COLORADO DEPARTMENT OF TRANSPORTATION STAFF BRIDGE BRIDGE RATING MANUAL	Section: Effective: Supersedes:	8 April 1, 2011 April 1, 2002
SECTION 8 - REINFORCED CONCRETE STRUCTURES		

8-1 INTRODUCTION TO RATING REINFORCED CONCRETE BRIDGES

This section covers the rating of reinforced concrete girders and slabs reinforced longitudinally. This section does not cover prestressed concrete members. All reinforced concrete girders and slabs are to be rated using the policies and guidelines in section 1, and subsections 8-2 and 8-3.

The rating of reinforced concrete decks supported by girders is discussed in Section 3.

The following discussion and examples assume the load factor method is being used for rating.

When there are no plans available for the reinforced concrete member being rated, the requirements in subsection $8-4$ will govern the rating.

The types of bridges covered by this section are:
CBG - Concrete Box Girder
CBGC - Concrete Box Girder Continuous
CS - Concrete Slab
CSC - Concrete Slab Continuous
CSG - Concrete Slab and Girder
CSGC - Concrete Slab and Girder Continuous

8-2 POLICIES AND GUIDELINES FOR RATING CONCRETE BRIDGES

I. General

A. All longitudinally reinforced concrete members shall be rated by the Virtis program using the guidelines in subsection 8-3.
B. Concrete girders with considerable stress/strain effects due to horizontal curvature, skew, temperature, or other influences shall be modeled as simple, straight beams on pin or roller supports. The Virtis output results can then be supplemented with hand calculations to consider any of these significant influences, as necessary.
C. All bridges shall be rated using the Load Factor Method.
D. When plans are available, use the minimum yield strength values given in the plans; otherwise, values used in Section 1 for the applicable year of construction may be followed. If the condition of the girder indicates that full strength should not be used, the rating should be reduced as appropriate.

April 1, 2011	Section 8	Page 2 of 94

E. All new concrete structures constructed after December 2001 shall be rated for shear at the controlling sections. Except for timber structures, shear rating will not be required for all other structures including rerating of existing structures.
F. All new concrete structures constructed after December 2001, moment rating shall be performed at standard section locations (i.e. 0.5 point for a simple span structure or the 1.4 point, 2.0 point, 2.5 point, etc. for a three span structure) and any controlling rebar cut-off section location. All other structures including rerating of existing structures shall be performed at standard section locations.
G. When rating a cast-in-place concrete box girder bridge, separate out the boxes into I shapes and rate a typical interior and exterior girder. Dead loads and live load shall be applied as appropriate.

II. Girders Requiring Rating

A. Interior Girders - A rating is required for the critical interior girder. More than one interior girder may require an analysis due to variation in span length, girder size, girder spacing, differences in loads, moments, concrete strength and/or reinforcing, etc.
B. Exterior Girders - An exterior girder shall be rated under the following guidelines:

1. When the section used for an exterior girder is different than the section used for an interior girder.
2. When the overhang is greater than $S / 2$.
3. When the plans indicate that the curb and floor slab were poured monolithically, the live load distribution factor for the exterior girder should be calculated and compared to the live load distribution factor (LLDF) for the interior girders. If the LLDF for the exterior girder is equal to or greater than 75% of the LLDF for the interior girders, the exterior girder shall be rated.
4. When the rater determines the rating would be advantageous in analyzing the overall condition of a structure.

III. Calculations

A. A set of calculations, separate from computer output, shall be submitted with each rating. These calculations shall include derivations for dead loads, derivations for live load distribution factors, and any other calculations or assumptions used for rating.

April 1, 2011	Section 8	Page 3 of 94

B. Dead Loads

1. The final sum of all the individual weight components for dead load calculations may be rounded up to the next 5 pounds.
2. Dead loads applied after a cast-in-place concrete deck has cured shall be distributed equally to all girders and, when applicable, treated as composite dead loads. Examples include asphalt, curbs, sidewalks, railing, etc.
3. Use 5 psf for the unit weight of formwork when it is likely the formwork will remain in place. An example is closed cell construction, such as cast-in-place concrete box girders.
4. Dead loads applied before a cast-in-place concrete deck has cured shall be distributed to the applicable individual supporting girders and treated as non-composite loads. Examples of this type of dead load are deck slabs, girders, fillets, and diaphragms. The weight of diaphragms may be treated as point loads or as an equivalent uniform dead load for the span.

EXAMPLE: For two diaphragms (P) at $1 / 3$ points

$$
\begin{aligned}
& (\mathrm{PL}) / 3=\mathrm{M}=(\mathrm{wL} \mathrm{x} L) / 8 \\
& \text { equivalent uniform load } \cdot . \quad . \mathrm{w}=(8 \mathrm{P}) / 3 \mathrm{~L}
\end{aligned}
$$

5. The method of applying dead loads due to utilities is left to the rater's discretion.

IV. Rating Reporting/Package Requirements

The rater and checker shall complete the rating documentation as described in Section 1 of this manual. Any variation from the original design assumptions shall be added to the Rating Summary Sheet as applicable. The rating package requirements shall be per Section 1-13 of this manual and as amended herein:

Consultant designed projects - Before finalizing the rating package and when VIRTIS is used as the analysis tool, the Rater shall verify with the Staff Bridge Rating Engineer that the version number of the program being used is identical to CDOT'S version number. Data files created using a lower version of the program shall be rejected. It is required for the CDOT data archive, since the data base management feature inside the program would not work satisfactorily. After the analysis is completed, the rater shall save the data file. When saving is finalized, the rater shall export the data file in *.bbd format (i.e., O-18-BY.bbd format; bbd = Bridgeware Bridge Data File) on an IBMcompatible 3.5" PC Disk for delivery with the rating package. Also, the version number used during analysis shall be typed on the diskette label. This ensures proper importation of bridge data archive by the Staff Bridge at a later date.

April 1, 2011	Section 8	Page 4 of 94

8-3 GUIDELINES FOR USING THE VIRTIS RATING PROGRAM
The VIRTIS computer program performs the analysis and rating of simple span and multi-span concrete girder bridges. It uses the BRASS ASD or the BRASS LFD engine for analysis. This program was developed in accordance with the AASHTO STANDARD SPECIFICATIONS, $16 T H$ EDITION AND THE AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES.

A maximum of thirteen (13) spans can be modeled using the program. Linear, none or parabolic girder web depth variation over the length of a defined cross-section can be modeled using the Virtis. When a structure model is finalized, it can be rated using the ASD or the LFD method. The LRFD rating module is currently being developed and will be available in the future. When a structure model is being generated and before any analysis can be performed, it is recommended that Virtis users save the data to memory periodically. This can be accomplished by using the File and Save feature of this program.

The library explorer can be used to save commonly used items (beam shapes, nonstandard vehicles, materials, appurtenances etc.) and this eliminates the need for all users to define the same items repeatedly throughout the program. Once a new girder shape is defined or copied from the library, Virtis automatically computes the required section properties and beam constants.

Dead load due to the girder self-weight, deck slab and appurtenances (i.e. rails, median barrier etc.) are calculated automatically by the program. Dead load due to the haunch, wearing surface and stiffener weight (for steel bridges) is defined by the user. For a detailed description of the girder loads, refer to the Opis/Virtis Help Menu index item - dead loads. During modeling a structure, help menu can also be activated by using the F1 key when the user requires clarification on a particular item in the GUI window.

In the Live Load Distribution Factor window, when the compute button is used to calculate the DF's automatically by the program, Virtis users shall verify that these numbers are accurate and matches their calculated numbers.

All Colorado $B T$ girder shapes, the Colorado permit vehicle, the Colorado posting trucks and the Interstate posting trucks have been added to the Virtis library explorer and may be copied by the user. The Staff Bridge Rating Engineer shall be responsible for updating existing information or adding new information (i.e. beam shapes, vehicles etc.) to the library explorer.

The configuration browser provides access to the configuration features of Virtis. It may be employed to provide specific access privileges, i.e. read, write, delete etc., to the users. This feature is extremely powerful, since Virtis/Opis uses and shares the bridge data from one common source. Therefore, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

April 1, 2011	Section 8	Page 5 of 94

8-4 RATING CONCRETE BRIDGES WITH UNKNOWN REINFORCING STEEL

It is anticipated that all bridges designed after January 1994 will have as constructed plans.

When there are no plans or other documentation for a particular concrete structure, its numerical rating shall be determined by a Professional Engineer Registered in the State of Colorado. This rating shall be based on its live load history, the condition of the bridge, a complete and comprehensive inspection of the structure and directions from the AASHTO Manual for Bridge Evaluation. If the structure shows no signs of distress due to load, the Engineer can assign it a maximum inventory rating of 36 tons.

When there are signs of capacity-reducing distress or deterioration, an appropriate judgment should be made and an inventory rating less than 36 tons shall be given to the concrete structure. The process is the same for operating rating; only difference is that a maximum rating of 40 tons can be assigned. No distress condition shall have a maximum permit vehicle operating rating of 96 tons. A rating is not required for concrete bridge decks with unknown reinforcing steel where the bridge deck is supported by girders or stringers.

A Rating Summary Sheet is required for these bridges. For bridges owned or maintained by the Colorado Department of Transportation, the Staff Bridge Engineer will approve this type of rating and sign the Rating Summary Sheet.

8-5 CONCRETE GIRDER BRIDGE RATING EXAMPLES

Two examples are presented in this section. First, Structure O-18-BY is a five (5) span concrete-tee girder bridge with a skew of -30° degrees. It has four (4) concrete-tee girders. Since all piers have expansion joints, only the span with the most critical condition as reported in the field inspection report will be modeled in this example. Only the interior girder has been modeled for this structure. The second structure, $L-18-A V$, is a $4-s p a n$ continuous concrete-tee girder bridge with a skew of -27.3° degrees. It has seven (7) concrete-tee girders. For simplicity, only the interior girder has been modeled for this structure.

April 1, 2011	Section 8	Page 6 of 94

Slab Rating Program Input, Structure No. O-18-BY

[^0]$(\text { Clear span })^{\star} 1 / \cos 30^{\circ}=(8.67-1.67) * 1 / \cos 30^{\circ}=8.083^{\prime}$

April 1, 2011	Section 8	Page 7 of 94

Slab Rating Program Output, Structure No. O-18-BY

Virtis Bridge Rating Example, Structure No. O-18-BY

Effective slab width: Per AASHTO Article 8.10.1.1

$0.25(\mathrm{~L})=0.25(57 * 12)=171^{\prime \prime}$
$12 t+$ Web Thickness $=(12 * 7.5)+20=110 "$
C.L. - C.L. of girder= 8.6667'= 104" Controls

Dead Load:

```
Intermediate Diaphragm = ((0.75)*(3.25)*(8.67-1.83) + 0.5*2*0.33*0.33*
    (8.67-1.83))*(1/\operatorname{cos}3\mp@subsup{0}{}{\circ})*(0.150)=3.02 kips
        Use 3.1 kips
Abutment Diaphragm = Weight Varies
        Use 6.2 kips
```

Distribution Factor:
Multi-Lane $=$ S/6 = 8.667/6 = 1.444
Single Lane $=1+2.667 / 8.667=1.308$

April 1, 2011	Section 8	Page 8 of 94

Virtis Bridge Rating Example, Structure No. O-18-BY (contd.)

April 1, 2011	Section 8	Page 10 of 94

From the bridge explorer, create a new bridge and enter the following information.

April 1, 2011
To add a new concrete material, click on Materials, Concrete, in the tree and
select File/New from the menu (or right click on Concrete and select New).
Click the Copy from Library button and select the Colorado Concrete from the
library. Click OK and the following window will open. Click OK to save this
concrete material to memory and close the window.

April 1, 2011	Section 8	Page 13 of 94

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, and select New. Fill in the parapet properties as required. Click OK to save the data to memory and close the window.

April 1, 2011

Double click on Impact/Dynamic Load Allowance in the tree. The Bridge Impact
window shown below will open. Accept the default values by clicking OK.

(90) Bridge Impact / Dynamic Load Allowance $\quad-\quad \mid \times$

We will now skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

April 1， 2011	Section 8	Page 18 of 94

The partially expanded Bridge Workspace tree is shown below：

－

M

†… BRIDGE ALTERNATIVES
－… \square STRUCTURE DEFINITIONS
mi＇ －．Concrete Tee－Girder Sustem
－… ${ }^{-}$Impact／Dynamic Load Allowance
d L1 Load Case Description
．${ }^{\text {F }}$ Framing Plan Detail
．－．．．Structure Typical Section
（．）．．\square Shear Reinforcement Definitions
母… \square MEMBERS

We now go back to the Bridge Alternatives and create a new Bridge Alternative，a new Structure，and a new Structure Alternative．

The partially expanded Bridge Workspace tree is shown below：

寄 Bridge Workspace－0－18－BY	－
$\square \cdot \underline{9}$ ¢ 0－18－BY	
¢－．．．Materials	
¢－．．．Beam Shapes	
円… Appurtenances	
－－．．${ }_{\text {I }}$ Impact／Dynamic Load Allowance	
（－\square Factors	
－－－BRIDGE ALTERNATIVES	
回… Bridge Alternative \＃ 1 （E）（C）	
自… STRUCTURES	
国 Structure 1	
－\square STRUCTURE ALTERNATIVES	
－ 2 Structure Alternative \＃ 1 （E）（C）	

April 1, 2011	Section 8	Page 19 of 94

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

April 1, 2011	Section 8	Page 24 of 94

Parapets:
Add two parapets as shown below.

April 1, 2011	Section 8	Page 25 of 94

Lane Positions:
Select the lane position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to apply the computed values. The Lane Position tab is populated as shown below.

April 1, 2011	Section 8	Page 26 of 94

Enter the following wearing surface information on the Wearing Surface tab.

April 1,2011 Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click ok to save this information to memory and close the window.

April 1, 2011	Section 8	Page 29 of 94

The partially expanded Bridge Workspace tree is shown below:

```
曽 Bridge Workspace - 0-18-BY
\(\square \cdots(1)\) 0-18-BY
母ํ..
†…
†…
Appurtenances
- … \({ }^{2}\) Impact / Dynamic Load Allowance
-… Factors
-… BRIDGE ALTERNATIVES
- \(-\cdots\).... Bridge Alternative \# 1 (E) (C)
- \(\square\) STRUCTURES
- ㅍ․ Structure 1
\(\square\) - \(\square\) STRUCTURE ALTERNATIVES
I2 Structure Alternative \# 1 (E) (C)
■… STRUCTURE DEFINITIONS
```



```
..... \(\rightarrow_{I}\) Impact / Dynamic Load Allowance
- .... \(\frac{\text { It }}{\text { DLI }}\) Load Case Description
Framing Plan Detail
….. Structure Typical Section
\(\cdots \cdots\) Structure Loads
\(\square\) Shear Reinforcement Definitions
\(\square\) Vertical
\(\square\) \#\#4 Shear Reinforcing
- - MEMBERS
†… I G1
†… I G2
Đ… I G3
(1... I G4
```

- \square | x

April 1, 2011	Section 8	Page 30 of 94

Describing a member:
The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

Defining a Member Alternative:
Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Reinforced Concrete for the Material Type and Reinforced Concrete Tee for the Girder Type.

April 1, 2011	Section 8	Page 31 of 94

The Member Alternative Description window will open. Enter the appropriate data as shown below.

Shear computation method: Check this box if the AASHTO LFD shear specifications should be ignored in the analysis.

April 1, 2011	Section 8	Page 33 of 94
Double click on Live Load Distribution to enter live load distribution		
factors. Click the Compute from Typical Section button to compute the live		
AASHTO Specifications, Articles 3.23. Click Apply and then OK to save data to		

M Live Load Distribution

- -

Standard LRFD |

Lanes Loaded	Distribution Factor (Mheels)				
	Shear	Shear at Supports	Moment	Deflection	
1 Lane	1.308	1.308	1.308	0.500	
Multi-Lane	1.444	1.846	1.444	1.000	

OK
Apply
Cancel

April 1, 2011	Section 8	Page 35 of 94

Define reinforcements for Cross Section 1. Click OK to save data to memory and close the window.

April 1, 2011	Section 8	Page 37 of 94

The Cross Section Ranges window is shown below. Define the ranges over which the cross sections apply.

April 1, 2011	Section 8	Page 39 of 94

Shear reinforcement locations are described using the Shear Reinforcement Ranges window shown below.

April 1, 2011	Section 8	Page 40 of 94

Define points of interest using the Points of Interest window shown below.

The Point of Interest window enables the user to enter points of interest in addition to those that are automatically generated by the program.

```
15 bar diameter = 15*(11/8) = 1.712'
Clear Span/20=(57-1.83)/20=2.75'
Effective Depth = 46.25/12=3.85' Use 3.8'
First rebar cutoff from left support = 12.8'
Second rebar cutoff from left support = 19.05'
```

April 1, 2011	Section 8	Page 41 of 94

April 1, 2011	Section 8	Page 42 of 94

Shear Check: $d=52.5^{\prime \prime}-6.25^{\prime \prime}=46.25^{\prime \prime}=3.85^{\prime}$
Shear at a distance 'd' from the free edge of the left support +1.167 ' = $3.85^{\prime}+1.167^{\prime}=5.02^{\prime}$

April 1, 2011	Section 8	Page 43 of 94

Shear Check: $d=52.5^{\prime \prime}-6.25^{\prime \prime}=46.25^{\prime \prime}=3.85^{\prime}$
Shear at a distance 'd' from the free edge of the right support +0.167 ' = $3.85^{\prime}+0.167 \prime=4.02^{\prime}$
Therefore, Distance from the left support $=57.0^{\prime}-4.04^{\prime}=52.98^{\prime}$

April 1, 2011	Section 8	Page 44 of 94

Open the Member Alternative Description window and click the Engine tab as shown below.

April 1, 2011	Section 8	Page 46 of 94

To perform a rating, select the View Analysis Settings button on the toolbar to open the window shown below. Select the required vehicles to be used in the rating and click OK.

April 1, 2011	Section 8	Page 47 of 94

The results of the LFD rating analysis are as follows.

94. Analysis Results - Interior 52.5" RC Tee Beam												
Report Type												
Rating Results Summary												
Live Load	$\begin{array}{\|c\|} \text { Live Load } \\ \text { Type } \end{array}$	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Inventory Location ft	Inventory Location Span-(\%)	Operating Location ft	Operating Location Span-(\%)	Inventory Limit State	Oper Limit :
HS 20-44	Axle	LFD	48.57	81.11	1.349	2.253	28.50	1-(50.0)	28.50	1-(50.0)	ULTIMATE MOMENT CAPACIT	ULTIMATE MON
HS 20-44	Lane	LFD	70.55	117.82	1.960	3.273	28.50	1-(50.0)	28.50	$1-(50.0)$	ULTIMATE MOMENT CAPACIT	ULTIMATE MON
Colorado Permit Vehicle	Axle	LFD		139.40		1.451			28.50	1-(50.0)		ULTIMATE MOR
BRASS-GIRDER - Version 5.08.03 - May. 09, 2001												
												Close

April 1, 2011	Section 8	Page 48 of 94

COLORADO DEPARTMENT OF TRANSPORTATION LOAD FACTOR RATING SUMMARY	Structure\# $0-18-\mathrm{BY}(\mathrm{S.B}$.	
	State highway \#	I-25
Rated using	Batch I.D.	
	Structure type	CSG
	Parallel structure \#	O-18-CD (N.B.)

Structural member	INTERIOR GIRDER	SLAB		

Metric tons (Tons)

Inventory	$43.6(48)$	33.6 (37$)$	()	(
Operating	73.6 (81)	56.4 (62$)$	()	(
Type 3 truck	()	()	()	(
Type 3S2 truck	()	()	()	(
Type 3-2 truck	()	()	()	
Permit truck	$126.3(139)$	()	()	

Comments
Control Member: Deck; Rated for 2" HBP
Load Capacity: 62 Tons
Girder: Only Interior Girder Rated; Rated for 2" HBP
Color Code: White
Project No: l-25-1(21)31

| Rated by | Checked by | Date |
| :--- | :--- | :--- | :--- |

April 1, 2011	Section 8	Page 49 of 94

Slab Rating Program Input, Structure No. L-18-AV

April 1, 2011	Section 8	Page 50 of 94

Slab Rating Program Output, Structure No. L-18-AV

Virtis Bridge Rating Example, Structure No. L-18-AV

Effective slab width: Per AASHTO Article 8.10.1.1

```
0.25(L)=0.25(41*12)= 123"
12t+ Web Thickness = (12*6.5)+ 18 = 96.0" Controls
C.L. - C.L. of girder= 9.00'= 108'
```


Dead Load:

```
Intermediate Diaphragm = (0.67)*(2.00)*(9.00-1.50)*(1/Cos27.30)*(0.150)
    = 1.696 kips Use 1.7 kips
Abutment Diaphragm = ((4.81)*(1)*(7.5)+(2.1)*(1)*(7.5))*1/\operatorname{Cos}27.30*0.150
    = 8.75 kips Use 9.0 kips
Pier Diaphragm = (2)*(6.5)*(7.5)*(1/Cos27.3})*(0.15
    = 16.50 kips Use 16.50 kips
```

Distribution Factor:
Multi-Lane $=$ S/6 = 9.00/6 = 1.500
Single Lane $=1+3.00 / 9.00=1.333$

April 1, 2011	Section 8	Page 51 of 94

Virtis Bridge Rating Example, Structure No. L-18-AV (contd.)

April 1, 2011	Section 8	Page 52 of 94

April 1, 2011	Section 8	Page 53 of 94

April 1, 2011	Section 8	Page 54 of 94

From the bridge explorer, create a new bridge and enter the following information.

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database, it is required that users of this program create a folder from the bridge explorer window
(EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.
April 1, 2011
To add a new concrete material, click on Materials, Concrete, in the tree and
select File/New from the menu (or right click on Concrete and select New).
Click the Copy from Library button and select the Colorado Concrete from the
library. Click ok and the following window will open. Click OK to save this
concrete material to memory and close the window.

April 1, 2011	Section 8	Page 57 of 94

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, and select New. Fill in the parapet properties as required. Click OK to save the data to memory and close the window.

April 1, 2011	Section 8	Page 58 of 94

Right mouse click on Median in the tree, and select New. Fill in the median properties as required. Click OK to save the data to memory and close the window.

April 1, 2011

Double click on Impact/Dynamic Load Allowance in the tree. The Bridge Impact
window shown below will open. Accept the default values by clicking OK.

(90) Bridge Impact / Dynamic Load Allowance $\quad-\quad \mid \times$

April 1, 2011	Section 8	Page 60 of 94

Click on Factors, right mouse click on LFD and select New. The LFD-Factors window will open. Click the Copy from Library button and select the 1996 AASHTO Standard Specifications from the library. Click Apply and then OK to save data to memory and close the window.

```
M, Factors - LFD
        Name: 1996 A4SHTO Std. Specifications
    Description: AASHTO Standard Specifications for Highway Bridges, 16th }
        Edition,1996 including 1997 Interim Specifications
    Load Factors | Resistance Factors |
```

 -
 | Load
 Group | Gamma
 Factor | D | $(\mathrm{L}+1) \mathrm{n}$ | $(\mathrm{L}+1) \mathrm{p}$ | CF | E | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbb{N N V}$ | 1.300 | 1.000 | 1.670 | 0.000 | 1.000 | 1.000 | |
| OPG | 1.300 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | |

11
-

We will now skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

April 1, 2011	Section 8	Page 62 of 94

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

April 1， 2011	Section 8	Pag
The partially expanded Bridge Workspace tree is shown below：		
军胃Bridge Workspace－L－18－AV		－\square ，\times
We now go back to the Bridge Alternatives and create a new Bridge Alternative，a new Structure，and a new Structure Alternative．		
The partially expanded Bridge Workspace tree is shown below：		
军 Bridge Workspace－L－18－AV		

April 1, 2011	Section 8	Page 64 of 94

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

April 1,2011
Double click on Structure Typical Section in the Bridge Workspace tree to
define the structure typical section. Input the data describing the typical
section as shown below.

Sage 67 of 94

April 1, 2011	Section 8	Page 68 of 94

The Deck (Cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously.

April 1, 2011	Section 8	Page 69 of 94

Parapets:
Add two parapets as shown below.

April 1, 2011	Section 8	Page 71 of 94

Lane Positions:
Select the lane position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to apply the computed values. The Lane Position tab is populated as shown below.

April 1, 2011	Section 8	Page 72 of 94

Enter the following wearing surface information on the Wearing Surface tab.

April 1, 2011

Double click on the Structure Loads tree item to define the DL Distribution.
Select the required DL Distribution. Click OK to save this information to
memory and close the window.

April 1， 2011	Section 8	Page 75 of 94

The partially expanded Bridge Workspace tree is shown below：

䦔Bridge Workspace－L－18－AV	－｜a｜x
¢－．．Materials	
－Structural Steel	
¢－Concrete	
¢．．．Reinforcing Steel	
－－Prestress Strand	
¢－Timber	
円－．．Beam Shapes	
－－．．Apputenances	
－Parapet	
¢－Median	
－．．Railing	
－Generic	
－－${ }_{\text {－}}^{\text {I I Impact／Dynamic Load Allowance }}$	
円－Factors	
¢－．．．Bridge alternatlves	
－STRUCTURE DEFINITIONS	
－－${ }_{\text {minr }}$ 7．Concrete Tee－Girder System	
－${ }_{\text {I }}$ Impact／Dynamic Load Allowance	
－${ }_{\text {OLt }}^{\text {On }}$ Load Case Description	
Framing Plan Detail	
．－．＂IIII Sturture Typical Section	
－$+1+$ Structure Loads	
\square Shear Reinforcement Definitions	
四．．．Vertical	
■－MMEMBERS	
（1．．．I G1	
円］．I G2	
円．．．I G3	
円．．．I G4	
円 ${ }^{\text {－．．}}$ I G5	
甲．．．I G6	
田．I G7	

April 1, 2011	Section 8	Page 76 of 94

Describing a member:
The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

Defining a Member Alternative:
Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The
New Member Alternative dialog shown below will open. Select Reinforced Concrete for the Material Type and Reinforced Concrete Tee for the Girder Type.

April 1, 2011	Section 8	Page 77 of 94

The Member Alternative Description window will open. Enter the appropriate data as shown below.

Shear computation method: Check this box if the AASHTO LFD shear specifications should be ignored in the analysis.

April 1, 2011	Section 8	Page 78 of 94

Double click on Supports to define support constraints for the girder. Enter the following support constraints. Click OK to save data to memory and close the window.

| April 1,2011 |
| :--- | Section 8

Double click on Live Load Distribution to enter live load distribution
factors. Click the Compute from Typical Section button to compute the live
load distribution factors. The distribution factors are computed based on the
AASHTO Specifications, Articles 3.23. Click Apply and then ok to save data to
memory and close the window.

Standard |LRFD |

Lanes Loaded	Distribution Factor (Wheels)							
	Shear Supports					Moment	Deflection	
	1.333	1.333	1.333	0.286				
Multi-Lane	1.500	1.889	1.500	0.857				

Compute from Typical Section

April 1, 2011	Section 8	Page 81 of 94

Define reinforcements for Cross Section 1. Click OK to save data to memory and close the window.

April 1, 2011	Section 8	Page 89 of 94

The Cross Section Ranges window is shown below. Define the ranges over which the cross sections apply.

April 1, 2011	Section 8	Page 90 of 94

Open the Member Alternative Description window and click the Engine tab as shown below.

April 1, 2011	Section 8	Page 92 of 94

To perform a rating, select the View Analysis Settings button on the toolbar to open the window shown below. Select the required vehicles to be used in the rating and click OK.

April 1, 2011	Section 8	Page 93 of 94

The results of the LFD rating analysis are as follows.

Member: G2

April 1, 2011	Section 8	Page 94 of 94

$\overline{\text { Metric tons }}(\underline{\text { Tons }})$	Metric tons	\qquad	Metric tons	
Comments Control Member: Deck; Load Capacity: 49 Tons Girder: Only Interior Gird Color Code: White Project No: I 002-3(20) IM 0251-141	HBP Rated for treet ove il repair			
Rated by	Date	Checked by		Date

[^0]: Effective Span Length: Per AASHTO Article 3.24.1.2(a)

