25. Traffic should be routed south on I-25 to I-225, then west on I-225 to Parker Road (SH 83), then north on Parker Road (SH 83) to Havana Street. This detour should be used until the Cherry Creek stage subsides.
XII. References

CDOT Drainage Design Manual, 2004
CDOT As-Build Record Drawings, S0055(2) and U016-1(36) of Structure F-17-AE.
CDOT Region 6 Survey Files, BR 030A-027, Havana St. over Cherry Creek.
Urban Drainage & Flood Control District, Denver, Glendale, Arapahoe County, Flood
 Hazard Area Delineation, Cherry Creek, Merrick and Company, July 1976.
Cherry Creek Stabilization Plan, University Boulevard to Cherry Creek Dam, Muller
WMS software, Version 8.1 BYU, EMSI, inc.
Floodplain Modeling Using HEC-RAS; Haestead Dyhouse Hatchett Benn, first ed.
FEMA Map Service Center.
Geotechnical Recommendations for Replacement of Structure F-17-AE, David Thomas,
 CDOT Region 6, Geotechnical Program, June 30, 2009
SCOUR CRITICAL BRIDGE - PLAN OF ACTION

1. GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Structure number: F-17-AE</th>
<th>City, County, State: 20000 Denver, 031 Denver, CO</th>
<th>Waterway: Cherry Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure name: -1 (NA)</td>
<td>State highway or facility carried: SH 30 ML / Havana St.</td>
<td>Owner: 1 (State)</td>
</tr>
<tr>
<td>Year built: 1956</td>
<td>Year rebuilt: -1 (Widened 1969)</td>
<td>Bridge replacement plans (if scheduled): Yes</td>
</tr>
<tr>
<td></td>
<td>Anticipated opening date: 2010-2011</td>
<td></td>
</tr>
<tr>
<td>Structure type: Bridge</td>
<td>Structure size and description: CSGC Concrete Slab & Girder, Continuous (L = 125’, W = 72’)</td>
<td></td>
</tr>
<tr>
<td>Foundations: Known, type: Piles Depth: 41’</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Subsurface soil information (check all that apply):</td>
<td>Non-cohesive</td>
<td>Cohesive</td>
</tr>
<tr>
<td>Bridge ADT: 37,200</td>
<td>Year/ADT: 2005</td>
<td>% Trucks: 2</td>
</tr>
</tbody>
</table>

Does the bridge provide service to emergency facilities and/or an evacuation route (Y/N)? U
If so, describe: NA

2. RESPONSIBILITY FOR POA

Author(s) of POA (name, title, agency/organization, telephone, pager, email):
Scott Leiker, PE, Region 6 Hydraulics Unit, CDOT, 303-757-9668, Scott.Leiker@dot.state.co.us

Date: 9/30/2009

Concurrences on POA (name, title, agency/organization, telephone, pager, email):

POA updated by (name, title, agency, organization): _____ Date of update: ___
Items update: _____

POA to be updated every 24 months by (name, title, agency/organization): R-6 Hydraulics Unit

Date of next update: 9/30/2011

3. SCOUR VULNERABILITY

a. Current Item 113 Code:
- [] 3
- [] 2
- [] 1
- Other: 5

b. Source of Scour Critical Code:
- [] Observed
- [] Assessment
- [X] Calculated

c. Scour Evaluation Summary: Originally rated as a 5 but down graded to a 4 because of exposed piles. Changed back to 5 when action to protect exposed foundations was completed.

d. Scour History: _____
4. RECOMMENDED ACTION(S) (see Sections 6 and 7)

<table>
<thead>
<tr>
<th>Item</th>
<th>Recommended</th>
<th>Implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Increased Inspection Frequency</td>
<td>☐ Yes ☒ No</td>
<td>☐ Yes ☒ No</td>
</tr>
<tr>
<td>b. Fixed Monitoring Device(s)</td>
<td>☐ Yes ☒ No</td>
<td>☐ Yes ☒ No</td>
</tr>
<tr>
<td>c. Flood Monitoring Program</td>
<td>☒ Yes ☐ No</td>
<td>☒ Yes ☐ No</td>
</tr>
<tr>
<td>d. Hydraulic/Structural Countermeasures</td>
<td>☐ Yes ☒ No</td>
<td>☐ Yes ☒ No</td>
</tr>
</tbody>
</table>

5. NBI CODING INFORMATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Current</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection date</td>
<td>02/04/2009</td>
<td>03/22/2007</td>
</tr>
<tr>
<td>Item 113 Scour Critical</td>
<td>5 (Changed 03/02/09 by Jeff Anderson)</td>
<td>4 Stable, needs action</td>
</tr>
<tr>
<td>Item 60 Substructure</td>
<td>6</td>
<td>5 Fair</td>
</tr>
<tr>
<td>Item 61 Channel & Channel Protection</td>
<td>5</td>
<td>5 Bank Prot Eroded</td>
</tr>
<tr>
<td>Item 71 Waterway Adequacy</td>
<td>8</td>
<td>8 Equal Desirable</td>
</tr>
<tr>
<td>Comments: (drift, scour holes, etc. - depict in sketches in Section 10)</td>
<td>See POA Report</td>
<td></td>
</tr>
</tbody>
</table>
Flood Monitoring Program

Type: ☑ Visual inspection

Instrument (check all that apply):
☐ Portable ☑ Geophysical ☐ Sonar ☐ Other: _____

Flood monitoring required: ☑ Yes ☐ No

Flood monitoring event defined by (check all that apply):
☐ Discharge _____ ☑ Stage 5476
☑ Elev. measured from Bottom of Substructure
☐ Rainfall _____ (in/mm) per _____ (hour)

Flood forecasting information: ______

Flood warning system: ______

Frequency of flood monitoring: ☑ 1 hr. ☐ 3 hrs. ☐ 6 hrs. ☐ Other: _____

Post-flood monitoring required: ☑ No ☐ Yes, within _____ days

Frequency of post-flood monitoring: ☑ Daily ☐ Weekly ☐ Monthly ☐ Other: _____

Criteria for termination of flood monitoring: ______

Criteria for termination of post-flood monitoring: ______

Scour alert elevation(s) for each pier/abutment: ______

Scour critical elevation(s) for each pier/abutment: ______

Note: Additional details for action(s) required may be included in Section 8.

Action(s) required if scour alert elevation detected (include notification and closure procedures): Monitor until water recedes.

Action(s) required if scour critical elevation detected (include notification and closure procedures): Close approaches until channel is repaired.

Agency and department responsible for monitoring: CDOT, Region 6, Maintenance Section 8

Contact person (include name, title, telephone, pager, e-mail): Steve Pineiro, M) 303-619-1905

7. COUNTERMEASURE RECOMMENDATIONS

Prioritize alternatives below. Include information on any hydraulic, structural or monitoring countermeasures.

☑ Only monitoring required (see Section 6 and Section 10 – Attachment F)

Estimated cost $0

☐ Structural/hydraulic countermeasures considered (see Section 10, Attachment F):

<table>
<thead>
<tr>
<th>Priority Ranking</th>
<th>Estimated cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$____</td>
</tr>
<tr>
<td>(2)</td>
<td>$____</td>
</tr>
<tr>
<td>(3)</td>
<td>$____</td>
</tr>
<tr>
<td>(4)</td>
<td>$____</td>
</tr>
<tr>
<td>(5)</td>
<td>$____</td>
</tr>
</tbody>
</table>

Basis for the selection of the preferred scour countermeasure: ______

Countermeasure implementation project type:
☐ Proposed Construction Project ☐ Maintenance Project
☐ Programmed Construction - Project Lead Agency:
☐ Bridge Bureau ☐ Road Design ☐ Other ______

Agency and department responsible for countermeasure program (if different from Section 6 contact for monitoring): ______
8. BRIDGE CLOSURE PLAN

Scour monitoring criteria for consideration of bridge closure:

- Water surface elevation reaches _____ at _____
- Overtopping road or structure
- Scour measurement results / Monitoring device (See Section 6)
- Observed structure movement / Settlement
- Discharge: _____ cfs/cms
- Flood forecast: ______
- Other: □ Debris accumulation □ Movement of riprap/other armor protection
 □ Loss of road embankment

Emergency repair plans (include source(s), contact(s), cost, installation directions): _____

Agency and department responsible for closure: CDOT

Contact persons (name, title, agency/organization, telephone, pager, email): Steve Pineiro, M) 303-619-1905

Criteria for re-opening the bridge: CDOT Staff Bridge

Agency and person responsible for re-opening the bridge after inspection: Steve Pineiro, M) 303-619-1905

9. DETOUR ROUTE

Detour route description (route number, from/to, distance from bridge, etc.) - Include map in Section 10, Attachment E. A detour for traffic is to be made at the intersection of Hampden Avenue (SH 30) and I-25. Traffic should be routed south on I-25 to I-225, then west on I-225 to Parker Road (SH 83), then north on Parker Road (SH 83) to Havana Street. This detour should be used until the Cherry Creek stage subsides.

Bridges on Detour Route:

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Waterway</th>
<th>Sufficiency Rating/Load Limitations</th>
<th>Item 113 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-17-ES</td>
<td>Goldsmith Gulch</td>
<td>70.0</td>
<td>8</td>
</tr>
<tr>
<td>F-17-OK & F-17-DY</td>
<td>Cherry Creek</td>
<td>95.1 & 70.9</td>
<td>8</td>
</tr>
</tbody>
</table>

Traffic control equipment (detour signing and barriers) and location(s): Variable Message Boards, Traffic Control Signing, Barricades, Cones, Drums, Detour Signing.
Additional considerations or critical issues (susceptibility to overtopping, limited waterway adequacy, lane restrictions, etc.):

News release, other public notice (include authorized person(s), information to be provided and limitations):

10. ATTACHMENTS

Please indicate which materials are being submitted with this POA:

- [] Attachment A: Boring logs and/or other subsurface information
- [] Attachment B: Cross sections from current and previous inspection reports
- [] Attachment C: Bridge elevation showing existing streambed, foundation depth(s) and observed and/or calculated scour depths
- [] Attachment D: Plan view showing location of scour holes, debris, etc.
- [] Attachment E: Map showing detour route(s)
- [] Attachment F: Supporting documentation, calculations, estimates and conceptual designs for scour countermeasures.
- [] Attachment G: Photos
- [] Attachment H: Other information: _____
APPENDIX C – Geology

Engineering Geology Sheet (from Geotechnical Recommendations for Replacement of Structure F-17-AE, June 30, 2009)
APPENDIX D – HEC-RAS Analysis

50 Year Bridge Scour Analysis
100 Year Bridge Scour Analysis
250 Year Bridge Scour Analysis
500 Year Bridge Scour Analysis
Maximum Allowable Release Bridge Scour Analysis