COLORADO DEPARTMENT OF TRANSPORTATION Secti	on: 9A
STAFF BRIDGE Effect	tive: April 1, 2002
BRIDGE RATING MANUAL Super	sedes: July 1, 1995

SECTION 9A - PRESTRESSED CONCRETE GIRDER BRIDGES

9A-1 INTRODUCTION TO RATING PRESTRESSED CONCRETE GIRDER BRIDGES

This section together with section 1, presents the policies and guidelines for rating prestressed concrete girders. Policies are itemized in subsection 9A-2, while supporting guidelines are summarized in subsections 9A-2, 3, 4, and 5.

The types of girders covered by this section include precast pretensioned girders as described below:

CPG - Concrete Prestressed Girder
 CPGC - Concrete Prestressed Girder Continuous
 CDTPG - Concrete Double-Tee Prestressed Girder
 CBGP - Concrete Box Girder Prestressed
 CBGCP - Concrete Box Girder Continuous Prestressed

9A-2 POLICIES AND GUIDELINES FOR RATING PRESTRESSED CONCRETE GIRDER BRIDGES

I. General

- A. Prestressed concrete girders, either simple span, or simple spans made continuous, shall be rated using the VIRTIS computer program. Refer to subsection 9A-3 for information on this program.
- B. When the LFD method is used for rating girders, unless a more rational methodology like the modified compression field theory in the AASHTO LRFD code is adopted for use, prestressed girders shall not be rated for shear. However, during the design process, all prestressed girders shall be checked for shear using the appropriate AASHTO code.
- C. Double-tee structures without a poured in place composite deck or a full depth diaphragm shall use the live load distribution factor as prescribed in the AASHTO LRFD Specifications. The exterior girder distribution factor shall be calculated using the lever rule.
- D. Double-tee structures with a poured in place composite deck or a full depth rigid diaphragm/bracing system with a rotational stiffness roughly equal to a poured in place deck, the live load distribution factor for Concrete T-Girders as prescribed in Table 3.23.1 of the AASHTO Standard Specifications for Highway Bridges, 16th Edition, shall be used.
- E. When using the AASHTO LRFD Multi-Beam live load distribution factor and load restrictions are required, a rational method may be used for the live load distribution factor calculation, including the use of the LDFAC program.

April 1, 2002	Section 9A	Page 2 of 140
---------------	------------	---------------

- F. The rater shall be responsible for determining whether stress-relieved or low-relaxation strands were used in the bridge. If it is not possible to discern what type of strand was used, then the rater shall assume that stress-relieved strands were used prior to December, 1983, and low-relaxation strands thereafter.
- G. Prestressed concrete girder bridges with complex geometric alignment i.e., flared girder bridges or girders with a variable overhang, shall be modeled as simple, straight beams on pin or roller supports. The Virtis program output results can then be supplemented by hand calculations to consider any significant influences, as necessary.
- H. For effective slab widths, the b in the equation (12t+b) shall be the width of the top flange of the girder, not the web.

II. Girders Requiring Rating

- A. Interior Girders A rating is required for the critical interior girder. More than one interior girder may require an analysis due to variation in span length, girder size, girder spacing, number of prestressing strands, differences in loads or moments, concrete strength, etc.
- B. Exterior Girders An exterior girder shall be rated under the following guidelines:

1. When the section used for an exterior girder is different than the section used for an interior girder.

2. When the overhang is greater than S/2.

3. The exterior unit of a multi-beam structure should be rated if it does not have a cast-in-place composite slab. For this case the dead loads due to sidewalks, curbs and railing shall be applied to only the exterior unit.

4. When the rater determines the rating would be advantageous in analyzing the overall condition of a structure.

III. Calculations

- A. A set of calculations, separate from computer output, shall be submitted with each rating. These calculations shall include derivations for dead loads, derivations for live load distribution factors, and any other calculations or assumptions used for rating. The rater shall also indicate whether stress-relieved or low-relaxation strands were used in the rating calculations.
- B. Dead Loads

1. The final sum of all the individual weight components for dead load calculations may be rounded up to the nearest 5 pounds.

April	1.	2002
110111	± /	2002

2. Dead loads applied after a cast-in-place concrete deck has cured shall be distributed equally to all girders and, when applicable, treated as composite dead loads. Examples include asphalt, curbs, sidewalks, railing, etc.

3. Dead loads applied before a cast-in-place concrete deck has cured shall be distributed to the applicable individual supporting girders and treated as non-composite loads. Examples of this type of dead load are deck slabs, girders and diaphragms.

4. Use 5 psf for the unit weight of formwork when it is likely the formwork will remain in place.

5. The method of applying dead loads due to utilities is left to the rater's discretion.

IV. Simple and Continuous Span Bridges

Simple span prestressed girders shall be rated as simple span members for all loads(i.e. DL1, DL2, LL+I loads). Span length shall be taken as the distance between the centerline of bearing at abutments or supports.

Simple span prestressed girders made continuous for composite dead loads and live load plus impact, shall be rated as continuous members for these loads. Span lengths shall be taken as the distance from centerline of bearing at the abutment to centerline of pier, and centerline of pier to centerline of pier as applicable.

The negative moment analysis at centerline of piers shall be based on the Ultimate Strength (Load Factor) method. The girder's primary negative moment reinforcement and only the top layer of the slab's distribution reinforcement, within the effective slab width, shall be used in the analysis.

Prestressed girder end blocks, if present, shall not be used in the analysis.

Simple span prestressed girders made continuous for composite dead loads and live load plus impact, and if the specified compressive strength of concrete (28 days of age) used in the girders changes from span to span, only the girder with the least compressive strength shall be used to model the entire structure.

V. Rating Reporting/Package Requirements

The rater and checker shall complete the rating documentation as described in Section 1 of this manual. The rating package requirements shall be per Section 1-13 of this manual and as amended herein:

Apri	1	1,	2002
<u> </u>			

Consultant designed projects - Before finalizing the rating package and when VIRTIS is used as the analysis tool, the Rater shall verify with the Staff Bridge Rating Coordinator that the version number of the program being used is identical to CDOT'S version number. Data files created using a lower version of the program shall be rejected. It is required for the CDOT data archive, since the data base management feature inside the program would not work satisfactorily. After the analysis is completed, the rater shall save the data file. When saving is finalized, the rater shall export the data file in *.bbd format (i.e., F-17-IE.bbd format; bbd = BRIDGEWare Bridge Data File) on an IBM- compatible 3.5" PC Disk for delivery with the rating package. Also, the version number used during analysis shall be typed on the diskette label. This ensures proper importation of bridge data archive by the Staff Bridge at a later date.

April 1, 2002	Section 9A	Page 5 of 140
---------------	------------	---------------

9A-3 GUIDELINES FOR USING THE VIRTIS RATING PROGRAM

The VIRTIS computer program performs the analysis and rating of simple span and multispan prestressed girder bridges. It uses the BRASS ASD or the BRASS LFD engine for analysis. This program was developed in accordance with the AASHTO STANDARD SPECIFICATIONS, 16TH EDITION AND THE AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES.

A maximum of thirteen (13) spans and twelve (12) girder lines can be modeled using the program. When a structure model is finalized, it can be rated using the ASD or the LFD method. The LRFD rating module is currently being developed and will be available in the future. When a structure model is being generated and before any analysis can be performed, it is recommended that Virtis users save the data to memory periodically. This can be accomplished by using the File and Save feature of this program.

The library explorer can be used to save commonly used items (beam shapes, non standard vehicles, materials, appurtenances etc.) and this eliminates the need for all users to define the same items repeatedly throughout the program. Once a new girder shape is defined or copied from the library, Virtis automatically computes the required section properties and beam constants.

Dead load due to the girder self weight, deck slab and appurtenances (i.e. rails, median barrier etc.) are calculated automatically by the program. Dead load due to the haunch, wearing surface and stiffener weight (for steel bridges) are defined by the user. For a detailed description of the girder loads, refer to the Opis/Virtis Help Menu index item - dead loads. During modeling a structure, help menu can also be activated by using the F1 key when the user requires clarification on a particular item in the GUI window.

In the Live Load Distribution Factor window, when the compute button is used to calculate the DF's automatically by the program, Virtis users shall verify that these numbers are accurate and are equal to their calculated numbers.

For prestressed girder bridges, in addition to using the BRASS LFD engine for analysis, all serviceability checks/rating per Article 6.6.3.3 of the AASHTO Manual For Condition Evaluation Of Bridges shall be performed using the BRASS ASD engine.

All Colorado BT girder shapes, the Colorado permit vehicle, the Colorado posting trucks and the Interstate posting trucks have been added to the Virtis library explorer and may be copied by the user. The Staff Bridge Rating Coordinator shall be responsible for updating existing information or adding new information (i.e. beam shapes, vehicles etc.) to the library explorer.

The configuration browser provides access to the configuration features of Virtis. It may be employed to provide specific access privileges, i.e. read, write, delete etc., to the users. This feature is extremely powerful, since Virtis/Opis uses and shares bridge data from one common source. Therefore, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

April 1, 2002	Section 9A	Page 6 of 140
---------------	------------	-----------------

9A-4 RATING PRESTRESSED CONCRETE GIRDER BRIDGES DESIGNED BY LOAD FACTOR METHOD

All ratings should be performed in accordance to the AASHTO Manual For Condition Evaluation of Bridges and the appropriate Articles of AASHTO Bridge Design Specifications. The capacity of prestressed concrete members should be evaluated for strength requirements (at both Inventory and Operating level) stated in the AASHTO Design Specifications Article 9.17. At the Inventory level, Serviceability requirements should also be considered. The basic rating equation (6-1a) of the Manual For Condition Evaluation of Bridges may be used if checking the crack serviceability limit state with $A_1=1.0$, $A_2=1.0$, and C=M^{*}_{cr}. Typically, prestressed concrete members used in bridge structures will meet the minimum reinforcement requirements of Article 9.18.2.1 of the AASHTO Design Specifications. While there is no reduction in the flexural strength of the member in the event that these provisions are not satisfied, an owner, as part of the flexural rating may choose to limit live loads to those that preserve the relationship between ϕM_n and M^*_{cr} by adjusting the capacity value "C" in the rating equation (6-1a). Thus when $\phi M_n < 1.2 M_{cr}^*$, the adjusted "C" becomes $(k)(\phi)(M_n)$ where $k = (\phi M_n)/(1.2M_{cr}^*)$. Non Prestressed Reinforcement may be considered as per AASHTO Specifications Article 9.19.

The following equations regarding Load Factor rating of pretensioned and postensioned concrete members are furnished:

INVENTORY RATING

$$RF = \frac{6\sqrt{F'_{C} \pm F_{D} \pm F_{P} \pm F_{S}}}{F_{LL+I}}$$
 Equation (1) Concrete Tension

$$RF = \frac{.6F'_{C} \pm F_{D} \pm F_{P} \pm F_{S}}{F_{LL+I}}$$
 Equation (2) Concrete Compression

$$RF = \frac{.4F'_{C} \pm 1/2(F_{D} \pm F_{P} \pm F_{S})}{F_{LL+I}}$$
 Equation (3) Concrete Compression

$$RF = \frac{0.8F_{Y}^{*} \pm F_{D} \pm F_{P} \pm F_{S}}{F_{LL+I}}$$
 Equation (4) Prestressing Steel Tension

$$RF = \frac{\phi R_n \pm 1.3D \pm 1.0S}{2.17L}$$
 Equation (5) Flexural & Shear Strength

April 1, 2002	Section 9A	Page 7 of 140
-		

OPERATING RATING

$$RF = \frac{\phi R_n \pm 1.3D \pm 1.0S}{1.3L}$$
 Equation (6) Flexural & Shear Strength

$$RF = \frac{0.9F_{Y}^{*} \pm F_{D} \pm F_{P} \pm F_{S}}{F_{LL+I}}$$
 Equation (7) Prestressing Steel Tension

RF	= Rating Factor
F'_{C}	= Concrete Compressive Strength
F_D	= Unfactored dead load stresses
F_P	= Unfactored stress due to prestress force after all losses
F_{S}	= Unfactored stress due to secondary prestress forces
F_{LL+I}	= Unfactored live load stress including impact
ΦR_n	= Nominal strength of section $(\varphi M_n \text{ or } \varphi V_n)$ satisfying the ductility
	limitations of Article 9.18 and Article 9.20 of the AASHTO Standard
	Specifications. Both moment (ϕM_n) and shear (ϕV_n) should be evaluated.
D	= Unfactored dead load moment or shear
S	= Unfactored prestress secondary moment or shear
L	= Unfactored live load moment or shear including impact
F_Y^*	= Prestressing steel yield stress
M^*_{cr}	= Cracking Moment per AASHTO article 9.18

NOTE:

Equation (7) can control rating when at least one strand is near the extreme tension fiber and the C.G. of the prestressing is near the neutral axis.

April 1, 2002	Section 9A	Page 8 of 140
---------------	------------	---------------

9A-5 RATING PRESTRESSED CONCRETE GIRDER BRIDGES WITHOUT PLANS

When there are no plans or other documentation for a particular prestressed concrete structure, its numerical rating shall be determined by a Professional Engineer Registered in the State of Colorado. This rating shall be based on a complete and comprehensive inspection of the structure and directions from the AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES 1994, Second Edition. If the structure shows no signs of distress due to load, the Engineer can assign it a maximum inventory rating of 36 tons, and operating rating of 40 tons. For all structures in the State Highway System and designed after January 1994, with the exception of LRFD designed bridges, a no distress condition shall have a minimum Inventory rating of 45 tons and an Operating rating of 75 tons. For LRFD designed bridges, i.e., structures designed after January 1998, a no distress condition shall have a minimum permit vehicle operating rating of 105 tons.

When there are signs of capacity-reducing distress or deterioration, an appropriate judgment should be made and ratings proportionally less shall be given to the prestressed concrete structure.

For bridges owned or maintained by the Colorado Department of Transportation, the Staff Bridge Engineer will approve this type of rating. For bridges owned or maintained by a city or county, a recommended rating shall be approved by the City and County Engineer and shown on the Rating Summary Sheet.

The processes and responsibilities of the Rater and Checker will still follow those described in Section 1 with the following two additions. First, as just described, the Staff Bridge Engineer shall, or appropriate city/county official should, review the recommended rating. Secondly, the rating summary sheet shall state that the structure was rated by inspection.

April 1, 2002	Section 9A	Page 9 of 140
---------------	------------	---------------

9A-6 PRESTRESSED CONCRETE GIRDER BRIDGE RATING EXAMPLES

Three examples are presented in this section. First, Structure I-09-Q is a simple span composite concrete prestressed girder bridge with a skew of 33° degrees. It has seven (7) BT-72 girders. Only the interior girder has been modeled for this structure. The second structure, F-17-IE, is a 3-span composite concrete prestressed girder bridge with a skew of 52° degrees. It has four (4) G-54 girders. For simplicity, only the interior girder has been modeled for this structure. The third structure, L-26-BR, is a simple span prestressed girder bridge with a skew of 0°. It has no poured in place composite deck. Due to limitations on the number of girders that Virtis can analyze, only twelve (12) girders (i.e., 6 Double-tee girder Units) have been used to model the structure. For modeling simplicity, only half of a Double-tee interior girder has been modeled for this structure.

April 1, 2002	Section 9A	Page 10 of 140
---------------	------------	----------------

Colorado BT girder shapes included:

April 1, 2002	Section 9A	Page 11 of 140
---------------	------------	----------------

Colorado BT girder shapes included:

April 1, 2002	Section 9A	Page 12 of 140
---------------	------------	----------------

Slab Rating Program Input, Structure No. I-09-Q

💐 WinSlab Inpu	t		
Structure Number:	1-09-Q	Rater:	MH
Batch ID:		Comments:	LFD
Highway Number:	135	Load Type:	1=Colorado 🚍
Deadload	Bituminous Ov	erlay (in): 2	
Geometry			
Effective Span (ft):	4.3	Actual Slab Thickr	ness 8
Reinforcing Ste Are	el: ea (sgin)	Distance (in)	For definitions of input
Top: 0.5	53	5.188	values please refer to the CDOT Bridge Rating Manual
Bottom: 0.5	53	1.31	
Materials Prope	rties		
Concrete f'c (PSI):	4500	Steel Fy (PSI):	60000
or Inv Fc (Workin	g Stress)	or Inv Fs (Worki	ng Stress)
Modular Ratio (Lea	ave blank for loa	d factor): 00	
ОК	Cance	el Apply	Output to File

Effective Span Length: Per AASHTO Article 3.24.1.2(b)

Clear distance between flanges + 1/2 flange width = 30''+1/2(43)=51.5''=4.3'

April 1, 2002	Section 9A	Page 13 of 140
---------------	------------	----------------

Slab Rating Program Output, Structure No. I-09-Q

WinSlab Rating Version 1 Date: 10/12/2001 Rater: MH State HWY NO. = 135 Structure NO. I-09-Q Batch ID= Description: LFD LOAD FACTOR RATING-COMP STEEL NOT USED INPUT DATA Bituminous Overlay(in)= 2.000 Eff. Span(ft)= 4.300 Slab Thickness(in) = 8.000 Top Reinf. (sq.in)= 0.53 Eff. Depth(in) = 5.188 Bottom Area(sq.in)= 0.53 Bottom Dist.(in)= 1.31 Conc. Strength(PSI) Inv = 4500 Oper. = 4500 Steel Yield (PSI) Inv = 60000 Oper. = 60000 Modular Ratio = 8 Dead Load Moment 0.23 K-Ft LL+I Moment 3.28 K-Ft Gross Weight 36.0 Tons Inventory Operating Actual Concrete Stress (PSI) 2268.79 1384.70 Actual Reinf. Steel Stress (PSI) 26715.30 43772.27 3069.34 Actual Comp. Steel Stress (PSI) 5029.03 Member Capacity (K-Ft) 11.55 11.55 Member Capacity (LL+I) (K-Ft) 11.25 11.25 Rating (Tons) 57.05 95.09

Virtis Bridge Rating Example, Structure No. I-09-Q

Effective slab width: Per AASHTO Article 9.8.1.1

0.25(L)= 0.25(156*12)= 468" 12t+ b = 12*8+ 43= 139" C.L. - C.L. of girder= 6.0833'=73" Controls

Dead Load:

Intermediate Diaphragm = (26/1000)*(73-7)/12 = 0.143 kip Use 0.150 kip

Abutment Diaphragm = ((2.67)*(80.5/12)*6.0833*(1/sin57°) - (864/144)*(21/12)* (1/sin57°))*(0.150)= 17.6 kips Use 18.0 kips

April 1, 2002	Section 9A	Page 14 of 140
---------------	------------	----------------

Virtis Bridge Rating Example, Structure No. I-09-Q (contd.)

April 1, 2002	Section 9A	Page 15 of 140
---------------	------------	----------------

From the bridge explorer, create a new bridge and enter the following information.

🕰 I-09-Q		
Bridge ID: 103-0 Description Descriptio	NBI Structure ID (8): 1-09-Q NBI Structure ID (8): 1-09-Q Description (cont'd) Alternatives Global Reference Point	mplate sign Only
Name: Description:	CPG BT72 Example Year Built Batch ID. L94001 SH 135	:
Location:	MacHasan: Rated Length:	ft
Feat. Intersected (6): Units:	US Customary Recent ADTT:	
	ОК Арріј	y Cancel

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database; it is required that users
 of this program create a folder from the bridge explorer window
 (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a
 new structure.

April 1, 2002	Section 9A	Page 16 of 140
---------------	------------	----------------

To add a new concrete material, click on Materials, Concrete, in the tree and select File/New from the menu (or right click on Concrete and select New). Click the Copy from Library button and select the Colorado Deck Concrete from the library. Click OK and the following window will open. Click OK to save this deck concrete material to memory and close the window.

🕰 Bridge Materials - Concrete				
Name: Class D	De <u>s</u> cripti	on: Colorado De	ck Concrete	
Compressive strength at 28	days (f'c) = 4.5	DO ks	ai	
Initial compressive stre	ngth (f'ci) =	ks	si	
<u>C</u> oefficient of thermal e	x pansion = 0.0	000060000 1/	Έ	
Density (for de	ad loads) = 0.1	50 ka	sf	
Density (for modulus of	elasticity) = 0.1	50 ka	sf	
Modulus of elas	ticity (Ec) = 406	i6.57 ks	si -	
I <u>n</u> itial modulus of	elasticity =	k	si	
Pois:	son's ratio = 0.2	00		
Co <u>m</u> position of	concrete = No	rmal	•	
Modulus	of <u>r</u> upture = 0.5	09 ka	si	
<u>S</u> he	ear factor = 1.0	00		
	Copy from <u>L</u> ibrary.	ОК	Apply	Cancel

April 1, 2002	Section 9A	Page 17 of 140
---------------	------------	----------------

Using the same techniques, create a new concrete material to be used for the girder.

🖾 Bridge Materials - Concrete	
Name: Beam Concrete Des	cription:
Compressive strength at 28 days (f'c) =	8.300 ksi
Initial compressive strength (f'ci) =	6.500 ksi
<u>C</u> oefficient of thermal expansion =	0.00000600000 1/F
<u>D</u> ensity (for dead loads) =	0.150 kcf
Density (for modulus of elasticity) =	0.150 kcf
Modulus of elasticity (Ec) =	5523.49 ksi
I <u>n</u> itial modulus of elasticity =	4888.00 ksi
<u>P</u> oisson's ratio =	0.200
Co <u>m</u> position of concrete =	Normal
Modulus of <u>r</u> upture =	0.691 ksi
<u>S</u> hear factor =	1.000
Copy from Libr	ary OK Apply Cancel

April 1, 2002	Section 9A	Page 18 of 140
---------------	------------	----------------

Using the same techniques, create the following Reinforcing Steel Materials and Prestress Strands Materials. The windows are shown in the following pages.

🗛 Bridge Materials - Reinforcing Steel		_ 🗆 🗙
Name: Grade 60	Description: 60 ksi reinforcing steel	
N	Material Properties	
Specified yield s	strength (Fy) = 60.000 ksi	
Modulus of el	lasticity (<u>E</u> s) = 29000.00 ksi	
Ultimate st	<i>trength (F<u>u</u>) =</i> 90.000 ksi	
	pe © Plain © Epo <u>xy</u> © <u>G</u> alvanized © <u>O</u> ther	
	Copy from Library OK Apply Ca	ancel 🗾

April 1, 2002	Section 9A	Page 19 of 140
---------------	------------	----------------

🗛 Bridge Materials - PS Strand		
<u>N</u> ame: 1/2" (7W-270) De <u>s</u>	pription: 1/2"/Seven	Wire/fpu = 270
Strand <u>d</u> iameter =	0.5000 in	
Strand <u>a</u> rea =	0.153 in	^2
Strand <u>type</u> =	Low Relaxation	•
<u>U</u> ltimate tensile strength (Fu) =	270.000 ks	și -
Yield strength (Fy) =	243.000 ks	si
<u>M</u> odulus of elasticity (E) =	28500.00 ks	si .
Transfer l <u>e</u> ngth (Std) =	25.0000 in	
Transfer length (LRFD) =	30.0000 in	
Unit <u>w</u> eight per length =	0.520 в	/ft
	Epoxy coated	
Copy from Libr	ary OK	Apply Cancel

April 1, 2002	Section 9A	Page 20 of 140
---------------	------------	----------------

Expand the tree labeled Beam Shapes to enter a prestressed beam shape to be used in the analysis. Click on Prestressed Beam Shapes and I Beams in the tree and select File/New from the menu (or right mouse click on I Beam and select New). Click on the copy from library button or fill in the blanks.

Click OK to save to the memory and close the window.

April 1, 2002	Section 9A	Page 21 of 140
---------------	------------	----------------

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, select New and click copy from Library button. Select the Jersey Barrier and click OK. The parapet properties are copied to parapet window as shown below. Click OK to save the data to memory and close the window.

The default impact factors and the standard LFD factors will be used, so we will skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

April 1, 2002	Section 9A	Page 22 of 140
---------------	------------	----------------

This window shows the LFD load factors.

Factors -	LFD							_ 🗆
<u>N</u> am	ie: 19	196 AASH	ITO Std. Specific	cations				
<u>D</u> escriptio	n: 🗛 Ed	ASHTO S dition, 199	tandard Specific 16 including 1997	ations for Highwa 7 Interim Specifica	y Bridges, 16th ations	-		
Load Facto	ors R	esistance	e Factors					
Lo: Gro	ad Jup	Gamma Factor	D	(L+I)n	(L+I)p	CF	E	-
INV		1.300	1.000	1.670	0.000	1.000	1.000	
OPG		1.300	1.000	1.000	0.000	1.000	1.000	
-1								J
				Copy from L	.ibrary	ОК	Apply Ca	ancel

April 1, 2002	Section 9A	Page 23 of 140
---------------	------------	----------------

Double click on STRUCTURE DEFINITION (or click on STRUCTURE DEFINITION and select File/New from the menu or right mouse click on STRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

New Structure Definition	on 🔽
Structure Tune	Description
Girder-line Girder system	A structure definition describing one of more girders. The girders do NO A structure definition describing one of more girders. The girders do hav
•	
	(OKCancel

April 1, 2002	Section 9A	Page 24 of 140
---------------	------------	----------------

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

🕰 Girder System Structur	e Definition		_ 🗆 ×
Definition Analysis Engi	ne		1
<u>N</u> ame:	7-girder system		
<u>D</u> escription:			×
<u>U</u> nits:	US Customary 💽	Enter Span <u>L</u> engths Along the Reference Line:	For PS only
Number of <u>s</u> pans:	1 📑	Span Length	Average <u>h</u> umidity:
Number of girders:	7 📑	(ft) 1 156.00	
	Deck type: Concrete		Member Alt. Types Steel P/S R/C Timber
		OK	Apply Cancel

Span length for a simple span prestressed girder structure shall be per Section 9A-2 IV.

April 1, 2002	Section 9A	Page 25 of 140
---------------	------------	----------------

The partially expanded Bridge Workspace tree is shown below:

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Structure, and a new Structure Alternative.

The partially expanded Bridge Workspace tree is shown below:

April 1, 2002	Section 9A	Page 26 of 140
---------------	------------	----------------

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

Load Case Name	Description	Stage		Туре	•	Time* (Days)		
parapets		Composite (long term) (Stage 2)	-	D,DC	•			
future wearing surface		Composite (long term) (Stage 2)	-	D,DW	-			
Haunch Load		Non-composite (Stage 1)	-	D,DC	•			
Prestressed members on	y.							

April 1, 2002	Section 9A	Page 27 of 140
---------------	------------	----------------

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan.

🕰 Structure Framing Plan Details	_ 0	×
Layout Diaphragms	Number of spans = 1 Number of girders = 7	
Support Skew (Degrees) 1 33.0000 2 33.0000	 Girder Spacing Orientation Perpendicular to girder Along support 	
	Girder Spacing (ft) Girder Bay Start of End of Girder Girder	
	1 6.08 6.0	
	2 6.08 6.0	
	3 6.08 6.0	
	OK Apply Cancel	

April 1, 2002	Section 9A	Page 28 of 140
---------------	------------	----------------

If the bridge has diaphragms, switch to the Diaphragms tab and enter the appropriate data. Click OK to save to memory and close the window.

itructure	Framing Plan	Details						-
ayout Di	aphragms		N	umber of sp	ans = 1	Number of girde	ers = 7	
Girder Bay	1	•	Copy Bay To		Diaphragm Wizard			
Support Number	Start Di (f	istance t) Right Cirder	Diaphragm Spacing (ff)	Number of Spaces	Length (ft)	End Dia (f	stance t) Right Cirder	Weight (kip)
1 🔽	0.00		0.00	1	0.00	0.00	0.00	18.0000
1 🔽	0.00	3.95	78.00	1	78.00	78.00	81.95	0.1500
1 🔽	156.00	156.00	0.00	1	0.00	156.00	156.00	18.0000
New Duplicate Delete								
							OK A	pply Cano

April 1, 2002	Section 9A	Page 29 of 140
---------------	------------	----------------

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

🕰 Structure Typical Section						_ 🗆 🗡
Dista struc	ance from left edge of cture definition reference	deck to ¦ ce line	Distance from rig structure definitio	ht edge of dea in reference lir	ck to ne	
	Deck ↓thickn	ess	Structure Defir Reference Lin	nition e r	<u> </u>	
Left overhang				Ţ	;∽] Bight	t overhang
Deck Deck (Cont'd) Parap	bet Median Railing	Generic	Sidewalk Lan	e Position W	/earing Surl	face
Structure definition reference	ce line is within	-	the bridge deck.			
<u>Distance from left edge of o</u> structure definition reference	deck to Start e line = 21.25	ft	End 21.25	ft		
Distance from right edge of structure definition reference	deck to e line = 21.25	ft	21.25	ft		
Left over	rhang = 3.00	ft	3.00	ft		
Computed right ove	rhang = 3.00	ft	3.00	ft		
			ОК	A	pply	Cancel

April 1, 2002	Section 9A	Page 30 of 140
---------------	------------	----------------

The Deck(Cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously.

🕰 Structure Typical Se	ection	_ 🗆 ×
	Distance from left edge of deck to structure definition reference line structure definition reference line	
	Deck thickness	
Left overhang	l k→→ Right overhang	
Deck Deck (Cont'd)	Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
<u>D</u> eck	concrete: Class D	
<u>T</u> otal deck t	thickness: 8.0000 in	
Deck <u>c</u> rack control p	parameter: 130.000 kip/in	
Sustained modular ra	atio factor: 2.000	
	OK Apply O	Cancel

April 1, 2002	Section 9A	Page 31 of 140
---------------	------------	----------------

Parapets:

Add two parapets as shown below.

🗛 <mark>S</mark>	tructure Typica	l Section							<u> </u>
	Deck Deck (Con	('d) Parapet	Back Median Ra	iling Generi	Front	ane Position W	earing Surface]		
	Name	Load	Case	Measure To	Edge of Deck Dist. Measured From	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation	
	Type 10 Rail 🔽	parapets	-	Back 🔽	Left Edge 🔽	0.00	0.00	Right 🔽	
	Type 10 Rail 🔽	parapets		Back 🔽	Right Edge 🔽	0.00	0.00	Left 🔽	
						New) Duplica	ate D	elete
							ОК	Apply	Cancel

April 1, 2002	Section 9A	Page 32 of 140
---------------	------------	----------------

Lane Positions:

Select the lane position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to accept the computed values. The Lane Position tab is populated as shown below.

🕰 Structure T	ypical Section				. 🗆 🗙
Deck Dec	(A)	(B) Generic Sidewa	efinition Reference Line Travelway 2] Surface	
Travelway Number	Distance From Left Edge of Travelway to Structure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Structure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At End (B) (ft)	
1	-20.00	20.00	-20.00	20.00	
	npute		New OK	Duplicate Delete	cel

April 1, 2002	Section 9A	Page 33 of 140
---------------	------------	----------------

Enter the following wearing surface information on the Wearing Surface tab.

🕰 Structure Typical Section 📃 📃	
Distance from left edge of deck to structure definition reference line Deck thickness	
Lett overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Wearing surface material: Bituminous	
Description:	
Wearing <u>s</u> urface thickness = 4.0000 in	
Wearing surface density = 144.000 pcf	
Load <u>c</u> ase: future wearing surface Copy from Library	
OK Apply Cance	

April 1, 2002	Section 9A	Page 34 of 140
---------------	------------	----------------

Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click OK to save this information to memory and close the window.

niform Temperature Gradient Temperature Wind UL Dist	ribution		
- Stage 1 Dead Load Distribution By tributary area			
C By transverse simple-beam analysis			
C By transverse continuous-beam analysis			
\mathbf{C} User input results from independent 3 <u>D</u> elastic analysis			
- Stage 2 Dead Load Distribution]		
O By tributary <u>a</u> rea			
C By transverse simple-beam analysis			
C By transverse continuous-beam analysis			
C User input results from independent 3D glastic analysis			

April 1, 2002	Section 9A	Page 35 of 140
---------------	------------	----------------

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the Stress Limits tree item to open the window. Select the "Beam Concrete" concrete material. Default values for the allowable stresses will be computed based on this concrete and the AASHTO Specifications. A default value for the final allowable slab compression is not computed since the deck concrete is typically different from the concrete used in the beam. Click OK to save this information to memory and close the window.

🕰 Stress Limit Sets - Concrete 📃 🗖 🛛					_ 🗆 🗡
Name: Beam stress limits					
Description:					
Concrete Material: Beam Concrete		•			
	LFD		LRFD		
Initial allowable compression:	3.900	ksi	3.900	ksi	
Initial allowable tension:	0.200	ksi	0.200	ksi	
Final allowable compression:	4.980	ksi	4.980	ksi	
Final allowable tension:	0.547	ksi	0.547	ksi	
Final allowable DL compression:	3.320	ksi	3.735	ksi	
Final allowable slab compression:	2.400	ksi		ksi	
Final allowable compression: (LL + 1/2(Pe + DL))	3.320	ksi	3.320	ksi	
			ОК	Apply C	ancel

April 1, 2002	Section 9A	Page 36 of 140
---------------	------------	----------------

Double click on the Prestress Properties tree item to open a window in which to define the prestress properties for this structure definition. Define the Prestress Property as shown below. Since we are using the AASHTO method to compute losses, only information in the "General P/S Data" tab is required. Click OK to save to memory and close the window.

🚇 Prestress Properties			- 🗆 ×
Name: AASHTO Losses			
General P/S Data Loss Data - Lump Sum L	.oss Data - PCI		
P/S strand material: 1/2" (7w-270)	•	Jacking stress ratio: 0.750	
Loss method: AASHTO	•	P/S transfer stress ratio:	
		Iransfer time: 24.0 Hour:	S
Loss Data - AASHTO			
Percentage DL: 0.0 %			
			Cancel
		ОК Арруу	Cancer
April 1, 2002	Section 9A	Page 37 of 140	
---------------	------------	----------------	
---------------	------------	----------------	

Define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definition in the tree). Define the reinforcement as shown. The I shape shown is for illustrative purposes only. Click OK to save to memory and close the window.

🖾 Shear Reinforcement Definition - Vertical		_ 🗆 ×
Name: #4 shear reinf		
	Material: Grade 60 🔽	
	Barsize: 🛛 🗹	
	Number of legs: 2.00	
	Inclination (alpha): 90.0 Degrees	
Vertical Shear Reinforcement		
	(COK Apply C	Cancel

April 1, 2002	Section 9A	Page 38 of 140
---------------	------------	----------------

The partially expanded Bridge Workspace tree is shown below:

April 1, 2002	Section 9A	Page 39 of 140
---------------	------------	----------------

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

🕰 Member					_ 🗆 ×
Member name:	G 2	L	ink with:	None	
<u>D</u> escription:				<u> </u>	
				•	
	Existing Current Member A	Alternative Name Descrip	tion		
	🔽 🔽 Interior M	ember			
Number of spans:	1 🚊	Span Span		Pedestrian load: 0.000	lb/ft
		No. (ft)			
		1 156.00			
					I
			0	K Apply	Cancel

Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Prestressed (Pretensioned) Concrete for the Material Type and PS Precast I for the Girder Type.

New Member Alternative	×
Material Type:	Girder Type:
Prestressed (Pretension 🔽	PS Precast I
_	OK Caract
	UK Lancel

Click OK to close the dialog and create a new member alternative.

Defining a Member Alternative:

April 1, 2002	Section 9A	Page 40 of 140
---------------	------------	----------------

The Member Alternative Description window will open. Enter the appropriate data as shown below. The Schedule-based Girder property input method is the only input method available for a prestressed concrete beam.

Member Alternative Description	
Member Alternative: Precast P/S Interior Member	
Description Factors Engine Import	
Description:	Material Type: Prestressed (Pretensioned Girder Type: PS Precast I Member units: US Customary
Girder property input method © Schedule based © Cross-section based	Analysis Module <u>A</u> SD: BRASS ASD <u>L</u> FD: BRASS LFD <u>L</u> FD: BRASS LFD
Additional Self Weight Additional self weight =kip/ft Additional self <u>w</u> eight = %	LFD CLEFD: Cleaneral Procedure CLEFD: Cleaneral Procedure CLEFD: Cleaneral Procedure CLEFD: C
Crack control parameter (Z) Bottom of beam: kip/in	
	OK Apply Cancel

April 1, 2002	Section 9A	Page 41 of 140
---------------	------------	----------------

Double click on Member Loads to define other girder dead loads not calculated by the program automatically. Dead load due to haunch not included in the section properties calculation is entered here.

🕰 Loads - Membe	r i i i i i i i i i i i i i i i i i i i					_ 🗆 ×
Uniform Distribut	ed Concentrated	Settlement	<u>+</u> + ,	k k k	<u> </u>	
Load Case Nam Span	e: Haunch Loac Uniform Load (kip/ff)		T			
All Spans 👤	0.048					
				New	Duplicate	Delete
				OK	Apply	Cancel

Calculated average haunch = 2.5" Haunch used for section properties = 1.43"

Dead Load/Girder = (2.5-1.43)/12*(43/12)*(0.15) = 0.048 k/ft

April 1, 2002	Section 9A	Page 42 of 140
---------------	------------	----------------

Double click on Supports to define support constraints for the girder. Enter the following support constraints. Click OK to save data to memory and close the window.

🕰 Supports						_ 🗆 ×
General	Z K	•× <u>~</u> 1			2	
Support	Support	Translation Cor	istraints	Rotation Constraints		
Number	Туре	×	Y	Z		
1	Pinned 🔽	V	V			
2	Roller 🔽		v			
				OK	Apply	Cancel

April 1, 2002	Section 9A	Page 43 of 140
---------------	------------	----------------

The Compute from Typical Section button on the Live Load Distribution window to calculate the distribution factors cannot be used until we have selected the beam shape in the Beam Details window. At this point, Virtis/Opis does not know if we have spread or adjacent beams. We will select the beam shape now in the Beam Details window and then come back to the Live Load Distribution window. Double click on Beam Details in the tree to describe the beam details. Enter the following beam details information.

eam De	Di consulta D	,	eu								_
Span Number	Beam Shape	es	Slab Interface Girder Material		Prestress Properties	1	Use Creep	n	Bear Left End (in)	n Projection Right End (in)	
1	COLORADO BT-72	-	Beam Concrete 🔽	•	AASHTO Losses 📃 💌	·	No 🔽	5.8000002	5.0000	5.0000	
							F	ОК		oolv Can	ice

April 1, 2002	Section 9A	Page 44 of 140
---------------	------------	--------------------

Note that the Stress Limit Ranges are defined over the entire length of the precast beam.

eam Det	ails	Clab Interface)			
Span Number	Name	Start Distance (ft)	Length (ft)	End Distance (ft)	
1 🔽	Beam stress limits 📘	0.00	156.83	156.83	
					New Duplicate Delete

April 1, 2002	Section 9A	Page 45 of 140
---------------	------------	----------------

The defaults on the Slab Interface tab are shown below and are acceptable.

🚇 Beam Details	
Span Detail Stress Limit Ranges Slab Interface	
Interface type: Intentionally Roughened	
Default interface width to beam widths 🔽	
Interface width:	
0.100	
Lohesion factor: 1000	
Friction factor: 1.1.1.1	
	Caracter Caracter
	Apply Cancel

April 1, 2002	Section 9A	Page 46 of 140
---------------	------------	----------------

Double click on Live Load Distribution to enter live load distribution factors. Click the Compute from Typical Section button to compute the live load distribution factors. The distribution factors are computed based on the AASHTO Specifications, Articles 3.23 and 3.28. Click Apply and then OK to save data to memory and close the window.

Lanes		Distribution (Whee			
Loaded	Shear	Shear at Supports	Moment	Deflection	
1 Lane	0.869	1.014	0.869	0.286	
Multi-Lane	1.106	1.014	1.106	0.857	
Compute from					

April 1, 2002	Section 9A	Page 47 of 140
---------------	------------	----------------

Expand the tree under Strand Layout and open the Span 1 window. This window allows you to define a prestress strand layout for a prestressed concrete beam span. Prestress strand layout can be described either by the actual strand locations or the prestress force (jacking force) and eccentricity (center of gravity) of the group of strands. Select P and CGS only for the Description Type. Enter the following Strand Layout information for Span 1. Press F1 while on this tab to view the strand layout help topic describing the use of this information.

🙈 Strand Layout - Spai	n 1
围负围欧正	
Description Type P and CGS only	C Strands in rows
Left harp pt. dist. (X1):	75 ft
Left harp pt. radius:	0.0001 in
Right harp pt. dist. (X2):	75 ft
Right harp pt. radius:	0.0001 in
Force:	2090.00 kip
Left CGS:	21.0000 in
Mid CGS:	5.0000 in
Right CGS:	21.0000 in
(<u> </u>	pply Cancel

April 1, 2002	Section 9A	Page 48 of 140
---------------	------------	----------------

Open the Deck Profile window and enter the date describing the structural properties of the deck.

Deck	: Profile								_ [
ype: Deck	PS Precast I Concrete Reinf	orcement							
	Material	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Structural Thickness (in)	Effective Flange Width (Std) (in)	Effective Flange Width (LRFD) (in)	n
Clas	ss D 🗾	1 🔽	0.00	156.00	156.00	8.0000	73.0000		7.600
						IN	ew Dup	licate De	lete

April 1, 2002	Section 9A	Page 49 of 140
---------------	------------	----------------

Double click on Haunch Profile in the tree to define the haunch profile for the girder.

Note: Only the haunch thickness to be used in section properties calculation is input here. The program calculates dead load due to this haunch automatically.

April 1, 2002	Section 9A	Page 50 of 140
---------------	------------	----------------

The Shear Reinforcement Ranges are entered as described below. The vertical shear reinforcement is defined as extending into the deck on this tab. This ensures composite action between the beam and the deck. Data does not have to be entered on the Horizontal tab to indicate composite action since we have defined that by extending the vertical bars into the deck.

ertica										
Sp: Num	an Ibei	Name		Extends into Deck	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	<u> </u>
1	-	#4 shear reinf	-	<u>र</u>	0.17	1	0.0000	0.00	0.17	
1	-	#4 shear rei⊓f	-	V V	0.17	6	3.0000	1.50	1.67	
1	-	#4 shear reinf	-	<u>v</u>	1.67	11	4.0000	3.67	5.33	
1	-	#4 shear rei⊓f	-	<u>v</u>	5.33	11	6.0000	5.50	10.83	
1	-	#4 shear rei⊓f	-	V V	10.83	11	9.0000	8.25	19.08	
1	-	#4 shear reinf	-	V V	19.08	11	12.0000	11.00	30.08	
1	-	#4 shear reinf	-	<u>v</u>	30.08	1	14.0000	1.17	31.25	
1	-	#4 shear reinf	-	<u>v</u>	31.25	63	18.0000	94.50	125.75	
1	-	#4 shear reinf	-		125.75	11	12.0000	11.00	136.75	
1	-	#4 shear reinf	-		136.75	11	9.0000	8.25	145.00	
1	-	#4 shear reinf	-		145.00	11	6.0000	5.50	150.50	
1	-	#4 shear reinf	-		150.50	11	4.0000	3.67	154.17	
1	-	#4 shear reinf	-		154.17	6	3.0000	1.50	155.67	-
New Duplicate Delete									uplicate D)elete

The description of an interior beam for this structure definition is complete.

April 1, 2002	Section 9A	Page 51 of 140
---------------	------------	----------------

The BRASS LFD engine data for the member alternative is shown below.

Member Alternative Description
Member Alternative: Precast P/S Interior Member
Description Factors Engine Import
Configure engine properties for analysis module: BRASS LFD
Analysis Load Sequence: Computed based on loadings and comp Points of Interest Control: 3 - Same as 1 plus generate user-define Wheel Advancement: 100 P/S modeling method: Centerline of simple-span bearing Use P/S beam overhangs. Use maximum moment in span to compute fcir. Omit strands for moment capacity if within Distance from top of girder (+M): 0.000000 (in) Distance from bottom of girder (-M): 0.000000 (in)
OK Apply Cancel

April 1, 2002	Section 9A	Page 52 of 140
---------------	------------	----------------

The results of the LFD/ASD rating analysis are as follows:

Report Type Rating Results Summary		-										
Live Load	Live Load Type	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Inventory Location ft	Inventory Location Span-(%)	Operating Location ft	Operating Location Span-(%)	Inventory Limit State	Operating Limit State
HS 20-44	Axle	LFD	86.38	144.25	2.399	4.007	93.60	1 - (60.0)	93.60	1 - (60.0)	ULTIMATE MOME	ULTIMATE MOME
HS 20-44	Lane	LFD	82.73	138.16	2.298	3.838	78.00	1 - (50.0)	78.00	1 - (50.0)	ULTIMATE MOME	ULTIMATE MOME
Colorado Permit Vehicle	Axle	LFD		182.97		1.905			62.40	1 - (40.0)		ULTIMATE MOME
3RASS-GIRDER - Version 5.08.03 - May. 09, 2001												

Live Load	Live Load Type	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Location ft	Inventory Location Span-(%)	Operating Location ft	Operating Location Span-(%)	Inventory Limit State	Operating Limit State
S 20-44	Axle	ASD	29.69	35.36	0.825	0.982	93.60	1 - (60.0)	93.60	1 - (60.0)	BOTTOM FLANGE	BOTTOM FLANGE
S 20-44	Lane	ASD	28.59	34.05	0.794	0.946	93.60	1 - (60.0)	93.60	1 - (60.0)	BOTTOM FLANGE	BOTTOM FLANGE

April 1, 2002	Section 9A	Page 53 of 140
---------------	------------	----------------

COLORADO DEPARTI LOAD FACTOR	MENT OF TRANSPOR	TATION MARY		Structure # I - 09 - Q State highway # 135 Batch I.D.					
Asphalt thickness: Colorado legal k Interstate legal k	02mm(4 bads bads	_in.)		Structure type Parallel structure #		CPG			
Structural member	INTERIOR GIRDER BT 72	SL	AB						
	Metric tons (Tons)								
Inventory	26.4 (29)	51.8	(57)	()	()		
Operating	125.4 (138)	86.4	(95)	()	()		
Type 3 truck	()		()	()	()		
Type 3S2 truck	()		()	()	()		
Type 3-2 truck	()		()	()	()		
Permit truck	166.4 (183)		()	()	()		
Type 3 Truck Interstate 21.8 metric Colorado 24.5 metric	tons (24 tons) tons (27 tons)	Truck etric tons (38 tons) etric tons (42.5 tons		De 3-2 Tri state metric tons (3 rado metric tons (42	uck 9 tons) 2.5 ton)	Õ			
Metric tons Tons) s Metri	c tons) Tons	Metric	tons (() Tons			
Comments Control Member: De Load Capacity: 95 T Girder: Only Interior BT 72 Girde Color Code: White Project No: STR(C)	Metric tons Tons Metric tons Tons Comments Control Member: Deck; Rated for 2" HBP Load Capacity: 95 Tons Girder: Only Interior Girder Rated; Haunch included in the section properties calculations; BT 72 Girders; Rated for 4" HBP Color Code: White Project No: STR(CX) 0135(14) Frequencies								
Rated by	Date	Ð	Checked by			Date			

April 1, 2002	Section 9A	Page 54 of 140
---------------	------------	----------------

Slab Rating Program Input, Structure No. F-17-IE

🐃 WinSlab Input			
Structure Number:	F-17-IE	Rater:	МН
Batch ID:		Comments:	ER SW RAMP
Highway Number:	470	Load Type:	1=Colorado 🚍
Deadload	Bituminous Ove	erlay (in): 4.0	
Geometry			
Effective Span (ft):	9.167	Actual Slab Thickne fin.):	8.500
Reinforcing Stee Are	el: a (sqin)	Distance (in)	For definitions of input
Top: 0.9	6	5.625	values please refer to the CDOT Bridge Rating Manual
Bottom: 0.9	6	1.375	
Materials Proper	ties		
Concrete f'c (PSI):	4500	Steel Fy (PSI):	40000
or Inv Fc (Working	g Stress)	or Inv Fs (Workin	g Stress)
Modular Ratio (Lea	ve blank for load	d factor):	
OK	Cance	Apply	Output to File

Effective Span Length: Per AASHTO Article 3.24.1.2(a)

Clear distance between flanges = 11.5'-2.333'=9.167'

April 1, 2002	Section 9A	Page 55 of 140
---------------	------------	----------------

5.625

4500

40000

Slab Rating Program Output, Structure No. F-17-IE

WinSlab Rating Version 1 Date: 9/18/2001 State HWY NO. = 470Rater: MH Structure NO. F-17-IE Description: RAMP A OVER SW RAMP Batch ID= LOAD FACTOR RATING-COMP STEEL NOT USED INPUT DATA Bituminous Overlay(in)= 4.000 9.167 Eff. Span(ft)= Slab Thickness(in) = 8.500 Top Reinf. (sq.in)= 0.96 Eff. Depth(in) = Bottom Area(sq.in)= 0.96 Bottom Dist.(in)= 1.38 Conc. Strength(PSI) Inv = Oper. = 4500 Steel Yield (PSI) Inv = 40000 Oper. = Modular Ratio = 8 Dead Load Moment 1.30 K-Ft LL+I Moment 5.81 K-Ft Gross Weight 36.0 Tons Inventory Operating Actual Concrete Stress (PSI) 1220.64 1892.62 Actual Reinf. Steel Stress (PSI) 19354.22 30008.88 5294.17 8208.66 Actual Comp. Steel Stress (PSI) Member Capacity 15.00 (K-Ft) 15.00 Member Capacity (LL+I) 13.31 (K-Ft) 13.31 Rating (Tons) 38.09 63.48

Virtis Bridge Rating Example, Structure No. F-17-IE

Effective slab width: Per AASHTO Article 9.8.1.1

0.25(L) = 0.25(52.72*12) = 158.16"0.25(L)= 0.25(65.00*12)= 195.00" 0.25(L) = 0.25(49.96*12) = 149.88" 12t+ b = 12*8.5+ 28= 130.00" Controls C.L. - C.L. of girder= 11.5'=138.00"

Dead Load:

Intermediate Diaphragm = ((2)*(8/12)*(11.5) - (630/2)*(1/144)*(0.67))*(0.15)= 2.09 kips Use 2.1 kips

Abutment Diaphragm = ((2.58)*(56.5/12)*(11.5)*(1/sin38°) - (630/144)*(18/12)* $(1/\sin 38^\circ))*(0.150) = 32.4$ kips Use 32.0 kips

```
Pier Diaphragm = ((3.50)*(56.5/12)*(11.5)*(1/sin38°) - (630/144)*(29/12)*
                      (1/sin38°))*(0.150)= 43.6 kips
                                           Use 44.0 kips
```

April 1, 2002	Section 9A	Page 56 of 140
---------------	------------	----------------

Virtis Bridge Rating Example, Structure No. F-17-IE (contd.)

April 1, 2002	Section 9A	Page 57 of 140
---------------	------------	----------------

From the bridge explorer, create a new bridge and enter the following information.

🕰 F-17-IE				_ 🗖	×
Bridge ID: F-17-IE Description Descripti	NBI Structure	ID (8): F-17-IE	Tem Tem	iplate ign Only	
Name:	CPGC		Year Built	1983	
Description:	3-Span Concrete Prestresse	ed Girder continuous Bridge		*	
Location:		Le	ength:	ft	
Facility Carried (7):		Route Nu	mber: -1		
Feat. Intersected (6):		Mi.	Post:		
Units:	US Customary 🔽	Recent A	DTT:		
		01	< Apply	Cancel	

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database; it is required that users
 of this program create a folder from the bridge explorer window
 (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a
 new structure.

April 1, 2002	Section 9A	Page 58 of 140
---------------	------------	----------------

To add a new concrete material, click on Materials, Concrete, in the tree and select File/New from the menu (or right click on Concrete and select New). Click the Copy from Library button and select the Colorado Deck Concrete from the library. Click OK and the following window will open. Click OK to save this deck concrete material to memory and close the window.

🕰 Bridge Materials - Concrete		
Name: Class D(US) Deg	cription: Colorado I	Deck Concrete
Compressive strength at 28 days (f'c) =	4.500	ksi
Initial compressive strength (f'ci) =		ksi
<u>C</u> oefficient of thermal expansion =	0.0000060000	1/F
Density (for dead loads) =	0.150	kcf
Density (for modulus of elasticity) =	0.150	kcf
Modulus of elasticity (Ec) =	4066.84	ksi
I <u>n</u> itial modulus of elasticity =	0.00	ksi
<u>P</u> oisson's ratio =	0.200	
Co <u>m</u> position of concrete =	Normal	•
Modulus of <u>r</u> upture =	0.509	ksi
<u>S</u> hear factor =	1.000	
Copy from Libr	ary OK	Apply Cancel

April 1, 2002	Section 9A	Page 59 of 140
---------------	------------	----------------

Using the same techniques, create a new concrete material to be used for the girder.

🗛 Bridge Materials - Concrete	
Name: PS 4.0 ksi Deg	cription: f'ci = 4.0 ksi
Compressive strength at 28 days (f'c) =	4.000 ksi
Initial compressive strength (f'ci) =	4.000 ksi
<u>C</u> oefficient of thermal expansion =	0.0000060000 1/F
<u>D</u> ensity (for dead loads) =	0.150 kcf
Density (for modulus of elasticity) =	0.150 kcf
Modulus of elasticity (<u>E</u> c) =	3834.25 ksi
Initial modulus of elasticity =	3834.25 ksi
<u>P</u> oisson's ratio =	0.200
Composition of concrete =	Normal
Modulus of <u>r</u> upture =	0.480 ksi
<u>Shear factor =</u>	1.000
Copy from Libr	rary OK Apply Cancel

April 1, 2002	Section 9A	Page 60 of 140
---------------	------------	----------------

Using the same techniques, create the following Reinforcing Steel Materials and Prestress Strands Materials. The windows are shown in the following pages.

🕰 Bridge Mate	erials - Reinforcing Steel				_ 🗆 ×
<u>N</u> ame:	Grade 40		ription: 40 ksi rein	nforcing steel	
	N Specified yield s	faterial Proper trength (Fy) =	ties 40.000	ksi	
	Modulus of el	asticity (<u>E</u> s) =	29000.00	ksi	
	Ultimate st	rength (F <u>u</u>) =	70.000	ksi	
		oe ● Plain ● Epo <u>x</u> y ● <u>G</u> alvanized ● <u>O</u> ther	I		
	ſ	Constrantin		Analy [Carrord
		Copy from LID			Cancel

April 1, 2002	Section 9A	Page 61 of 140
---------------	------------	------------------

📾 Bridge Materials - Reinforcing Steel	<u> </u>
Name: Grade 60 <u>D</u> escription: 60 ksi reinforcing steel	
Material Properties	
Specified yield strength (Fy) = 60.000 ksi	
Modulus of elasticity (<u>E</u> s) = 29000.00 ksi	
Ultimate strength (Fu) = 90.000 ksi	
Type	
Copy from Library OK Apply	Cancel

April 1, 2002	Section 9A	Page 62 of 140
---------------	------------	----------------

🕰 Bridge Mal	terials - Reinforcing Steel	_ 🗆 ×
<u>N</u> ame	; Grade 270 <u>D</u> escription: Pier +ve reinforcing	
	Material Properties	
	Specified yield strength (Fy) = 229.500 ksi	
	Modulus of elasticity (<u>E</u> s) = 28500.00 ksi	
	Litimate strength (Fu) = 270.000 ksi	
	Type	
	Copy from Library OK Apply Car	ncel

April 1, 2002	Section 9A	Page 63 of 140
---------------	------------	----------------

🗛 Bridge Materials - PS Strand		<u>- 🗆 ×</u>
<u>N</u> ame: 1/2'' (7W-270) SR Dege	cription: Stress rel	ieved 1/2"/Seven Wire/fpu = 270
Strand <u>d</u> iameter =	0.5000	in
Strand <u>a</u> rea =	0.153	in^2
Strand <u>type</u> =	Stress Relieved	•
<u>U</u> ltimate tensile strength (Fu) =	270.000	ksi
Yield strength (Fy) =	229.500	ksi
<u>M</u> odulus of elasticity (E) =	28500.00	ksi
Transfer l <u>e</u> ngth (Std) =	25.0000	in
Transfer length (LRFD) =	30.0000	in
Unit <u>w</u> eight per length =	0.520	lb/ft
	Epoxy coated	
Copy from <u>L</u>	brary	Apply Cancel

April 1, 2002	Section 9A	Page 64 of 140
---------------	------------	----------------

Expand the tree labeled Beam Shapes to enter a prestressed beam shape to be used in the analysis. Click on Prestressed Beam Shapes and I Beams in the tree and select File/New from the menu (or right mouse click on I Beam and select New). Click on the copy from library button or fill in the blanks.

Click OK to save to the memory and close the window.

April 1, 2002	Section 9A	Page 65 of 140
---------------	------------	----------------

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, select New and click copy from Library button. Select the Jersey Barrier and click OK. The parapet properties are copied to parapet window as shown below. Click OK to save the data to memory and close the window.

The default impact factors and the standard LFD factors will be used, so we will skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

April 1, 2002	Section 9A	Page 66 of 140
---------------	------------	----------------

This window shows the LFD load factors.

Factors - L	_FD						_ 🗆
<u>N</u> ame	: 1996 A4	\SHTO Std. Specif	ications				
Description: AASHTO Standard Specifications for Highway Bridges, 16th A Edition, 1996 including 1997 Interim Specifications							
Load Factor	s Resista	ince Factors					
Loa Grou	d Gam 4p Fact	ma or D	(L+I)n	(L+I)p	CF	E	T
INV	1.30	0 1.000	1.670	0.000	1.000	1.000	1
OPG	1.30	0 1.000	1.000	0.000	1.000	1.000	
1							L
			Copy from	Library	OK	Apply	Cancel

April 1, 2002	Section 9A	Page 67 of 140
---------------	------------	----------------

Double click on STRUCTURE DEFINITION (or click on STRUCTURE DEFINITION and select File/New from the menu or right mouse click on STRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

w Structure Defini	tion
Structure Type	Description
Girder-line	A structure definition describing one of more girders. The girders do NC
Girder system	A structure definition describing one of more girders. The girders do has
4	
	(OK) Cancel

April 1, 2002	Section 9A	Page 68 of 140
---------------	------------	----------------

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

🕰 Girder System Structur	e Definition		
Definition Analysis Engi Name:	ne		
<u>D</u> escription:			
Units: Number of <u>s</u> pans: Number of <u>g</u> irders:	US Customary	Enter Span Lengths Along the Reference Line: Span Length (ft) 1 52.72 2 65.00 3 49.96	For PS only Average <u>h</u> umidity: 60.000 % Member Alt. Types Steel V P/S R/C Timber
		ОК	Apply Cancel

Span lengths for a prestressed girder structure made continuous for live loads shall be per Section 9A-2 IV.

April 1, 2002	Section 9A	Page 69 of 140
---------------	------------	----------------

The partially expanded Bridge Workspace tree is shown below:

🛱 Bridge Workspace - F-17-IE 📃 🚺
⊡ [®] 🗛 F-17-IE
🗄 🧰 Materials
📺 🧰 Beam Shapes
📺 🧰 Appurtenances
📑 Impact / Dynamic Load Allowance
😟 🚥 Factors
🛱 🗝 BRIDGE ALTERNATIVES
EV + 4 Prestressed Girder System
Impact / Dynamic Load Allowance
Load Case Description
Haming Plan Detail
Structure Typical Section
+++ Structure Loads
Presuess Flopeness
T 63(62)
T 64 (61)

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Structure, and a new Structure Alternative.

The partially expanded Bridge Workspace tree is shown below:

April 1, 2002	Section 9A	Page 70 of 140
---------------	------------	----------------

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

Load Case Descripti	on							_	
Load Case Name	Description	Stage		Тур	e	Time* (Days)			
HBP		Composite (long term) (Stage 2)	-	D,DW	-				
Bridge Rail		Composite (long term) (Stage 2)	-	D,DC	-				
Haunch load		Non-composite (Stage 1)	-	D,DC	-				

April 1, 2002	Section 9A	Page 71 of 140
---------------	------------	----------------

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan.

á	🔈 Structu	re Framir	ng Plan Details						
ſ	Layout	Diaphrag	ns	Nun	nber of spans	= 3 Nu	mber of girders =	4	
		Support	Skew (Degrees)		Girder Spa	cing Orientation— idicular to girder			
L		1	52.0000		O Along s	support			
L		2	52.0000			a: 1 a	·		
L		3	52.0000			Girder S	pacing		
l		4	52.0000		Girder Bay	Start of Girder	End of Girder		
L					1	11.50	11.50		
L					2	11.50	11.50		
L					3	11.50	11.50		
							OK	Apply	Cancel

April 1, 2002	Section 9A	Page 72 of 140
---------------	------------	----------------

If the bridge has diaphragms, switch to the Diaphragms tab and enter the appropriate data. Click OK to save to memory and close the window.

Framing Plan I	Details						_		
		N	umber of sp	ans = 3	Number of girde	ers = 4			
apriragins			1						
: 1		Сору Вау То		Diaphragm Wizard					
Start Di: (fi	stance t)	Diaphragm Spacing	Number of	Length	End Dis (fi	stance t)	Weight		
Left Girder	Right Girder	(ft)	Spaces	(10	Left Girder	Right Girder	(kip)		
0.00	0.00	0.00	1	0.00	0.00	0.00	32.0000		
17.78	32.50	0.00	1	0.00	17.78	32.50	2.1000		
0.00	0.00	0.00	1	0.00	0.00	0.00	44.0000		
24.78	39.50	0.00	1	0.00	24.78	39.50	2.1000		
0.00	0.00	0.00	1	0.00	0.00	0.00	44.0000		
18.00	32.70	0.00	1	0.00	18.00	32.70	2.1000		
49.96	49.96	0.00	1	0.00	49.96	49.96	32.0000		
					New	Duplica	te Delete		
						ηκ Δ	oplu I Capo		
	raming Plan aphragms	Image: Start Distance (ft) Left Girder Right Girder 0.00 0.00 17.78 32.50 0.00 0.00 24.78 39.50 0.00 0.00 24.78 39.50 0.00 0.00 18.00 32.70 49.96 49.96	Start Distance (ft) Diaphragm Spacing Left Girder Right Girder (ft) 0.00 0.00 0.00 1.7.78 32.50 0.00 0.00 0.00 0.00 24.78 39.50 0.00 18.00 32.70 0.00 49.96 49.96 0.00	Start Distance (ft) Diaphragm Spacing Number of sp. Start Distance (ft) Diaphragm Spacing Number of Spaces 0.00 0.00 0.00 1 17.78 32.50 0.00 1 0.00 0.00 0.00 1 17.78 39.50 0.00 1 0.00 0.00 0.00 1 18.00 32.70 0.00 1 49.96 49.96 0.00 1	Number of spans = 3 Diaphragm Diaphragm Diaphragm Viziand: Start Distance Diaphragm (ft) Diaphragm Number Length 0.00 0.00 0.00 1 0.00 1.778 32.50 0.00 1 0.00 0.00 0.00 0.00 1 0.00 24.78 39.50 0.00 1 0.00 18.00 32.70 0.00 1 0.00 49.96 49.96 0.00 1 0.00	Number of spans = 3 Number of girde Diaphragm Diaphragm Diaphragm Diaphragm Start Distance Diaphragm Diaphragm Copy Bay To Diaphragm Start Distance Diaphragm Diaphragm (ft) Diaphragm Copy Bay To Diaphragm Start Distance Diaphragm Diaphragm (ft) End Distance Oliaphragm Diaphragm Oliaphragm Diaphragm (ft) End Distance (ft) Length End Distance Oliaphragm Diaphragm Oliaphragm Diaphragm Oliaphragm Diaphragm Oliaphragm Length End Distance Oliaphragm Diaphragm Diaphragm <th colspan="2" d<="" td=""><td>Number of spans = 3 Number of girders = 4 Diaphragm 1 Copy Bay To Diaphragm Start Distance (ft) Diaphragm Spacing (ft) Number of Spaces Length (ft) End Distance (ft) Left Girder Right Girder Output Length (ft) Length (ft) End Distance (ft) 0.00 0.00 0.00 1 0.00 0.00 0.00 17.78 32.50 0.00 1 0.00 0.00 0.00 17.78 39.50 0.00 1 0.00 0.00 0.00 24.78 39.50 0.00 1 0.00 24.78 39.50 0.00 0.00 1 0.00 18.00 32.70 32.70 49.36 49.36 0.00 1 0.00 49.96 49.96</td></th>	<td>Number of spans = 3 Number of girders = 4 Diaphragm 1 Copy Bay To Diaphragm Start Distance (ft) Diaphragm Spacing (ft) Number of Spaces Length (ft) End Distance (ft) Left Girder Right Girder Output Length (ft) Length (ft) End Distance (ft) 0.00 0.00 0.00 1 0.00 0.00 0.00 17.78 32.50 0.00 1 0.00 0.00 0.00 17.78 39.50 0.00 1 0.00 0.00 0.00 24.78 39.50 0.00 1 0.00 24.78 39.50 0.00 0.00 1 0.00 18.00 32.70 32.70 49.36 49.36 0.00 1 0.00 49.96 49.96</td>		Number of spans = 3 Number of girders = 4 Diaphragm 1 Copy Bay To Diaphragm Start Distance (ft) Diaphragm Spacing (ft) Number of Spaces Length (ft) End Distance (ft) Left Girder Right Girder Output Length (ft) Length (ft) End Distance (ft) 0.00 0.00 0.00 1 0.00 0.00 0.00 17.78 32.50 0.00 1 0.00 0.00 0.00 17.78 39.50 0.00 1 0.00 0.00 0.00 24.78 39.50 0.00 1 0.00 24.78 39.50 0.00 0.00 1 0.00 18.00 32.70 32.70 49.36 49.36 0.00 1 0.00 49.96 49.96
April 1, 2002	Section 9A	Page 73 of 140							
---------------	------------	----------------							
---------------	------------	----------------							

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

🕰 Structure Typical Sect	ion							_ 🗆 ×
	Distance from structure defini	left edge of d tion referenc Deck ↓thickne ↑	leck to e line ss	Distance fro structure del Structure Referenci	m right edge o iinition referen Definition e Line	of deck to ce line		
Left overhang 🖡	¥					¦, Bight	t overhang	
Deck Deck (Cont'd) P	arapet Medi	an Railing	Generic	Sidewalk	Lane Position	h Wearing Surl	face	
<u>S</u> tructure definition refe	rence line is	within	•	the bridge o	leck.			
Distance from left edge structure definition refer	of deck to ence line =	Start 20.00	ft	End 20.00	ft			
Distance from right edg structure definition refer	e of deck to rence line =	20.00	ft	20.00	ft			
<u>L</u> eft	overhang =	2.75	ft	2.75	ft			
Computed right	overhang =	2.75	ft	2.75	ft			
						OK	Apply	Cancel

April 1, 2002	Section 9A	Page 74 of 140
---------------	------------	----------------

The Deck(Cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously.

A Structure Typical Section	_ 🗆 ×
Distance from left edge of deck to structure definition reference line Deck thickness	
Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Deck concrete: Class D(US)	
Total deck thickness: 0.0000 in	
Deck <u>c</u> rack control parameter: kip/in	
Sustained modular ratio factor: 2.000	
OK Apply O	Cancel

April 1, 2002	Section 9A	Page 75 of 140
-		

Parapets:

Add two parapets as shown below.

🐴 Structure Typical	Section						_ 🗆 ×
Deck Deck (Cont	Back - 'd) Parapet Median Rai	ling Generic	Front	ane Position Wi	saring Surface		
Name	Load Case	Measure To	Edge of Deck Dist. Measured From	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation	
Rail Type 4 📃	Bridge Rail 📃 🔽	Back 🔽	Left Edge 🔽	0.00	0.00	Right 🗾	
Rail Type 4 🛛 💌	Bridge Rail 📃 🔽	Back 🔽	Right Edge 🔽	0.00	0.00	Left 🔽	
				New	Duplica	ate Delete	
					ОК /	Apply Car	ncel

April 1, 2002	Section 9A	Page 76 of 140
---------------	------------	----------------

Lane Positions:

Select the lane position tab and use the Compute… button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to accept the computed values. The Lane Position tab is populated as shown below.

A 9	Structure Ty	pical Section				- 🗆 ×
	Deck Deck	(A)	Biling Generic Sidewa	efinition Reference Line Travelway 2] Surface	
	Travelway Number	Distance From Left Edge of Travelway to Structure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Structure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At End (B) (ft)	
	1	-19.00	19.00	-19.00	19.00	
_	Com	pute		New OK	Duplicate Delete	cel

April 1, 2002	Section 9A	Page 77 of 140
---------------	------------	----------------

Structure Typical Section	- 🗆 ×
Distance from left edge of deck to structure definition reference line Structure Definition	
Deck Reference Line	
Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Wearing surface material: HBP	
Description:	
Wearing <u>s</u> urface thickness = 4.0000 in	
Wearing surface density = 144.000 pcf	
Load gase: HBP	
OK Apply Can	icel

Enter the following wearing surface information on the Wearing Surface tab.

April 1, 2002	Section 9A	Page 78 of 140
---------------	------------	----------------

Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click OK to save this information to memory and close the window.

niform Temperature Gradient Temperature Wind DL Dis	tribution		
- Stage 1 Dead Load Distribution]		
C By transverse simple-beam analysis			
C By transverse continuous-beam analysis			
$ \mathbf{C} $ User input results from independent 3D elastic analysis			
- Stage 2 Dead Load Distribution © <u>U</u> niformly to all girders	-		
O By tributary <u>a</u> rea			
C By transverse simple-beam analysis			
O By transverse continuous-beam analysis			
C User input results from independent 3D <u>e</u> lastic analysis			

April 1, 2002	Section 9A	Page 79 of 140
---------------	------------	----------------

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the Stress Limits tree item to open the window. Select the "PS 4.0 ksi" concrete material. Default values for the allowable stresses will be computed based on this concrete and the AASHTO Specifications. A default value for the final allowable slab compression is not computed since the deck concrete is typically different from the concrete used in the beam. Click OK to save this information to memory and close the window.

🙈 Stress Limit Sets - Concrete					<u> – 🗆 ×</u>
<u>N</u> ame: 4 Ksi Beam Conci	ete				
Description:					
Concrete Material: PS 4.0 ksi		•			
	LFD		LRFD		
Initial allowable compression:	2.400	ksi	2.400	ksi	
Initial allowable tension:	0.190	ksi	0.190	ksi	
Final allowable compression:	2.400	ksi	2.400	ksi	
Final allowable tension:	0.380	ksi	0.380	ksi	
Final allowable DL compression:	1.600	ksi	1.800	ksi	
Final allowable slab compression:		ksi		ksi	
Final allowable compression: (LL + 1/2(Pe + DL))	1.600	ksi	1.600	ksi	
			OK	Apply C	ancel

April 1, 2002	Section 9A	Page 80 of 140
---------------	------------	----------------

Double click on the Prestress Properties tree item to open a window in which to define the prestress properties for this structure definition. Define the Prestress Property as shown below. Since we are using the AASHTO method to compute losses, only information in the "General P/S Data" tab is required. Click OK to save to memory and close the window.

A Prestress Properties	
Name: 1/2" SR AASHTO Loss	
General P/S Data Loss Data - Lump Sum Loss Data - PCI	1
P/S strand material: 1/2" (7W-270) SR	Jacking stress ratio: 0.740
Loss method: AASHTO	P/S transfer stress ratio:
	Iransfer time: 24.0 Hours
Loss Data - AASHTO Percentage DL: 0.0 %	
	OK Apply Cancel

April 1, 2002	Section 9A	Page 81 of 140
---------------	------------	----------------

Define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definition in the tree). Define the reinforcement as shown. The I shape shown is for illustrative purposes only. Click OK to save to memory and close the window.

🕰 Shear Reinforcement Definition - Vertical	<u> </u>
Name: #4 Stirrups	
Material: Grade 40	•
Bar size: 4	
Number of legs: 2.00	
Inclination (alpha): 90.0 Degrees	
Vertical Shear Reinforcement	
	Cancel

April 1, 2002	Section 9A	Page 82 of 140
---------------	------------	----------------

Using the same techniques, define another vertical Shear Reinforcement Definition.

🕰 Shear	Reinforcement Definition - Vertical	- 🗆 ×
<u>N</u> ame:	#5 Stirrups	
	Material: Grade 40	
	Bar size: 5	
	Number of legs: 2.00	
	Inclination (alpha): 90.0 Degrees	
	Vertical Shear Beinforcement	
	OK <u>Apply</u> Can	cel

April 1, 2002	Section 9A	Page 83 of 140
---------------	------------	----------------

The partially expanded Bridge Workspace tree is shown below:

April 1, 2002	Section 9A	Page 84 of 140
---------------	------------	----------------

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

🕰 Member					_ 🗆 ×
Member name:	G2		Link with:	None	J
<u>D</u> escription:				<u> </u>	
				-	
	Existing Current Member	Alternative Name I	Description		
	Interior	G54 Colorado Gird			
<u>N</u> umber of spans:	3 📮	Span Spa No. Leng (ft)	ın şth	Pedestrian load: 0.000	lb/ft
		1	52.72		
		2	65.00		
		3	49.96		
		_ I			
			0	K Apply	Cancel

Defining a Member Alternative:

Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Prestressed (Pretensioned) Concrete for the Material Type and PS Precast I for the Girder Type.

New Member Alternative	×
Material Type:	Girder Type:
Prestressed (Pretension 🔽	PS Precast I
Г	OK Cancel

Click OK to close the dialog and create a new member alternative.

April 1, 2002	Section 9A	Page 85 of 140
---------------	------------	----------------

The Member Alternative Description window will open. Enter the appropriate data as shown below. The Schedule-based Girder property input method is the only input method available for a prestressed concrete beam.

Member Alternative Descri	ption					_ 🗆
Member Alternative: Interio	r G54 Colorado Girde	ſ				
Description Factors Engine	Import					
Description:		×	Materia Girde Membe	I Type: Pre r Type: PS er units: US - Analysis M <u>A</u> SD: LFD: LRFD:	estressed (Preter Precast I 6 Customary BRASS ASD BRASS LFD BRASS LFF	nsioned
Additional Self Weight Additional self weight = Additional self <u>w</u> eight = Crack control parameter (Z) Bottom of beam:	kip/ft %	Default rati <u>ng</u> m LFD	ethod:	−Shearcon LRFD: LFD: F	nputation metho General Proced Ignore shear	d ure 🔽
		[OK		Apply	Cancel

April 1, 2002	Section 9A	Page 86 of 140
---------------	------------	----------------

Double click on Member Loads to define other girder dead loads not calculated by the program automatically. Dead load due to haunch not included in the section properties calculation is entered here.

🕰 Loads - Member	
Uniform Distributed Concentrated Settlement Load Case Name: Haunch load	
All Spans 🗾 0.058	
	New Duplicate Delete
	OK Apply Cancel

Calculated average haunch = 2.0" Haunch used for section properties = 0.0"

Dead Load/Girder = (2.0-0.0)/12*(28/12)*(0.15) = 0.058 k/ft

April 1, 2002	Section 9A	Page 87 of 140
---------------	------------	----------------

Double click on Supports to define support constraints for the girder. Enter the following support constraints. Click OK to save data to memory and close the window.

🕰 Supports						<u> </u>
General	Z Elastic	•× <u>~</u> 1			2	
Support Number	Support Type	Translation Cor X	nstraints Y	Rotation Constraints Z		
1	Pinned 🔽	ম	R			
2	Roller 🔽					
3	Roller 🔽					
4	Roller 🔽		•			
				OK	Apply	Cancel

April 1, 2002	Section 9A	Page 88 of 140
---------------	------------	----------------

The Compute from Typical Section button on the Live Load Distribution window to calculate the distribution factors cannot be used until we have selected the beam shape in the Beam Details window. At this point, Virtis/Opis does not know if we have spread or adjacent beams. We will select the beam shape now in the Beam Details window and then come back to the Live Load Distribution window. Double click on Beam Details in the tree to describe the beam details. Enter the following beam details information.

eam Del Dan Deta	tails	rt D	retail Stress Limit I	Ra	nges Slab Interface C	Cont	inuity Diaph	ragm			_
Span Number	Beam Shape		Girder Material		Prestress Properties		Use Creep	n	Bean Left End (in)	n Projection Right End (in)	
1	Colorado G 54	-	PS 4.0 ksi	•	1/2" SR AASHTO Loss	-	Yes 🔽	7.767	3.0000	3.0000	
2	Colorado G 54	-	PS 4.0 ksi	-	1/2" SR AASHTO Loss	-	Yes 🔽	7.767	3.0000	3.0000	
								OK	Ар	ply Ca	nce

April 1, 2002	Section 9A	Page 89 of 140
---------------	------------	----------------

The Continuous Support Detail tab is only shown for a multi-span structure. The following data describes the distances from the centerlines of bearing to the centerlines of the piers.

April 1, 2002	Section 9A	Page 90 of 140
---------------	------------	----------------

Note that the Stress Limit Ranges are defined over the entire length of the precast beam.

eam De pan Deta	tails il Continuous Support	Detail Stres	is Limit F	Ranges Slab In	terface Continu	ity Diaphragm		
Span Number	Name	Sta Dista (ff)	rt nce)	Length (ft)	End Distance (ft)			
1 🔽	4 Ksi Beam Concrete		0.00	52.32	52.32			
2 🔽	4 Ksi Beam Concrete		0.00	63.71	63.71			
3 🔽	4 Ksi Beam Concrete		0.00	49.56	49.56			
						New	Duplicate	Dalata
						New	Duplicate	Delete

April 1, 2002	Section 9A	Page 91 of 140
---------------	------------	----------------

The defaults on the Slab Interface tab are shown below and are acceptable.

, ,	Beam Details	_ 🗆 🗵
1	Span Detail Continuous Support Detail Stress Limit Ranges Slab Interface Continuity Diaphragm	
	Interface type: Intentionally Roughened 🔽	
	Default interface width to beam widths 🔽	
	Interface width:	
	Cohesion factor: 0.100 ksi	
	Friction factor: 1.000	
	OK Apply Ca	ancel

April 1, 2002	Section 9A	Page 92 of 140
---------------	------------	----------------

The Continuity Diaphragm tab is only displayed for multi-span structures. The data on this tab defines the cast-in-place diaphragms used to make the structure continuous for live load. Press F1 while on this tab to view the continuity diaphragm help topic describing the use of this information.

sain De	tails												-
oan Deta	il Continuo	is Su	pport Detail St	ress Limit Range	s	Slab Interf	iace	e Continuity	Diap	ohragm			
			Left S	upport						Right S	upport		
Span Number	Material		Distance (in)	Bar Count		Bar Size		Material		Distance (in)	Bar Count	Bar Size	
1 🔽							-	Grade 270	-	2.0000	3.000	5	•
2 🔽	Grade 270	-	2.0000	3.000	5		-	Grade 270	-	2.0000	3.000	5	-
3 🔽	Grade 270	-	2.0000	3.000	5		-		•				-
Ignor	e positive mo	ment	at supports in ra	tings						Nev	v Duplic	ate D	elete

April 1, 2002	Section 9A	Page 93 of 140
---------------	------------	----------------

Now double click on Live Load Distribution in the tree to enter the live load distribution factors. Click the Compute from Typical Section button to compute the live load distribution factors. The distribution factors are computed based on the AASHTO Specifications, Articles 3.23 and 3.28. Click Apply and then OK to save data to memory and close the window.

ive Load Di itandard LR	istribution FD						
Lanes		Distribution	h Factor elsì				
Loaded	Shear	Shear at Supports	Moment	Deflection			
1 Lane	1.478	1.478	1.478	0.500			
Multi-Lane	2.091	2.261	2.091	1.350			
Compute fro Typical Sect	m tion						
				OK	Арр	v _	Cancel

April 1, 2002	Section 9A	Page 94 of 140
---------------	------------	----------------

Expand the tree under Strand Layout and open the Span 1 window. This window allows you to define a prestress strand layout for a prestressed concrete beam span. Prestress strand layout can be described either by the actual strand locations or the prestress force (jacking force) and eccentricity (center of gravity) of the group of strands. Select P and CGS only for the Description Type. Enter the following Strand Layout information for Span 1. Press F1 while on this tab to view the strand layout help topic describing the use of this information.

🕰 Strand Layout - Span 1 📃 📃 🗙					
副负围或正					
Description Type P and CGS only	O Strands	s in rows			
Left harp pt. dist. (X1):	22	ft			
Left harp pt. radius:	0.0001	in			
Right harp pt. dist. (X2):	22	A			
Right harp pt. radius:	0.0001	in			
Force:	490.00	kip			
Left CGS:	17.0000	in			
Mid CGS:	2.8400	in			
Right CGS:	17.0000	in			
ОК А	pply	Cancel			

Using the same techniques, define the strand layout for span 2 and span 3.

April 1, 2002	Section 9A	Page 95 of 140
---------------	------------	----------------

🕰 Strand Layout - Span 2 📃 🔼					
副使围或正					
Description Type P and CGS only	C Strands	in rows			
Left harp pt. dist. (X1):	 28	ft			
Left harp pt. radius:	0.0001	in			
Right harp pt. dist. (X2):	28	ft			
Right harp pt. radius:	0.0001	in			
Force:	737.00	kip			
Left CGS:	17.0000	in			
Mid CGS:	3.0800	in			
Right CGS:	17.0000	in			
ОК А	oply	Cancel			

🕰 Strand Layout - Span 3 📃 📃 🗙					
副负围或正					
Description Type P and CGS only	C Strands	s in rows			
Left harp pt. dist. (X1):	21	ft			
Left harp pt. radius:	0.0001	in			
Right harp pt. dist. (X2):	21	ft.			
Right harp pt. radius:	0.0001	in			
Force:	437.00	kip			
Left CGS:	17.0000	in			
Mid CGS:	2.5900	in			
Right CGS:	17.0000	in			
<u> </u>	pply	Cancel			

April 1, 2002	Section 9A	Page 97 of 140
---------------	------------	----------------

Open the Deck Profile window and enter the date describing the structural properties of the deck.

De	ck Profile								_ 🗆
Type De	PS Precast I ck Concrete Reinf	orcement	_ 						
	Material	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Structural Thickness (in)	Effective Flange Width (Std) (in)	Effective Flange Width (LRFD) (in)	n
9	Class D(US) 🛛 🔽	1 🔽	0.00	167.68	167.68	8.5000	130.0000		7.130
						N	ew Dup	licate De	elete
							UK	Apply	Cancel

April 1, 2002	Section 9A	Page 98 of 140
---------------	------------	----------------

The deck reinforcement in the negative moment regions is described as follows.

Material		Support Numbe	Start	Length	End Distance	Bar	Bar Siz	Distance	Row		
o			(ft)	(π)	(ft)	Count	-	(in)	T (0)		
Grade 40		1		167.60	167.60	7.000	5	3.5600	Top of Slab	H	
Grade 60		1	30.72	51.00	81.72	4.000	0 <u> </u>	3.7500	Top of Slab	H	
Grade 60	-	2	37.00	51.00	88.00	4.000	8	3 7500	Top of Slab	T	
Grade 60	┙	2	44.00	51.00	95.00	4.000	8	3.7500	Top of Slab		
							_			_	

Note: Only the top layer of the slab's distribution reinforcement is used in the analysis.

April 1, 2002	Section 9A	Page 99 of 140
---------------	------------	----------------

Double click on Haunch Profile in the tree to define the haunch profile for the girder.

Note: Only the haunch thickness to be used in section properties calculation is input here. The program calculates dead load due to this haunch automatically.

April 1, 2002	Section 9A	Page 100 of 140
---------------	------------	-----------------

The Shear Reinforcement Ranges are entered as described below. The vertical shear reinforcement is defined as extending into the deck on this tab. This ensures composite action between the beam and the deck. Data does not have to be entered on the Horizontal tab to indicate composite action since we have defined that by extending the vertical bars into the deck.

ertica		Horizontal)	Sta	art Distanc	e <mark>e</mark> Spa	icina _e				
Spa Num	an ber	Name		Extends into Deck	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	-
1	-	#5 Stirrups	-	N	0.16	1	0.0000	0.00	0.16	
1	-	#5 Stirrups	-		0.16	6	3.0000	1.50	1.66	
1	-	#4 Stirrups	-		1.66	10	9.0000	7.50	9.16	
1	-	#4 Stirrups	-		9.16	34	12.0000	34.00	43.16	
1	-	#4 Stirrups	-		43.16	10	9.0000	7.50	50.66	
1	-	#4 Stirrups	-		50.66	6	3.0000	1.50	52.16	
2	-	#5 Stirrups	-		0.16	1	0.0000	0.00	0.16	
2	-	#5 Stirrups	-		0.16	6	3.0000	1.50	1.66	
2	-	#4 Stirrups	-		1.66	10	9.0000	7.50	9.16	
2	-	#4 Stirrups	-		9.16	22	12.0000	22.00	31.16	
2	-	#4 Stirrups	-		31.16	1	16.6800	1.39	32.55	
2	-	#4 Stirrups	-		32.55	22	12.0000	22.00	54.55	
2	-	#4 Stirrups	-		54.55	10	9.0000	7.50	62.05	-
								New Di	uplicate D)elete

The description of an interior beam for this structure definition is complete.

April 1, 2002	Section 9A	Page 101 of 140
---------------	------------	-----------------

The BRASS LFD engine data for the member alternative is shown below.

Member Alternative Description
Member Alternative: Interior G54 Colorado Girder
Description Factors Engine Import
Configure engine properties for analysis module: BRASS LFD
Analysis Load Sequence: Computed based on loadings and comp Points of Interest Control: 3 - Same as 1 plus generate user-define Wheel Advancement: 100 P/S modeling method: Centerline of simple-span bearing Use P/S beam overhangs. Use maximum moment in span to compute fcir. Omit strands for moment capacity if within Distance from top of girder (+M): 0.000000 (in) Distance from bottom of girder (-M): 0.000000 (in)
OK Apply Cancel

April 1, 2002	Section 9A	Page 102 of 140
---------------	------------	-----------------

The results of the LFD/ASD rating analysis are as follows:

Rating Results Summar	y j	-										
Live Load	Live Load Type	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Inventory Location ft	Inventory Location Span-(%)	Operating Location ft	Operating Location Span-(%)	Inventory Limit State	Operating Limit State
HS 20-44	Axle	LFD	52.01	86.86	1.445	2.413	144.47	3 - (53.5)	144.47	3 - (53.5)	ULTIMATE MOME	ULTIMATE MOME
IS 20-44	Lane	LFD	48.31	80.68	1.342	2.241	51.82	1 - (98.3)	51.82	1 - (98.3)	ULTIMATE MOME	ULTIMATE MOME
Colorado Permit Vehicle	Axle	LFD		105.61		1.100			51.82	1 - (98.3)		ULTIMATE MOME
Colorado Permit Vehicle RASS-GIRDER - Versi	Axle	LFD	2001	105.61		1.100			51.82	1 - (98.3)		ULTIMATE N

🕰 Analysis Results -	Interior G5	4 Color	ado Girder									
Report Type Rating Results Summa	ny j	-										
Live Load	Live Load Type	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Inventory Location ft	Inventory Location Span-(%)	Operating Location ft	Operating Location Span-(%)	Inventory Limit State	Operating Limit State
HS 20-44	Axle	ASD	45.73	63.12	1.270	1.753	115.03	2 - (95.9)	144.47	3 - (53.5)	TENSION STEEL	BOTTOM FLANGE
HS 20-44	Lane	ASD	37.69	63.96	1.047	1.777	51.82	1 - (98.3)	51.82	1 - (98.3)	TENSION STEEL	TENSION STEEL
BRASS-GIRDER - Vers	ion 5.08.03	- May. 09	9, 2001									
												Close

Note: LFD method controls both the Inventory and the Operating rating.

COLORADO DEPAR LOAD FACTO	TMENT OF TRANSPORT R RATING SUM	ATION	Shi	cture # e highway #	F-17	- IE	
Kaled using Asphalt trickness Colorado lega Interstale lega	Asphalt friokness: <u>102 mm(4 in)</u> Colorado legal loada Interstate legal loads			Batch I D Shuckure type Paraliel shuckure #			
Structural member	INTERIOR GIRDER G 54	SLAB					
	Metric tons (Tona)						
Inventory	43.6 (49)	34.5 (3	(e	()	()
Operating	73.6 (Bi)	57.3 (53)	()	()
Type 3 truck	()	()	()	()
Type 3S2 truck	()	()	()	()
Type 3-2 truck	()	()	()	()
Permit truck	96.3 (106)	()	()	()
		Type 3S2 Truc Hernise is Francis Constant in Francisco Constant in Francisco Constant in Francisco Constant in Francisco Constant in Francisco		Contraction of the second	e 3-2 Truck	0	0
Comments Control Member: I Load Capacity: 63 Girder: Only Interio G 54 Girde Color Code: Whit Project No: 1 25 - 2	Deck: Rated for 4* HB .0 Tons or Girder Rated; Haur ors; Rated for 2" HBP Ne 2(153)	P ich not include	d in the s	ection prope	erties calci	ulations;	
Rated by	Dole	Chec	ked by			Date	

April 1, 2002	Section 9A	Page 104 of 140
---------------	------------	-----------------

Virtis Bridge Rating Example, Structure No. L-26-BR

Use average web = 6.0" Girder flange = ½(Total flange width) = ½(86.0) = 43.0" 4x4 ~ W4xW4 WWF, assumed shear reinforcing: #3 single leg bar @ 12" c/c Dead Load:

Intermediate Diaphragm = 0.150 kip/diaphragm
%(diaphragm) = 0.075 kip

Abutment Diaphragm = ((2.50)*(44.5/12)*(3.5833) - (507.5/144)*(20/12)) *(0.150)= 4.1 kips Use 4.1 kips

Distribution Factors:

• AASHTO LRFD Table 4.6.2.2.2b-1

 $K = \sqrt{(1+\mu)*I/J} = \sqrt{(1+0.2)*(90584)/(12345)} = 2.96$ $C = K^*(W/L) = 2.96^*(72/59.5) = 3.58 > K \quad \therefore C = K = 2.96$ $NL = 6 \text{ Lanes Assumed} \qquad L = 59.5'$ $D = 11.5 - NL + 1.4^*NL^*(1-0.2C)^*(1-0.2C)$ $= (11.5 - 6) + 1.4^*6^*(1-0.2^*2.96)^*(1-0.2^*2.96) = 6.898$ S/D = (43/12)/(6.898/2) = 1.039 Wheel Lines NL = 1 Lane $D = (11.5 - 1) + 1.4^*1^*(1-0.2^*2.96)^*(1-0.2^*2.96) = 10.733$ S/D = (43/12)/(10.733/2) = 0.668 Wheel Lines

• AASHTO Standard Specifications, Table 3.23.1

Assumed full depth rigid diaphragm. Distribution Factor = S/6 = (7.167/2)/6 = 0.597 (Multi Lanes) Distribution Factor = 0.547 (Single Lane)

LDFAC Program

Assumed 8" poured in place composite deck. Distribution Factor = 0.673 (Multi Lanes) Distribution Factor = 0.542 (Single Lane)

April 1, 2002	Section 9A	Page 105 of 140
- · · · · ·		

LDFAC Version 1.0 (Release Version)

Dbl_Tee

Geometry Data:

Bridge Type		Beam	& Slab
Width of Curb	[ft]		0.0000
Element Density			12
Number of Spans			1
Span Length(s)	[ft]		
59.5000			
Skew Angles	[degrees]		
0.0000	0.0000		

Live Load Generator Data

Truck Name						
Multiple	Presence	Factor	-	1	Truck	1.00
Multiple	Presence	Factor		2	Trucks	1.00
Multiple	Presence	Factor	-	3	Trucks	0.90
Multiple	Presence	Factor	-	4	Trucks	0.75

Point-of-Interest Data

Туре	Span #	Span Loc. [ft]	Rel. Span Loc.
Shr	1	0.00	0.00
+Mom	1	30.00	0.50
-Mom	1	60.00	1.00

Beam and Slab Data:

Slab Thickness	[in]	8.0000
Young' Modulus	[ksi]	3823.0000
Poisson's Ratio		0.2000
Exterior Girder Area A	[in^2]	507.50
Exterior Girder Moment I	[in^4]	90584.00
Exterior Girder Moment J	[in^4]	12345.00
Exterior Centroidal Offset	[in]	16.2500
Interior Girder Area A	[in^2]	507.50
Interior Girder Moment I	[in^4]	90584.00
Interior Girder Moment J	[in^4]	12345.00
Interior Centroidal Offset	[in]	16.2500
Girder Modular Ratio n		7.0000
Left Girder Overhang	[in]	21.5000
Right Girder Overhang	[in]	21.5000
Total Number of Girders		20

April 1, 2002	Section 9A	Page 106 of 140
Girder Spacing Values 43.0000 43.0 43.0000 43.0000	s [in] 0000 43.0000 43.000 43.0000 43.0000	00 43.0000 43.0000 43.0000 43.0000
43.0000 43.0000	43.0000 43.0000	43.0000 43.0000
43.0000		

LDFAC Version 1.0 - Release Version Out-of-Limits Results for Formula Are Marked With an Asterisk *

1 - Span Straight Beam & Slab Bridge with HS20TR Load

Multi-Lane Load Distribution Results

Point-of-Interest Data		Analysis	Results	Formula Results			
No.	Туре	Sp#	Sp%	Interior	Exterior	Interior	Exterior
1	Shr	1	0	0.86074	0.86148	0.97668	0.76099
2	+Mom	1	50	0.67364	0.71775	0.88385	0.88385
3	-Mom	1	100	N/A	N/A	N/A	N/A

LDFAC Version 1.0 - Release Version Out-of-Limits Results for Formula Are Marked With an Asterisk *

1 - Span Straight Beam & Slab Bridge with HS20TR Load

Single-Lane Load Distribution Results

Point-of-Interest Data		Analysis	Results	Formula	Formula Results		
No.	Туре	Sp#	Sp%	Interior	Exterior	Interior	Exterior
1	Shr	1	0	0.76917	0.86148	0.83889	1.00000
2	+Mom	1	50	0.54238	0.68849	0.57662	1.00000
3	-Mom	1	100	N/A	N/A	N/A	N/A

April 1, 2002	Section 9A	Page 107 of 140
---------------	------------	-----------------

From the bridge explorer, create a new bridge and enter the following information.

🕰 L-26-BR					_ 🗆 ×
Bridge ID:	NBI Structure	ID (8): L-26-BR		Template Design Only	
Description Descriptio	n (cont'd) Alternatives GI	obal Reference Point			
Name:	CDTPG		Year	Built: 1982	
Description:	1-Span Concrete Double-Te	ee Prestressed Girder			<u> </u>
					V
Location:			Length:	ft	
Facility Carried (7):		Route	Number: -1		
Feat. Intersected (6):			Mi. Post:		
Units:	US Customary	Rece	nt ADTT:		
			OK A	Apply	Cancel

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database; it is required that users
 of this program create a folder from the bridge explorer window
 (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a
 new structure.

April 1, 2002	Section 9A	Page 108 of 140
---------------	------------	-----------------

To add a new concrete material, click on Materials, Concrete, in the tree and select File/New from the menu (or right click on Concrete and select New). Fill in the data for the beam concrete material as shown below. Click OK to save this beam concrete material to memory and close the window.

🕰 Bridge Materials - Concrete 📃 🔲			
Name: PS 6.0 ksi Deg	cription: f ^r ci = 4.5 k	si	
Compressive strength at 28 days (f'c) =	6.000	ksi	
Initial compressive strength (f'ci) =	4.500	ksi	
<u>C</u> oefficient of thermal expansion =	0.0000060000	1/F	
<u>D</u> ensity (for dead loads) =	0.150	kcf	
Density (for modulus of elasticity) =	0.150	kcf	
Modulus of elasticity (<u>E</u> c) =	4695.98	ksi	
I <u>n</u> itial modulus of elasticity =	4066.84	ksi	
<u>P</u> oisson's ratio =	0.200		
Composition of concrete =	Normal	•	
Modulus of <u>r</u> upture =	0.588	ksi	
<u>S</u> hear factor =	1.000		
Copy from Library OK Apply Cancel			
April 1, 2002	Section 9A	Page 109 of 140	
---------------	------------	-----------------	
---------------	------------	-----------------	

Using the same techniques, create the following Reinforcing Steel Materials and Prestress Strands Materials. The windows are shown in the following pages.

🕰 Bridge Mal	erials - Reinforcing Steel					_ 🗆 🗙
<u>N</u> ame	Grade 40	<u>D</u> esc	ription: 40 ks	i reinforcing steel		
		Material Proper	ties			
	Specified yi	eld strength (Fy) =	40.000	ksi		
	Modulus	of elasticity (<u>E</u> s) =	29000.00	ksi		
	Littima	te strength (F <u>u</u>) =	70.000	ksi		
		-Type Plain Epo <u>xy</u> <u>G</u> alvanized <u>O</u> ther	I			
		Copy from Lib	rary	ОК А	opply C	ancel

April 1, 2002	Section 9A	Page 110 of 140

A Bridge Materials - PS Strand		
<u>N</u> ame: 172'' (7W-270) SR De <u>s</u>	cription: Stress reli	ieved 1/2''/Seven Wire/fpu = 270
Strand <u>d</u> iameter =	0.5000	in
Strand <u>a</u> rea =	0.153	in^2
Strand <u>type</u> =	Stress Relieved	-
<u>U</u> ltimate tensile strength (Fu) =	270.000	ksi
Yield strength (Fy) =	229.500	ksi
<u>M</u> odulus of elasticity (E) =	28500.00	ksi
Transfer l <u>e</u> ngth (Std) =	25.0000	in
Transfer length (LRFD) =	30.0000	in
Unit <u>w</u> eight per length =	0.520	lb/ft
	Epoxy coated	
Copy from L	ibrary Ok	Cancel

April 1, 2002	Section 9A	Page 111 of 140
---------------	------------	-----------------

Expand the tree labeled Beam Shapes to enter a prestressed beam shape to be used in the analysis. Click on Prestressed Beam Shapes and I Beams in the tree and select File/New from the menu (or right mouse click on I Beam and select New). Fill in the data for the beam (Modeled as a Single-Tee beam). Click the Properties tab, then the compute button and then OK.

Click OK to save the data to memory and close the window.

April 1, 2002	Section 9A	Page 112 of 140
---------------	------------	-----------------

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, select New and fill in the data for the Bridge Rail Type 3 (Note: Since the girder is modeled as a single-Tee, use only ½ the curb and rail load). Click OK to save the data to memory and close the window.

The default impact factors and the standard LFD factors will be used, so we will skip to Structure Definition. Bridge Alternatives will be added after we enter the Structure Definition.

This window shows the LFD load factors.

Factors - Ll	Ð						- 🗆
<u>N</u> ame:	1996 AASH	ITO Std. Specific	cations				
Description:	AASHTO S Edition, 199	tandard Specific 16 including 1997	ations for Highwa 7 Interim Specifica	ay Bridges, 16th ations	-		
Load Factors	Resistance	e Factors					
Load Group	Gamma Factor	D	(L+I)n	(L+I)p	CF	E	
INV	1.300	1.000	1.670	0.000	1.000	1.000	
OPG	1.300	1.000	1.000	0.000	1.000	1.000	
1						Þ	
			Copy from	Library	ОК	Apply Can	cel

April 1, 2002	Section 9A	Page 114 of 140
---------------	------------	-------------------

Double click on STRUCTURE DEFINITION (or click on STRUCTURE DEFINITION and select File/New from the menu or right mouse click on STRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

tion
Description
A structure definition describing one of more girders. The girders do NO A structure definition describing one of more girders. The girders do hav

April 1, 2002	Section 9A	Page 115 of 140
---------------	------------	-----------------

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

🕰 Girder System Structur	e Definition				_ 🗆 ×
Definition Analysis Engi	ne				
<u>N</u> ame:	Dbl-Tee Girders				
<u>D</u> escription:	Only 12 Girder lines can be an dbl-tee units. Note, live load D	alyzed by BRAS F to be entered)S. Modeled u manually.	ısing 6 🔺	
<u>U</u> nits:	US Customary 🔽	Enter Span <u>L</u> Along the Be	engths ference Line:	For PS on	y
Number of <u>s</u> pans:	1 💻	Span L	ength	Average <u>k</u>	umidity:
Number of girders:	12 🛨	1	(ft) 59.50		~
	Deck type: Concrete			Member A	lt. Types el S C iber
			OK .	Apply	Cancel

Span length for a simple span prestressed girder structure shall be per Section 9A-2 IV.

We now go back to the Bridge Alternatives and create a new Bridge Alternative, a new Structure, and a new Structure Alternative.

The partially expanded Bridge Workspace tree is shown below:

April 1, 2002	Section 9A	Page 117 of 140
---------------	------------	-----------------

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

	n						_ 🗖
Load Case Name	Description	Stage		Тура	e (Da	e* ys	
Parapets		Non-composite (Stage 1)	-	D,DC			
Future Wearing Surface		Non-composite (Stage 1)	-	D,DC	-		
diaphragm load		Non-composite (Stage 1)	-	D,DC	-		
*Prestressed members only							
*Prestressed members only			N	ew	Du	plicate	Delete
*Prestressed members only			N	ew	Du	plicate	Delete

April 1, 2002	Section 9A	Page 118 of 140
---------------	------------	-----------------

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan.

Structure Framing Plan Details				
Layout Diaphragms	Number of spans	= 1	Number of g	girders = 12
Support Skew (Degrees) 1 0,0000	Girder Spa Perper C Along :	cing Orien ndicular to support	tation girder	
		Girde	er Spacing (ft)	-
	Girder Bay	Start of Girder	End of Girder	
	1	3.58	3.58	
	2	3.58	3.58	
	3	3.58	3.58	
	4	3.58	3.58	
	5	3.58	3.58	-
		OK	Apply	Cancel

April 1, 2002	Section 9A	Page 119 of 140
---------------	------------	-----------------

If the bridge has diaphragms, switch to the Diaphragms tab and enter the appropriate data. Click OK to save to memory and close the window.

tructure	e Framing Plan	Details							_
ayout [Diaphragms		N	umber of sp	ans = 1	Number of girde	rs = 12		
Girder Ba	ay: 1	•	Сору Вау То		Diaphragm Wizard				
Support	Start D	istance ft)	Diaphragm Spacing	Number of	Length (ff)	End Dis (f	stance t)	Weight (kip)	
	Left Girder	Right Girder	(ft)	Spaces	N.7	Left Girder	Right Girder	N.14.2	
1 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	4.1000	
1 🔽	0.00	0.00	29.75	1	29.75	29.75	29.75	0.0700	
1 🔽	29.75	29.75	29.75	1	29.75	59.50	59.50	4.1000	
						Ne	ew Dupl	icate Delete	

April 1, 2002	Section 9A	Page 120 of 140
---------------	------------	-----------------

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

â	Structure Typical Section				_ 🗆 ×
Γ	Distance fror _structure def	n left edge of deck to inition reference line	Distance from right edge of structure definition reference	f deck to ce line	
		Deck ↓thickness	Structure Definition Reference Line		
		+	<		
	Deck Deck (Cont'd) Parapet Me	dian Railing Gener	ic Sidewalk Lane Position	₩ Right overhang	
L	Structure definition reference line is	within	• the bridge deck.	1	
l	Distance from left edge of deck to structure definition reference line =	Start 21.50 ft	End 21.50 ft		
	Distance from right edge of deck to structure definition reference line =	21.50 ft	21.50 ft		
l	Left overhang =	1.79 ft	1.79 ft		
	Computed right overhang =	1.79 ft	1.79 ft		
L					
				ОК Арру	Cancel

The Deck(Cont'd) tab is used to enter information about the deck concrete and thickness. This structure does not have a concrete deck, so leave the information on this tab blank.

April 1, 2002	Section 9A	Page 121 of 140
---------------	------------	-----------------

Parapets:

Add two parapets as shown below.

🕰 Structure Typic	al Sec	tion											_ 🗆 ×
Deck Deck (Co	ntal (F	Parapet	B	ack	Ge	eneric Si	F	Front - walk Lane F	Positi	on Wearing St	ırface		
Name			Load Ca	se		Measure	То	Edge of De Dist. Measur From	ck red	Distance At Start (ft)	Distance At End (ft)	Front Face Orientation	
Bridge Rail Type	3 🔽	Parapet	8		-	Back	Ŧ	Left Edge	-	0.00	0.00	Right 🔽	
Bridge Rail Type	3 🔽	Parapet	s		-	Back	•	Right Edge	-	0.00	0.00	Left 🔽	
										New OK	Duplicate Apply	Delete Can	cel

April 1, 2002	Section 9A	Page 122 of 140
---------------	------------	-----------------

Lane Positions:

Select the lane position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click apply to accept the computed values. The Lane Position tab is populated as shown below.

🕰 SI	tructure Ty	pical Section			_ 🗆	×
(A) (B) Structure Definition Reference Line Travelway 1 Travelway 2 Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface] Surface	
	Travelway Number	Distance From Left Edge of Travelway to Structure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Structure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Structure Definition Reference Line At End (B) (ft)	
	1	-20.25	20.25	-20.25	20.25	
Compute				Duplicate Delete		

April 1, 2002	Section 9A	Page 123 of 140
---------------	------------	-----------------

🕰 Structure Typical Section					
Distance structure	from left edge of deck to definition reference line	Distance from right edge structure definition refere	of deck to nce line		
Ĺ	Deck ↓thickness	Structure Definition Reference Line	Ĺ		
	- +		=		
Left overhang	-		He Righ	t overhang	
Deck Deck (Cont'd) Parapet	Median Railing Generic	c Sidewalk Lane Positi	on Wearing Sur	face	
Wearing surface material: H	BP				
Description:					
Wearing <u>s</u> urface thickness = 2.	5000 in				
Wearing surface density = 14	44.000 pcf				
Load <u>c</u> ase: Fu	uture Wearing Surface	•	Copy from Libr	ary	
			OK	Apply	Cancel

Enter the following wearing surface information on the Wearing Surface tab.

April 1, 2002	Section 9A	Page 124 of 140
---------------	------------	-----------------

Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click OK to save this information to memory and close the window.

Structure Loads				_ 🗆
Uniform Temperature Gradient Temperature Wind DL Distri	ibution			
By tributary area				
C By transverse <u>s</u> imple-beam analysis				
C By transverse continuous-beam analysis				
C User input results from independent 3D elastic analysis				
Stage 2 Dead Load Distribution				
O By tributary <u>a</u> rea				
O By transverse simple-beam analysis				
O By transverse continuous-beam analysis				
C User input results from independent 3D <u>e</u> lastic analysis				
		ок	Apply	Cancel

April 1, 2002	Section 9A	Page 125 of 140
---------------	------------	-----------------

A Stress Limit defines the allowable concrete stresses for a given concrete material. Double click on the Stress Limits tree item to open the window. Select the "PS 6.0 ksi" concrete material. Default values for the allowable stresses will be computed based on this concrete and the AASHTO Specifications. A default value for the final allowable slab compression is not computed since the deck concrete is typically different from the concrete used in the beam. Click OK to save this information to memory and close the window.

🕰 Stress Limit Sets - Concrete					_ 🗆 🗡
<u>N</u> ame: Beam Stress Limit	\$				
Description:					
Concrete Material: PS 6.0 ksi		•			
	LFD		LRFD		
Initial allowable compression:	2.700	ksi	2.700	ksi	
Initial allowable tension:	0.200	ksi	0.200	ksi	
Final allowable compression:	3.600	ksi	3.600	ksi	
Final allowable tension:	0.465	ksi	0.465	ksi	
Final allowable DL compression:	2.400	ksi	2.700	ksi	
Final allowable slab compression:		ksi		ksi	
Final allowable compression: (LL + 1/2(Pe + DL))	2.400	ksi	2.400	ksi	
			ОК	Apply	Cancel

April 1, 2002	Section 9A	Page 126 of 140
---------------	------------	-----------------

Double click on the Prestress Properties tree item to open a window in which to define the prestress properties for this structure definition. Define the Prestress Property as shown below. Since we are using the AASHTO method to compute losses, only information in the "General P/S Data" tab is required. Click OK to save to memory and close the window.

A Prestress Properties	
Name: AASHTO Losses	
General P/S Data Loss Data - Lump Sum Loss Data	- PCI
P/S strand material: 1/2" (7₩-270) SR	Jacking stress ratio: 0.712
Loss method: AASHTO	P/S transfer stress ratio:
	Transfer time: 24.0 Hours
Loss Data - AASHTO Percentage DL: 0.0 %	
	OK Apply Cancel

April 1, 2002	Section 9A	Page 127 of 140
---------------	------------	-----------------

Define the vertical shear reinforcement by double clicking on Vertical (under Shear Reinforcement Definition in the tree). Define the reinforcement as shown. The I shape shown is for illustrative purposes only. Click OK to save to memory and close the window.

🗛 Shear Reinforcement Definition - Vertical	_ 🗆 ×
Name: #3 Shear Reinf	
Material: Grade 40	
Bar size: 3	
Number of legs: 1.00	
Inclination (alpha): 90.0 Degrees	
Vertical Shear Reinforcement	
	Cancel

April 1, 2002	Section 9A	Page 128 of 140
---------------	------------	-----------------

The partially expanded Bridge Workspace tree is shown below:

April 1, 2002	Section 9A	Page 129 of 140
---------------	------------	-----------------

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

🕰 Member	n de la constante de la constan	
<u>M</u> ember name:	G2	
<u>D</u> escription:		
	Existing Current Member Alternative Name Description	
	PS Tee Girder	
Number of spans:	1 Span Span Pedestrian load: 0.000 lb/ft	
	1 59 50	
	OK Apply Cance	

Defining a Member Alternative:

Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select Prestressed (Pretensioned) Concrete for the Material Type and PS Precast I for the Girder Type.

New Member Alternative	×
Material Type:	Girder Type:
Prestressed (Pretension 🔽	PS Precast I
L L L L L L L L L L L L L L L L L L L	0K Cancel
	<u>Cit</u>

Click OK to close the dialog and create a new member alternative.

April 1, 2002	Section 9A	Page 130 of 140
---------------	------------	-----------------

The Member Alternative Description window will open. Enter the appropriate data as shown below. The Schedule-based Girder property input method is the only input method available for a prestressed concrete beam.

Member Alterna	ative Descripti	on					_ 🗆
Member Altern	ative: PS Tee G	ìirder					
Description Fac	tors Engine Ir	mport					
Description:			×	Materia Girde	al Type: Pre er Type: PS	estressed (Pretens Precast I	ioned
Girder property Schedul	• input method — e based .ction based				Analysis M ASD: LFD: L <u>R</u> FD:	odule BRASS ASD BRASS LFD BRASS LRFD	•
Additional Self Additional se Additional se	Weight I <u>f</u> weight = If <u>w</u> eight =	kip/ft	Default rating me	ethod:	- Shear com LRFD: LFD:	nputation method General Procedur Z Ignore shear	re 🔹
Crack control Bottom of bea	parameter (Z)	kip/in					
			[OK		Apply C	ancel

April 1, 2002	Section 9A	Page 131 of 140
---------------	------------	-----------------

Double click on Member Loads to define other girder dead loads not calculated by the program automatically. Dead load due to intermediate diaphragm located at centerline of the girder is entered here.

_oads - Me	ember				_
	<i>ح</i> ا	Distance	Py Px		+y ♥ +x
Jniform Di	istributed Conc	entrated Settler	ment]		
Load Case	Name: diapł	nragm load	<u>•</u>		
Support Number	Distance (ft)	Px (kip)	Py (kip)	M (kip.ft)	
1 🔽	29.75	0.00	0.07	0.00	
				New	Duplicate Delete
				0	K Apply Cancel

April 1, 2002	Section 9A	Page 132 of 140
---------------	------------	-----------------

Double click on Supports to define support constraints for the girder. Enter the following support constraints. Click OK to save data to memory and close the window.

🕰 Supports						<u>- 🗆 ×</u>
General	Z K	• • • × × 1			<u>~</u> 2	
Support	Connect	Translation Con	straints	Rotation Constraints		
Number	Type	х	Y	Z		
1	Pinned 🔽		V			
2	Roller 🔽		v			
				OK	Apply	Cancel

April 1, 2002	Section 9A	Page 133 of 140
---------------	------------	-----------------

The Compute from Typical Section button on the Live Load Distribution window to calculate the distribution factors cannot be used until we have selected the beam shape in the Beam Details window. At this point, Virtis/Opis does not know if we have spread or adjacent beams. We will select the beam shape now in the Beam Details window and then come back to the Live Load Distribution window. Double click on Beam Details in the tree to describe the beam details. Enter the following beam details information.

eam Del	Di en esta p	Leure de L						_
Span Number	Beam Shape	Girder Material	Prestress Properties	Use Creep	n	Bearr Left End (in)	n Projection Right End (in)	
1	Tee Girder 📘	PS 6.0 ksi 🔽	AASHTO Losses	No 🔽	6.069	5.0000	5.0000	
							_	
						OK	Apply	Cance

April 1, 2002	Section 9A	Page 134 of 140
---------------	------------	-----------------

Note that the Stress Limit Ranges are defined over the entire length of the precast beam.

eam Del	tails						_
pan Detai	Stress Limit Ranges	ilab Interface					
Span Number	Name	Start Distance (ft)	Length (ft)	End Distance (ft)			
1 🔽	Beam Stress Limits 🛛 🔽	0.00	60.33	60.33			
					New	Duplicate	Delete
					ОК	Apply	Cancel

Since we do not have a concrete deck for this structure definition, we do not need to enter any information on the Slab Interface tab.

Click OK to save the Beam Details data to memory and close the window.

April 1, 2002	Section 9A	Page 135 of 140
---------------	------------	-----------------

Now double click on Live Load Distribution in the tree to enter the following live load distribution factors. Click OK to save data to memory and close the window.

Lanes		Distributio (Whe	n Factor els)		
Loaded	Shear	Shear at Supports	Moment	Deflection	
1 Lane			0.547		
Multi-Lane			0.597		
Compute from					

Note: The AASHTO live load distribution factor for concrete T-Girder used in the analysis.

April 1, 2002	Section 9A	Page 136 of 140
---------------	------------	-----------------

Expand the tree under Strand Layout and open the Span 1 window. This window allows you to define a prestress strand layout for a prestressed concrete beam span. Prestress strand layout can be described either by the actual strand locations or the prestress force (jacking force) and eccentricity (center of gravity) of the group of strands. Select P and CGS only for the Description Type. Enter the following Strand Layout information for Span 1. Press F1 while on this tab to view the strand layout help topic describing the use of this information.

🙈 Strand Layout - Spa	n 1	
副负围或正		
Description Type P and CGS only	O Strand	s in rows
Left harp pt. dist. (X1):	24	ft
Left harp pt. radius:	0.0001	in
Right harp pt. dist. (X2):	24	ft
Right harp pt. radius:	0.0001	in
Force:	268.26	kip
Left CGS:	22.0000	in
Mid CGS:	4.0000	in
Right CGS:	22.0000	in
ок 🛛	(pply	Cancel

Since this structure does not have a cast in place deck, the Deck Profile and the Haunch Profile information is not required.

April 1, 2002	Section 9A	Page 137 of 140
---------------	------------	-----------------

The Shear Reinforcement Ranges are entered as described below.

Vertical Horizontal Span Name Extends Start Number Distance (m) Length Distance 1 #3 Shear Reinf 1.87 57 12.0000 57.00 58.66 New Duplicate Dete	PS Shear	Reinforcement	Ranges						_ 🗆
Span Number Name Extends into Deck Start Distance (ft) Number of Spaces Spacing (in) Length (ft) End Distance (ft) 1 #3 Shear Reinf 1.67 57 12.0000 57.00 58.66 Image: Space Start Start Start Start Deck Into Deck 1.67 57 12.0000 57.00 58.66 Image: Space Start S	Vertical +	forizontal	art Distance	∋ ⊳ ⊲ ^{Spa}	icina ,				
1 #3 Shear Reinf 1.67 57 12.000 57.00 58.66 New Duplicate Delete	Span Number	Name	Extends into Deck	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	
New Duplicate Delete	1 🔽	#3 Shear Reinf 💌		1.67	57	12.0000	57.00	58.66	
							New D	uplicate C)elete
L LIN L ADDV L LADCEL							пк	Annlu	Cancel

The description of an interior beam for this structure definition is complete.

April 1, 2002	Section 9A	Page 138 of 140
---------------	------------	-----------------

The BRASS LFD engine data for the member alternative is shown below.

Member Alternative Description	
Member Alternative: PS Tee Girder	
Description Factors Engine Import	
Configure engine properties for analysis module: BRASS LFD	
Analysis Load Sequence: Computed based on loadings and comp Points of Interest Control: 1 - Generate points of interest at all tent Wheel Advancement: 100 P/S modeling method: Centerline of simple-span bearing Use P/S beam overhangs. Use maximum moment in span to compute fcir. Omit strands for moment capacity if within Distance from top of girder (+M): 0.000000 (in) Distance from bottom of girder (-M): 0.000000 (in)]
OK Apply Cance	el

April 1, 2002	Section 9A	Page 139 of 140
---------------	------------	-----------------

The results of the LFD/ASD rating analysis are as follows:

											3		Rating Results Summary
perating nit State	Oş Lir	Inventory Limit State	Operating Location Span-(%)	Operating Location ft	Inventory Location Span-(%)	Inventory Location ft	Operating Rating Factor	Inventory Rating Factor	Operating Load Rating Ton	Inventory Load Rating Ton	Design Method	Live Load Type	Live Load
MATE MOME	E ULTIN	ULTIMATE MOME	1 - (50.0)	29.75	1 - (50.0)	29.75	1.413	0.846	50.88	30.47	LFD	Axle	HS 20-44
ATE MOME	ULTIN	ULTIMATE MOME	1 - (50.0)	29.75	1 - (50.0)	29.75	2.039	1.221	73.41	43.96	LFD	Lane	IS 20-44
ATE MOME	ULTIN		1 - (50.0)	29.75			0.896		86.06		LFD	Axle	Colorado Permit Vehicle
	E ULTIN ULTIN	ULTIMATE MOME	1 - (50.0) 1 - (50.0)	29.75 29.75	1 - (50.0)	29.75	2.039 0.896	1.221	73.41 86.06	43.96	LFD LFD	Lane Axle	HS 20-44 Colorado Permit Vehicle

🕰 Analysis Results - I	PS Tee Gii	der										_ 🗆
Report Type Rating Results Summa	ry <mark>-</mark>]										
Live Load	Live Load Type	Design Method	Inventory Load Rating Ton	Operating Load Rating Ton	Inventory Rating Factor	Operating Rating Factor	Inventory Location ft	Inventory Location Span-(%)	Operating Location ft	Operating Location Span-(%)	Inventory Limit State	Operating Limit State
HS 20-44	Axle		29.17	31.09	0.810	0.864	29.75	1 - (50.0)	29.75	1 - (50.0)	BOTTOM FLANGE	BOTTOM FLANGE
HS 20-44	Lane	ASD	42.08	44.86	1.169	1.246	29.75	1 - (50.0)	29.75	1 - (50.0)	BOTTOM FLANGE	BOTTOM FLANGE
BRASS-GIRDER - Versi	ion 5.08.03	May. 09	9, 2001									
												Close

April 1, 2002	Section 9A	Page 140 of 140
110111 1, 2002		Page 140 OL 140

COLORADO DEPARTMENT OF TRANSPORTATION LOAD FACTOR RATING SUMMARY				Structure #L-26-BRState highway #50				
Rated using Asphalt thickness: <u>51</u> mm (<u>2</u> in.) Colorado legal loads Interstate legal loads			Batch I.D. Structure type CDTPG Parallel structure #					
Structural member	INTERIOR GIRDER DBL-TEE							
	Metric tons (Tons)							
Inventory	26.4 (29)		()	()	()	
Operating	46.4 (51)		()	()	()	
Type 3 truck	()		()	()	()	
Type 3S2 truck	()		()	()	()	
Type 3-2 truck	()		()	()	()	
Permit truck	78.2 (86)		()	()	()	
Type 3 Truck Interstate 21.8 metric tons (24 tons) Colorado 24.5 metric tons (27 tons) Type 3S2 Truck Interstate 21.8 metric tons (27 tons) Type 3S2 Truck Interstate 21.8 metric tons (24 tons) Colorado 24.5 metric tons (27 tons) State Type 3S2 Truck Interstate 21.8 metric tons (24 tons) Colorado 24.5 metric tons (27 tons) Type 3.2 Truck Interstate 21.8 metric tons (27 tons) Type 3.2 Truck State Type 3.2 Truck Interstate 21.8 metric tons (39 tons) Type 3.2 Truck Interstate 34.5 metric tons (38 tons) Type 3.2 Truck								
							Ö	
Comments								
Load Capacity: 51 Tons Girder: Only Interior Girder Rated								
Color Code: Orang	ge							
Project No: FC 050	- 5(16)							
Rated by	Date	9	Checked by			Date		

Previous editions are obsolete and may not be used

CDOT Form #1187a 1/95