This document explains the procedures for creating an exterior boundary, merging surfaces, and copying features from one surface to another.

An exterior boundary eliminates inaccurate triangles that can occur in concave areas within the data.

The Merge Surfaces tool can be used to create a single surface from two or more "existing" surfaces, update the 'existing' surface with additional data, or to make an "as constructed" surface of the project by combining a proposed surface with the existing surface.

The Copy Portion of Surface tool copies features (or portions of features) from one surface and places them in another surface. This can be used to create a new surface from elements of one or more other surfaces or to update a surface with data from another surface.

Creating an Exterior Boundary

An Exterior Boundary is a closed shape DTM feature that defines the area where triangulation can occur. InRoads will triangulate the surface (without an exterior boundary) across concave areas creating inaccurate triangles that could adversely affect proposed surface models. An exterior boundary will prevent the creation of bogus triangles outside of the actual data.
An exterior boundary should be created for a surface that does not currently have a boundary or for a surface that has been modified and now has usable data outside the current boundary.

Option 1- When The Original And Design Surfaces Have Exterior Boundaries

To create the exterior boundary for the merged surface, the exterior boundaries of the source surfaces will be used. This will only be required if the design surface used in the Merge Surfaces operation lays at least partly outside the area of the Original surface. If the design surface is entirely within the area of the original surface, the original surface's exterior boundary will be retained and this process can be omitted. Note: The examples in this procedure will refer to steps defined in Merging Surfaces below.

1. Select Surface $>$ View Surface $>$ Features from the InRoads dialog box.

2. This will display the View Features dialog box. From the Surface drop-down, select the design surface (Merging Surfaces step 2 below) used when merging the surfaces.

3. By default, all of the features are highlighted. Select the None button to un-highlight all of the listed features. Next, highlight only the exterior boundary feature. Select the Apply button to the exterior boundary feature. Do not dismiss the View Features dialog box as it will be used again.

4. Next a fence will be placed by using the exterior boundary of the design surface as the fence shape. By placing the fence the exterior boundary of the original surface can be displayed clipping out the overlapping area so that less editing is required to finish the new exterior boundary.
5. Select the Place Fence command from the MicroStation Main toolbar. Set the Fence Type to Element in the settings box.

6. Select the design surface's exterior boundary displayed in step ?? above. Left click again, anywhere in the view to accept the element. This places a fence on the element.

7. Go back to the View Features dialog box. Set the Surface to the original surface (Merging Surfaces step 2 below).
8. Using the Fence Mode drop-down, select the Outside option. This will only display the part of the original exterior boundary that is outside of the design exterior boundary.
9. Select the None button and then highlight the exterior boundary feature only. Select the Apply button to display the feature. The View Features dialog box can now be dismissed.

10. Dismiss the fence by selecting the Place Fence button again. The results of this operation will look similar to the example below:

11. In order to get the element ends to match properly, use the following procedure: Select the Partial Delete command from the MicroStation Main toolbar.

CDOT Creating Combined Surfaces.pdf

i. Move the cursor near the end of the original exterior boundary (solid line) and <T> (middle mouse click).
ii. <D> (left mouse click) to accept the snap. The original boundary will highlight.
iii. Next, <R> (right mouse click). This will un-highlight the original boundary and highlight the design boundary (dashed line) where the two meet.
iv. To identify the direction of the partial delete, move the cursor along the part of the element to be deleted and $<\mathbf{D}>$.
v. $\langle\mathbf{T}\rangle$ to the other end of the original exterior boundary.
vi. <D> to accept the snap and complete the partial delete.

The result will be two elements that represent the desired extent of the exterior boundary of the merged surfaces.

Next, a closed shape must be made of the two elements. Select the Create Complex Shape command from the MicroStation Main toolbar. In the settings method drop down box, select Manual for the Method.

CDOT Creating Combined Surfaces.pdf

12. <D> on element one (solid line) then <D> on element two (dashed line). <D> once more in a blank area on the screen to finalize the command.

13

The shape is now ready to be incorporated into the combined surface as an exterior boundary. Steps 13 through 16 determine how and where data from the element will be stored, steps 17 through 19 determine its feature properties.
14. From the InRoads dialog box, select File > Import > Surface. The Import Surface dialog box will be displayed.

15. Select the From Graphics tab. Select the combined surface created with the Merged Surfaces tool (step ?? below) from the Surface drop-down.
16. Select Single Element from the Load From drop-down.
17. Select Use Element Elevations from the Elevation drop-down.
18. In the Features area of the dialog box, key in DTM_Exterior in the Seed Name drop-down. This should not appear in the list before it is keyed in because it was deleted from the surface in steps 7 through 10 above.
19. In the Feature Style drop-down, select DTM_Exterior
20. Using the Point Type drop-down, select Exterior.
21. After the above settings are made, select the Apply button.

22. <D> on the boundary shape (created in steps 1 through 12). The shape will highlight. <D> again in a blank area on the screen to accept the element and add it to the merged surface. Dismiss the Import Surface dialog box
23. To verify that the data was imported, select Surface > Feature > Feature Properties. This displays the Feature Properties dialog box.

24. Verify that the merged surface is selected in the Surface drop-down.
25. Verify that the DTM_Exterior appears in the Feature list box. Also verify that the Feature Type is set to Exterior in the Triangulation area.

To complete the process, the surface must be re-triangulated.
26. From the InRoads dialog box, select Surface > Triangulate Surface. The Triangulate Surface dialog box is displayed. One could also right click on the surface name in the InRoads Explorer and select Triangulate from the menu.

27. In the Surface drop-down, select the merged surface.
28. In the Maximum Length field, key in the desired length. This option will automatically remove any triangles that have at least one edge longer than the specified distance. Zero indicates no restriction to length. Because the surface has an exterior boundary, ' O ' should be used to ensure that all of the data is included in the triangulated surface.
29. Select the Apply button to execute the command.

CDOT Creating Combined Surfaces.pdf

30. When the command has finished processing, surface information will be displayed in the Results area of the Triangulate Surface dialog box. The exterior boundary is now part of the surface and the Triangulate Surface dialog box can be dismissed.

Now that the merged surface is complete, it should be saved.
31. From the InRoads dialog box, select File > Save > Surface. If the surface has been saved previously, the updated data will be written to the DTM file. If the surface has not been saved before, then a new DTM file will be created. One could also right click on the surface name in the InRoads Explorer and select Save from the menu.

32. The Save As dialog box will be displayed. Use the Save In drop-down to set the desired folder for the DTM.

Next the file must be named. There are two ways to do this, One: by keying in a filename (not recommended), or Two: by selecting the surface from the Active list at the bottom of the dialog box. Selecting the surface from the Active drop-down will ensure that the DTM has the same name in InRoads memory as it does on the hard drive.

CDOT Creating Combined Surfaces.pdf

33. Select the down arrow on the Active drop-down then highlight the desired surface. This should be done even if the desired surface is already displayed in the Active drop-down. Selecting the surface in the Active drop-down will auto-populate the File Name field with the surface name.
34. Select the Save button to add the file to the directory structure. After the file has been saved the Save As dialog box can be dismissed.

Option 2- When A Surface Has No Exterior Boundary

It may occur that a surface does not contain an exterior boundary. If this is the case, an exterior boundary should be created and added to the surface. Adding the boundary will eliminate inaccurate triangles from the surface. Below is an example of a surface with no exterior boundary. The example represents what occurs when a boundary is omitted and a triangle length is not defined. The software then calculates the inaccurate triangles shown in bold below.

To create an exterior boundary for this surface three steps are required. The erroneous triangles are removed, the perimeter of the surface is displayed, and the MicroStation graphic representing that perimeter is then imported as an exterior boundary feature into the DTM .

CDOT Creating Combined Surfaces.pdf

Removing Inaccurate Triangles

Inaccurate triangles are usually long narrow triangles or those that span concave areas of a DTM. InRoads has two tools that can be used to reduce then eliminate the number of inaccurate triangles. These two tools are the Triangulate Surface and Delete Triangle commands. The Triangulate Surface command is used to set a limit on the length of a triangle edge thereby reducing the number of inaccurate triangles. The Delete Triangle command is then used to eliminate the remainder of those triangles. It should be noted that neither of these commands affect the data collected for the surface. They either modify the computation used to calculate triangles (in the case of Triangulate Surface) or delete specific triangle computations (in the case of Delete Triangle).

Triangulate Surface

There is no definitive rule for the Maximum Length when triangulating a surface. If the length is set too short, holes might form where data was not used. Below is an example of a surface whose Maximum Length is set too short.

When the length is set to long, an undesirable number of inaccurate triangles may be left. However, when in doubt, err to the long side. It is better to have the inaccurate triangles than to lose data.

One can get an idea of what the Maximum Length should be by displaying the surface's features and triangles. Look for one of the longest triangles that is definitely within the data area (There is no need to be exact here, the object is to get an idea for the Maximum Length). Measure the long side of the triangle and use that as a starting point.
35. Select Surface > Update 3D/Plan Surface Display. This displays the dialog box.

Note: If available, reference files showing the location of survey data can be used to view the DTM features without having to display them.
36. In the Update 3D/Plan Surface Display dialog box, Set the Mode to Display On.
37. In the Surfaces list box, select the desired surface.
38. Below the Surfaces list box are a number of toggles. Toggle on Triangles and Features.
39. Select the All button in the lower right corner to highlight all of the features in the Features list box.

CDOT Creating Combined Surfaces.pdf

40. Select the Apply button. The dialog box will minimize while displaying the features and triangles. It will reappear when the display is complete.

41. Scanning the triangles displayed, a large triangle within the data was located. Select the MicroStation Measure Distance command. In the tool settings box, set the Distance to Between Points.
42. <D> at one triangle corner then the other. The distance measured will be displayed in the tool settings box.

43. From the InRoads dialog box, select Surface > Triangulate Surface. This displays the dialog box.

44. In the Surface drop-down, select the merged surface.
45. In the Maximum Length field, key in the desired length. Because this length is just an estimate, it is advisable to increase the measured length as a buffer.
46. Select the Apply button to launch the command.

In the examples above, the measured distance of the triangle edge was 757.993'. Because this may not be the biggest triangle within the data, 800 ' is used for the Maximum Length to insure all actual data is included.
47. Go back to the Update 3D/Plan Surface Display dialog box, toggle off Features, then select the Apply button. This will redisplay the triangles as computed using the Maximum Length set above.

CDOT Creating Combined Surfaces.pdf

48. Examine the triangles to be sure no actual data was lost. Look for features not connected by triangles. If good triangles were lost, go back to the Triangulate Surface dialog box, increase the Maximum Length and Apply the new settings. Repeat this process as necessary until the desired results are obtained.

In the example above, most of the inaccurate triangles have been deleted by setting the Maximum Length and re-triangulating the surface. The remainder will be eliminated using the Delete Triangle command.

Delete Triangle

Now that the number of inaccurate triangles has been reduced to a manageable level, the rest can be removed easily with the Delete Triangle command.
49. Zoom in on the area where triangles are to be deleted.

50. From the InRoads dialog box, select Surface $>$ Edit Surface $>$ Delete Triangle. This displays the dialog box.
51. In the Delete Triangle dialog box, use the Surface drop-down to select the desired surface.
52. Toggle on View Triangles. This will dynamically display the triangles to be removed. After the triangles are deleted (from memory) if the view is updated, the original triangles that were written to the CAD file will reappear. To refresh the MicroStation graphics, the triangles will have to be redisplayed (use the Surface > View Surface > Triangles command).
53. Select the Apply button.

54. The Delete Triangle dialog box will minimize. $<\mathrm{D}>$ inside the first triangle to be deleted, then move the cursor through other adjacent triangles that are to be deleted. Be sure not to pass through triangles that are needed. The triangles will highlight as they are passed through.

55. After the last triangle in the group is entered, $<\mathbf{D}>$ to end triangle selection. The Accept/Reject prompt is displayed. $<\mathbf{D}>$ to confirm deletion of the triangles, $<\mathbf{R}>$ to reject the selection.

CDOT Creating Combined Surfaces.pdf

In the example above the display is temporarily updated, eliminating the deleted triangles.
56. Using the same process, delete the remaining inaccurate triangles. After all of the desired triangles are deleted, dismiss the Delete Triangle dialog box.

Note: Do not re-triangulate the surface until the exterior boundary is added to the DTM. Otherwise all deleted triangles will regenerate.
57. From the InRoads dialog box, select Surface > View Surface > Triangles (or use the Update 3D/Plan Surface Display) to permanently update the triangle display.

Displaying the Exterior Boundary

After the triangles have been edited, the exterior boundary can be created. To create the boundary, the perimeter of the triangulated area will be displayed and that perimeter will be imported as the exterior boundary.
58. From the InRoads dialog box, select Surface > Update 3D/Plan Surface Display.
59. In the Update 3D/Plan Surface Display dialog box, Set the Mode to Display On.
60. In the Surfaces list box, select the desired surface.
61. Toggle on Perimeter. All other toggles should be off. Then select the Apply button to display the perimeter.

62. At this point the display of the triangles and features is not needed. In the Update 3D/Plan Surface Display dialog box, Set the Mode to Display Off.
63. Toggle on Triangles and Features. All other toggles should be off.
64. Select the ALL button to highlight all of the features.
65. Select the Apply button to remove the triangles and features.

66. To complete the exterior boundary process, follow steps 13 through 33 above, identifying the perimeter as the element to be imported.

CDOT Creating Combined Surfaces.pdf

Merging Surfaces

The InRoads Merge Surfaces command is used to create a single surface from two surfaces. The surfaces being merged must be adjacent or overlapping. The merging of surfaces that are not adjacent or overlapping would result in inaccurate triangles between the areas of data.

In the examples below, the original surface is being extended by an additional surface. The solid line represents the perimeter of the "Original" surface. The dashed line represents the perimeter of the additional surface to be merged, identified as the "Design" surface in the Merge Surfaces dialog box.

Prerequisites

Before two surfaces can be merged, they must both be opened in InRoads.

1. From the InRoads dialog box, select Surface > Edit Surface > Merge Surfaces. This will display the Merge Surfaces settings box.

CDOT Creating Combined Surfaces.pdf

2. This command operates with three surfaces; the original surface, the design surface, and the destination surface which will be created upon execution of the command.

Original Surface- This is the surface whose features can be deleted or partial deleted in areas that overlap with the merging (Design) surface. Typically, this will be the Existing surface received from ROW/Survey, however it can be any surface. If the original and design surfaces overlap, the common area between the two will be occupied by data from the Design Surface and data from the Original Surface may be removed, depending on the toggle settings described below.

Design Surface- This is usually the additional existing surface data or the Finished Grade surface generated from Roadway Modeler. Design Surface data can either replace or supplement the Original Surface data in areas where they overlap depending on the toggle 'Retain All Original Surface Points. In the illustration below, the shaded area shows the overlap between the original and design surfaces. The data from the Original surface in this area will be deleted and only the Design data will remain unless 'Retain All Original Surface Points' is toggled on. Note: this occurs in the Destination surface only, the data in the Original and Design surfaces will remain intact.

Destination Surface- This surface will store the results of the merge command.
Use the pull downs to select the desired surface for Original, Design, and
Destination. If a destination surface has not been created or loaded, it can be created "on the fly" by typing the desired name in the Destination box

A Destination surface name can be keyed in here to create the surface "on the fly".
3. The next area of the Merge Surfaces settings box contains three toggles: Retain All Original Surface Points, Retain Features Excluded From Triangulation, and Add Design Surface As Edge.

Retain All Original Surface Points- When on, all of the original surface's features will be stored in the destination surface. When off, the original surface features that cross into the design surface's perimeter will be clipped at the perimeter leaving only design features in that area. By default the option is toggled off.

Retain Features Excluded From Triangulation- When on, untriangulated features, like underground utilities, from the original surface will be stored in the destination surface regardless of their relationship to the design surface. When off, untriangulated features will be treated as any other feature in the original surface. Untriangulated features from the design surface are always included in the destination surface.

Add Design Surface Edge as Breakline- When on, the perimeter of the design surface is added to the desitination surface as a breakline. This will ensure that the design surface maintains its original triangle structure. When off, the perimeter is not added and the design surface's triangle structure can be modified by the original surface data. This option should be turned on when creating an "as constructed" surface. It should be turned off when extending or modifying the existing surface.

Turn on or off the toggles as desired.

CDOT Creating Combined Surfaces.pdf

4. The Merge Surfaces settings box contains an area for including and excluding design features from the destination surface. In the Included Design Surface Features area, highlighted features will be added to the destination surface and unhighlighted features will not. By default all features are highlighted.

Note: Because this is an example of extending a surface the Exterior Boundary of the design surface is unhighlighted. When creating an "as constructed" surface leave all the features on.
5. Options for resolving feature naming conflicts are located at the bottom of the settings box under Duplicate Names. The options are:

Append- This adds the points from the new feature to those of the existing feature, making one feature out of the two. The combined feature will have a discontinuity (a gap) from the last point of the existing feature to the first point of the new feature.

Replace- The existing feature will be deleted and replaced by the new feature with this option.
Rename- The new feature will be renamed by appending a ' 1 ' to the end of the name.

By default the Rename option is selected.

6. Once the desired settings are made, select the Apply button to execute the command. If the destination surface did not exist when the command was launched, upon completion the Destination surface will be added to the file list in the main InRoads dialog box. The Merge Surfaces dialog box can now be dismissed.

If the design surface was at least partially outside the area of the original surface (as is the case in this example), a random feature will be created in the combined surface using the original surface's exterior boundary name. This feature should be deleted prior to creating the new exterior boundary. To determine if the 'random' exterior boundary feature was created, use the Feature Properties dialog box.

If the design surface is entirely within the area of the original surface, the original surface's exterior boundary will be retained.
7. To delete the feature, select Surface $>$ Edit Surface $>$ Delete Feature.

8. The Delete Feature dialog box will be displayed. Use the surface drop-down to select the merged surface.

Note: When on, the View Triangles and View Contours display the triangles and/or contours (as temporary graphics) in the area of the deleted feature. Because deleting this feature will not affect the triangulation of the surface in its current state, these toggles should be left off.

CDOT Creating Combined Surfaces.pdf

9. From the Features list, highlight the exterior boundary feature (this will usually be named DTM Exterior).

10. Click the Apply button. A "Delete selected feature(s)?" warning message will display. Select OK to complete the deletion. The Delete Feature dialog box can be dismissed. It is advisable not to re-triangulate the surface until new exterior boundary is added.

11. The combined surface is now ready for a new exterior boundary. See Creating an Exterior Boundary Option 1- When The Original And Design Surfaces Have Exterior Boundaries above for this procedure.

CDOT Creating Combined Surfaces.pdf

Copy a Portion of a Surface

There may be occasions when only a portion of a surface is needed. For example, one might wish to extend their existing dtm with a few hundred feet from an adjacent project or perhaps specific features from one surface are required in another. Both, copying an area of a surface and copying whole features can be accomplished using the Copy Portion of Surface command.
Two examples will be used to illustrate the Copy Portion of Surface command. In the first, all of the features within a given area will be copied into a new surface. In the second example specific features will be copied into a new surface.

Example 1 - creating a subset of a DTM

In this example, all of the surface data in the box will be copied to create a new surface.

1. A MicroStation fence is used to identify the data to be copied. Select the Place Fence command from the MicroStation Main toolbar. Place the fence around the area to be copied. The blue box in the illustration below shows the location of the fence.

2. From the InRoads dialog box, select Surface > Edit Surface > Copy Portion Of Surface. The Copy Portion Of Surface dialog box is displayed.

3. In the Copy Portion Of Surface dialog box, use the Source Surface drop-down to select the surface to be copied from.
4. Use the Destination Surface drop-down to select the surface to be copied to. If the surface does not exist, the name for the new surface can be keyed in here.
5. Select Inside from the Fence Mode drop-down.

6. In the Features area, select the All button if it is not grayed out.
7. For Duplicate Names, toggle on the Rename option.

CDOT Creating Combined Surfaces.pdf

8. Select the Apply button to initiate the command. The Copy Portion Of Surface dialog box will minimize then reappear when the process is completed. Dismiss the dialog box.

From the InRoads dialog box, select File > Save > Surface and save the surface. The newly created surface is now ready for use once it's been triangulated.

Example 2 -Copying a single element or multiple elements

In this example, the Edge Of Gravel Road features will be copied into a new surface. The fence will not be used in this example because the whole feature is to be copied.
9. From the InRoads dialog box, select Surface > Edit Surface > Copy Portion Of Surface. The Copy Portion Of Surface dialog box is displayed.
10. In the Copy Portion Of Surface dialog box, use the Source Surface drop-down to select the surface to be copied from.
11. Use the Destination Surface drop-down to select the surface to be copied to. If the surface does not exist, the name for the new surface can be keyed in here.
(Note: the Fence Mode drop-down is grayed out because no fence is present. If a fence is present, select the Ignore option to copy the whole element. If the fence is defining an area to be copied or not to be copied then set the Fence Mode as needed.)
12. In the Features area, select the None button to deselect all of the features. Find the desired features in the list and highlight them. Hold the Ctrl to select a group of individual features or hold the Shift key to select a block of features.
13. For Duplicate Names, toggle on the Rename option.
14. Select the Apply button to initiate the command. The Copy Portion Of Surface dialog box will minimize then reappear when the process is completed. Dismiss the dialog box.

15. To verify that the data was copied, select Surface $>$ Features $>$ Feature Properties. The copied features should appear in the Feature list box.

(Note: the destination surfaces in the above examples were newly created, empty surfaces. However, the same processes will work to copy portions of a surface into another, existing surface. This, along with Creating an Exterior Boundary can be used to merge two adjacent, non-overlapping, surfaces.)

Note: The "Parent" field in the Feature Properties dialog can be populated on a feature level in their respective DTMs prior to the merging or copying of features. Doing so allows the user to 'track' where data originated. Any changes made require the surface to be saved for those changes to be retained for subsequent use.

