
described by the NB distributions. The underlying phenomenon itself,
however, is not well understood and is rarely discussed. Lord, Wash-
ington, and Ivan suggested that it may be preferable to begin to
develop models that consider the fundamental process of an accident
rather than strive for best-fit models in isolation (2). Lord, Manar, and
Vizioli observed that traffic flow characteristics have a direct influence
on the likelihood and severity of a crash. The effect of these charac-
teristics on freeway safety has not been clearly established, however,
nor properly modeled (3). Hauer noted that the art of choosing the
regression equation is seldom transparent, reasoned, or documented
(4) and observed that there is no reason to think that the underlying
phenomenon follows any simple, mathematical function (5).

Selection of the functional form is heavily influenced by the choice
of functions available in the software package used by the modeler.
The process consists of trying to fit a preselected function available
in the statistical software to a set of data and then use statistical tech-
niques to estimate regression parameters of the chosen function.
Such a process, however statistically rigorous, seems disconnected
from the phenomenon it is trying to describe, yet this disconnect has
attracted only limited interest from researchers to date. Hauer sum-
marized the situation as follows: if the functional form that is used
is inappropriate, the regression coefficients obtained have no clear
meaning, and there is little interest in their estimated value or preci-
sion (5). Accidents on an urban freeway are a by-product of traffic
flow. It is reasonable, therefore, to expect that the observation of
changes in the flow parameters may give clues about the probability
of accident occurrence and changes in accident frequency.

In this study, neural networks (NNs) were first used to explore the
underlying relationship between accidents and other variables for
urban freeway segments. The results were then compared with SPFs
calibrated by using these same data with generalized linear modeling
(GLM) and an NB error structure. NNs are not constrained by the
underlying distributional assumptions. They learn by example and
infer a model from training data. The functional shape generated
through the training of the NNs suggests that a sigmoid may be a rea-
sonable representation of the physics of accident occurrence on urban
freeways. In this study, traffic operation parameters, described by the
2000 edition of the Highway Capacity Manual, were used to provide
a possible explanation for the functional form (6).

The quality of fit was examined with the cumulative residual
(CURE) method described in Hauer and Bamfo (7 ). This method
consists of plotting the CURE for each independent variable. The
goal is to graphically observe how well the function fits the data set.
To generate a CURE plot, sites are sorted in ascending order by the
independent variables of interest. For each site, the residual (observed–
predicted accidents) is calculated, and then the CUREs are determined
and plotted for each value of the independent variable. Because of
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Constructive discussion of the appropriate choice for the functional form
of safety performance functions (SPFs) is generally absent from research
literature on road safety. Among researchers who develop SPFs, there
appears to be a consensus that the underlying randomness in accident
counts is well described by the negative binomial (NB) distribution. The
underlying phenomenon itself, however, is not well understood and is
rarely discussed. The choice of the regression equation is usually not
explained or documented. Researchers most commonly use the power
function, possibly because most generalized linear modeling (GLM) sta-
tistical packages can accommodate the power function with little effort.
The modeling process, however statistically rigorous, at times seems dis-
connected from the physical phenomenon that it is trying to describe. The
disconnect, however, has attracted only limited interest from researchers
to date. Accidents on an urban freeway are a by-product of traffic flow;
therefore, changes in the flow parameters may give clues about the prob-
ability of accident occurrence and changes in accident frequency. This
study related traffic flow parameters, such as speed and density, to the
choice of the functional form of the SPF. It compared SPF models for
urban freeways developed with sigmoid and exponential functional forms
with the use of data from Colorado and California and contrasted the
cumulative residual (CURE) plots of the models. SPFs developed around
a sigmoid functional form through the use of neural network (NN) method-
ology suggested underlying relationships between safety and traffic
flow characteristics. CURE plots for NN-generated SPFs generally showed
a better-quality model fit when compared with power-function SPFs,
which were developed in the GLM framework with an NB error structure.

A review of extant literature on the development of safety perfor-
mance functions (SPFs) suggests that the focus of most modeling
efforts is on the statistical technique and underlying probability dis-
tribution without much consideration given to the systemic compo-
nent of the phenomenon. Abdel-Aty and Radwan, and many others,
have observed that most of the accident data are overdispersed, which
points to the need for a correction to Poisson assumptions. They have
correctly concluded that the negative binomial (NB) formulation is
superior to the more restrictive Poisson formulations (1). Clearly there
is a consensus among researchers that underlying randomness is well
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the random nature of accident counts, the CURE line represents a
so-called random walk. For a model that fits well in all ranges, the
CURE plot should oscillate around zero. If the CURE value steadily
increases within a range of values of the independent variable, it
means that, within that range, the model predicts fewer accidents than
have been observed. Conversely, a decreasing CURE line indicates
that, in that range, fewer accidents have been observed than are pre-
dicted by the model. A frequent departure of the CURE line beyond
two standard deviations of a random walk indicates a presence of out-
liers, or signifies an ill-fitting model. Figure 1 shows a CURE plot for
the independent variable of annual average daily traffic (AADT),
which reflects the model fit of a NN-generated SPF for eight-lane
urban freeways in California. Because the CURE residual line lies
within the two standard deviation lines and generally oscillates around
zero, it can be concluded that the functional form fits the data well.

DATA SET PREPARATION 
AND MODEL DEVELOPMENT

Five years of accident data from Colorado and California were used
to develop SPFs for selected, multilane, urban freeways. California
data were obtained from the Highway Safety Information System,
while Colorado data were provided by the Colorado Department
of Transportation. All of the accidents that occurred on ramps and
crossroads were removed before the models were fitted, which left
only accidents that occurred on a freeway mainline itself. Two kinds
of SPFs were calibrated for Colorado and California: one for the total
number of accidents and the other for injury plus fatal accidents.

Use of NNs

SPFs were developed with NNs, which were a subset of a general
class of nonlinear models. NNs were used to analyze the data, which
consisted of observed, univariate responses Yi that were known to
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depend on corresponding, one-dimensional inputs xi. NNs are not con-
strained by a preselected functional form and specific distributional
assumptions. For this application, Yi = accidents per mile per year and
xi = AADT. The model became

where

f(xi, θ) = nonlinear function that relates Yi to the independent
variable xi for the ith observational unit,

θ = p-dimensional vector of unknown parameters, and
ei = sequence of independent random variables.

The goal of the nonlinear regression analysis was to find the func-
tion f that best reproduced the observed data. A form of the response
function used in many engineering applications is a feed-forward NN
model with a single layer of hidden units. The form of the model is

where

ϕ(u) = eu/(1 + eu), a logistic distribution function;
βk = connection weights;

β0, β1, γ1, u1 = parameters to be estimated;
μk = biases, according to Ripley (8); and
K = number of hidden units.

The function f is a flexible, nonlinear model, which was used in this
application to capture the overall shape of the observed data. The
function ϕ(u) is a logistic distribution function. When K = 1, there is
one hidden unit. In this case, the function performed a linear transfor-
mation of the input x and then applied the logistic function ϕ(u), which
was followed by another linear transformation. The overall result was
a flexible, nonlinear model.

f x xk k k
k

K
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FIGURE 1 CURE plot for California eight-lane NN SPF (tot � total).



The parameters β0, β1, γ1, u1 for each data set were unknown and
were estimated by nonlinear least squares. The complexity for this
application was the number of hidden units K in the model. K = 1 was
chosen on the basis of the general understanding of the underlying
physical phenomenon. In addition, a model’s complexity is most often
chosen on the basis of generalized cross validation model-selection cri-
terion. Cross validation is a standard approach for selecting smooth-
ing parameters in nonparametric regression, as described by Wahba
(9). The residuals exhibited a pattern of increased variance as the
AADT values increased. This was to be expected, given the overall
pattern of the data. The overall model fit to the data was quite good.

Generalized Linear Modeling

For the GLM, which followed most SPFs available, power models
of the following forms were used to obtain the best fit:

The popularity of the power function in modeling safety is derived
perhaps less from its suitability to describe the underlying processes
that result in accidents than from the fact that most GLM statistical
packages accommodate it with little effort, and it is a flexible shape.
In this case, E{y} was the annual number of accidents expected to
occur on a segment of road, x was the independent variable (here
AADT), and β was the parameters to be estimated.

The accident counts for segments of urban freeways generally
exhibit overdispersion as compared with a Poisson distribution of
accident counts. Although geometric characteristics of the freeways
themselves are fairly uniform because they are designed to interstate
standards, the overdispersion was consistently present in the data used
for this study. The explanation may be the influence of ramp flows and
spacing on safety performance. The influence of ramps was not intro-
duced as an independent variable but was reflected by the number of
accidents on the mainline. The β parameters for the urban freeways
were estimated by maximizing the log likelihood function of the NB
distribution

where

μ = estimated number of accidents on a freeway segment
over 1 year,

yi = observed number of accidents on freeway segment over
1 year,

L(α, μ) = NB likelihood function,
β = estimated regression parameters, and
α = overdispersion parameter, which was estimated by max-

imizing the NB log likelihood function.
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Model Comparison

Figures 2 through 5 provide plots of the data, SPF predictions, and
CURE plots for six- and eight-lane urban freeways in Colorado and
California. In each figure, two graphs correspond to the GLM power
function, and two graphs correspond to the NN models with a sigmoid
functional form.

The CURE plots for the SPFs, which were generated by using NN
sigmoid, consistently showed a model fit superior to that of the GLM-
generated SPFs with power functional form. NN sigmoid SPFs were
significantly less biased than GLM SPFs throughout the entire range
of AADT; they showed a moderately amplified random walk virtu-
ally without excursions outside of the 2σ limits. In contrast to the NN
sigmoid models, the GLM-generated SPFs showed more bias within
certain ranges of AADT and frequently departed outside of the 2σ
boundaries.

For both the data from Colorado and California, the sigmoid func-
tional forms generated by the NN method provided reasonably good
estimates of expected accident frequencies at different levels of
AADT in California and Colorado. The sigmoid shape reflects a rela-
tionship similar to that of a dose–response curve, found in medicine
and pharmacology, as well as other sciences.

Relating Changes in Flow, Speed, and Density 
to Changes in Crash Rates Reflected
by Shape of SPF

Accident rates change with AADT, and the shape of an SPF reflects
how these changes take place. Higher crash rates within the same SPF
mean less safety than lower rates. Any accident frequency derived
from the SPF expressed in accidents per mile per year can be easily
converted into accident rates measured in accidents per million vehi-
cle miles traveled (VMT). For instance, the Colorado SPF, which
was calibrated for six-lane urban freeways (Figure 6) at AADT of
120,000, was expected to produce on average 58 accidents per mile
per year; this figure could be directly converted to the accident rates
as follows:

The ordinate of point C represents the expected number of crashes
per year on a six-lane freeway at AADT of 120,000 vehicles per day
(vpd). In this representation, the expected accident rate for AADT =
120,000 vpd is proportional to the slope of the line that joins the
origin and point C.

Figure 7 shows changes in the crash rate within the Colorado six-
lane SPF for all crashes, for which the rate increased from 0.64
accidents per million VMT to 1.56 accidents per million VMT and
then began to decrease to 1.4 accidents per million VMT. In this
representation, the change in the slope of the line that connects the
origin with the point on the SPF reflects an increase or decrease in
the accident rate.

The sigmoid functional shape in Figure 7 has two critical points,
B and D, where the rate of change in the gradient of the function is
significantly altered. These points were located by using a sliding
interval analysis in the framework of the numerical differentiation
technique described by Rao (10).

In an effort to relate freeway flow parameters, such as speed and
density during peak period, associated with the changes in the shape
of the SPF, the methodology of the Highway Capacity Model was

58 1 000 000

120 000

accidents/mi/year

vpd

( ) , ,

, 11 mi 365 days/year
accidents/millio( ) = 1 32. nn VMT
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FIGURE 2 Comparison of Colorado six-lane urban freeway SPFs for all crashes with (left) GLM power function and (right) NN sigmoid
(APMPY � accidents per mile per year).
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FIGURE 4 Comparison of California eight-lane urban freeway SPFs for all crashes with (left) GLM power function and (right) NN sigmoid.

FIGURE 3 (continued) Comparison of Colorado six-lane urban freeway SPFs for injury and fatal crashes only with (c and d) NN sigmoid.



used (6). The assumptions typical of the urban freeway environment
were as follows:

• Design hourly volume = 10% of AADT for AADT < 130,000,
8% of AADT for AADT > 130,000;

• Peak hour factor = 0.9;
• Percentage of trucks during peak period = 2%;
• Terrain = level;
• Lane width = 12 ft;
• Shoulder width > 6 ft; and
• Interchange spacing = 1 interchange per mile.

Results of Analysis

The results of the Highway Capacity Model analysis were super-
imposed onto the SPF graph and are presented in Figure 8. Traffic
density at 90,000 AADT (identified previously as a critical point on
the SPF) can be viewed as a critical density, beyond which accidents
increase at a faster rate. A portion of the SPF to the left of critical den-
sity can be viewed as a subcritical zone, where accidents increase
gradually with AADT. Traffic density at 150,000 AADT can be
viewed as a super-critical density, beyond which accidents increase
gradually with AADT, and accident rates decline. A portion of SPF to
the right of super-critical density can be viewed as a super-critical
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zone. A portion of the SPF between critical and super-critical densities
can be termed a transitional zone.

As AADT increased from 60,000 to 90,000, traffic density
increased by 50% (from 16 to 24 passenger cars per mile per lane),
while operating speeds remained almost the same (70 and 69 mph).
When traffic density increases by 50% and perception reaction times
remain unchanged, performance characteristics of vehicles are con-
stant, and operating speeds remain high, it is not unreasonable to
expect that accident probability also increases. With an increase in
traffic density at freeway speeds, the urban freeway environment
becomes much less forgiving of driving error and road rage. The
SPF reflects that, past the AADT of 90,000, the number of crashes
increases at a much faster rate with an increase in AADT. A possible
explanation is that traffic has reached some critical density, beyond
which notably higher accident rates are observed. This increase in the
rates is made manifest by the steeper gradient of the SPF.

Examination of the SPF in concert with traffic operations param-
eters suggests that, when freeways are not congested and traffic den-
sity is low, the number of crashes increases only moderately with an
increase in traffic. That is why, initially, the slope of the SPF is rela-
tively flat. Once critical density is reached, however, the number of
crashes begins to increase at a much faster rate with an increase in traf-
fic. Attainment of critical density can be viewed as similar to a criti-
cal mass in physics. The mixture of density and speed of traffic is such
that the probability of a crash increases substantially, and thus a steep
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FIGURE 5 Comparison of California eight-lane urban freeway SPFs for injury and fatal crashes only with (left) GLM power function and 
(right) NN sigmoid.
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reach of the SPF. If perception–reaction time, vehicle characteristics,
and roadway characteristics and speed remain constant while there are
50% more cars in the same space, it is highly plausible to expect an
increased probability of crash occurrence.

Further examination of the SPF suggests that past the point of
super-critical density (AADT of 150,000) the function begins to level

off, which reflects only moderate increases in accidents and decreases
in accident rates related to a high degree of congestion and a signifi-
cant reduction in operating speeds. At this point, density exceeds 
45 vehicles per mile per lane and speeds are well below 50 mph. Fig-
ure 9 graphically illustrates the idea that an accident is more likely
at higher densities when the operating speed is virtually the same.
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SUMMARY

According to Hauer, to do applied research without providing the cor-
responding theory is like attempting to build the roof of a house with
no foundation (4). This paper offers a possible connection between
the functional form of the SPF and the physics of accident occurrence
on urban freeways by examining changes in speed and density and
their effect on accident rates. The functional shape of SPF generated
through the training of NNs suggests that a sigmoid may be a rea-
sonable approximation of the physics of crash occurrence on urban
freeways.

It was observed that, on uncongested freeway segments, the num-
ber of accidents increased only moderately with an increase in traffic.
Once some critical traffic density was reached, however, the number
of accidents began to increase at a much faster rate with an increase
in traffic. This phenomenon was reflected in a steeper gradient of the
SPF. High-density traffic in the high range of AADT is associated
with approaching a super-critical density of flow. A leveling off of the
SPF, accompanied by the reduction of accident rates, reflects a high
degree of congestion and a significant reduction in operating speeds.

CURE plots of sigmoid SPFs generated by training NNs consis-
tently showed better-quality model fit when compared with power
function SPFs developed in the GLM framework with NB error
structure.

The sigmoid represents only a simplified approximation of what
actually happens on urban freeways, because driver focus on the
driving task increases when the task becomes more demanding. Yet
the sigmoid functional form offers a reasonably good estimate of the
relationship between safety and exposure.
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