COLORADO DEPARTMENT OF TRANSPORTATION	Section:	10
STAFF BRIDGE	Effective:	July 1, 2002
BRIDGE RATING MANUAL	Supersedes:	July 1, 1995

SECTION 10 - STEEL BRIDGES

10-1 INTRODUCTION TO RATING STEEL BRIDGES

This section together with Section 1, presents the policies and guidelines for rating steel girders. Policies are covered in subsection 10-2, while supporting guidelines are presented in subsections 10-2, 3, and 4.

The types of girders covered by this section are:

CI	Concrete on I-Beam
CIC	Concrete on I-Beam Continuous
CIK	Concrete on I-Beam Composite
CICK	Concrete on I-Beam Continuous and Composite
SBG	Steel Box Girder
SBGC	Steel Box Girder Continuous
SDG	Steel Deck Girder
SDGC	Steel Deck Girder Continuous
SSD	Steel Stringer – Concrete Deck
SSE	Steel Stringer - Earth Filled
SSM	Steel Stringer - Metal Plank Floor
SSMC	Steel Stringer Continuous - Metal Plank Floor
SSS	Steel Stringer - Timber Floor
SSSC	Steel Stringer Continuous - Timber Floor
STG	Steel Through Girder
WG	Welded Girder
WGC	Welded Girder Continuous
WGK	Welded Girder Composite
WGCK	Welded Girder Continuous and Composite

10-2 POLICIES AND GUIDELINES FOR RATING STEEL BRIDGES

I. General

- A. All steel girders (except for girders in Truss Bridges) shall be rated by the VIRTIS program or one acceptable to the CDOT Bridge Branch.
- B. Steel girders with considerable stress/strain effects due to horizontal curvature, skew, temperature, or other influences shall be modeled as simple, straight beams on pin or roller supports. The VIRTIS output results can then be supplemented with hand calculations to consider any of these significant influences, as necessary. Also, when appropriate, steel girders having or lacking horizontal curvature effects and depending on the type of girder to be analyzed, DESCUS I or DESCUS II may also be used to perform the rating.
- C. All steel bridges shall be rated by the load factor method.
- D. Use the minimum design yield strength value (Fy) and the minimum compressive strength of concrete (F'c) from plans.

July 1, 2002	Section 10	Page 2 of 55
--------------	------------	--------------

- E. For SSE, SSM and SSS structure types, it is acceptable to disregard AASHTO's allowable stress reduction formula for unsupported compression flanges. If the condition of the girder indicates that full yield strength should not be used, the rating stresses should be reduced as appropriate.
- F. Steel box girder template has not been incorporated in the current version of Virtis 4.0.4. However, steel box girders can be rated using ½ the single-girder parameters in the analysis. The live load distribution factor and the dead load shall be adjusted accordingly.

II. Girders Requiring Rating

- A. Interior Girders A rating is required for the critical interior girder. More than one interior girder may require an analysis due to variation in span length, girder size, girder spacing, differences in loads or moments, grade of structural steel, etc.
- B. Exterior Girders An exterior girder shall be rated under the following guidelines.

1. When the section used for an exterior girder is different than the section used for an interior girder.

2. When the overhang is greater than S/2.

3. When the plans indicate that the curb and floor slab were poured monolithically, the live load distribution factor for the exterior girder should be calculated and compared to the live load distribution factor (LLDF) for the interior girders. If the LLDF for the exterior girder is equal to or greater than 75% of the LLDF for the interior girders, the exterior girder shall be rated.

4. When the rater determines the rating would be advantageous in analyzing the overall condition of a structure.

III. Calculations

- A. A set of calculations, separate from computer output shall be prepared and submitted with each rating. These calculations shall include derivations for dead loads, derivations for live load distribution factors, and any other calculations or assumptions used for rating.
- B. Dead Loads

1. The final sum of all the individual weight components for dead load calculations may be rounded up to the next 5 pounds.

2. Dead loads applied after a cast-in-place concrete deck has cured shall be distributed equally to all girders and, when applicable, treated as composite dead loads. Examples include asphalt, curbs, sidewalks, railing, etc.

July 1, 2002	Section 10	Page 3 of 55
--------------	------------	--------------

3. Use 5 psf for the unit weight of permanent steel bridge deck forms.

4. Dead loads applied before a cast-in-place concrete deck has cured shall be distributed to the applicable individual supporting girders and treated as non-composite loads. Examples of this type of dead load are deck slabs, girders, stiffeners, splices and diaphragms. The weight of diaphragms may be treated as point loads or as an equivalent uniform dead load for the span under consideration.

EXAMPLE: For two diaphragms (P) at 1/3 points

 $(PL)/3 = M = (wL \times L)/8$

Equivalent uniform load . . . w = (8P)/3L

5. The method of applying dead loads due to utilities is left to the rater's discretion.

IV. Rating Reporting/Package Requirements

The rater and checker shall complete the rating documentation as described in Section 1 of this manual. Additionally, yield strength (Fy) of structural steel used in the analysis and any variation from the original design assumptions shall be added to the Rating Summary Sheet. The rating package requirements shall be per Section 1-13 of this manual and as amended herein:

<u>Consultant designed projects</u> - Before finalizing the rating package and when VIRTIS is used as the analysis tool, the Rater shall verify with the Staff Bridge Rating Coordinator that the version number of the program being used is identical to CDOT'S version number. Data files created using a lower version of the program shall be rejected. It is required for the CDOT data archive, since the data base management feature inside the program would not work satisfactorily. After the analysis is completed, the rater shall save the data file. When saving is finalized, the rater shall export the data file in *.bbd format (i.e., F-17-IE.bbd format; bbd = BRIDGEWare Bridge Data File) on an IBM- compatible 3.5" PC Disk for delivery with the rating package. Also, the version number used during analysis shall be written on the diskette label. This ensures proper importation of bridge data archive by Staff Bridge at a later date.

July 1, 2002	Section 10	Page 4 of 55
--------------	------------	--------------

10-3 GUIDELINES FOR USING THE VIRTIS RATING PROGRAM

The VIRTIS computer program performs the analysis and rating of simple span and multi-span steel girder bridges. It uses the BRASS ASD or the BRASS LFD engine for analysis. This program was developed in accordance with the AASHTO STANDARD SPECIFICATIONS, 16TH EDITION AND THE AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES.

A maximum of thirteen (13) spans can be modeled using the program. Linear or parabolic girder web depth variation over the length of a defined cross-section can be modeled using Virtis. When a structure model is finalized, it can be rated using the ASD or the LFD method. The LRFD rating module is currently being developed and will be available in the future. When a structure model is being generated and before any analysis can be performed, it is recommended that Virtis users save the data to memory periodically. This can be accomplished by using the File and Save feature of this program.

The library explorer can be used to save commonly used items (beam shapes, non standard vehicles, materials, appurtenances etc.) and this eliminates the need for all users to define the same items repeatedly throughout the program. Once a new girder shape is defined or copied from the library, Virtis automatically computes the required section properties and beam constants.

Dead load from the girder self weight, deck slab and appurtenances (i.e. rails, median barrier etc.) are calculated automatically by the program. Dead load from the haunch, wearing surface and stiffener weight (for steel bridges) is defined by the user. For a detailed description of the girder loads, refer to the Opis/Virtis Help Menu index item - dead loads. When a structure is being modeled, the help menu can be activated by using the F1 key if the user requires clarification on a particular item in the GUI window.

In the Live Load Distribution Factor window, when the compute button is used to calculate the DF's automatically by the program, Virtis users shall verify that these numbers are accurate and matches their calculated numbers.

All Colorado BT girder shapes, W-beam shapes, the Colorado permit vehicle, the Colorado posting trucks, and the Interstate posting trucks have been added to the Virtis library explorer and may be copied by the user. The Staff Bridge Rating Coordinator shall be responsible for updating existing information or adding new information (i.e. beam shapes, vehicles, etc.) to the library explorer.

The configuration browser provides access to the configuration features of Virtis. It may be employed to provide specific access privileges, i.e. read, write, delete etc., to the users. This feature is extremely powerful, since Virtis/Opis uses and shares the bridge data from one common source. Therefore, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

July 1, 2002	Section 10	Page 5 of 55
--------------	------------	--------------

10-4 RATING STEEL BRIDGES WITHOUT PLANS

It is possible that the only information a rater may have to rate an old steel bridge is field measurements of the members and the directions of the AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES 1994, Second Edition. A convenient source of beam information is the book titled "Historical Record-Dimensions and Properties-Iron and Steel Beams 1873 to 1952", published by the American Institute of Steel Construction (AISC). This book can help the rater determine the approximate year the beams were rolled. The rater can then determine the section properties and the allowable stresses to be used to rate the steel beams.

July 1, 2002	Section 10	Page 6 of 55
--------------	------------	--------------

10-5 STEEL GIRDER BRIDGE RATING EXAMPLE

One example is presented in this section. Structure N-17-BP is a two (2) span continuous composite welded girder bridge with a skew of 0° degrees. Note that the girder web varies linearly near the pier. For simplicity, only the interior girder has been modeled for this structure.

One curved welded girder example using Descus-I will be presented at a later date.

Also, one curved welded box girder example using Descus-II will be presented at a later date.

July 1, 2002	Section 10	Page 7 of 55
--------------	------------	--------------

Slab Rating Program Input, Structure No. N-17-BP

💐 WinSlab Inpu	ıt		_ 🗆 🗙
Structure Number:	N-17-BP	Rater:	МН
Batch ID:		Comments:	LFD
Highway Number:	25	Load Type:	2=Interstate 🚍
Deadload	Rituminous Ou	odau (in):	<u> </u>
	Dicuminous ov	enay (in). [4	
Geometry			
Effective Span (ft):	8.25	Actual Slab Thickn	ess 8.5
Reinforcing Ste	el:		
Are	ea (sqin)	Distance (in)	For definitions of input values please refer to the
Top: 0.8	31	5.625	CDOT Bridge Rating Manual
Bottom: 0.8	31	1.38	
Materials Prope	rties		
Concrete f'c (PSI):	4500	Steel Fy (PSI):	40000
or Inv Fc (Workin	g Stress)	or Inv Fs (Workir	ng Stress)
Modular Ratio (Leave blank for load factor):			
OK Cancel Apply Output to File			

Effective Span Length: Per AASHTO Article 3.24.1.2(b)

Clear distance between flanges + 1/2 flange width = (105-12)+1/2(12)=93.0''=8.25'

July 1, 2002	Section 10	Page 8 of 55
--------------	------------	--------------

Slab Rating Program Output, Structure No. N-17-BP

WinSlab Rating Version 1 Date: 2/20/2002 Structure NO. N-17-BP Rater: MH State HWY NO. = 25 Batch ID= Description: LFD LOAD FACTOR RATING-COMP STEEL NOT USED INPUT DATA Bituminous Overlay(in) = 4.000 Eff. Span(ft) =8.250 Slab Thickness(in) = 8.500 Top Reinf. (sq.in) = 0.81 Eff. Depth(in) = 5.625 Bottom Area(sq.in) = 0.81 Bottom Dist.(in) = 1.38 Conc. Strength(PSI) Inv = 4500 Oper. = 4500 Steel Yield (PSI) Inv = 40000 Oper. = 40000 Modular Ratio = 8 Dead Load Moment 1.05 K-Ft 5.33 K-Ft LL+T Moment Gross Weight 36.0 Tons Inventory Operating Actual Concrete Stress (PSI) 1141.11 1775.74 19303.62 30039.23 Actual Reinf. Steel Stress (PSI) Actual Comp. Steel Stress (PSI) 4306.93 6702.21 Member Capacity (K-Ft) 12.81 12.81 Member Capacity (LL+I) (K-Ft) 11.45 11.45 Rating (Tons) 35.68 59.47

Virtis Bridge Rating Example, Structure No. N-17-BP

Effective slab width: Per AASHTO Article 10.38.3.1

0.25(L)= 0.25(114.167*12)= 342.5" 12*(t) = (12*8.5)= 102" Controls C.L. - C.L. of girder= 8.75'= 105"

Distribution Factor:

Interior Girder (Multi-Lane) = S/5.5 = 8.75/5.5 = 1.591
Interior Girder (Single-Lane) = S/7.0 = 8.75/7.0 = 1.250
Exterior Girder = [(8.75+0.5)+3.25]/8.75 = 1.428

Dead Load:

HBP = 4''

Curb = (8/12)*(1.25)*(150) = 125 lb/ft

Rail: Assumed 38 Posts @ 70.55 Lbs each Posts = 38*(70.55)/228.33 = 11.74 Lb/ft Channel = 40.68 Lb/ft 3A Rail = 7.81 Lb/ft

 Σ = 60.23 Lb/ft ~ 0.060 Kip/ft

July 1, 2002	Section 10	Page 9 of 55
—		5

Interior (D-2 on plan sheet) Diaphragms:

Angles L3x3x5/16 @ 6.1 lb/ft Length = 2(8.75)+2(5.71)=28.92'Weight = (28.92)*(6.1) = 176.41 Lbs Stiffener Plate 5x5/16x4.5'Weight = 2(5.32)(4.5) = 47.88 Lbs $\Sigma = 224.29$ Lbs ~ 0.225 Kips

Pier (D-2 on plan sheet) Diaphragm:

Angles L3x3x5/16 @ 6.1 lb/ft Length = 2(8.75)+2(5.71)=28.92'Weight = (28.92)*(6.1) = 176.41 Lbs Stiffener Plate 9x1x7.135'Weight = 2(30.625)(7.135) = 437.04 Lbs $\Sigma = 613.40$ Lbs ~ 0.614 Kips

End (D-1 on plan sheet) Diaphragms:

Angles L3.5x3.5x5/16 @ 7.2 lb/ft Length = 2(9.839)=19.68'Weight = (19.68)*(7.2) = 141.70 Lbs Stiffener Plate 6.5x5/8x4.5'Weight = 2(13.817)(4.5) = 124.3 Lbs $\Sigma = 266.0$ Lbs ~ 0.266 Kips

Intermediate Stiffeners:

Assumed length = depth of web = 54"; Neglect longer stiffeners in girder taper Stiffener Plate 5x5/16x4.5' @ 5.32Lbs/ft = 23.94 Lbs each 21 Stiffeners/Span = 21*(23.94)/114.167 = 4.4 Lbs/ft

Longitudinal Stiffeners:

Stiffener Plate 4.5x5/16 = 4.79 Lbs/ft Stiffener Plate 3.5x5/16 = 3.72 Lbs/ft Average Weight = 4.2 Lbs/ft Σ Transverse + Longitudinal Stiffeners = 4.4+4.2 = 8.6 Lbs/ft ~ 0.009 Kip/ft

July 1, 2002	Section 10	Page 11 of 55
--------------	------------	---------------

Virtis Bridge Rating Example, Structure No. N-17-BP (contd.)

🕰 S	chematics	: Framing Pla	an View								_ 🗆 🗙
Pa	Q 🖽 🕅	¥ ∺									
	+		052		_,	•		0.92			×
				 			_		 		
2				2						2	
2	~~···	6		2		Lacent.				ž	
2				2						ž	
2				2						2	
L.											
											•

July 1, 2002	Section 10	Page 12 of 55
--------------	------------	---------------

From the bridge explorer, create a new bridge and enter the following information.

🗛 N-17-BP				_ 🗆 🗡
Bridge ID: N-17-BP	NBI Structure	ID (8): N-17-BP	☐ Tem ☑ Desi	plate ign Only
Name:	WGCK Structure		Year Built:	1982
Description:	2-span walk structure ov Asphalt thickness 4".	er muerrano hiver. This s	structure is 231 long an	ia jo wide.
Location:			Length: 231.00	<u>.</u> ft
Facility Carried (7):	1-25	Route	Number: -1	
Feat. Intersected (6): Units:	US Customary	Recei	Mi. Post: 100.4 nt ADTT:	
			OK Apply	Cancel

Click OK. This saves the data to memory and closes the window.

NOTE: Since Virtis uses a common/shared database, it is required that users of this program create a folder from the bridge explorer window (EXAMPLE: MY FOLDER OR YOUR LAST NAME) before creating the model for a new structure.

July 1, 2002	Section 10	Page 13 of 55
--------------	------------	---------------

To add a new structural steel material, click on Materials, Structural Steel, in the tree and select File/New from the menu (or right click on Structural Steel and select New). Click Copy from Library button and select the appropriate structural steel from the library. Click OK and the following window will open. Click OK to save this structural steel material to memory and close the window.

🕰 Bridge Materials	- Structural Steel				_ 🗆 ×
<u>N</u> ame: AST	M A588 - <= 4'', Fy = 50 ksi	De <u>s</u> cription:	ASTM A58	8 - 4'' and under, Fy=50 ks	si
	ł	Material Properties			
	Specified minimum yield :	strength (Fy) = 50.0	00	ksi	
	Specified minimum tensile :	strength (F <u>u)</u> = 70.0	00	ksi	
	Coefficient of therma	al expansion = 0.00	00065000	1/F	
		<u>D</u> ensity = 0.49	00	kcf	
	Modulus of	elasticity (<u>E)</u> = 2900	00.00	ksi	
	Co	opy from Library	ОК	Apply	Cancel

Using the same techniques, create the following Concrete Materials and Reinforcing Steel Materials. The windows are shown in the following page.

🕰 Bridge Materials - Concrete		
Name: Class D(US) Des	cription: Colorado	Deck Concrete
Compressive strength at 28 days (f'c) =	4.500	ksi
Initial compressive strength (f'ci) =		ksi
<u>C</u> oefficient of thermal expansion =	0.0000060000	1/F
<u>D</u> ensity (for dead loads) =	0.150	kof
Density (for modulus of elasticity) =	0.150	kcf
Modulus of elasticity (Ec) =	3824.00	ksi
Initial modulus of elasticity =	0.00	ksi
<u>P</u> oisson's ratio =	0.200	
Co <u>m</u> position of concrete =	Normal	
Modulus of <u>r</u> upture =	0.503	ksi
<u>Shear factor =</u>	1.000	
Copy from Libr	ary OK	(Apply Cancel

🕰 Bridge Materials - Reinforcing Steel	
<u>N</u> ame: Grade 60	Description: 60 ksi reinforcing steel
h	laterial Properties
Specified yield s	rength (Fy) = 60.000 ksi
Modulus of el	asticity (<u>E</u> s) = 29000.00 ksi
Ultimate at	<i>ength (F<u>u</u>)</i> = 90.000 ksi
	e Plain DEpo <u>xy</u> D <u>G</u> alvanized D <u>O</u> ther
	Copy from Library OK Apply Cancel

July 1, 2002	Section 10	Page 15 of 55
--------------	------------	---------------

To enter the appurtenances to be used within the bridge, expand the explorer tree labeled Appurtenances. Right mouse click on Parapet in the tree, and select New. Fill in the parapet properties as required. Click OK to save the data to memory and close the window.

🕰 Bridge App	urtenances - Parapet	
Name: Description:	Bridge Rail Type 3 2-Rails All dimensions are in inches	
Refe	7.5000 Additional Load = 0.060 kip/ft 0.0000 15.0000 ence Line Back Front 8.0000	Parapet unit weight = 0.1500 kcf Calculated Properties Net centroid (from reference line) = 7.500 in Total weight = 0.185 kip/ft
	Copy from Library	OK Apply Cancel

July 1, 2002	Section 10	Page 16 of 55
--------------	------------	---------------

Double click on Impact/Dynamic Load Allowance in the tree. The Bridge Impact window shown below will open. Accept the default values by clicking OK.

💁 Bridge Impact / Dynamic Load Allowance 📃 🔲 🗙
C Standard Impact Factor
For structural components where impact is to be included per AASHTO 3.8.1, choose the impact factor to be used:
Standard AASHTO impact I = L + 125
O Modified impact = times AASHTO impact
O Constant impact override =
LRFD Dynamic Load Allowance
Eatigue and fracture limit states: 15.0 %
All other limit states: 33.0 🕺
OK Apply Cancel

July 1, 2002	Section 10	Page 17 of 55
--------------	------------	---------------

Click on Factors, right mouse click on LFD and select New. The LFD-Factors window will open. Click the Copy from Library button and select the 1996 AASHTO Standard Specifications from the library. Click Apply and then OK to save data to memory and close the window.

Fac	tors - LF	D						_ 🗆
	<u>N</u> ame:	1996 AASH1	FO Std. Specific	ations				
<u>D</u> e:	scription:	AASHTO Sta Edition, 1996	andard Specific 5 including 1997	ations for Highw 'Interim Specific	vay Bridges, 16th 2 cations			
Load	d Factors	Resistance	Factors					
[Load	Camma						
	Group	Factor	D	(L+I)n	(L+l)p	CF	E	в
1	INV	1.300	1.000	1.670	0.000	1.000	1.000	1.000
- [OPG	1.300	1.000	1.000	0.000	1.000	1.000	1.000
	<u>.</u>				1			×
					Copy from Library.	ОК	Apply	Cancel

July 1, 2002	Section 10	Page 18 of 55
--------------	------------	---------------

Double click on SUPERSTRUCTURE DEFINITION (or click on SUPERSTRUCTURE DEFINITION and select File/New from the menu or right mouse click on SUPERSTRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

Nev	• Structure Definiti	on 🗙
	Structure Type	Description
	Girder-line Girder system	A structure definition describing one of more girders. The girders do NO A structure definition describing one of more girders. The girders do hav
	•	
		Cancel

July 1, 2002	Section 10	Page 19 of 55
--------------	------------	---------------

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below. Press F1 while on this tab to view the help topic describing the use of this information.

🕰 Girder System Supers	structure Definition			_ 🗆 ×
Definition Analysis				
<u>N</u> ame:	2 Span - 5 Girder System			Frame Structure Simplified Definition
<u>D</u> escription:	Spans 114'-2'', 114'-2''		×	
Default <u>U</u> nits:	US Customary	Enter Span <u>L</u> engths Along the Beference		- For PS only
Number of <u>s</u> pans:	2	Line:		Average <u>h</u> umidity:
Number of girders:	5 📑	Span Length (ft)		~ ~ ~
	Deck type: Concrete	1 114.17 2 114.17		Member Alt. Types Steel P/S R/C Timber
			ОК [Apply Cancel

July 1, 2002	Section 10	Page 20 of 55
--------------	------------	---------------

The partially expanded Bridge Workspace tree is shown below:

July 1, 2002	Section 10	Page 21 of 55
--------------	------------	---------------

The Analysis tab in the Girder System Superstructure Definition window is used to override system default factors. Since default factors are used here, click OK to save the data to memory and close the window.

🕰 Girder System Superstructure Definition	_	
Definition (Analysis)		
Factor Override		
LFD factors:		

July 1, 2002	Section 10	Page 22 of 55
--------------	------------	---------------

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to the LFD design and the second type applies to the LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

Load Case Name	Description	Stage		Тура	Э	Time* (Days)			
HBP		Composite (long term) (Stage 2)	-	D,DW					
Bridge Rail Type 3		Composite (long term) (Stage 2)	-	D,DC	-				
Prestressed members only	Add Do Case D	efault Load Descriptions	N	ew		Duplic	ate	Delete	
*Prestressed members only	Add D Case D	efault Load Descriptions	N	ew		Duplic	ate	Delete	

July 1, 2002	Section 10	Page 23 of 55
--------------	------------	---------------

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan.

a	Structure Frami	ing Plan Detail:	;					
	Layout Diaphrag	gms)	Number	r of spans :	= 2	Number of (girders = 5	
	Support	Skew (Degrees) 0.0000		àirder Spac ● Perpen ● Along s	cing Orient dicular to g upport	tation girder		
	3	0.0000			Girde	er Spacing (ft)		
			GI	rder Bay-	Start of Girder	End of Girder		
L				1	8.75	8.75		
L				2	8.75	8.75		
L				3	8.75	8.75		
L	· ·			4	8.75	8.75		
						ок 1		Cancel
						UK .	C	Cancer

July 1, 2002	Section 10	Page 24 of 55
--------------	------------	---------------

Switch to the Diaphragms tab to enter diaphragm spacing. Enter the following diaphragms data for Girder Bay 1:

Structure	e Framing Plan	Details							_ [
august (T)ianhranms]		N	umber of sp	ans = 2	Number of girde	rs = 5		
Girder Ba	ay: 1	•	Сору Вау То		Diaphragm Wizard				
Support	Start D	istance ft)	Diaphragm Spacing	Number of	Length	End Dis (fi	stance t)	Load	
Number	Left Girder	Right Girder	(ft)	Spaces	(π)	Left Girder	Right Girder	(кір)	
1 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	0.2660	
1 🔽	0.00	0.00	22.83	4	91.33	91.33	91.33	0.2250	
2 🔽	0.00	0.00	0.00	1	0.00	0.00	0.00	0.6140	
2 🔽	0.00	0.00	22.83	4	91.33	91.33	91.33	0.2250	
2 🔽	91.33	91.33	22.83	1	22.83	114.17	114.17	0.2660	
						Nev	v Duplic	ate Delete	•
							OK .	Apply C	ancel

Click the Copy Bay To button to copy the diaphragms entered for Bay to the other bays. The following dialog box will appear. Click Apply to copy the diaphragms to girder bay 2. Repeat the same techniques for girder bay 3 and 4.

Copy Diaphragm Bay		×
Select the new bay:	2	•
C	Apply	Cancel

Select OK to close Structure Framing Plan Details window.

July 1, 2002	Section 10	Page 25 of 55
--------------	------------	---------------

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

🕰 Structure Typical Sec	tion					_ 🗆 ×
	Distance from left e superstructure defir	dge of deck to hition ref. line Deck + thickness	Distance from right e superstructure definit Superstructure De Reference Line	dge of deck to ion ref. line efinition		
Left overhang					ght overhang	
Deck Deck (Cont'd) Superstructure definiti	Parapet Median	Railing Generic within	Sidewalk Lane P	osition Wearing S	Surface	
Distance from left edg superstructure definition	je of deck to on reference line =	Start 20.25 ft	20.25	ft		
Distance <u>f</u> rom right ed superstructure definitio	lge of deck to on reference line =	20.25 ft	20.25	ft		
	Left overhang =	2.75 ft	2.75	ft		
Compute	d right overhang =	2.75 ft	2.75	ft		
				ОК	Apply	Cancel

July 1, 2002	Section 10	Page 26 of 55
--------------	------------	---------------

The Deck (Cont'd) tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described previously.

A Structure Typical Section	_ 🗆 ×
Distance from left edge of deck to superstructure definition ref. line Deck thickness thickness	
Left overhang	
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface	
Deck concrete: Class D(US)	
Total deck thickness: 8.5000 in	
Deck <u>c</u> rack control parameter: 130.000 kip/in	
Sustained modular ratio factor: 3.000	
ОК (Арру) С	ancel

July 1, 2002	Section 10	Page 27 of 55
--------------	------------	---------------

Parapets:

Add two parapets as shown below.

🕰 Stru	icture Typical Se	ection											_ 🗆
Dec	Back Front Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Wearing Surface												
	Name		Load Ca:	se		Measure	То	Edge of Der Dist. Measur From	ck red	Distance At Start (ft)	Distance At End (ft)	Front F Orients	ace ition
Br	idge Rail Type 3 🚦	🚽 Brid	e Rail Type 3		•	Back	-	Left Edge	-	0.00	0.00	Right	-
Br	idge Rail Type 3 📘	🚽 Brid	e Rail Type 3		•	Back	-	Right Edge	-	0.00	0.00	Left	-
										New OK	Duplicate	De	lete Cancel

July 1, 2002 Section 10 Page 28 of 5	55
--------------------------------------	----

Lane Positions:

Select the lane position tab and use the Compute... button to compute the lane positions. A dialog showing the results of the computation opens. Click Apply to accept the computed values. The Lane Position tab is populated as shown below.

A Structure T	pical Section			_ 🗆 ×				
(A) B Superstructure Definition Reference Line Travelway 1 Travelway 2 J J J J J J J J J J J J J J J J J J								
Travelway Number	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At Start (B) (ft)	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At End (B) (ft)				
1	-19.00	19.00	-19.00	19.00				
LRFD Fatig Lanes av	gue ailable to trucks: e Truck fraction:	Compute	New OK	Duplicate Delete				

July 1, 2002	Section 10	Page 29 of 55
--------------	------------	---------------

Enter the following wearing surface information on the Wearing Surface tab.

🕰 Structure Typical Sec	ction			_ 🗆 🗡
	Distance from left edge of deck to superstructure definition ref. line Deck thickness	Distance from right edge of superstructure definition ref Superstructure Definitio Reference Line	f deck to f. line n	
Left overhang		-	k Right overhang	
Deck Deck (Cont'd)	Parapet Median Railing Generi	c Sidewalk Lane Position	n Wearing Surface	
Wearing surface m	naterial: BituminousPavement			
<u>D</u> esc	cription:			
Wearing <u>s</u> urface thick	kness = 4.0000 in			
Wearing surface d <u>e</u>	ensity = 144.000 pcf			
Load	d <u>c</u> ase: HBP	•	Copy from Library	
			ОК	Cancel

July 1, 2002	Section 10	Page 30 of 55
--------------	------------	---------------

Double click on the Structure Loads tree item to define the DL Distribution. Select the required DL Distribution. Click OK to save this information to memory and close the window.

niform Temperature Gradient Temperature Wind DL Dist	ribution		
Stage 1 Dead Load Distribution Stage 1 Dead Load Distribution By tributary area]		
C By transverse simple-beam analysis			
C By transverse continuous-beam analysis			
$^{\circ}$ User input results from independent 3 <u>D</u> elastic analysis			
- Stage 2 Dead Load Distribution]		
C By tributary <u>a</u> rea			
C By transverse simple-beam analysis			
C By transverse continuous-beam analysis			
C User input results from independent 3D elastic analysis			
	J		

July 1, 2002	Section 10	Page 31 of 55
--------------	------------	---------------

Expand the Stiffener Definitions tree item and double click on Transverse. Define the stiffener as shown below. Click OK to save to memory and close the window.

🕰 Transverse Stiffener Definition	
Image: Transverse Stiffener Definition Name: Diaphragm conn. Plates D2 Stiffener Type Single Plate Thickness 0.3125 Material ASTM A588 - <= 4", Fy = 50 ksi	Top Gap: 5.0000 in 5.0000 in Bottom Gap: in in i
Lop Web Bottom	OK Apply Cancel

July 1, 2002	Section 10	Page 32 of 55
--------------	------------	---------------

Name: Transve	rse Stiffener		
-Stiffener Type-		l op Gap:	
Single		j in	
O Pair			
- Plate		5.0000 in	\leftrightarrow
Thickness	0.3125 in		
Material	ASTM A588 - <= 4'', Fy = 50 ksi 🔽	Bottom Gap:	
		in in	
-Welds			
Ζαρ			
<u>W</u> ab	·		
<u>B</u> ottom	▼		

Similarly, define bearing stiffeners by double clicking on Bearing in the tree. Click OK to save to memory and close the window.

July 1, 2002	Section 10	Page 33 of 55

lame: Bearin	g Stiffener Abut. D1	in	≯ 	
Thickness	0.6250 in	1.0000 in		
Material	ASTM A588 - <= 4", Fy =	501- 6.5000 in		
Welds <i>ap</i>				
<u>W</u> ab		1.0000 in		
<u>B</u> ottom		in	≯₭ <u>≯</u>₭ 1.0000 in	

🕰 Bearing Stiffe	ener Definition			_ 🗆 🗡
Name: Bearin	ng Stiffener Pier D3	in	≯K ≯K ^{1.0000} in	
- Plate Thickness	1.0000 in	1.0000 in		
Material	ASTM A588 - <= 4'', Fy = 50 I ▼	9.0000 in		
-Welds		1.0000 :		
<u>W</u> eb <u>B</u> ottom	·			
		j n	in <u>in an an</u> n	
			OK Apply	Cancel

July 1, 2002	Section 10	Page 34 of 55
		-

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

🕰 Member						_ 🗆 🗵
Member name:	G2		Link with:	None	•	
<u>D</u> escription:						
	Eviction Current	Mombor Attornative News	Description		_	
	Existing Current	Member Alternative Name	Description			
Number of commu	2 🖂				Dedection lands	
Number of spans.	- <u>-</u>	Span Span No Length	-		Eedestrian load.	ID/IT
		(ft) 1 114.17				
		2 114.17				
					OK Apply	Cancel

July 1, 2002	Section 10	Page 35 of 55
--------------	------------	---------------

Double click on Supports to define support constraints for the girder. Support constraints were generated when the structure definition was created and are shown below. Click OK to save data to memory and close the window.

upports				
	z	•× <u>~</u> 1		2
ieneral	Elastic			
Support Number	Support Type	Translation X	Constraints Y	Rotation Constraints Z
1	Pinned 🔽 Roller 🔽		ঘ	
3	Roller 🔽		<u>।</u>	
			Ok	Cancel

Defining a Member Alternative:

Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select steel for the Material Type and Plate for the Girder Type.

New Member Alternative	×
Material Type:	Girder Type:
Steel 🔽	Plate 🔽
Г	OK Cancel

Click OK to close the dialog and create a new member alternative.

July 1, 2002	Section 10	Page 36 of 55
--------------	------------	---------------

Member Alternative: Plate Gir	ler	
Description Factors Engine I	mport	
Description:	×.	Material Type: Steel Girder Type: Plate Default Units: US Customary 💽
Girder property input method Schedule based C Cross-section based	End bearing locations Left: 6.0000 in Right: 6.0000 in	Analysis Module ASD: BRASS ASD LFD: BRASS LFD LBFD: BRASS LFD
Additional Self Load Additional sel <u>f</u> load = 0.0 Additional self l <u>o</u> ad =	09 kip/ft LFD	ethod:

July 1, 2002	Section 10	Page 37 of 55
--------------	------------	---------------

Now re-open the Member G2 window, we will see this Member Alternative designated as the existing and current member alternative for this Member.

🕰 Member						
Member name:	G2		Link with:	None	•	
Description:					A	
					<u>v</u>	
	Existing Current	Member Alternative Name	Description			
		Flate Officer				
<u>N</u> umber of spans:	2 🛓	Span	-		Pedestrian load:	lb/ft
		No. Length				
		1 114.17				
		2 114.17				
					ок Арру	Cancel

July 1, 2002	Section 10	Page 38 of 55
--------------	------------	---------------

Double click on Live Load Distribution to enter live load distribution factors. Click the Compute from Typical Section button to compute the live load distribution factors. The distribution factors are computed based on the AASHTO Specifications, Articles 3.23. Click Apply and then OK to save data to memory and close the window.

Lanes		Distribution (Whee	n Factor els)			
Loaded	Shear	Shear at Supports	Moment	Deflection		
1 Lane	1.250	1.314	1.250	0.400		
Multi-Lane	1.591	1.857	1.591	1.080		

July 1, 2002	Section 10	Page 39 of 55
--------------	------------	---------------

Double click on Girder Profile in the tree to describe the girder profile. The window is shown below with the data describing the web.

iirder Pro	ofile									-
pe: Plate	e Girder	I B	ottom Fla	20 7 0						
Begin Depth (in)	Depth Va	iry	End Depth (in)	Thickness (in)	Supp Numt	ort oer	Start Distance (ft)	Length (ft)	End Distance (ft)	Material Weld at Right
54.0000	None	-	54.0000	0.3125	1	-	0.00	102.17	102.17	ASTM A588 - <= 4", Fy = 50 ksi 🔽 🗾
54.0000	Linear	-	85.6250	0.3125	1	-	102.17	12.00	114.17	ASTM A588 - <= 4", Fy = 50 ksi 🔽 📃 🔽
85.6250	Linear	-	54.0000	0.3125	2	-	0.00	12.00	12.00	ASTM A588 - <= 4", Fy = 50 ksi 🔽 📃 🔽
54.0000	None	-	54.0000	0.3125	2	-	12.00	102.17	114.17	ASTM A588 - <= 4", Fy = 50 ksi 🔽 📃
										New Duplicate Delete

July 1, 2002	Section 10	Page 40 of 55
--------------	------------	---------------

Describe the flanges as shown below.

irder F	Profile ate Gin	: der	_								
/eb	Top Fl	ange Boti	tom Fl	ang	je						
Begin Width (in)	End Width (in)	Thickness (in)	Supp Numl	ort ber	Start Distance (ft)	Length (ft)	End Distance (ft)	Material	Weld	Weld at Right	
12.00	12.00	0.6250	1	-	0.00	83.00	83.00	ASTM A588 - <= 4", Fy = 50 ksi 📘	-		
18.00	18.00	1.0000	1	-	83.00	31.17	114.17	ASTM A588 - <= 4", Fy = 50 ksi 📘	-		
18.00	18.00	1.0000	2	-	0.00	31.17	31.17	ASTM A588 - <= 4", Fy = 50 ksi 📘	-		
12.00	12.00	0.6250	2	-	31.17	83.00	114.17	ASTM A588 - <= 4", Fy = 50 ksi 📘			
								New	Dupl	icate	Delete
								0	к [Apply	Cance

Begin Width (in)	End Width (in)	Thickness (in)	Supp Num	ort ber	Start Distance (ft)	Length (ft)	End Distance (ft)	Material	Weld	Weld at Right	
12.00	12.00	0.6250	1	-	0.00	12.00	12.00	ASTM A588 - <= 4", Fy = 50 ksi 💌			
18.00	18.00	1.0000	1	-	12.00	102.17	114.17	ASTM A588 - <= 4", Fy = 50 ksi 🔽			
18.00	18.00	1.0000	2		0.00	102.17	102.17	ASTM A588 - <= 4", Fy = 50 ksi 🔽			
12.00	12.00	0.6250	2	•	102.17	12.00	114.17	ASTM A588 - <= 4", Fy = 50 ksi 🔽			

July 1, 2002	Section 10	Page 41 of 55
--------------	------------	---------------

Double click on Deck Profile and enter data describing the structural properties of the deck. The deck concrete and reinforcement windows are shown below.

eck Profile										-
pe: Plate Deck Concrete Reinforcement Shear Connectors										
Material		Supp Numl	ort oer	Start Distance (ft)	Length (ft)	End Distance (ft)	Structural Thickness (in)	Effective Flange Width (Std) (in)	Effective Flange Width (LRFD) (in)	n
Class D(US)	-	1	-	0.00	87.75	87.75	8.5000	102.0000	105.0000	
Class D(US)	-	1	-	87.75	52.83	140.58	8.5000	102.0000	105.0000	
Class D(US)	•	2	•	26.42	87.75	114.17	8.5000	102.0000	105.0000	
							<u> </u>	ок [[Cance

Deck Profi	le												-	
vpe: Plate]										
Deck Concr	ete	Reinforcemer	it	Shear Cor	nnectors	\$								
Materia	al	Support Num	oer	Start Distance (ft)	Length (ft)	End Distance (ft)	Bar Count	Bar Size	Distance (in)	Row				
Grade 60	-	1	-	68.67	45.50	114.17	7.000	8 🔽	3.7500	Top of Slab	-			
Grade 60	-	1	-	68.67	45.50	114.17	6.000	5 🔽	3.5625	Top of Slab	-			
Grade 60	-	2	-	0.00	45.50	45.50	7.000	8 🔽	3.7500	Top of Slab 📘	-			
Grade 60	-	2	-	0.00	45.50	45.50	6.000	5 🔽	3.5625	Top of Slab 📘	-			
										New		Duplicate	Delete	

July 1, 2002	Section 10	Page 42 of 55
--------------	------------	---------------

Composite regions are described using the Shear Connectors tab as shown below.

D	eck	Pro	file								
Typ D(e: eck (Plati	e crete Re	inforcer	nent She	ar Connectors					
	Supp Num	oort ber	Start Distance (ft)	Length (ft)	End Distance (ft)	Connector ID		Number per Row	Number of Spaces	Transverse Spacing (in)	
	1	-	0.00	28.00	28.00	7/8" Dia x 6 in Studs	-	2	28	9.0000	
	1	-	28.00	51.25	79.25	7/8" Dia x 6 in Studs	-	2	41	9.0000	
	1	-	79.25	8.50	87.75	7/8" Dia x 6 in Studs	-	2	17	9.0000	
	2	-	26.42	8.50	34.92	7/8" Dia x 6 in Studs	-	2	17	9.0000	
	2	•	34.92	51.25	86.17	7/8" Dia x 6 in Studs	-	2	41	9.0000	
	2	-	86.17	28.00	114.17	7/8" Dia x 6 in Studs	-	2	28	9.0000	
										New	v Duplicate Delete
											OK Apply Cancel

July 1, 2002	Section 10	Page 43 of 55
--------------	------------	---------------

Double click on Haunch Profile in the tree to define the haunch profile. Check the box 'embedded flange' if the top flanges of the girder is embedded in the concrete haunch.

🕰 Haunch Profile								_ 🗆 ×
Haunch Type:	🗹 En	nbedded flange						
	Ţ		<u>Y1</u> <u>Z1</u> <u>Z2</u>					
	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Z1 (in)	Z2 (in)	Y1 (in)	
<u>↓</u>	1 🔽	0.00	83.00	83.00	6.0000	6.0000	1.8750	
┙╵╷╪╾╱║	1 🔽	83.00	31.17	114.17	6.0000	6.0000	1.5000	
	2 🔽	0.00	31.17	31.17	6.0000	6.0000	1.5000	
×	2 🔽	31.17	83.00	114.17	6.0000	6.0000	1.8750	
						New OK	Duplicate Apply	Delete Cancel

July 1, 2002	Section 10	Page 44 of 55
--------------	------------	---------------

Regions where the hardened concrete deck slab is considered to provide lateral support for the top flange are defined using the Lateral Support window.

🕰 La	iteral Supp	port			
	 ₽	Start Distar	ice L	_ength	
	Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	
	1 🔽	0.00	114.17	114.17	
		0.00	114.17	117.17	New Duplicate Delete
					OK Apply Cancel

July 1, 2002	Section 10	Page 45 of 55
--------------	------------	---------------

Define stiffener locations using the Stiffener Ranges window shown below.

💫 Stiffener Ranges							_ 🗆
Transverse Stiffener Ranges	ance	Spacing _▶	s]				
Name	Support Number	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	
Apply at Stiffe Diaphragms Diaph	Apply at Diaphragms New Duplicate Delete						
					OK A	Apply Ca	ancel

July 1, 2002	Section 10	Page 46 of 55
--------------	------------	---------------

Click on the Apply at Diaphragms... to open the following dialog box. Select the Diaphragm connection Plates D2 as the stiffener to be applied at interior diaphragms.

Diaphragm Connection Plates	×
Apply the following stiffener definitions to the diaphragm locations:	
End Diaphragms and Diaphragms At Piers	
Bearing Stiffener: Bearing Stiffener Abut. D1	
]
- Interior Diaphragms	1
Transverse Stiffener: Diaphragm conn. Plates D2	
Applu	Cancel
Арру	Lancel

Selecting Apply button will create the following transverse stiffener locations.

July 1, 2002	Section 10	Page 47 of 55
--------------	------------	---------------

Start Distance								
ansverse Stiffener Ranges L	ongitu	dinal	Stiffener Range:	5				
Name	Sup Nur	port iber	Start Distance (ft)	Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	
Diaphragm conn. Plates D2 🗖	1	-	22.833000	1	0.0000	0.00	22.83	
Diaphragm conn. Plates D2 📘	1	-	22.833000	3	273.9960	68.50	91.33	
Diaphragm conn. Plates D2 🗖	2	-	22.833000	1	0.0000	0.00	22.83	
Diaphragm conn. Plates D2 📘	2	-	22.833000	3	273.9960	68.50	91.33	
Apply at Stiffeners between Diaphragms New								

This structure has intermediate transverse stiffeners between diaphragms. Click on the Stiffeners between Diaphragms... button to open the following window.

July 1, 2002	Section 10	Page 48 of 55
--------------	------------	---------------

Enter the appropriate stiffener data i.e., the number of equal spaces between diaphragms and the stiffener definition.

	D)iaphragms		Stiffeners			
Girder Bay	Support Number	Start Distance (ft)	Spacing (ft)	End Distance (ft)	Number of Equal Spaces	Stiffener Definition	
Both Sides	1 💌	0.00	22.83	22.83	5	Transverse Stiffener	-
oth Sides	1 🔽	22.83	22.83	45.67	4	Transverse Stiffener	-
oth Sides	1 💌	45.67	22.83	68.50	4	Transverse Stiffener	-
oth Sides	1 💌	68.50	22.83	91.33	4	Transverse Stiffener	-
Both Sides	1 💌	91.33	22.84	114.17	8	Transverse Stiffener	-
oth Sides	2 💌	0.00	22.83	22.83	8	Transverse Stiffener	-
oth Sides	2 💌	22.83	22.83	45.67	4	Transverse Stiffener	-
oth Sides	2 💌	45.67	22.83	68.50	4	Transverse Stiffener	-
loth Sides	2 💌	68.50	22.83	91.33	4	Transverse Stiffener	-
loth Sides	2 🔻	91.33	22.83	114.17	5	Transverse Stiffener	•

Click the Apply button.

July 1, 2002	Section 10	Page 49 of 55
--------------	------------	---------------

The populated Transverse Stiffener Ranges window is shown below. Click on the Apply button to save the data to memory.

Start Dis	tance		Spacing					
ansverse Stiffener Ranges L Name	.ongit Su Nu	udin Ippol Imbe	al Stiffener Range t Start r Distance r (ft)	s Number of Spaces	Spacing (in)	Length (ft)	End Distance (ft)	-
Transverse Stiffener	- 1	1	0.00	4	54.7992	18.27	18.27	
Diaphragm conn. Plates D2 📘	- 1	1	22.83	1	0.0000	0.00	22.83	
Transverse Stiffener	- 1	1	22.83	3	68.4990	17.12	39.96	
Diaphragm conn. Plates D2 📘	- 1	1	22.83	3	273.9960	68.50	91.33	
Transverse Stiffener	- 1	1	45.67	3	68.4990	17.12	62.79	
Transverse Stiffener	- 1	1	68.50	3	68.4990	17.12	85.62	
Transverse Stiffener	- 1	1	91.33	7	34.2570	19.98	111.32	
Transverse Stiffener	- 2	2	0.00	7	34.2495	19.98	19.98	
Diaphragm conn. Plates D2 📘	- 2	2 📘	22.83	1	0.0000	0.00	22.83	
Transverse Stiffener	- 1	2 📘	22.83	3	68.4990	17.12	39.96	
Diaphragm conn. Plates D2 📘	- 1	2 📘	22.83	3	273.9960	68.50	91.33	
Transverse Stiffener	- 2	2	45.67	3	68.4990	17.12	62.79	
Transverse Stiffener		2	68.50	3	68.4990	17.12	85.62	-
Apply at Stiffe Diaphragms Diap	eners hragr	betv ns	veen		[New	Duplicate	Delete

Click on the Longitudinal Stiffener Ranges tab to define the limits of longitudinal stiffeners.

July 1, 2002	Section 10	Page 50 of 55
--------------	------------	---------------

Enter the appropriate stiffener data and click the Apply button to save the data to memory and close the window.

July 1, 2002	Section 10	Page 51 of 55
--------------	------------	---------------

Bearing stiffener definitions were assigned to locations when we used the Apply at Diaphragms... button on the Transverse Stiffener Ranges window. Open the window by expanding the Bearing Stiffener Locations branch in the tree and double clicking on each support. The assignment for support 1, 2 and 3 are shown below.

July 1, 2002	Section 10	Page 52 of 55

\land Bearir	ng Stiffei	ner Location - Support 3	<u>_ 0 ×</u>
<u>P</u> airs at thi	of bearing s support :	CL_of Bearing Offset* * Negative offset to left of cl bearing stiffeners = 1 $\qquad \qquad $	
	Stiffener Pair	Name Offset (in)	
	1	Bearing Stiffener Abut. D1 🔽 0.0000	
	1	ОК (Арріу	Cancel

July 1, 2002	Section 10	Page 53 of 55
--------------	------------	---------------

Select Plate Girder (E)(C) in the Bridge Workspace tree; open the schematic

for the girder profile by selecting the View Schematic toolbar button 🗖 or the Bridge/Schematic from the menu.

🕰 Schematics: Profile View						_
Top Flange Transitions	*			PL 5/8"x12">	(83'-0"	
Web Transitions					5/16"x54"x102'-2	1/32"
Stiffener Spacing	4 SPA.@ 4'-6 13/16"=18'-3	1/4" 4'-6 3/4" #	3 SPA.@ 5'-8 1/2"=	17'-1 1/2" 	3 SPA.@ 5'-8	1/2"=17'-1 1/2"''-6" 5'
Shear Connector Spacing	28 SPA.(@1'-0"			41 SPA	@1'-3"
Top Flange Lat. Support	*					114'-2"
					5/16"x54" We	b I
Bottom Flange Transitions	PL 5/8"x12"x12'-0"					PL 1"x18"x102
Span Lengths	#					114'-2"
×I	Notes: * All flange length dimensions a * Transverse stiffener pairs sho * Single transverse stiffener sh * Bearing stiffeners shown in g * Dimensioning starts and end * X denotes cross frame locatio	are horiz. (length alc own in red. own in blue. reen. s at CL bearings. ons.	ong flange may differ).			

July 1, 2002	Section 10	Page 54 of 55
--------------	------------	---------------

Page 144

The results of the control LFD rating analysis are as follows:

Wyoming Department of Transportation, Bridge Design Division Date 04/10/2002

Member: G2

RATING FACTOR REPORT

 RATING FACTOR REPORT

 ANALYSIS POINT NO. 5: 104.00

 LOAD LEVELS
 TRUCK DESCRIPTION

 1: 1.30(1.00 * D + 1.67 * L)
 1. Truck: AASHTO H 20-S 16 Loading, 1944 Ed

 2: 1.00(1.00 * D + 1.67 * L)
 2. Truck: AASHTO H 20-S 16 Loading, 1944 Ed

 3: 1.30(1.00 * D + 1.00 * L)
 3. Truck: 96 Tons Vehicle

 4: 1.00(1.00 * D + 1.00 * L)
 4. SPECIAL-LOAD

---- STRENGTH -----------------LOAD LEVEL 1 ----- LOAD LEVEL 2 ----- LOAD LEVEL 3 ----- LOAD LEVEL 4

è

TRUCK 1	01.22	N/A	02.04	N/A	I = 1.22(36) = 43.9 TONS
TRUCK 2	01.45	N/A	02.42	N/A	
TRUCK 3	00.68	N/A	01.13	N/A	$a = 7 \ a 4 (36) = 33 \ a = 500$
CRITICAL	00.68	N/A	01.13	N/A	0 - 0.0+(30)- /3.4 10NS
REINFORCEM	ENT				
TRUCK 1	N/A	N/A	N/A	N/A	D. + 112/96) - 108 6 -10
TRUCK 2	N/A	N/A	N/A	N/A	Permit = 1013 (10) = 108.5 TONS
TRUCK 3	N/A	N/A	N/A	N/A	
CRITICAL	N/A	N/A	N/A	N/A	
SHEAR					
TRUCK 1	01.58	N/A	02.65	N/A	
TRUCK 2	02.00	N/A	03.35	N/A	
TRUCK 3	01.12	N/A	01.87	N/A	
CRITICAL	01.12	N/A	01.87	N/A	
BEARING					
TRUCK 1	N/A	N/A	N/A	N/A	
TRUCK 2	N/A	N/A	N/A	N/A	
TRUCK 3	N/A	N/A	N/A	N/A	
CRITICAL	N/A	N/A	N/A	N/A	

July 1, 2	2002		Section	n 10	Page 55 of 55				
COLORADO DEPARTMENT OF TRANSPORTATION LOAD FACTOR RATING SUMMARY					Structure # N-17-BP (N.B.) State highway # I-25				
Asphalt thickness: <u>100</u> mm(<u>4</u> in.) Colorado legal loads Interstate legal loads					Structure type WGCK Parallel structure # N-17-AM(S.B.))
Structural member	INTERIOR GI	RDER	SLAB						
·····	Metric tons (1	íons)							
Inventory	40.0 (44)	32.7 (36)		()	()
Operating	66.4 (73)	53.6 (59)		()	()
Type 3 truck	()	()		()	()
Type 3S2 truck	()	()		()	()
Type 3-2 truck	()	()		()	()
Permit truck	98.2 (1	.08)	()		()	()
Type 3 Truck Type 3S2 Truck Interstate 21.8 metric tons (24 tons) Colorado 24.5 metric tons (27 tons) Colorado 24.5 metric tons (27 tons) Colorado 38.6 metric tons (42.5 tons) Colorado 20.0 Colorado 20.0									
Metric tons Tons) s	Metric	(() ;		Metric to	() Tons	
Comments Control Member: Deck; Rated for 4" HBP Load Capacity: 59 Tons Girder: Only Interior Girder Rated; Rated for 4" HBP									
Color Code: White									
Project No: 125-1(88) Note: Although Virtis performs the required flexure, shear and bearing capacity check during analysis, shear check has been omitted in the determination of girder load capacity.									
Rated by		Date	Che	ecked by				Date	
		Previ	ious editions are ob	solete an	d may not b	e used		CDOT Form #110	87a 1/95