STAFF BRIDGEEffective: April 1, 2011BRIDGE RATING MANUALSupersedes: April 1, 2002	COLORADO DEPARTMENT OF TRANSPORTATION	Section: 8	
BRIDGE RATING MANUAL Supersedes: April 1, 2002	STAFF BRIDGE	Effective: April 1, 2011	
	BRIDGE RATING MANUAL	Supersedes: April 1, 2002	

SECTION 8 - REINFORCED CONCRETE STRUCTURES

8-1 INTRODUCTION TO RATING REINFORCED CONCRETE BRIDGES

This section covers the rating of reinforced concrete girders and slabs reinforced longitudinally. This section does not cover prestressed concrete members. All reinforced concrete girders and slabs are to be rated using the policies and guidelines in section 1, and subsections 8-2 and 8-3.

The rating of reinforced concrete decks supported by girders is discussed in Section 3.

The following discussion and examples assume the load factor method is being used for rating.

When there are no plans available for the reinforced concrete member being rated, the requirements in subsection 8-4 will govern the rating.

The types of bridges covered by this section are:

CBG - Concrete Box Girder CBGC - Concrete Box Girder Continuous CS - Concrete Slab CSC - Concrete Slab Continuous CSG - Concrete Slab and Girder CSGC - Concrete Slab and Girder Continuous

8-2 POLICIES AND GUIDELINES FOR RATING CONCRETE BRIDGES

I. General

- A. All longitudinally reinforced concrete members shall be rated by the Virtis program using the guidelines in subsection 8-3.
- B. Concrete girders with considerable stress/strain effects due to horizontal curvature, skew, temperature, or other influences shall be modeled as simple, straight beams on pin or roller supports. The Virtis output results can then be supplemented with hand calculations to consider any of these significant influences, as necessary.
- C. All bridges shall be rated using the Load Factor Method.
- D. When plans are available, use the minimum yield strength values given in the plans; otherwise, values used in Section 1 for the applicable year of construction may be followed. If the condition of the girder indicates that full strength should not be used, the rating should be reduced as appropriate.

April 1, 2011	Section 8	Page 2 of 94
---------------	-----------	--------------

- E. All new concrete structures constructed after December 2001 shall be rated for shear at the controlling sections. Except for timber structures, shear rating will not be required for all other structures including rerating of existing structures.
- F. All new concrete structures constructed after December 2001, moment rating shall be performed at standard section locations (i.e. 0.5 point for a simple span structure or the 1.4 point, 2.0 point, 2.5 point, etc. for a three span structure) and any controlling rebar cut-off section location. All other structures including rerating of existing structures shall be performed at standard section locations.
- G. When rating a cast-in-place concrete box girder bridge, separate out the boxes into I shapes and rate a typical interior and exterior girder. Dead loads and live load shall be applied as appropriate.

II. Girders Requiring Rating

- A. Interior Girders A rating is required for the critical interior girder. More than one interior girder may require an analysis due to variation in span length, girder size, girder spacing, differences in loads, moments, concrete strength and/or reinforcing, etc.
- B. Exterior Girders An exterior girder shall be rated under the following guidelines:
 - 1. When the section used for an exterior girder is different than the section used for an interior girder.
 - 2. When the overhang is greater than S/2.
 - 3. When the plans indicate that the curb and floor slab were poured monolithically, the live load distribution factor for the exterior girder should be calculated and compared to the live load distribution factor (LLDF) for the interior girders. If the LLDF for the exterior girder is equal to or greater than 75% of the LLDF for the interior girders, the exterior girder shall be rated.
 - 4. When the rater determines the rating would be advantageous in analyzing the overall condition of a structure.

III. Calculations

A. A set of calculations, separate from computer output, shall be submitted with each rating. These calculations shall include derivations for dead loads, derivations for live load distribution factors, and any other calculations or assumptions used for rating.

April 1, 2011	Section 8	Page 3 of 94
---------------	-----------	--------------

```
B. Dead Loads
```

- The final sum of all the individual weight components for dead load calculations may be rounded up to the next 5 pounds.
- Dead loads applied after a cast-in-place concrete deck has cured shall be distributed equally to all girders and, when applicable, treated as composite dead loads. Examples include asphalt, curbs, sidewalks, railing, etc.
- 3. Use 5 psf for the unit weight of formwork when it is likely the formwork will remain in place. An example is closed cell construction, such as cast-in-place concrete box girders.
- 4. Dead loads applied before a cast-in-place concrete deck has cured shall be distributed to the applicable individual supporting girders and treated as non-composite loads. Examples of this type of dead load are deck slabs, girders, fillets, and diaphragms. The weight of diaphragms may be treated as point loads or as an equivalent uniform dead load for the span.

EXAMPLE: For two diaphragms (P) at 1/3 points

 $(PL)/3 = M = (wL \times L)/8$

equivalent uniform load w = (8P)/3L

5. The method of applying dead loads due to utilities is left to the rater's discretion.

IV. Rating Reporting/Package Requirements

The rater and checker shall complete the rating documentation as described in Section 1 of this manual. Any variation from the original design assumptions shall be added to the Rating Summary Sheet as applicable. The rating package requirements shall be per Section 1-13 of this manual and as amended herein:

Consultant designed projects - Before finalizing the rating package and when VIRTIS is used as the analysis tool, the Rater shall verify with the Staff Bridge Rating Engineer that the version number of the program being used is identical to CDOT'S version number. Data files created using a lower version of the program shall be rejected. It is required for the CDOT data archive, since the data base management feature inside the program would not work satisfactorily. After the analysis is completed, the rater shall save the data file. When saving is finalized, the rater shall export the data file in *.bbd format (i.e., O-18-BY.bbd format; bbd = Bridgeware Bridge Data File) on an IBMcompatible 3.5" PC Disk for delivery with the rating package. Also, the version number used during analysis shall be typed on the diskette label. This ensures proper importation of bridge data archive by the Staff Bridge at a later date.

April 1, 2011	Section 8	Page 4 of 94
---------------	-----------	--------------

8-3 GUIDELINES FOR USING THE VIRTIS RATING PROGRAM

The VIRTIS computer program performs the analysis and rating of simple span and multi-span concrete girder bridges. It uses the BRASS ASD or the BRASS LFD engine for analysis. This program was developed in accordance with the AASHTO STANDARD SPECIFICATIONS, 16TH EDITION AND THE AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES.

A maximum of thirteen (13) spans can be modeled using the program. Linear, none or parabolic girder web depth variation over the length of a defined cross-section can be modeled using the Virtis. When a structure model is finalized, it can be rated using the ASD or the LFD method. The LRFD rating module is currently being developed and will be available in the future. When a structure model is being generated and before any analysis can be performed, it is recommended that Virtis users save the data to memory periodically. This can be accomplished by using the File and Save feature of this program.

The library explorer can be used to save commonly used items (beam shapes, nonstandard vehicles, materials, appurtenances etc.) and this eliminates the need for all users to define the same items repeatedly throughout the program. Once a new girder shape is defined or copied from the library, Virtis automatically computes the required section properties and beam constants.

Dead load due to the girder self-weight, deck slab and appurtenances (i.e. rails, median barrier etc.) are calculated automatically by the program. Dead load due to the haunch, wearing surface and stiffener weight (for steel bridges) is defined by the user. For a detailed description of the girder loads, refer to the Opis/Virtis Help Menu index item - dead loads. During modeling a structure, help menu can also be activated by using the F1 key when the user requires clarification on a particular item in the GUI window.

In the Live Load Distribution Factor window, when the compute button is used to calculate the DF's automatically by the program, Virtis users shall verify that these numbers are accurate and matches their calculated numbers.

All Colorado BT girder shapes, the Colorado permit vehicle, the Colorado posting trucks and the Interstate posting trucks have been added to the Virtis library explorer and may be copied by the user. The Staff Bridge Rating Engineer shall be responsible for updating existing information or adding new information (i.e. beam shapes, vehicles etc.) to the library explorer.

The configuration browser provides access to the configuration features of Virtis. It may be employed to provide specific access privileges, i.e. read, write, delete etc., to the users. This feature is extremely powerful, since Virtis/Opis uses and shares the bridge data from one common source. Therefore, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

April 1, 2011	Section 8	Page 5 of 94
---------------	-----------	--------------

8-4 RATING CONCRETE BRIDGES WITH UNKNOWN REINFORCING STEEL

It is anticipated that all bridges designed after January 1994 will have as constructed plans.

When there are no plans or other documentation for a particular concrete structure, its numerical rating shall be determined by a Professional Engineer Registered in the State of Colorado. This rating shall be based on its live load history, the condition of the bridge, a complete and comprehensive inspection of the structure and directions from the AASHTO Manual for Bridge Evaluation. If the structure shows no signs of distress due to load, the Engineer can assign it a maximum inventory rating of 36 tons.

When there are signs of capacity-reducing distress or deterioration, an appropriate judgment should be made and an inventory rating less than 36 tons shall be given to the concrete structure. The process is the same for operating rating; only difference is that a maximum rating of 40 tons can be assigned. No distress condition shall have a maximum permit vehicle operating rating of 96 tons. A rating is not required for concrete bridge decks with unknown reinforcing steel where the bridge deck is supported by girders or stringers.

A Rating Summary Sheet is required for these bridges. For bridges owned or maintained by the Colorado Department of Transportation, the Staff Bridge Engineer will approve this type of rating and sign the Rating Summary Sheet.

8-5 CONCRETE GIRDER BRIDGE RATING EXAMPLES

Two examples are presented in this section. First, Structure 0-18-BY is a five (5) span concrete-tee girder bridge with a skew of -30° degrees. It has four (4) concrete-tee girders. Since all piers have expansion joints, only the span with the most critical condition as reported in the field inspection report will be modeled in this example. Only the interior girder has been modeled for this structure. The second structure, L-18-AV, is a 4-span continuous concrete-tee girder bridge with a skew of -27.3° degrees. It has seven (7) concrete-tee girders. For simplicity, only the interior girder has been modeled for this structure.

April 1, 2011 Section 8 Page 6 of 94

Slab Rating Program Input, Structure No. O-18-BY

🐃 WinSlab Input				_ 🗆 🗙
Structure Number:	0-18-BY	Rater:	МН	
Batch ID:		Comments:	LFD	
Highway Number:	25	Load Type:	2=Interstate 🗮	
 Deadload	Bituminous Ove	erlay (in): 2		
Geometry				:
Effective Span (ft):	8.083	Actual Slab Thickne (in.):	^{ess} 7.5	
Reinforcing Stee Area	l: a (sqin)	Distance (in)	For definitions of	input
Top: 0.83		5.688	values please rel CDOT Bridge Ra	
Bottom: 0.83	}	1.31		
Materials Propert	ties			
Concrete f'c (PSI):	3000	Steel Fy (PSI):	40000	
or Inv Fc (Working	Stress)	or Inv Fs (Workin	g Stress)	
Modular Ratio (Leav	e blank for load	d factor): 00		
ОК	Cance	l Apply	Output	to File

Effective Span Length: Per AASHTO Article 3.24.1.2(a)

(Clear span) *1/cos30° = (8.67-1.67) *1/cos30° = 8.083'

April 1, 2011 Section 8 Page 7 of 94

Slab Rating Program Output, Structure No. 0-18-BY

WinSlab Rating Version 1 Date: 12/13/2001

Structure NO. O-18-BY Rater: MH State HWY NO. = 25 Batch ID= Description: LFD

LOAD FACTOR RATING-COMP STEEL NOT USED

INPUT DATA

Bituminous Overlay(ir	n)=	2.000		
Eff. Span(ft) =		8.083	Slab Thickness(in)=	7.500
Top Reinf. (sq.in)=		0.83	Eff. Depth(in) =	5.688
Bottom Area(sq.in)=		0.83	Bottom Dist.(in)=	1.31
Conc. Strength(PSI) 1	Inv =	3000	Oper. =	3000
Steel Yield (PSI)	Inv =	40000	Oper. =	40000
Modular Ratio =		9		
Dead Load Moment 0.77 K-Ft	t			
LL+I Moment 5.24 K-Ft	t			
Gross Weight 36.0 Tons	3			
		Inventory	Operating	
Actual Concrete Stress	(PSI)	997.12	1579.66	
Actual Reinf. Steel Stress	(PSI)	18433.86	29203.39	
Actual Comp. Steel Stress	(PSI)	5304.24	8403.10	
Member Capacity	(K-Ft)	12.81	12.81	
Member Capacity (LL+I)	(K-Ft)	11.81	11.81	
Rating	(Tons)	37.43	62.39	

Virtis Bridge Rating Example, Structure No. 0-18-BY

Effective slab width: Per AASHTO Article 8.10.1.1

0.25(L) = 0.25(57*12) = 171" 12t+ Web Thickness = (12*7.5) + 20 = 110" C.L. - C.L. of girder= 8.6667' = 104" Controls

Dead Load:

Abutment Diaphragm = Weight Varies

Use 6.2 kips

Distribution Factor:

Multi-Lane = S/6 = 8.667/6 = 1.444

Single Lane = 1 + 2.667/8.667 = 1.308

Virtis Bridge Rating Example, Structure No. 0-18-BY (contd.)

April 1, 2011	Section 8	Page 10 of 94	
---------------	-----------	---------------	--

From the bridge explorer, create a new bridge and enter the following information.

🕰 0-18-BY				
Bridge ID: D-18-BY	NBI Structure	ID (8): 0-18-8Y		nplate sign Only
Description Description	on (cont'd) Alternatives Gl	obal Reference Point		
Name:	CSG		Year Built	1959
Description:	5-Span Concrete Tee-Beam Model as 1-Span Concrete		int at piers;	
	· ·			
Location:			Length:	ft
Facility Carried (7):		Route N	Number: -1	
Feat. Intersected (6):		N	Mi. Post:	
Units:	US Customary 💽	Recen	ADTT:	
			OK Apply	Cancel

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

April 1, 2011	Section 8	Page 11 of 94
---------------	-----------	---------------

To add a new concrete material, click on Materials, Concrete, in the tree and select File/New from the menu (or right click on Concrete and select New). Click the Copy from Library button and select the Colorado Concrete from the library. Click OK and the following window will open. Click OK to save this concrete material to memory and close the window.

🙈 Bridge Mat	erials - Concrete					_ 🗆 ×
<u>N</u> ame:	Class A(US)	De <u>s</u> o	ription: Colorad	lo Concrete		
			0.000			
	Compressive strength at 28	days (f'c) =	3.000	ksi		
	Initial compressive stre	ngth (f'ci) =		ksi		
	<u>C</u> oefficient of thermal e	expansion =	0.0000060000	1/F		
	<u>D</u> ensity (for de	ad loads) =	0.150	kcf		
	Density (for modulus of	elasticity) =	0.150	kcf		
	Modulus of elas	sticity (<u>E</u> c) =	3122.00	ksi		
	I <u>n</u> itial modulus of	elasticity =	0.00	ksi		
	<u>P</u> ois:	son's ratio =	0.200			
	Co <u>m</u> position of	concrete =	Normal	-		
	Modulus	of <u>r</u> upture =	0.411	ksi		
	<u>S</u> h	ear factor =	1.000			
	Co	opy from <u>L</u> ibra	ary Ol	< /	Apply	Cancel

Using the same techniques, create the following Reinforcing Steel Material to be used for the girder.

🕰 Bridge Mat	erials - Reinforcing Steel				
<u>N</u> ame:	Grade 40	<u>D</u> esc	cription: 40 ksi rei	inforcing steel	
		Material Proper	ties		
	Specified yield	strength (Fy) =	40.000	ksi	
	Modulus of	elasticity (<u>E</u> s) =	29000.00	ksi	
	Littimate :	strength (F <u>u</u>) =	70.000	ksi	
		ype Plain Epo <u>xy</u> <u>G</u> alvanized <u>O</u> ther	1		
		Copy from <u>L</u> ib	orary OK	Apply	Cancel

April 1, 2011	Section 8	Page 13 of 94	
---------------	-----------	---------------	--

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, and select New. Fill in the parapet properties as required. Click OK to save the data to memory and close the window.

🗛 Bridge Appurtenances - Parapet	_ 🗆 ×
Name: Bridge Rail Description: Curb & side mounted Metal Rail	
All dimensions are in inches	ties
Copy from Library OK Apply	Cancel

April 1, 2011	Section 8	Page 14 of 94
	Decerion 0	rage if of 91

Double click on Impact/Dynamic Load Allowance in the tree. The Bridge Impact window shown below will open. Accept the default values by clicking OK.

🕰 Bridge Impact / Dynamic Loa	d Allowance 📃 🗖 🔀
Standard Impact Factor For structural components where AASHTO 3.8.1, choose the impac	
Standard AASHTO impact	l = L + 125
O Modified impact =	times AASHTO impact
C Constant impact override =	*
LRFD Dynamic Load Allowance-	
Eatigue and fracture limit states:	15.0 %
<u>A</u> ll other limit states:	33.0 %
ОК	Apply Cancel

Click on Factors, right mouse click on LFD and select New. The LFD-Factors window will open. Click the Copy from Library button and select the 1996 AASHTO Standard Specifications from the library. Click Apply and then OK to save data to memory and close the window.

actors - LFD							_
<u>N</u> ame: 1	996 AASH	TO Std. Specific	cations				
Description: A E	ASHTO SI dition, 199	tandard Specific 6 including 1997	ations for Highwa 7 Interim Specific	ay Bridges, 16th ations			
oad Factors	Resistance	Factors					
Load Group	Gamma- Factor	D	(L.D.5	(Li Dis	CF	Е	
INV	1.300	1.000	(L+I)n 1.670	(L+I)p 0.000	1.000	1.000	
OPG	1.300	1.000	1.000	0.000	1.000	1.000	
4							·
			Copy from I	Library	OK /	Apply Ca	ancel

We will now skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

April 1, 2011	Section 8	Page 16 of 94
---------------	-----------	---------------

Double click on STRUCTURE DEFINITION (or click on STRUCTURE DEFINITION and select File/New from the menu or right mouse click on STRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

e w Structure Defini	tion 🔽
Structure Type	Description
Girder-line Girder system	A structure definition describing one of more girders. The girders do NO A structure definition describing one of more girders. The girders do hav
T	
	OK Cancel

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

🕰 Girder System Structur	e Definition		
Definition Analysis Engi <u>N</u> ame: <u>D</u> escription:	4-Concrete Tee-Girder System		
Units: Number of <u>s</u> pans: Number of girders:	US Customary	Enter Span Lengths Along the Reference Line: Span Length (ft) 1 57.00	For PS only Average <u>h</u> umidity: % Member Alt. Types Steel P/S V R/C Timber
		ОК	Apply Cancel

The partially expanded Bridge Workspace tree is shown below:

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Structure, and a new Structure Alternative.

The partially expanded Bridge Workspace tree is shown below:

April 1, 2011	Section 8	Page 19 of 94
---------------	-----------	---------------

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

Load Case Description	n						
Load Case Name	Description	Stage		Туре	Time* (Days)		
Bridge Rail		Composite (long term) (Stage 2)	-	D,DC 🔽			
HBP		Composite (long term) (Stage 2)	_	D,DW			
Prestressed members only			N	ew	Duplicat	•	Delete

April 1, 2011	Section 8	Page 20 of 94
---------------	-----------	---------------

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan.

				_ 🗖
Number of spans =	1 Nur	nber of girders = 4		
Perpendic	cular to girder			
Girder Bay	Start of Girder	End of Girder		
1	8.67	8.67		
	8.67	8.67		
3	8.67	8.67		
		OK	Apply	Cancel
	Girder Spacin Perpendic Along sup Girder Bay	Girder Spacing Orientation Perpendicular to girder Along support Girder Bay Girder Bay Girder Bay Cirder Sp (t) Start of Girder 1 8.67 2 8.67	Girder Spacing Orientation Perpendicular to girder Along support Girder Bay Girder Bay Girder Girder 1 8.67 8.67 2 8.67 8.67 3 8.67 8.67 3 8.67 8.67 3 8.67 8.67 3 8.67 8.67	Girder Spacing Orientation Perpendicular to girder Along support Girder Bay Girder Bay Girder Bay Cirder Bas 1 8.67 8.67 2 8.67 8.67 3 8.67 8.67 3 8.67 8.67

April 1, 2011	Section 8	Page 21 of 94
---------------	-----------	---------------

If the bridge has diaphragms, switch to the Diaphragms tab and enter the appropriate data. Click OK to save to memory and close the window.

ayout Di	aphragms		N	umber of spa	ans = 1	Number of girde	rs = 4	
Girder Bay	e 1	•	Copy Bay To		Diaphragm Wizard			
Support Number		vistance ft) Right Girder	Diaphragm Spacing (ft)	Number of Spaces	Length (ft)	End Dis (fi Left Girder		Weight (kip)
1 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	6.2000
1 🔽	0.00	0.00	28.50	1	28.50	28.50	28.50	3.1000
1 🔽	28.50	28.50	28.50	1	28.50	57.00	57.00	6.2000
<u>.</u>								
						New	Duplicate	e Delete

April 1, 2011 Section 8 Page 22 of 94

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

Structure Typical Section				
	eft edge of deck to ion reference line	Distance from right edge structure definition refer		
	Deck + thickness	Structure Definition Reference Line	7	
	+			
Left overhang 🔔 🚽			Right overhang	
Deck Deck (Cont'd) Parapet Media	n Railing Generic	Sidewalk Lane Posit	tion Wearing Surface	
Structure definition reference line is	within 🔽	the bridge deck.		
Distance from left edge of deck to structure definition reference line =	Start 17.00 ft	End 17.00 ft		
Distance from right edge of deck to structure definition reference line =	17.00 ft	17.00 ft		
Left overhang =	4.00 ft	4.00 ft		
Computed right overhang =	4.00 ft	4.00 ft		
			OK Apply	Cancel

April 1, 2011 Section 8 Page 23 of 94

The Deck(Cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously.

A Structure Typical Section			_	
	ce from left edge of deck to ire definition reference line	Distance from right edge of deck to structure definition reference line		
	Deck ⊥thickness	Structure Definition Reference Line		
Left overhang 🚽 🚃	N N	– – ––→ Bi	ght overhang	
Deck Deck (Cont'd) Parapet	Median Railing Gener	ic Sidewalk Lane Position Wearing \$	Surface	
<u>D</u> eck concrete	Class A(US)	•		
<u>T</u> otal deck thickness	; 7.5000 in			
Deck <u>c</u> rack control parameter				
Sustained modular ratio factor	2.000			
		OK	Apply Cance	el

April 1, 2011	Section 8	Page 24 of 94
---------------	-----------	---------------

Parapets:

Add two parapets as shown below.

itructu	ure Typical S	ec	tion												_
				E	ack		J]	Front						
eck	Deck (Cont'd)	Œ	^o arapet	Median	Railing	G	eneric	Side	walk	Lane f	Positi	on Wearing Su	irface		
	Name			Load C	ase		Measur	re To		e of De Measur From		Distance At Start (ft)	Distance At End (ft)	Front F Orienta	
Bridg	je Rail	-	Bridge F	Rail		-	Back	-	Left	Edge	-	0.00	0.00	Right	-
Bridg	je Rail	-	Bridge F	Rail		-	Back	-	Righ	t Edge	-	0.00	0.00	Left	-
												New	Duplicate	De	lete
												OK	Apply		Cancel

April 1, 2011 Section 8 Page 25 of 94

Lane Positions:

Select the lane position tab and use the Compute… button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to apply the computed values. The Lane Position tab is populated as shown below.

🗛 S	tructure Ty	pical Section				_ 🗆 ×
	Deck Deck	(A)		efinition Reference Line Travelway 2	Surface	
	Travelway Number	Distance From Left Edge of Travelway to Structure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Structure Definition Reference Line At End (A) (ft)	Distance From Right B Travelway to Struc Definition Reference At End (B) (ft)	ture
	1	-15.00	15.00	-15.00		15.00
	Com	pute		New OK	Duplicate Apply	Delete

April 1, 2011 Section 8 Page 26 of 94

Enter the following wearing surface information on the Wearing Surface tab.

🕰 Structure Typical Section				- 🗆 ×
	ce from left edge of deck to re definition reference line Deck thickness t	Distance from right edge structure definition refere Structure Definition Reference Line		
Left overhang	<u>↓</u> •		Right overhang	
Deck Deck (Cont'd) Parapet	t Median Railing Generi	ic Sidewalk Lane Positi	on Wearing Surface	
Wearing surface material:	НВР			
Description:	Hot Bituminous Material			
Wearing <u>s</u> urface thickness =	2.0000 in			
Wearing surface d <u>e</u> nsity =	144.000 pcf			
Load <u>c</u> ase:	НВР	•	Copy from Library	
			OK Apply	Cancel

April 1, 2011	Section 8	Page 27 of 94
---------------	-----------	---------------

Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click OK to save this information to memory and close the window.

niform Temperature Gradient Temperature Wind DLDistri	bution		
Stage 1 Dead Load Distribution			
By tributary area			
C By transverse simple-beam analysis			
C By transverse continuous-beam analysis			
\mathbf{C} User input results from independent 3 <u>D</u> elastic analysis			
- Stage 2 Dead Load Distribution			
Uniformly to all girders			
O By tributary <u>a</u> rea			
O By transverse simple-beam analysis			
O By transverse continuous-beam analysis			
O User input results from independent 3D elastic analysis			
	ОК	Apply	Cance

April 1, 2011	Section 8	Page 28 of 94
---------------	-----------	---------------

Define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definition in the tree). Define the reinforcement as shown. The I shape shown is for illustrative purposes only. Click OK to save to memory and close the window.

🕰 Shear	Reinforcement Definition - Vertical			
<u>N</u> ame:	#4 Shear Reinforcing			
		Material:	Grade 40	J
		Bar size:	4 🔹	
		Number of legs:	2.00	
		Inclination (alpha):	90.0 Degrees	
	Vertical Shear Reinforcement			
			OK Apply	Cancel

April 1, 2011 Section 8 Page 29 of 94

The partially expanded Bridge Workspace tree is shown below:


```
Describing a member:
```

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

🕰 Member				_ 🗆 🗡
<u>M</u> ember name:	G2	<u>L</u> ink	with: None	•
Description:				<u> </u>
				T
	Existing Current Member A		1	
	Interior 52	.5" RC Tee Bea		
Number of spans:	1 -	Span Span No Length	Pedestrian load:	Ib/ft
		(ft)		
		1 57.00		
			OK Apply	Cancel

Defining a Member Alternative:

Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Reinforced Concrete for the Material Type and Reinforced Concrete Tee for the Girder Type.

New Member Alternative	e	×
Material Type:	Girder Typ	e:
Reinforced Concrete	Reinforce	d Concrete Te
]	OK	Connect
	OK	Cancel

Click OK to close the dialog and create a new member alternative.

April 1, 2011 Section 8 Page 31 of 94	April 1, 2011		Page 31 of 94
---------------------------------------	---------------	--	---------------

The Member Alternative Description window will open. Enter the appropriate data as shown below.

Member Alternative: Interior 52.	5" RC Tee Beam	
Description Factors Engine Im	port	
Description:		Material Type: Reinforced Concrete Girder Type: Reinforced Concrete Tee Member units: US Customary
Girder property input method © Schedule based © Cross-section based	End bearing locations Left: 7.5000 in Right: 7.5000 in	Analysis Module ASD: BRASS ASD ADD ADD ADD ADD ADD ADD ADD ADD ADD
Additional Self Weight Additional sel <u>f</u> weight = Additional self <u>w</u> eight =	LFD &	LFD: Ignore shear
Crack control parameter (Z)	kip/in	

Shear computation method: Check this box if the AASHTO LFD shear specifications should be ignored in the analysis.

April 1, 2011	Section 8	Page 32 of 94
---------------	-----------	---------------

Double click on Supports to define support constraints for the girder. Enter the following support constraints. Click OK to save data to memory and close the window.

						_ 🗆 ×
General	zĸ	•× <u>~</u> 1			2	
Summert	0	Translation Con	straints	Rotation Constraints		
Support Number	Support · Type	х	Y	Z		
1	Pinned 🔽	V	V			
2	Roller 🔽		V			
				ОК	Арріу	Cancel

Double click on Live Load Distribution to enter live load distribution factors. Click the Compute from Typical Section button to compute the live load distribution factors. The distribution factors are computed based on the AASHTO Specifications, Articles 3.23. Click Apply and then OK to save data to memory and close the window.

Lanes		Distribution (VVhee			
Loaded	Shear	Shear at Supports	Moment	Deflection	
1 Lane	1.308	1.308	1.308	0.500	
Multi-Lane	1.444	1.846	1.444	1.000	
Compute from	<u></u> 1				

April 1, 2011	Section 8	Page 34 of 94
---------------	-----------	---------------

Double click on Cross Sections in the tree to create the cross section that defines the girder geometry. The Cross Section window is shown below. Define cross section 1 as shown below. Click apply and then the Reinforcement tab.

Cross Sections			_ 🗆 ×
Name: Cross Section 1	<u>Type:</u> Reinforce	d Concrete Tee	
Dimensions Reinforcement			
		Top Flange	1
Tributary width: 104.0000 in	7.5000 in	Material: Class A(US)	
	<u>+</u>	Modular Ratio: 9.0	
	⊥	Eff. width (Std): 104.0000 in	
	52.5000 in	Eff. width (LRFD):	
		Eff. thickness: 7.5000 in	
 ←i	<u>↓</u>	Other Parts	1
20.0000 in		Material: Class A(US)	
A =	4.0000 in	Modular Ratio: 9.0	
		OK Apply Car	ncel

April 1, 2011 Section 8 Page 35 of 94

Define reinforcements for Cross Section 1. Click OK to save data to memory and close the window.

Cross Sections Name: Cross Section 1	_ □ >
Dimensions Reinforcement Distance from top T	Row Bar Size Bar Count Distance Material
	Bottom of Girder ▼ 11 ▼ 5.000 2.7500 Grade 40 Bottom of Girder ▼ 11 ▼ 5.000 6.2500 Grade 40
⊥ ↑ Distance from bottom of beam	<
	New Duplicate Delete
	OK Apply Cancel

April 1, 2011	Section 8	Page 36 of 94
---------------	-----------	---------------

Using the same techniques, create cross section 2, cross-section 3 and define their associated reinforcement patterns.

ame: Cross Section 2	<u>T</u> ype: Reinfo	rce	d Conci	rete	Гее			
Dimensions Reinforcement	Row		Bar S	ize	Bar Count	Distance (in)		Material
	Bottom of Girder	-	11	-	5.000	2.7500	Grade 40	
	Bottom of Girder	-	11	-	5.000	6.2500	Grade 40	
	Bottom of Girder	-	11	-	3.000	9.7500	Grade 40	
$\frac{1}{4}$								
	1							Ŀ
					New		Duplicate	Delete

April 1, 2011	Section 8	Page 37 of 94

Cross Sections Name: Cross Section 3 Dimensions Reinforcement	
Distance from top	Row Bar Size Bar Count Distance Material
	Bottom of Girder 🔽 11 🔽 5.000 2.7500 Grade 40
	Bottom of Girder 🔽 11 🔽 5.000 6.2500 Grade 40
	Bottom of Girder 🔽 11 💽 5.000 9.7500 Grade 40
↓ ↓ ↓ ↓ Distance from bottom of beam	.∡ New Duplicate Delete
	OK Apply Cancel

April 1, 2011 Section 8 Page 38 of 94

The Cross Section Ranges window is shown below. Define the ranges over which the cross sections apply.

Cross Section	Ra	nges									_ 🗆 🗵
Ţ	SI	tart Distance		Length		End					
		5.10.1	Se	ction Web		Secti Supp		Start	Length	End	
Start Section	-	End Section Cross Section 1	Ţ	Variation	۱ ب	Num		Distance (ft) 0.000	(ft)	Distance (ft) 12.800	
Cross Section 2	•	Cross Section 7 Cross Section 2		-	-	1	•	12.800	6.250	19.050	
Cross Section 3	-	Cross Section 3	-	None	•	1	-	19.050	18.900	37.950	
Cross Section 2	-	Cross Section 2	-	None	•	1	-	37.950	6.250	44.200	
Cross Section 1	-	Cross Section 1	-	None	•	1	-	44.200	12.800	57.000	
									New	Duplicate	Delete
									OK	Apply	Cancel

April 1, 2011 Section 8 Page 39 of 94

Shear reinforcement locations are described using the Shear Reinforcement Ranges window shown below.

			Start Distance	<mark>∢</mark> Spa	acing			
Name		oport mber	L LIISTADCE	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	
#4 Shear R 💌	1	-	0.00	1	18.0000	1.50	1.50	
#4 Shear R 🔽	1	-	1.50	5	6.0000	2.50	4.00	
#4 Shear R 🔽	1	-	4.00	4	9.0000	3.00	7.00	
#4 Shear R 🔽	1	-	7.00	4	12.0000	4.00	11.00	
#4 Shear R 🔽	1	-	11.00	13	15.0000	16.25	27.25	
#4 Shear R 🔽	1	-	27.25	1	30.0000	2.50	29.75	
#4 Shear R 🔽	1	-	29.75	13	15.0000	16.25	46.00	
#4 Shear R 🔽	1	-	46.00	4	12.0000	4.00	50.00	
#4 Shear R 🔽	1	-	50.00	4	9.0000	3.00	53.00	
#4 Shear R 🔽	1	-	53.00	6	6.0000	3.00	56.00	
#4 Shear R 💌	1	-	56.00	1	4.0000	0.33	56.33	
					1	lew Du	plicate D	elete

April 1, 2011	Section	8	Page 40 of 94
Define points of interest	using the Points	of Intere	st window shown below.
A Point of Interest			
Distance from leftmost support: 12.80 ft	or <u>S</u> pan: Span 1	✓ <u>Fraction</u> : 0	.224561 Side C Left © Right
Shear Engine		1	% Shear:
Vertical Shear Reinf. Material: Grade 40	Horiz. Shear Reinf.	Shear o	listance:
Bar size:		Computation	
# of legs:			Sx: L
Area: I			Theta:
Spacing:		LFD 🗖 Ig	nore shear
		OK	Apply Cancel

The Point of Interest window enables the user to enter points of interest in addition to those that are automatically generated by the program.

15 bar diameter = 15*(11/8) = 1.712' Clear Span/20 = (57-1.83)/20 = 2.75' Effective Depth = 46.25/12 = 3.85' Use 3.8'

First rebar cutoff from left support = 12.8' Second rebar cutoff from left support = 19.05'

April 1, 2011	Section 8	8	Page 41 of 94
Point of Interest			
Distance from leftmost support: 19.05 ft Shear Engine	or <u>S</u> pan: Span 1 💌	Eraction: 0.334	211 Side C Left C Right
Override schedule Vertical Shear Reinf.	Horiz Shear Beinf	% Sh Shear distar	
Material: Grade 40 Bar size: Image: Imag		- LRFD Computation Met	hod:
		OK	Apply Cancel

April 1, 2011	Section 8		Page 42 of 94
Point of Interest			
Distance from leftmost support: 5.02 ft	or <u>S</u> pan: Span 1 💌	Eraction: 0.08807	0 Side C Left ⊙ <u>R</u> ight
Shear Engine		% Shea	r:
Vertical Shear Reinf. Material: Grade 40 Bar size: # of legs: Area: Inclination: Spacing:		Shear distance LRFD Computation Metho S Bet Thet LFD	
		OK [Apply Cancel

Shear Check: d = 52.5''-6.25'' = 46.25'' = 3.85'Shear at a distance 'd' from the free edge of the left support + 1.167' = 3.85' + 1.167' = 5.02'

April 1, 2011	Section	8	Page 43 of 94
Point of Interest			
Distance from leftmost support: 52.98 ft Shear Engine	or <u>S</u> pan: Span 1	→ Eraction: 0	929474 Side C Left © Right
Override schedule		,	% Shear:
Vertical Shear Reinf. Material: Grade 40 Bar size: # of legs: Area: Inclination: Spacing:	Horiz. Shear Reinf.	Computation	Iistance:
		OK	Apply Cancel

Shear Check: d = 52.5''-6.25'' = 46.25'' = 3.85'Shear at a distance 'd' from the free edge of the right support + 0.167' = 3.85' + 0.167' = 4.02'Therefore, Distance from the left support = 57.0'-4.04' = 52.98'

Open the Member Alternative Description window and click the Engine tab as shown below.

lember Alternative Description	_ 🗖
Member Alternative: Interior 52.5" RC Tee Beam	
Description Factors Engine Import	
Configure engine properties for analysis module: BRASS LFD	
Analysis Load Sequence: Computed based on loadings and comp Points of Interest Control: 3 - Same as 1 plus generate user-define Wheel Advancement: 100	Properties
است المحمد ا	

April 1, 2011	Section 8	Page 45 of 94
---------------	-----------	---------------

Click the Properties button to edit the engine properties for BRASS LFD.

BRASS-Standard Member Alternative Properties	×
Analysis	OK
Load Sequence:	Cancel
Computed based on loadings and composite regions.	
POI Control:	
1 - Generate points of interest at all tenth points along TOP spans	
Wheel advancement denominator: 100	

April 1, 2011 Section 8 Page 46 of 94

To perform a rating, select the View Analysis Settings button on the toolbar to open the window shown below. Select the required vehicles to be used in the rating and click OK.

🕰 Analysis Settings						_ 🗆 ×
O Design Review	Rating	Rating	Method:	LFD		•
Vehicles Output Engine	e Description Traffic Direction: Both directions	I,	/ehicle Sun	nmary:	Advanc	:ed
	osting Type 3 osting Type 3-2 osting Type 3S2	Add to Rating >> Remove from Analysis <<	 ⊡ Op	Vehicles ventory - HS 20-44 berating - HS 20-44 - Colorado Permi	t Vehicle	
Reset Clear	Open Template	Save Template		ж 🛕	pply (Cancel

The results of the LFD rating analysis are as follows.

Live Load	Live Load Type	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Inventory Location ft		Operating Location ft	Operating Location Span-(%)	Limit State		Op Lim
IS 20-44	Axle	ļ	48.57	81.11	1.349	2.253		1 - (50.0)	·) ULTIMATE MOMENT CA	APACIT ULTIMA	ATE M
IS 20-44	Lane		70.55	117.82	1.960		28.50) ULTIMATE MOMENT CA		
olorado Permit Vehic	ie Axle	LFD		139.40		1.451			28.50	1 - (50.0)	ULTIM/	ATEN

April 1, 2011	Section 8	Page 48 of 94

Description Table Continuent Table Continuent		MENT OF TRANSPORT				Structure # State highway #	0-18	-BY(S.B.)	
Applait thickness: 50 mm (2 m) Bruchure trype CSG Patalist structure trype CSG Patalist structure trype CSG Patalist structure trype CSG Inventory 43.6 (48) 33.6 (37) () Inventory 43.6 (48) 33.6 (37) () () Inventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory 43.6 (48) 33.6 (37) () () Unventory () () () () () Type 37 truck () () () () () Unventori								I-25	
Intenstate legalizeds CSG Parallel structure # 0-18-CD (N.B.) Structural member INTERIOR GIRDER SLAB Inventory 43.6 48 33.6 37 ((Operating 73.6 81 56.4 62 ((Type 3 truck (Asphalt thickness:		in.)						
Structural member INTERIOR GIRDER SLAB Metric tons (Tons) Inventory 43.6 (48) 33.6 (37) () () () Inventory 43.6 (48) 33.6 (37) () () () () Operating 73.6 (31) 56.4 (62) () () () () Type 3 truck () () () () Type 3 truck () () () () Type 3-2 truck () () () () Type 3-2 truck () () () () Permit truck 126.3 (139) () () () Type 3-2 truck () () () () Inverse 21 and totols of tons) Metric tons Tons Metric tons Tons Metric tons Tons Metric tons Tons Metric tons Tons Metric tons Tons Control Member: Deck; Rated for 2" HBP Cod Capacity: 62 Tons Girder: Only Interior Girder Rated; Rated for 2" HBP Co	_ •						0-1)
Metric tons (Tons) Inventory 43.6 (48) 33.6 (37) () (Operating 73.6 (81) 56.4 (62) () (Type 3 truck () () () (Type 31 truck () () () () Type 32 truck () () () () Type 3-2 truck () () () () Type 3-2 truck () () () () Permit truck 126.3 (139) () () () Type 3 Truck 126.3 (139) () () () Investe 3 f metric bruck (24 tons) Investe 3 d metric tons (24 tons) Investe 3 d metric tons (24 tons) Investe 3 f metric bruck (24 tons) Investe 3 d metric tons (24 tons) Investe 3 d metric tons (24 tons) Investe 3 d metric tons (24 tons) Metric tons Tons Metric tons Tons Metric tons Tons Control Member: Deck; Rated for 2" HBP Load Capacity: 62 Tons Girder: Only Interior Girder Rated; Rated for 2" HBP Color Code: White									•)
Inventory 43.6 (48) 33.6 (37) () (Operating 73.6 (81) 56.4 (62) () (Type 3 truck () () () () (() () Type 3 truck () () () () () () () Type 3-2 truck () () () () () () () Permit truck 126.3 () () () () () () Type 3 truck () () () () () () () Permit truck 126.3 () () () () () () Type 3 truck () () () () () () () Type 3 truck 126.3 () () () () () () Construct 126.3 () 10 () () () () () () () Construct 126.3 () 139	Structural member	INTERIOR GIRDER	SL	AB					
Operating 73.6 (81) 56.4 (62) () Type 3 truck () () () () Type 352 truck () () () () Type 3-2 truck () () () () Type 3-2 truck () () () () Permit truck 126.3 (139) () () () Type 3 Truck () () () () () Type 3 Truck 126.3 (139) () () () Type 3 Truck 126.3 (139) () () () Type 3 Truck 126.3 (139) () () () Type 3 Truck 126.3 () () () () Type 3 Truck 126.3 () () () () Type 3 Truck 126.3 () () () () () Type 3 Truck 126.3 () () () () () () Type 3 Truck 126.7 ())		Metric tons (Tons)							
Type 3 truck () () () () () Type 352 truck () () () () () Type 3-2 truck () () () () () () Type 3-2 truck () () () () () () () Permit truck 126.3 (139) () () () () () () () () ()	Inventory	43.6 (48)	33.6	(37)	()	()
Type 3S2 truck () () () () () () () () () () () () ()	Operating	73.6 (81)	56.4	(62)	()	()
Type 3-2 truck () () () () () () () () () () () () ()	Type 3 truck	()		())	()	()
Permit truck 126.3 (139) () () () () () () () () () () () () ()	Type 3S2 truck	()		())	()	()
Type 3 Truck Historial 21 8 matric tons (24 tons) Colorado 24.5 matric tons (27 tons) Metric tons Tons Metric tons (42.5 ton) Metric tons Tons Metric tons (42.5 ton) Comments Control Member: Deck; Rated for 2" HBP Load Capacity: 62 Tons Girder: Only Interior Girder Rated; Rated for 2" HBP Color Code: White Project No: I-25-1(21)31	Type 3-2 truck	()		())	()	()
Import Interstate 21.8 metric tons (24 tons) Import Interstate 24.5 metric tons (30 tons) Import Colorado 24.5 metric tons (27 tons) Import Colorado 38.6 metric tons (42.5 tons) Import Colorado 24.5 metric tons (27 tons) Import Colorado 38.6 metric tons (42.5 tons) Import Colorado 24.5 metric tons (27 tons) Import Colorado 38.6 metric tons (42.5 tons) Import Colorado 24.5 metric tons (27 tons) Import Colorado 38.6 metric tons (42.5 tons) Import Colorado 24.5 metric tons (27 tons) Import Colorado 24.5 metric tons (42.5 tons) Import Colorado 24.5 metric tons (27 tons) Import Colorado 24.5 metric tons (42.5 tons) Import Colorado 24.5 metric tons Import Colorado 24.5 metric tons (42.5 tons) Import Colorado 24.5 metric tons Import Colorado 24.5 metric tons (42.5 tons) Import Colorado 24.5 metric tons Import Colorado 24.5 metric tons (42.5 tons) Import Colorado 24.5 metric tons Import Colorado 24.5 metric tons (42.5 tons) Import Colorado 24.5 metric tons Import Colorado 24.5 metric tons (42.5 tons) Control Member: Deck; Rated for 2" HBP Import Colorado 24.5 metric tons (42.5 tons) Girder: Only Interior Girder Rated; Rated for 2" HBP Import Colorado 24.5 metric tons (42.5 tons) Color Code: White Project No: 1-25-1(21)31 Import Colorado 24.5 metric tons	Permit truck	126.3 (139)	1	())	()	()
Comments Control Member: Deck; Rated for 2" HBP Load Capacity: 62 Tons Girder: Only Interior Girder Rated; Rated for 2" HBP Color Code: White Project No: I-25-1(21)31	Interstate 21.8 metric	tons (24 tons)	Interstate 34.5 m	etric tons (38 to	ns) tons)	S.4 me Colorade	e atric tons (39 o	9 tons)	0
Control Member: Deck; Rated for 2" HBP Load Capacity: 62 Tons Girder: Only Interior Girder Rated; Rated for 2" HBP Color Code: White Project No: I-25-1(21)31	Metric tons Tons) s Metric	tons () Tons		Metric to	((((() Tons	
Rated by Date Checked by Date	Control Member: De Load Capacity: 62 Girder: Only Interior Color Code: White	Fons r Girder Rated; Rated		P					
Previous adjitions are obsolete and may not be used CDOT Form #1187a	Rated by	Date		Checked by	,				

Previous editions are obsolete and may not be used

Slab Rating Program Input, Structure No. L-18-AV

💐 WinSlab	Input		
Structure Nu	imber: L-18-AV	Rater:	MH
Batch ID:		Comments:	
Highway Nu	mber: 25	Load Type:	1=Colorado 🚍
Deadload	Bituminous	Overlay (in): 2	
Geometry			
Effective Sp	an (ft): 8,44	Actual Slab Thic (in.):	kness 6.5
Reinforcin	g Steel:		
	Area (sqin)	Distance (in)	For definitions of input values please refer to the
Тор:	0.75	5.156	CDOT Bridge Rating Manual
Bottom:	0.75	1.34	
Materials I	Properties		
Concrete f'c	(PSI): 3000	Steel Fy (PSI):	40000
or Inv Fc (V	Working Stress)	or Inv Fs (Wor	king Stress)
Modular Rat	io (Leave blank for	load factor): 00	
OK	Ca	ncel	Uutput to File

Effective Span Length: Per AASHTO Article 3.24.1.2(a)

(Clear span)*1/cos27.3° = (9.00-1.50)*1/cos27.3° = 8.440'Distance to Top Steel = 5.156''Distance to Bottom Steel = 1.344''Top Steel Area: #6 @ 12 = 0.440#5 @ 12 = 0.310 $\Sigma = 0.750$ in*in Bott. Steel Area: #6 @ 12 = 0.440#5 @ 12 = 0.310 $\Sigma = 0.750$ in*in

```
April 1, 2011
                                        Section 8
                                                                    Page 50 of 94
Slab Rating Program Output, Structure No. L-18-AV
WinSlab Rating Version 1
                        Date: 1/14/2002
Structure NO. L-18-AV Rater: MH
                                     State HWY NO. = 25
    Batch ID=
                    Description:
LOAD FACTOR RATING-COMP STEEL NOT USED
 *** Warning: Slab thickness violates old AASHTO 1.5.40(B)***
INPUT DATA
      Bituminous Overlay(in) =
                               2,000
      Eff. Span(ft) =
                               8.440
                                             Slab Thickness(in) = 6.500
      Top Reinf. (sq.in)=
                              0.75
                                           Eff. Depth(in) = 5.156
      Bottom Area(sq.in) =
      Bottom Area(sq.in) = 0.75
Conc. Strength(PSI) Inv = 3000
                                            Bottom Dist.(in) = 1.34
                                                               3000
                                            Oper. =
      Steel Yield (PSI) Inv = 40000
                                            Oper. =
                                                               40000
      Modular Ratio =
                                  9
Dead Load Moment 0.75 K-Ft
LL+I Moment
                5.43 K-Ft
                36.0 Tons
Gross Weight
                                 Inventory
                                             Operating
Actual Concrete Stress (PSI)
                                 1051.42
                                              1650.22
Actual Reinf. Steel Stress (PSI) 18660.60
                                              29288.22
                                             6760.66
Actual Comp. Steel Stress (PSI)
                                 4307.46
                                  10.50
                                              10.50
Member Capacity
                         (K-Ft)
Member Capacity (LL+I)
                         (K-Ft)
                                    9.52
                                                 9.52
    Rating
                         (Tons)
                                  29.15
                                               48.58
```

Virtis Bridge Rating Example, Structure No. L-18-AV

Effective slab width: Per AASHTO Article 8.10.1.1

0.25(L) = 0.25(41*12) = 123" 12t+ Web Thickness = (12*6.5) + 18 = 96.0" Controls C.L. - C.L. of girder= 9.00' = 108"

Dead Load:

Intermediate Diaphragm = (0.67)*(2.00)*(9.00-1.50)*(1/Cos27.3°)*(0.150) = 1.696 kips Use 1.7 kips

Abutment Diaphragm = ((4.81)*(1)*(7.5)+(2.1)*(1)*(7.5))*1/Cos27.3°*0.150 = 8.75 kips Use 9.0 kips

Pier Diaphragm = (2)*(6.5)*(7.5)*(1/Cos27.3°)*(0.15) = 16.50 kips Use 16.50 kips

Distribution Factor:

Multi-Lane = S/6 = 9.00/6 = 1.500

Single Lane = 1 + 3.00/9.00 = 1.333

April 1, 2011	Section 8	Page 51 of 94
---------------	-----------	---------------

Virtis Bridge Rating Example, Structure No. L-18-AV (contd.)

Schematics: Br	idge Typical C	ross Section Vi	ew			_ 🗖
			62'-0"			
	31'-0"		#	2" Overlay	31'-0"	
	Travelway 1	1			avelway 2	
4'-0"			6@9'-0" = 54'-0"			4'-0"

April 1, 2011	Section 8	Page 53 of 94
---------------	-----------	---------------

April 1, 2011 Section 8 Page 54 of 94

From the bridge explorer, create a new bridge and enter the following information.

🚇 L-18-AV				_ 🗆	×
Bridge ID: L-18-AV	NBI Structure I	d (8): L-18-AV		emplate esign Only	
Description Description	n (cont'd) Alternatives Glo	bal Reference Point			
Name:	CSGC		Year Bui	ilt: 1958	
Description:	4- Span Concrete Tee-Beam	Continuous Structure		<u> </u>	
				v	
Location:			Length:	ft	
Facility Carried (7):		Route	Number: -1		
Feat. Intersected (6):		l.	Mi. Post:		
Units:	US Customary 🔽	Recer	nt ADTT:		
			ОК Арр	ly Cancel	

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

April 1, 2011	Section 8	Page 55 of 94
---------------	-----------	---------------

To add a new concrete material, click on Materials, Concrete, in the tree and select File/New from the menu (or right click on Concrete and select New). Click the Copy from Library button and select the Colorado Concrete from the library. Click OK and the following window will open. Click OK to save this concrete material to memory and close the window.

🕰 Bridge Materials -	Concrete					_ 🗆 🗡
<u>N</u> ame: Class.	A(US)	De <u>s</u> o	ription: Cold	orado Concrete		
	Compressive strength at 28	days (f'c) =	3.000	ksi		
	Initial compressive stre	ength (f'ci) =		ksi		
	Coefficient of thermal e	expansion =	0.00000600	1/F		
	<u>D</u> ensity (for de	ead loads) =	0.150	kcf		
	Density (for modulus of	elasticity) =	0.150	kcf		
	Modulus of ela:	sticity (<u>E</u> c) =	3122.00	ksi		
	l <u>n</u> itial modulus o	f elasticity =	0.00	ksi		
	<u>P</u> ois	son's ratio =	0.200			
	Co <u>m</u> position of	concrete =	Normal	•		
	Modulus	of <u>r</u> upture =	0.411	ksi		
	<u>S</u> h	ear factor =	1.000			
	C	opy from <u>L</u> ibra	ary	OK	Apply	Cancel

Using the same techniques, create the following Reinforcing Steel Material to be used for the girder.

🕰 Bridge Mat	erials - Reinforcing Steel				
<u>N</u> ame:	Grade 40	<u>D</u> esc	cription: 40 ksi rei	inforcing steel	
		Material Proper	ties		
	Specified yield	strength (Fy) =	40.000	ksi	
	Modulus of	elasticity (<u>E</u> s) =	29000.00	ksi	
	Littimate :	strength (F <u>u</u>) =	70.000	ksi	
		ype Plain Epo <u>xy</u> <u>G</u> alvanized <u>O</u> ther	1		
		Copy from <u>L</u> ib	orary OK	Apply	Cancel

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, and select New. Fill in the parapet properties as required. Click OK to save the data to memory and close the window.

🗛 Bridge Appurtenances - Parapet	
Name: Bridge Rail Description: Curb & Type 10R Rail All dimensions are in inches	
15.5000 Additional Load = 0.033 kip/ft 0.0000 24.0000 0.0000 Reference Line 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Parapet unit weight = 0.1500 kcf Surface Calculated Properties Net centroid (from reference line1 = 12.448 in Total weight = 0.258 kip/ft
Copy from Library	OK Apply Cancel

April 1, 2011	Section 8	Page 58 of 94
---------------	-----------	---------------

Right mouse click on Median in the tree, and select New. Fill in the median properties as required. Click OK to save the data to memory and close the window.

	April 1, 2011	Section 8	Page 59 of 94
--	---------------	-----------	---------------

Double click on Impact/Dynamic Load Allowance in the tree. The Bridge Impact window shown below will open. Accept the default values by clicking OK.

🕰 Bridge Impact / Dynamic Loa	id Allowance 📃 🗖 🔀
C Standard Impact Factor	
For structural components where AASHTO 3.8.1, choose the impar	
Standard AASHTO impact	I = <u>50</u> L + 125
O Modified impact =	times AASHTO impact
O Constant impact override =	%
LRFD Dynamic Load Allowance	
Eatigue and fracture limit states:	15.0 %
<u>A</u> ll other limit states:	33.0 🕺
ОК	Apply Cancel

April 1, 2011 Section 8 Page 60 of 94

Click on Factors, right mouse click on LFD and select New. The LFD-Factors window will open. Click the Copy from Library button and select the 1996 AASHTO Standard Specifications from the library. Click Apply and then OK to save data to memory and close the window.

actors - LFD							_
<u>N</u> ame: 1	996 AASH	TO Std. Specific	cations				
Description: A E	ASHTO SI dition, 199	tandard Specific 6 including 1997	ations for Highwa 7 Interim Specific	ay Bridges, 16th ations			
oad Factors	Resistance	Factors					
Load Group	Gamma- Factor	D	(L.D.5	(Li Dis	CF	Е	
INV	1.300	1.000	(L+I)n 1.670	(L+I)p 0.000	1.000	1.000	
OPG	1.300	1.000	1.000	0.000	1.000	1.000	
4							·
			Copy from I	Library	OK /	Apply Ca	ancel

We will now skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

April 1, 2011	Section 8	Page 61 of 94
---------------	-----------	---------------

Double click on STRUCTURE DEFINITION (or click on STRUCTURE DEFINITION and select File/New from the menu or right mouse click on STRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

w Structure Definit	tion
Structure Type	Description
Girder-line Girder system	A structure definition describing one of more girders. The girders do NO A structure definition describing one of more girders. The girders do hav
1	► Cancel

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

🕰 Girder System Structu	re Definition			_ 🗆 🗡
Definition Analysis Eng	ine			
<u>N</u> ame:	7-Concrete Tee-Girder System			
<u>D</u> escription	: 4-Span Structure			×
<u>U</u> nits:	US Customary 🔽		an <u>L</u> engths Reference Line	For PS only
Number of <u>s</u> pans:	4	Span	Length	Average <u>h</u> umidity:
Number of girders:	7 🔺	1	(ft) 50.00	*
		2	56.50	Member Alt. Types
	N 1.	3	56.50	Steel
	Deck type:	4	41.00	P/S
	Concrete	1		Timber
			OK	(Apply Cancel

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Structure, and a new Structure Alternative.

The partially expanded Bridge Workspace tree is shown below:

April 1, 2011	Section 8	Page 64 of 94
---------------	-----------	---------------

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

Load Case Name	Description	Stage		Туре	,	Time* (Days)	
Bridge Rail		Composite (long term) (Stage 2)	-	D,DW	-		
1BP		Composite (long term) (Stage 2)	•	D,DW	-		
Median Raised		Composite (long term) (Stage 2)	-	D,DW	-		

April 1, 2011	Section 8	Page 65 of 94
---------------	-----------	---------------

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan.

Structu	ıre Framin	g Plan Details							_ 🗆
			Num	nber of spans	= 4	Number of g	jirders = 7	,	
Layout	Diaphragn	ns							
		Skew	-	F Girder Spa	cing Orient	ation ———			
	Support	(Degrees)		O Perper	ndicular to g	jirder			
	1	-27.3000		O Along	support				
	2	-27.3000							
	3	-27.3000				r Spacing	-		
	4	-27.3000		Girder Bay	Start of	(ft) End of			
	5	-27.3000			Girder	Girder			
				1	9.00	9.00			
				2	9.00	9.00			
				3	9.00	9.00			
				4	9.00	9.00	-		
				5	9.00	9.00	-		
					0.001	0.001			
							OK	A sector and	Connect
							OK	Apply	Cancel

April 1, 2011	Section 8	Page 66 of 94
---------------	-----------	---------------

If the bridge has diaphragms, switch to the Diaphragms tab and enter the appropriate data. Click OK to save to memory and close the window.

	,		Сору Вау То		Wizard			
Support	Start Di (ff		Diaphragm	Number	Length	End Dis (ff		Weight
Number	Left Girder	0 Right Girder	Spacing (ft)	of Spaces	(ft) L	Left Girder	.) Right Girder	(kip)
1 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	9.0000
1 🔽	0.00	0.00	25.00	1	25.00	25.00	25.00	1.7000
1 🔽	25.00	25.00	25.00	1	25.00	50.00	50.00	8.2500
2 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	8.2500
2 🔽	0.00	0.00	28.25	1	28.25	28.25	28.25	1.7000
2 🔽	28.25	28.25	28.25	1	28.25	56.50	56.50	8.2500
3 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	8.2500
3 🔽	0.00	0.00	28.25	1	28.25	28.25	28.25	1.7000
3 🔽	28.25	28.25	28.25	1	28.25	56.50	56.50	8.2500
4 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	8.2500
4 🔽	0.00	0.00	20.50	1	20.50	20.50	20.50	1.7000
4 🔽	20.50	20.50	20.50	1	20.50	41.00	41.00	9.0000
						New) Duplic	ate Delete

April 1, 2011	Section 8	Page 67 of 94
---------------	-----------	---------------

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

🕰 Structure Typical Sec	ction						_ 🗆 🗡
		eft edge of deck tion reference lin		e from right eo e definition rel	dge of deck to ference line		
	Ż	Deck ↓thickness		ure Definition ence Line	`́		
Left overhang		+				Right overhang	
Deck Deck (Cont'd)	Parapet Media	an Railing Ge	eneric Sidewa	alk Lane Po	sition Wearing	g Surface	
Structure definition ref	ference line is	within	✓ the brid	ge deck.			
Distance from left edg structure definition refe		Start 31.00 ft	E 31.0	End DO ft			
Distance from right ed structure definition ref		31.00 ft	31.0	00 ft			
Lef	t overhang =	4.00 ft	4.00) ft			
Computed righ	nt overhang =	4.00 ft	4.00) ft			
					OK	Apply	Cancel

April 1, 2011 Section 8 Page 68 of 94

The Deck(Cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously.

Structure Typical Section					_ 🗆 ×
	ance from left edge of deck to sture definition reference line Deck	Distance from right edge of dec structure definition reference lin Structure Definition Reference Line			
	thickness thickness				
Left overhang	→ → Nedian Bailing Gener	ic Sidewalk Lane Position W		t overhang face l	
Deck Deck Control Parap	ert meulant nailingt denei	ic Sidewaik Lane Fosition M	reaning Jun		
<u>D</u> eck concre	te: Class A(US)	•			
<u>T</u> otal deck thickne	ss: 6.5000 in				
Deck <u>c</u> rack control paramet	ter: 130.000 kip/in				
Sustained modular ratio fact	tor: 2.000				
			ОК	Apply	Cancel

April 1, 2011	Section 8	Page 69 of 94
---------------	-----------	---------------

Parapets:

Add two parapets as shown below.

Structure Typical Se	Back		Front - walk Lane Posi	tion Wearing S	urface	
Name	Load Case		Edge of Deck Dist. Measured From	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation
Bridge Rail	🚽 Bridge Rail	🗾 Back 📃		0.00	0.00	Right 🗾
Bridge Rail	Bridge Rail	🗾 Back 📃	Right Edge 🔽	0.00	0.00	Left 🗾
				New OK	Duplicate	Delete

April 1, 2011 Section 8	Page 70 of 94
-------------------------	---------------

Median:

Add one median as shown below.

A S	itructure Typical S	ection						
ſ	Deck Deck (Cont'd) Parapet Media	Back		Front	n) Wearing Sur	face	
	Name	Load Case		Edge of Deck Dist. Measured From	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation	
	Median Raised 📘	Median Raised 🔽	Back 🔽	Left Edge 🔽	29.00	29.00	Right 🔽	
						New	Duplicate	Delete
						OK	Apply	Cancel

Lane Positions:

Select the lane position tab and use the Compute… button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to apply the computed values. The Lane Position tab is populated as shown below.

Deck Deck	(A)		efinition Reference Line Travelway 2	Surface
Travelway Number	Distance From Left Edge of Travelway to Structure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Structure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At End (B) (ft)
1	-29.00 2.00	-2.00 29.00	-29.00 2.00	-2.00
	pute		New OK	Duplicate Delete

April 1, 2011	Section 8	Page 72 of 94
---------------	-----------	---------------

Enter the following wearing surface information on the Wearing Surface tab.

Structure Typical Section				<u>_ 0 ×</u>
	nce from left edge of deck to ture definition reference line Deck thickness	Distance from right edge structure definition referent Structure Definition Reference Line		
Left overhang	+ 			ing
Deck Deck (Cont'd) Parape	et Median Railing Generi	c Sidewalk Lane Positio	on Wearing Surface	
Wearing surface material:	HBP			
<u>D</u> escription:	Hot Bituminous Material			
Wearing <u>s</u> urface thickness =	2.0000 in			
Wearing surface density =	144.000 pcf			
Load <u>c</u> ase:	HBP	•	Copy from <u>L</u> ibrary	
			ОК А	pply Cancel

Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click OK to save this information to memory and close the window.

iform Temperature Gradient Temperature Wind DLDis	ribution		
Stage 1 Dead Load Distribution]		
By tributary area			
O By transverse simple-beam analysis			
O By transverse continuous-beam analysis			
${f C}$. User input results from independent 3 <u>D</u> elastic analysis			
Stage 2 Dead Load Distribution]		
Uniformly to all girders			
O By tributary <u>a</u> rea			
O By transverse simple-beam analysis			
O By transverse continuous-beam analysis			
O User input results from independent 3D elastic analysis			
	J		

April 1, 2011	Section 8	Page 74 of 94
---------------	-----------	---------------

Define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definition in the tree). Define the reinforcement as shown. The I shape shown is for illustrative purposes only. Click OK to save to memory and close the window.

🗛 Shear Reinforcement Definition - Vertical	
Name: #4 Shear Reinforcing	
	Material: Grade 40 💌
	Bar size: 4
Numb	per of legs: 2.00
	on (alpha): 90.0 Degrees
Vertical Shear Reinforcement	
	OK Apply Cancel

The partially expanded Bridge Workspace tree is shown below:

📸 Bridge Workspace - L-18-AV
📩 🧰 Materials
🧰 Structural Steel
🕀 🚥 Concrete
🕀 🚥 Reinforcing Steel
🧰 Prestress Strand
🗄 🚞 Timber
📺 🧰 Beam Shapes
🖕 🧰 Appurtenances
📺 ····· 🧰 Parapet
🕀 🚥 Median
🧰 Railing
📖 🧰 Generic
📑 Impact / Dynamic Load Allowance
😟 🧰 Factors
BRIDGE ALTERNATIVES
Impact / Dynamic Load Allowance
Load Case Description
🖽 Framing Plan Detail 🔛 Structure Typical Section
Hin Structure Typical Section
Structure Loads Structure Loads Structure Loads
im I G1
I G2

April 1, 2011	Section 8	Page 76 of 94

```
Describing a member:
```

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

🕰 Member		_ 🗆 ×
Member name:	: G2	
<u>D</u> escription:		
		
	Existing Current Member Alternative Name Description	
	✓ Interior Variable Depth RC	
<u>N</u> umber of spans:	: 4	ft
	1 50.00	
	2 56.50	
	3 56.50	
	4 41.00	
	ОК (Аррју Саг	ncel

Defining a Member Alternative:

Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Reinforced Concrete for the Material Type and Reinforced Concrete Tee for the Girder Type.

New Member Alternative		×
Material Type:	Girder Typ	e:
Reinforced Concrete	Reinforce	d Concrete Te
г	01/	
	OK	Cancel

Click OK to close the dialog and create a new member alternative.

The Member Alternative Description window will open. Enter the appropriate data as shown below.

Member Alternativ	e Descriptior	1			_ 0
Member Alternativ	e: Interior Varia	able Depth RC	Tee Beam		
Description Factors	Engine Imp	ort			
Description:	ased	Leit	g locations 1.5000 in 1.5000 in	Girder Type: Re	inforced Concrete Tee inforced Concrete Tee Customary • odule BRASS ASD • BRASS LFD • BRASS LFD •
Additional Self We Additional sel <u>f</u> we Additional self <u>w</u> e Crack control para Bottom of beam:	eight = eight = emeter (Z)	kip/ft &	Default rati <u>ng</u> n LFD	LRFD:	Iputation method General Procedure 🔽 Ignore shear
				ок (🦳	Apply Cancel

Shear computation method: Check this box if the AASHTO LFD shear specifications should be ignored in the analysis.

April 1, 2011	Section 8	Page 78 of 94
---------------	-----------	---------------

Double click on Supports to define support constraints for the girder. Enter the following support constraints. Click OK to save data to memory and close the window.

Supports General	z	→X <u>~</u> 1		 2
Support	Support	Translation	Constraints	Rotation Constraints
Number	Туре	х	Y	Z
	Pinned 🔽			
	Roller 🔽			
3	Roller 🔽			
4	Roller 🔽			
5	Roller 🔽			
			<u> </u>	Apply Cancel

Double click on Live Load Distribution to enter live load distribution factors. Click the Compute from Typical Section button to compute the live load distribution factors. The distribution factors are computed based on the AASHTO Specifications, Articles 3.23. Click Apply and then OK to save data to memory and close the window.

Lanes		Distribution (Whee				
Loaded	Shear	Shear at Supports	Moment	Deflection		
1 Lane	1.333	1.333	1.333	0.286		
Multi-Lane	1.500	1.889	1.500	0.857		
Compute fron Typical Secti	n					

April 1, 2011	Section 8	Page 80 of 94
---------------	-----------	---------------

Double click on Cross Sections in the tree to create the cross section that defines the girder geometry. The Cross Section window is shown below. Define cross section 1 as shown below. Click apply and then the Reinforcement tab.

April 1, 2011 Section 8 Page 81 of 94

Define reinforcements for Cross Section 1. Click OK to save data to memory and close the window.

Cross Sections Name: Cross Section 1	<u>Iype:</u> Reinforce	ed	Concrete 1	Tee		
Dimensions Reinforcement	Row	T	Bar Size	Bar Count	Distance (in)	Material
		1		4.000	3.2100	Grade 40 🔽
		1	_	4.000		Grade 40
		1 9		4.000		Grade 40 🗾 Grade 40 🔽
		1				Grade 40
¥ ू • • • The stance from bottom of beam						
				New		Duplicate Delete
					OK	Apply Cancel

April 1, 2011	Section 8	Page 82 of 94
---------------	-----------	---------------

Using the same techniques, create cross sections 2 thru 8, and define their associated reinforcement patterns.

Cross Section 2	<u>Type:</u> Reinforce	ed	l Concrete 1	Гее		
Dimensions Reinforcement						
— Distance from top of beam	Row		Bar Size	Bar Count	Distance (in)	Material
	Bottom of Girder 📘	-	11 🔽	4.000	3.2100	Grade 40 📃
	Bottom of Girder	-	11 🔽	4.000	6.7100	Grade 40 📃
	Bottom of Girder	-	11 🔽	4.000	10.2100	Grade 40 📃
	Bottom of Girder	-	9 🔽	2.000	13.7100	Grade 40 📃
	Bottom of Girder	-	10 🔽	2.000	63.6100	Grade 40 📃
<u>+</u>						
↑ Distance from bottom of beam						
of Deam						
				New		Duplicate Delete

April 1, 2011	Section 8	Page 83 of 94

Г

Cross Sections				
Lame: Cross Section 3	<u>T</u> ype: Reinfo	rced Concrete Tee		
Dimensions Reinforcement				
		_ Top Flange		
Tributary width: 108.0000 in	6.5000 in	Material:	Class A(US) 🔄	
<u>;←</u> >i	+ +	Modular Ratio:	9.0	
	. <u>↓</u>	Eff. width (Std):	96.0000 in	
	72.6875 in	Eff. width (LRFD):	in	
		Eff. thickness:	6.5000 in	
└ <u></u>	Į	Uther Parts		
18.0000 in		Material:	(lass A(US) 🔽	
	0.0000 in	Modular Ratio: 9	.0	
			OK Apply	Cancel

Cross Sections Name: Cross Section 3					
Dimensions Reinforcement	Row Bar Size Bar Count Distance Material				
	Bottom of Girder 11 4.000 3.2100 Grade 40 Image: Constraint of Constraints Bottom of Girder 11 2.000 70.2975 Grade 40 Image: Constraints				
	Bottom of Girder 10 8.000 70.2975 Grade 40 Image: Constraint of Constraints Bottom of Girder 6 6.000 70.2975 Grade 40 Image: Constraints				
↓ ↓ ↑ Distance from bottom of beam					
ot beam					
	New Duplicate Delete				
OK Apply Cancel					

April 1, 2011	Section 8	Page 84 of 94

Cross Sections	Tura Reinford	ed Concrete Tee		
Lame: Cross Section 4	<u>I</u> ype: Reinford			
Tributary width: 108.0000 in	6.5000 in	Eff. width (LRFD):		
i k → j 18.0000 in A =	0.0000 in	Other Parts Material: Clas Modular Ratio: 9.0	ss A(US) ▼	
			OK Apply	Cancel

ne: Cross Section 4	<u>T</u> ype: Reinforc	ed Concrete	Tee		
imensions Reinforcement					
Distance from top	Row	Bar Size	Bar Count	Distance (in)	Material
· •	Bottom of Girder	11 🔽	4.000	3.2100	Grade 40 🔽
	Bottom of Girder	11 🔽	4.000	6.7100	Grade 40 🔽
	Bottom of Girder	10 🔽	4.000	63.6100	Grade 40 🔽
⊥ Distance from bottom of beam					
			Nev	/	Duplicate Delete

April 1, 2011	Section 8	Page 85 of 94
Cross Sections		_ 🗆 ×
Name: Cross Section 5	<u>I</u> ype: Reinforced Concrete Tee	
Dimensions Reinforcement		
Tributary width: 108.0000 in (18.0000 in)	H Modular Ratio: Eff. width (Std): 33.0000 in Eff. width (LRFD): Eff. thickness:	96.0000 in 6
←→ 18.0000 in A	= 0.0000 in Other Parts	Class A(US)
		OK Apply Cancel

Cross Sections								_ 🗆 ×
Name: Cross Section 5	<u>Type:</u> Reinfor	ce	d Concrete 1	Tee				
Dimensions Reinforcement								
↓ Distance from top of beam ★ ****************	Row		Bar Size	Bar	Count	Distance (in)	Material	
	Bottom of Girder	-	11 🔽		4.000	3.2100	Grade 40	-
	Bottom of Girder	-	11 🔽		4.000	6.7100	Grade 40	-
	Bottom of Girder	•	10 🔽		4.000	30.6100	Grade 40	-
⊥ Distance from bottom of beam					New	, <u> </u>	Duplicate	Delete
						OK	Apply	Cancel

April 1, 2011	Section 8	Page 86 of 94
	•	

Cross Sections				
Name: Cross Section 6	<u>Type:</u> Reinforced Co	ncrete I ee		
Tributary width: 108.0000 in 6.9	5000 in	Modular Ratio:	Class A(US)	
i←→i 18.0000 in A = 0.		Eff. thickness:	3.5000 in ass A(US)	
			ОК Арріу	Cancel

Cross Sections Name: Cross Section 6	<u>Iype:</u> Reinforce	ed Cor	ncrete 1	Гее			
Dimensions Reinforcement					Distance		
$\frac{1}{4}$	Row		Size	Bar Count	(in)	Materia	
	Bottom of Girder	9	_	4.000	3.2100	Grade 40	<u> </u>
	Bottom of Girder 👱	10	-	10.000	70.2975	Grade 40	
	Bottom of Girder 🔄	6	-	6.000	70.2975	Grade 40	▼
⊥ ↑ Distance from bottom of beam							
				New		Duplicate	Delete
					OK	Apply	Cancel

April 1, 2011	Section 8	Page 87 of 94

Cross Sections				_ 🗆
ame: Cross Section 7	<u>T</u> ype: Reinfo	rced Concrete Tee		
Dimensions Reinforcement				
		Top Flange		
Tributary width: 108.0000 in	6.5000 in	Material: Cla	iss A(US) 🔄	
<u> </u> €		Modular Ratio: 9.0		
	<u>, </u>	Eff. width (Std): 96.	0000 in	
	66.0000 in	Eff. width (LRFD):	in	
		Eff. thickness: 6.5	000 in	
	¥	Other Parts		
18.0000 in		Material: Class	A(US)	
,	A = 0.0000 in	Modular Ratio: 9.0		
			DK Apply	Cancel

Cross Sections Name: Cross Section 7		ed	d Concrete 1	ſee		
Dimensions Reinforcement	T)ber [
→ Distance from top ↓ of beam ★ ◆ • • • • • • • • • • • • • • • • • •	Row		Bar Size	Bar Count	Distance (in)	Material
	Bottom of Girder		11 🔽	4.000	3.2100	Grade 40 🔽
	Bottom of Girder		10 🔽	4.000	6.7100	Grade 40 🔽
	Bottom of Girder		10 🔽	2.000	10.2100	Grade 40 🔽
	Bottom of Girder		10 🔽	2.000	63.6100	Grade 40 🔽
$ \begin{array}{c} $						
				New		Duplicate Delete
					OK	Apply Cancel

April 1, 2011	Section 8	Page 88 of 94

Г

Cross Sections				_ 🗆 ×
Name: Cross Section 8	<u>T</u> ype: Reinfo	rced Concrete Tee		
Dimensions Reinforcement				
		_ Top Flange		
Tributary width: 108.0000 in	6.5000 in	Material:	Class A(US) 🔄	
<u> ←</u> ·	<u>† †</u>	Modular Ratio:	9.0	
	<u> </u>	Eff. width (Std):	96.0000 in	
	33.0000 in	Eff. width (LRFD):	in	
		Eff. thickness:	6.5000 in	
 ←	¥	Other Parts		
18.0000 in		Material:	Class A(US)	
A =	0.0000 in	Modular Ratio: 9	.0	
			OK Apply	Cancel

Cross Sections	<u> </u>	ed C	Concrete T	ee		
Dimensions Reinforcement Distance from top Top beam	Row	B	ar Size	Bar Count	Distance (in)	Material
	Bottom of Girder 📘	11	_	4.000	3.2100	Grade 40 🔽
	Bottom of Girder 🔽	11		4.000	6.7100	Grade 40 🔽
	Bottom of Girder 📘	11	-	4.000	10.2100	Grade 40 🔽
	Bottom of Girder 🔽	10) 🔽	2.000	30.6100	Grade 40 🔽
⊥ Distance from bottom of beam						
				New		Duplicate Delete
					OK	Apply Cancel

April 1, 2011	Section 8	Page 89 of 94
---------------	-----------	---------------

The Cross Section Ranges window is shown below. Define the ranges over which the cross sections apply.

			-			-					
Ť	S	tart Distance	St. Se	Lengt art ection	h	End Secti	on				<u> </u>
Start Section		End Section		VVeb Variatio	'n	Supp Numi		Start Distance (ft)	Length (ft)	End Distance (ft)	
cross Section 1	-	Cross Section 1	-	None	-	1	-	0.000	21.750	21.750	
ross Section 1	-	Cross Section 2	-	Parabolic	-	1	-	21.750	27.125	48.875	
ross Section 2	•	Cross Section 3	-	Linear	-	1	-	48.875	1.125	50.000	
cross Section 3	-	Cross Section 4	-	Linear	-	2	-	0.000	1.125	1.125	
cross Section 4	-	Cross Section 5	-	Parabolic	-	2	-	1.125	27.125	28.250	
ross Section 5	-	Cross Section 4	-	Parabolic	-	2	-	28.250	27.125	55.375	
ross Section 4	-	Cross Section 6	-	Linear	-	2	-	55.375	1.125	56.500	
cross Section 6	-	Cross Section 7	-	Linear	-	3	-	0.000	1.125	1.125	
cross Section 7	-	Cross Section 8	-	Parabolic	-	3	-	1.125	27.125	28.250	
ross Section 8	-	Cross Section 7	-	Parabolic	-	3	•	28.250	27.125	55.375	
ross Section 7	-	Cross Section 6	-	Linear	-	3	•	55.375	1.125	56,500	
Cross Section 6	•	Cross Section 7	-	Linear	-	4	-	0.000	1.125	1.125	
Cross Section 7	-	Cross Section 8	-	Parabolic	-	4	-	1.125	27.125	28.250	
Cross Section 8	•	Cross Section 8	•	None	•	4	•	28.250	12.750	41.000	
									New	Duplicat	e Delete
									OK	Appl	y Cancel

April 1, 2011	Section 8	Page 90 of 94
---------------	-----------	---------------

Open the Member Alternative Description window and click the Engine tab as shown below.

Member Alternative Description	_ 🗆 🔉
Member Alternative: Interior Variable Depth RC Tee Beam	
Description Factors Engine Import	_
Configure engine properties for analysis module: BRASS LFD]
Analysis Load Sequence: Computed based on loadings and comp Points of Interest Control: 1 - Generate points of interest at all tent Wheel Advancement: 100	Properties
▼	
ОК Аррі	y Cancel

April 1, 2011	Section 8	Page 91 of 94
---------------	-----------	---------------

Click the Properties button to edit the engine properties for BRASS LFD.

BRASS-Standard Member Alternative Properties	×
Analysis	OK
Load Sequence:	Cancel
Computed based on loadings and composite regions.	
POI Control:	
1 - Generate points of interest at all tenth points along TOP spans	
Wheel advancement denominator: 100	

April 1, 2011 Section 8 Page 92 of 94

To perform a rating, select the View Analysis Settings button on the toolbar to open the window shown below. Select the required vehicles to be used in the rating and click OK.

Analysis Settings					_	
O Design Review	Rating	Rating	Method:	LFD		-
Vehicles Output Engir	ne Description					
Vehicle Selection:	Traffic Direction: Both directions	J,	/ehicle Sur	nmary:	Advanced	
Colorado F Colorado F	Permit Vehicle Posting Type 3 Posting Type 3-2 Posting Type 352 333	Add to Rating	 ⊡- Op	Vehicles ventory - HS 20-44 perating - HS 20-44 - Colorado Permit V	/ehicle	
Reset Clear	Open Template	Save Template		ОК <u>А</u> рр	oly Cance	el

April 1, 2011 Section 8	Page 93 of 94
-------------------------	---------------

The results of the LFD rating analysis are as follows.

Member: G2

RATING FACTOR REPORT ANALYSIS POINT NO. 17: LOAD LEVELS	205.00 TRUCK DESCRIPTION
1: 1.30(1.00 * D +	
•	
2: 1.30(1.00 * D +	1.00 * L) 2. Truck: AASHTO H 20-S 16 Loading, 1944 Ed
	3. Truck: 96 Tons Vehicle
LOA	D LEVEL 1 LOAD LEVEL 2 LOAD LEVEL 3 LOAD LEVEL 4

POS. MOMENT	Т	-		
TRUCK 1	01.23 44.28	02.05 73.9 T	N/A	N/A
TRUCK 2	01.67	02.80	N/A	N/A
TRUCK 3	01.09	01.83	N/A	N/A
CRITICAL	01.09	01.83 175.7 ^T	N/A	N/A
NEG. MOMENT				
TRUCK 1	01.79	02.99	N/A	N/A
TRUCK 2	01.49	02.50	N/A	N/A
TRUCK 3	01.17	01.96	N/A	N/A
CRITICAL	01.17	01.96	N/A	N/A
POS. SHEAR				
TRUCK 1	N/A	N/A	N/A	N/A
TRUCK 2	N/A	N/A	N/A	N/A
TRUCK 3	N/A	N/A	N/A	N/A
CRITICAL	N/A	N/A	N/A	N/A
NEG. SHEAR				
TRUCK 1	N/A	N/A	N/A	N/A
TRUCK 2	N/A	N/A	N/A	N/A
TRUCK 3	N/A	N/A	N/A	N/A
CRITICAL	N/A	N/A	N/A	N/A

April 1, 2011	Section 8	Page 94 of 94
---------------	-----------	---------------

COLORADO DEPARTMENT OF TRANSPORTATION LOAD FACTOR RATING SUMMARY Rated using Asphalt thickness: 50 mm (2 in.) Colorado legal loads Interstate legal loads				Structure # L-18-AV State highway # I25 Overpass Batch I.D. Structure type CSGC Parallel structure #				
	Metric tons (Tons)					-		
Inventory	40.0 (44)	26.4 (29)	()	()	
Operating	67.3 (74)	44.5 (49)	()	()	
Type 3 truck	()	()	()	()	
Type 3S2 truck	()	()	()	()	
Type 3-2 truck	()	()	()	()	
Permit truck	160.0 (176)	()	()	()	
Type 3 Truck Interstate 21.8 metric Colorado 24.5 metric	s) Inters 35.4 Color	metric tons (39 to	ns)	0				
Metric tons Tons) s Metric	tons To) ns	Metric	tons () Tons		
Load Capacity: 49 Girder: Only Interior Color Code: White Project No: I 002-3(r Girder Rated; Rate	d for 2" HBP over I-25						
Rated by	Date	C	hecked by			Date		