13.1 INTRODUCTION TO RATING TIMBER BRIDGES RATINGS

This section covers the rating of timber stringers and decks. All timber members will be rated using the policies and guidelines in Section 1.

All timber stringers shall be rated using the AASHTOWare Bridge Rating program BrR. The timber decks shall be rated with CDOT Timber Bridge Rating program that is available from the Staff Bridge Branch Software Library.

All other types of timber stringers and decks will be rated in compliance with the applicable guidelines within this manual and the AASHTO codes.

Examples are presented for the three-stringer types listed below, as well as transverse nail laminated timber decks, and transverse plank timber decks.

Timber structures are repaired with the sister beam method using guidelines in Subsection 13.8.

For rating non-timber decks, see Section 3.

An important aspect of rating timber bridges is that the rating should reflect the actual condition of the members, as reported from field inspections. The guidelines for evaluating and accounting for the condition of timber members are shown in Subsection 13-3.

The types of stringers covered by this section are:

- TS Timber Stringer Timber Deck
- TTD Treated Timber Stringer Concrete Deck
- TTS Treated Timber Stringer Timber Deck

13.2 POLICIES AND GUIDELINES FOR RATING TIMBER STRINGERS

13.2.1 General

- A) Allowable stress method shall be used to rate timber structures.
- B) Timber stringers shall be rated using the BrR program. Nail laminated and plank decks shall be rated using the TIMBER computer program as mentioned in Subsection 13.6.
- C) When plans are not available, timber stringers may be rated with BrR software using field dimension in accordance Section 1.7.1.

September 2022

- D) When plans are not available, the allowable stress values in Section 1.5 Table 1-3 for Douglas Fir-Larch Select Structural can be used.
- E) The allowable stress value for shear may be increased by a modification factor of 1.33. This factor will always be used for stringers without splits and in good condition. If a beam or stringer is split horizontally, the increase factor is not allowed; see Subsection 13.3.
- F) Adjustment factors for timber deck and stringer may be defaulted by using the BrR compute button.
- G) For structures constructed after year 1960, the allowable stresses shall be modified according to the AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES.
- H) For existing timber bridges, CDOT used lumber that has not been dressed / surfaced. The stringers may be considered as the full-sawn lumber sizes. The stringer sizes as presented in the design plans, or CARDEX may be used for ratings rather than dry dimensions, except the actual dimensions are verified by the inspectors.

Commentary: The full-sawn lumber is the same size as the stated nominal size. (Timber Bridges Design, page 3-40, Construction, Inspection, and Maintenance, 1990 – Michael A. Ritter, United States Department of Agriculture, Forest Service).

I) The rater shall evaluate and account for the condition of timber members as specified in Subsection 13.3.

13.2.2 Stringers Requiring Rating

- A) Interior Stringers A rating is required for the critically loaded interior stringer combined with the worst condition. Factors that influence condition are splits, broken, and repaired stringers, and wood condition. More than one interior stringer may require an analysis due to variation in span length, stringer size, stringer spacing, differences in loads or moments, etc.
- B) Exterior Stringers An exterior stringer shall be rated when the section used is different than the section used for an interior stringer.

13.2.3 Dead Loads

- A) When rating timber bridges with timber decks use the maximum asphalt thickness obtained along a transverse cross section taken at midspan, rather than the average thickness, for dead load calculations.
- B) For timber or metal plank decks, dead loads due to railing curbs, and wheel guards shall not be distributed to all stringers, but shall be considered to be carried by the exterior stringer.
- C) The method of applying dead loads due to utilities is left to the rater's discretion.

13.2.4 Rating Reporting / Package Requirements

The rater and checker shall complete the rating documentation as described in Section 1 of this manual. Any variation from the original design assumptions shall be added to the Rating Summary Sheet as applicable. The rating package requirements shall be per Section 1.13 of this manual and as amended herein:

<u>Consultant designed projects</u> – Before finalizing the rating package and when BrR is used as the analysis tool, the Rater shall verify with the Staff Bridge Rating Coordinator that the version number of the program being used is identical to CDOT'S version number. Data files created using a lower, or higher version of the program shall be rejected, except if approved in advance by the Bridge Rating Engineer. It is required for the CDOT data archive, since the data base management feature inside the program would not work satisfactorily. After the analysis is completed, the rater shall save the data file. When saving is finalized, the rater shall export the data file in *.xml format (i.e., O-18-BY.xml format).

13.3 EVALUATING CONDITION OF TIMBER MEMBERS

13.3.1 Broken Stringers

- A) In a broken stringer the wood is completely separated. The separation must extend a distance equal to or greater than one-fourth the depth of the stringer.
- B) For a broken stringer, the rater shall assume that the stringer is not there. Use stringer spacing equal to 1.5 times the actual spacing for dead load and live load distribution calculations.

13.3.2 Cracked Stringers

- A) A cracked stringer is similar to a broken stringer. A cracked stringer must be separated completely through the stringer in a lateral or transverse direction (at or nearly at 90 degrees to the longitudinal axis of the stringer); however, the separation must not extend vertically into the stringer more than one-fourth the depth of the stringer.
- B) The rater will evaluate the crack as follows, depending upon its location in the stringer:
 - 1. In the 1/4 span closest to the support the rater shall use the allowable shear stress values given in AASHTO without the shear increase factor from subsection 13.2.
 - 2. In the center-half of the span, the rater shall calculate the effective or reduced section depth, corresponding to the crack location on the beam, in order for the TIMBER computer program to determine the bending moment capacity.

13.3.3 Split Stringers

- A) To be a split, it must penetrate completely through the stringer and may or may not extend the full length of the stringer.
- B) A split will not reduce a member's bending capacity.

C) For stringers that are split the allowable shear stress values given in AASHTO shall be used without the shear increase factor from Subsection 13-2.

13.3.4 Checked Stringers

- A) A check is a separation of the wood along the fiber direction resulting from stresses set up in wood during seasoning, and usually extends across the rings of annual growth.
- B) Checks in a stringer may be on either or both sides.
- C) A check will not be considered to reduce the load carrying capacity of a timber member.

13.3.5 Shaked Stringers

- A) A shake is the result of the growth in the tree and may easily be mistaken as a check.
- B) A shake will not be considered to reduce the load carrying capacity of a timber member.

13.3.6 Decay

- A) Decay can reduce a member's load capacity.
- B) A reduced section will be rated for shear or bending strength depending on the location.

13.3.7 Aging

A) No adjustment in the allowable stresses for timber is necessary for reasons of aging alone. This is in accordance with ASTM D 245, April 10, 2000.

EVALUATING CONDITION OF TIMBER MEMBERS

BROKEN STRINGER

* REQUIRES DIMENSION

CRACKED STRINGER

 \blacktriangle Use allowable shear value $(F_{_{\nabla}})$ without 1.33 increase in these areas.

13.4 GUIDELINES FOR USING THE BrR RATING PROGRAM

The BrR computer program performs the analysis and rating of simple span timber bridges. BrR uses the Madero ASD analysis engine. This program was developed in accordance with the AASHTO STANDARD SPECIFICATIONS and the AASHTO MANUAL FOR CONDITION EVALUATION OF BRIDGES.

The program will not rate sawn timber decks, glue laminated stringers, glue laminated flooring, flooring placed longitudinally, splined or doweled flooring, multiple layered decks, nor nontimber decks. For required modification to the allowable stresses, see Subsection 13.2 and 13.3.

The library explorer can be used to save commonly used items (beam shapes, non standard vehicles, materials, appurtenances etc.) and this eliminates the need for all users to define the same items repeatedly throughout the program. Once a new girder shape is defined or copied from the library, BrR automatically computes the required section properties and beam constants.

The program does consider uniform dead loads other than those caused by the stringers, deck, and overlay. In the case where other dead loads are present that would substantially affect the rating, they shall be accounted for during the analysis.

In the Live Load Distribution Factor window, when the compute button is used to calculate the DF's automatically by the program, BrR users shall verify that these numbers are accurate and matches their calculated numbers.

Timber structures should rate using ASD for three stringer conditions (**no split stringer**, **split stringer**, **and repaired split stringer**) based on updated section 1 in CDOT BRM, as shown below:

- A) For no split stringer (more than 75% of the total number of stringers have NO splits or shear cracks) should use inventory bending stress 1600 psi and 113 psi for inventory parallel shear stress.
- B) For split stringers (more than 25% of the total number of the stringers are not repaired or have shear cracks) should use inventory bending stress 1600 psi and inventory parallel shear stress 85.0 psi.
- C) For repaired split stringer by lag bolts (more than 25% of the total number of stringers are repaired) should use inventory bending stress 1600 psi and 98 psi for inventory parallel shear stress.

In rating summary sheet rater should report all interior stringer capacity for three above condition, with referring for current stringer condition split/no split or repaired.

One example is presented for structure A-27-A, a two span bridge having treated timber stringers with timber decks. For simplicity, only one span has been modeled using the above conditions of the members as reported in the field inspection report.

13.5 BRIDGE RATING EXAMPLE

TIMBER STRUCTURE EXAMPLE, STRUCTURE NO. A-27-A

A-27-A

-1 - No split Structure Definition # 1 US 385 ML / DRAW 06/24/19

A-27-A -1 - No split Structure Definition # 1 US 385 ML / DRAW 06/24/19

A-27-A			- 8
Bridge ID: A-27-A	NBI Structure ID (8):	-27-A Template	Iv Defined 🗌 Culverts
Description Description	on (cont'd) Alternatives Global Re	eference Point Traffic Custom Agency	Fields
Name:	-1	Year Built:	1949
Description:	Initial rating was implemented in Viri Re-rated in virtis for system definitio Re-rated by AI for split/ repair more	is/Opis by H.K. in 3/2003. n, J.W.G 12/2005 ajp 5/06 than 25%	~
Location:	18 MI S OF JULESBURG/I	Length: 48.00]ft
Facility Carried (7):	US 385 ML	Route Number: 0385D]
Feat. Intersected (6):	DRAW	Mi. Post: 291.48]
Default Units:	US Customary \sim		

Click OK. This saves the data to memory and closes the window.

To add three a new timber material, click on Materials, Timber, and Sawn in the tree and select File/New from the menu (or right click on Sawn and select New). Click the Copy from Library button and select the Colorado Douglas Fir Beams Stringers from the library. Click OK and the following window will open. The ASD Tabulated Design Values in this window are based on dry conditions and do not include any adjustment factors based on usage conditions. Make necessary corrections to the allowable bending and shear stress values for No Split, Split and Repaired conditions. Click OK to save these timber materials to memory and close the window.

Name: Ilorado D	ouglas Fir BeamsStringers	Description: No Splits, Commercial G	ade
Grading method:	Visual ~	·	
Species:	Douglas Fir-Larch 🗸	ASD Tabulated Design Valu	ies
Commercial grade:	Select Structural	Bending: 1.600	ksi
Size classification:	Beams and Stringers ~	Tension (parallel): 0.950	ksi
Grading rules agency:	Unknown ~	Shear (parallel): 0.113	ksi
Density:	0.05 kcf	Compr. (perp.): 0.625	ksi
Modulus of elasticity:	1600.00 ksi	Compr. (parallel): 1.100	ksi

For No split stringer condition materials properties

Grading method:	Visual \checkmark		
Species:	Douglas Fir-Larch \checkmark	ASD Tabulated De	sign Values
Commercial grade:	Select Structural 🗸	Bending:	1.600 ksi
Size classification:	Beams and Stringers \checkmark	Tension (parallel):	0.950 ksi
Grading rules agency:	Unknown ~	Shear (parallel):	0.085 ksi
Density:	0.05 kcf	Compr. (perp.):	0.625 ksi
Modulus of elasticity:	1600.00 ksi	Compr. (parallel):	1.100 ksi

For split stringer condition materials properties

Name: Dair Split	s Colorado Douglas Fir Stri	Description	n: Repaired, Comr	mercial Grade	
Grading method:	Visual	~			
Species:	Douglas Fir-Larch	~ /	ASD Tabulated De	sign Values	
Commercial grade:	Select Structural	~	Bending:	1.600	ksi
Size classification:	Beams and Stringers	~	Tension (parallel):	0.950	ksi
arading rules agency:	Unknown	~	Shear (parallel):	0.098	ksi
Density:	0.05 kcf		Compr. (perp.):	0.625	ksi
Modulus of elasticity:	1600.00 ksi		Compr. (parallel):	1.100	ksi

Inventory shear stress for repaired split stringer = *130 / 1.33 = 98 psi (* see Section 1, Table 1-3)

Follow the same procedure to copy from the Materials library. Change the name of material and size classification. Click OK to save this timber deck material to memory and close the window.

Grading method:	Visual \checkmark			
Species:	Douglas Fir-Larch 🗸	ASD Tabulated De	sign Values	
Commercial grade:	Select Structural	Bending:	1.600 k:	si
Size classification:	2" • 4" thick, 5" • 6" wide 🛛 🗸	Tension (parallel):	0.950 k	si
Grading rules agency:	Unknown ~	Shear (parallel):	0.113 k	si
Density:	0.05 kcf	Compr. (perp.):	0.625 k	si
Modulus of elasticity:	1600.00 ksi	Compr. (parallel):	1.100 k	si

Add a new timber beam shape by clicking on Beam Shapes, Timber, and Rectangular in the tree and selecting File/New from the menu (or double clicking on Rectangular). Enter the final beam dimensions to be used to calculate section properties on the dimensions tab. Dressed dimensions shall not be used. Click OK to save the data to memory and close the window.

Name:	6"X 20"
Description:	
Dimensions	Properties
	Copy To Library Copy from Library OK Apply Cancel

Click the Properties tab, and then Compute. Click OK to save the data to memory and close the window.

Name: 6"×20"			
Description:			
Dimensions Properties			
Area:	120.00	in^2	
Nominal load:		ıb/it	
Moment of inertia:	4000.0	in^4	
CG from bottom:	10.0000	in	
Section modulus, top:	400.0	in^3	
Section modulus, bottom:	400.0	in^3	
Nominal width:	6.00	in	
Nominal depth:	21.0000	in	Compute
	T 1 1	0 (11	

Expand the tree labeled Appurtenances to enter the bridge appurtenances information to be used in the analysis. To define a generic railing, double click on Generic in the tree and input the generic railing dimensions. Click OK to save date to memory and close the window.

Name	Type 3 Modified Railing	
Description		
A	I dimensions are in inches	
Distance f	om edge to centroid = 3.0000	
	Reference Line Barrier load = 0.066 kip/ft Width = 6.0000	
E	ffective wind height = 10.0000 Back Front	

Expand the Connectors tree item to create a nail definition. Double click on Nail. Define the nail and click OK to save to memory.

Name: 20 Pennywei	De De	scription:	
	Length: 4.0000	in	
	Diameter: 0.1920	in	
	Pennyweight: 20d	~	

Now that we have created a nail definition, this can be applied to nails in the deck. Reopen the Structure Typical Section: Deck (cont'd) tab. Select the 20 Pennyweight nail definition as the nail on that tab. Click OK to save to memory and close the window. Double click on STRUCTURE DEFINITION (or click on STRUCTURE DEFINITION and select File/New from the menu or right mouse click on STRUCTURE DEFINITION and select New from the popup menu) to create a new structure definition. The following dialog box will appear.

Select Girder System and the following Structure Definition window will open. Enter the appropriate data as shown below.

ridino.	No solit Struct	ture Definition #1			Frame Structure	
					Simplified Definition	
Description:				,	Timber	
Default Units:	US Customar	y V Enter Span Lengths		`	For PS only	
Number of spans:	1	Line:			Average humidity:	
Number of girders:	13	Span Length	T		2	
					Member Alt. Types	
Horizontal Curvature Ak	ong Reference	Line		7.	Member Alt. Types	
Horizontal Curvature Ak	ong Reference	Line Distance from PC to first support line:		ft	Member Alt. Types	
Horizontal Curvature Ak	ong Reference re [iment	Line Distance from PC to first support line: Start tangent length:		ft ft	Member Alt. Types	
Horizontal Curvature Ak	ong Reference re (iment	Line Distance from PC to first support line: Start tangent length: Radius:		ft ft	Member Alt. Types	
Horizontal Curvature Ak Horizontal curvatur Superstructure Align Curved Tangent, curved	ong Reference re [iment d, tangent d	Line Distance from PC to first support line: Start tangent length: Radius: Direction:	Left ~	ft ft ft	Member Alt. Types	
Horizontal Curvature Ak Horizontal curvatur Superstructure Align Curved Tangent, curved Tangent, curved Curved, tangent	ong Reference re [ment d, tangent d	Line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length:	Left ~	ft ft ft	Member Alt. Types	
Horizontal Curvature Ale Horizontal curvatur Superstructure Align Curved Tangent, curved Curved, tangent	ong Reference re [iment d, tangent d	Eline Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT	Left	ft ft ft ft	Member Alt. Types	
Horizontal Curvature Ak Horizontal curvatur Superstructure Align Curved Tangent, curved Tangent, curved Curved, tangent	ong Reference re [iment d, tangent d t	Line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT:	Left ~	ft ft ft ft	Member Alt. Types	
Horizontal Curvature Ak Horizontal curvatur Superstructure Align Curved Tangent, curved Tangent, curved Curved, tangent	ong Reference re [ment d, tangent d t	Line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT: Design speed:		ft ft ft ft ft ft mph	Member Alt. Types	

Following is the partially expanded Bridge Workspace tree:

Click Load Case Description to define the dead load cases. The load types are presented in a single row separated by a comma. The first type applies to LFD design and the second type applies to LRFD design and it corresponds with the load types presented in the AASHTO Specifications. The completed Load Case Description window is shown below.

Load Case Name	Description	Stage			Туре		(Days)	
HMA		Non-composite (Stage 1)	\sim	D,DW		\sim		
Rail		Non-composite (Stage 1)	\sim	D,DC		\sim		

Double click on Framing Plan Detail to describe the framing plan. Enter the appropriate data to describe the framing plan. If the bridge has diaphragms, switch to the Diaphragms tab and enter the appropriate data. Click OK to save to memory and close the window.

	Number of spans = 1 Number of girders = 13	
Layout Diaphragms		
	Girder Spacing Orientation	
	Perpendicular to girder	
Support (Degrees)	O Along support	
1 0.0000		
2 0.0000		
	Girder Spacing	
	Bay Start of End of	
	Girder Girder	
	1 2.08 2.08	
	2 2.08 2.08	
	3 2.08 2.08	
	4 2.08 2.08	
	6 2.08 2.08	
	7 2.08 2.08	
	8 2.08 2.08	
	9 2.08 2.08	
	10 2.08 2.08	
	11 2.08 2.08	
	12 2.08 2.08	
	OK	Apply C

The Deck tab is used to enter information about the deck. BrR only supports transverse timber decks. Select the type of deck as Nail-Laminated. The timber material to be used for the deck is selected from the list of bridge materials described above. A Nail definition has not been created yet, so leave the field blank for now. The Deck LL distribution width in the direction normal to the flooring span shall be per AASHTO Standard Specifications, Article 3.25.1.1. For this structure, this value is equal to 21.0 inches (15 inches plus thickness of floor).

Default rating method: ASD Analysis Module ASD: Madero ASD	Deck Rating Parameters
Timber deck type:Nail-Laminated DeckTimber material:Douglas Fir-Larch (no sTotal deck thickness:6.0000 inLamination thickness:3.0000 inDeck LL distribution width:21.0000 inNail:20 Pennyweight	plit) V Nominal thick.: 3.0000 in Nominal width: 6.0000 in

13-25

For the Factors tab of the Deck window, factors may be defaulted by using the BrR
compute button. In Colorado, dry moisture condition is used.

Description Factors Engin	е		
ASD Factors OPER Timber 1.33			
- Timber Adjustment Factors Moi:	s sture condition for shear/flexure	Dry	-
	Moisture condition for bearing	Dry	1
	Moisture condition for modulus	Dry	-
Shear factor:	1.00	Flat use factor: 1.00]
Wet service (flexure):	1.00 Repe	itive use factor: 1.00]
Wet service (shear):	1.00 Load	duration factor: 1.15]
Wet service (bearing):	1.00		
Wet service (modulus):	1.00		
Size factor (flexure):	1.00		Compute
		OK I	Analy Consel

Double click on Structure Typical Section in the Bridge Workspace tree to define the structure typical section. Input the data describing the typical section as shown below.

Distance from left edg superstructure definitio	e of deck on ref. line eck ickness	to Distanc superstr Sup Sup Refe	e from right ed ructure definitio erstructure Del erence Line	ge of dec on ref. line iinition	k to	
Left overhang				↓ ₩	Right overhang	
Deck Parapet Railing Generic Lane	Position	Striped Lane	the bridge de	iurface ack		
Distance from left edge of deck to superstructure definition reference line =	Start 13.00	ft	End 13.00	ft		
Distance from right edge of deck to superstructure definition reference line =	13.00	ft	13.00	ft		
Left overhang =	0.50	ft	0.50	ft		
Computed right overhang =	0.50	ft	0.50	ft		

The Generic tab is used to enter information about the appurtenances. Click New to add a row to the table. Enter the following data.

	Ba	ick	F	Generic Sh ront	Nape			
Deck Parapet Railing	Generic	Lane Pos	ition Striped	Lanes Wearing	Surface Distance At	Distance At		
Name		Load Cas	e Measure To	Dist. Measured From	Start (ft)	End (ft)	Front Face Orientation	
Type 3 Modified Railing	~	Rail	Back 🗸	Right Edge 🖂	0.00	0.00	Left 🗸	
Type 3 Modified Railing	~	Rail	Back 🗸	Left Edge 🖂	0.00	0.00	Right 🗸	

Select the Lane Position tab. Enter the values shown below or click the Compute...button to automatically compute the lane positions. A dialog box showing the results of the computation opens. Click the apply button to apply the computed values.

	(A) Travelway 1	(B) Superstructure	Pefinition Reference Line	
Deck Para	pet Railing Generic Lane	Position Striped Lanes Wea	aring Surface	Distance From Dight Edge of
Travelway Number	Distance From Left Edge of Travelway to Superstructure Definition Reference Line At Start (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At Start (B) (ft)	Travelway to Superstructure Definition Reference Line At End (A) (ft)	Distance From Right Edge of Travelway to Superstructure Definition Reference Line At End (B) (ft)
1	-12.50	12.50	-12.50	12.50

Enter the following wearing surface information and click OK to save to memory and close the window.

Distance superstru	from left edge of de cture definition ref.	eck to ¦ Distance line j superstru	from right edge of a cture definition ref.	line	
Ē	Deck	ri ka— Super i Refere	structure Definition ence Line	Í	
		is ¦			
Left overhang				Bight overham	n
Deels Deveet Delive Co	n Laus David	a Chine al Lance	Wearing Surface	, ingra ovornari	9
Deck Farapet Halling Ge	renc Lane Positio	in Striped Lanes	wearing surrace		
Wearing surface material:	Asphalt				
Description:	Asphalt				
Wearing surface thickness =	7.0000 in	Thickness	field measured (DV	√ = 1.25 if checked)	
Wearing surface density =	146.670 pcf				
Load case:		~		Copy from Library	
	Un				

Describing a member:

The member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member.

Member name:	G2 Interior		Link with:	None	\sim	
Description:					^	
					\sim	
	Existing Curren	t Member Alternative Name		Description		
	<	Timber beam interior			>	
Number of spans:	1	Span Span No. Length (ft)				
		1 23.00				

Defining a Member Alternative: Double click MEMBER ALTERNATIVES in the tree to create a new alternative. The New Member Alternative dialog will open. Select Timber for the Material Type and Rectangular Sawn Timber for the Girder Type. Only Timber is available for the Material Type since a timber deck type was selected on the Structure Definition window. Timber decks are limited to timber beams in BrR.

Material Type:	Girder Type:
Steel Timber	Rectangular Sawn Timber

Enter the following data for the Member Alternative. Click OK to save to memory and close the window.

Description Alternati	ves Vehicle Path Engine Sul	bstructures	
Description:			· · · · · · · · · · · · · · · · · · ·
Reference Line			
Distance =	0.000 ft		
Offset =	-0.000 ft		
Angle =	0.00 Degrees		
Starting Station =	ft ft		

Support constraints were generated when the structure definition was created and are shown below.

eneral	Z T T T T T T T T T T T T T T T T T T T			2
Support	Support	Translation Co	onstraints	Rotation Constraint
Number	Туре	х	Y	Z
1	Pinned 🗸			
2	Roller			

Use the Compute from Typical Section button to compute the live load distribution factors. Refer to AASHTO Table 3.23.1, Article 3.23.1.2 and Article 13.6.5.2.

	0					
Distribution F	Factor Input Metho	ł				
Use Sim	plified Method () Use Advanced	d Method 🔾 L	Jse Advanced M	ethod with 1994 G	iuide Specs
	Dution ractors to be	Distribution	Factor			
Lanes Loaded	Shear	(Wheel Shear at Supports	Moment	Deflection		
1 Lane	0.508	1.000	0.417	0.154		
Multi-Lane	0.545	1.000	0.490	0.308		
Compute fr						

Open the Beam Details window by double clicking on Beam Details in the Bridge Workspace tree. The Beam Details window is shown below.

ueneiai	Adjustmen	t Factors	Support Lengths			
Be	eam shape:	6''×20'	· · ·			
	Material:	Colorado) Douglas Fir Bearr $$			
Beam	projection 6.0000	in	Right: 6.0000	in		
Lon						

The Adjustment Factors tab of the Beam Details window allows you to enter adjustment factors to modify the tabulated design values entered on the Bridge Materials – Timber – Sawn window. The tabulated design values modified by these adjustment factors produce the design allowable stresses. In Colorado, dry moisture condition is used. Adjustment factors may be defaulted by using the BrR compute button.

General Adjustment Fact	ors Support Ler	ngths				
N	loisture condition	for shear/flexure:	Dry		~	
	Moisture cor	ndition for bearing:	Dry		\sim	
	Moisture cond	dition for modulus:	Dry		\sim	
Shear factor:	1.000	F	lat use factor:	1.00		
Wet service (flexure):	1.000	Repetit	ive use factor:	1.00		
Wet service (shear):	1.000	Load o	luration factor:	1.150		
Wet service (bearing):	1.00					
Wet service (modulus):	1.000					
Size factor (flexure):	0.945					Compute
				OK	Applu	Canaal

Enter the following data for the Support Lengths tab. Click OK to save to memory and close the window.

	Descine Length	Descise MEM	_		
Number	(in)	(in)			
1	12.0000	6.0000			
2	12.0000	6.0000			
	Support Number 1 2	Support NumberBearing Length (in)112.0000212.0000	Support NumberBearing Length (in)Bearing Width (in)112.00006.0000212.00006.0000	Support NumberBearing Length (in)Bearing Width (in)112.00006.0000212.00006.0000	Support NumberBearing Length (in)Bearing Width (in)112.00006.0000212.00006.0000

To perform a rating analysis, select the Bridge Analysis Settings button on the toolbar to open the window shown below. Select ASD as the Rating Method, select HS 20-44 vehicle or other vehicles to be used in the rating and click OK.

O Design Review	Rating	Rating Method	ASD ~
Analysis Type:			
Line Girder	~		
Lane/Impact Loading Tur			
As Requested	<i>,</i>		
As nequested	Ŷ	Apply Preference Setting	None
Vehicles Output Engine	Description		
		Traffic Direction:	
		Both directions V	Refresh Temporary Vehicles Advance
Vehicle Selection:			Vehicle Summary:
- EV2 - EV3 - H 15-44 - H 20-44 - HS 15-44 - HS 20 (SI) - HS 20-44 - NRL - SU4 - SU5 - SU6 - SU7 - Type 3 - Type 3:3 - Type 3:3 - Type 3:3 - Type 3:3 - Colorado L - Colorado L	egal Type 3 egal Type 3-2 egal Type 3S2 ermit Vehicle egal Type 3 egal Type 3S2 egal Type 3S2	>> Remove from Analysis <<	 His 20-44 Operating EV2 EV3 HS 20-44 NRL SU4 SU5 SU6 SU7 Colorado Legal Type 3 Colorado Legal Type 3.2 Colorado Legal Type 3S2 Colorado Legal Type 3S2 Colorado Legal Type 3S2 Colorado Permit Vehicle Modified Tandem Legal Operating Permit Operating Permit Operating

Select the output tab of the Analysis Settings window. Check specific boxes next to the desired output report and click the Engine tab.

O Design Review Rating	Rating Method: ASD	~
Analysis Type:		
Line Girder \sim		
Lane/Impact Loading Type:		
As Requested \sim	Apply Preference Setting: None	~
/ehicles Output Engine Description		
Tabular Results:	AASHTO Engine Reports:	
 ✓ ASD Critical Stresses Report ✓ Dead Load Action Report ✓ Live Load Action Report 	Girder Properties Girder Properties Gummary Influence Line Capacity Summary Capacity Detailed Com FE Model for DL Analy FE Model for LL Analys LL Influence Lines FE LL Influence Lines FE LL Distrib. Factor Comp	e Loading e Loading putations sis sis Model Actions putations
Select All Clear All	Select All Clear All]

Select the analysis engine and click the Properties tab.

	Rating Method:	ASD ~
Analysis Type:		
Line Girder \sim		
Lane/Impact Loading Type:		
As Requested V	Apply Preference Setting:	None ~
/ehicles Output Engine Description		
Configure engine properties for analysis module:	Madero ASD	~
Generate formatted output. Generate standard output for action	tables.	^ Propertie
Generate formatted output. Generate standard output for action Generate load combination table he Do not generate influence function r Do not generate action report. Generate load calculation output. Do not generate timber adjustment t Do not generate rating factor calcula Do not generate stress calculation of Do not generate connection calculat Structural Analysis Output: 0 - Minin	tables. aders. eport. factor calculation outp ation output. putput. tion output. num output (basic brig	out. dge structure)

Select the desired Output Options and click OK.

Format: Formatted Output Abbreviated Action Table Load CombinationTable Reports: Influence Function Rep	oles Headers iort	Calculations: Load Calculations Timber Adjustment Factor Calculations Rating Factor Calculations Stress Calculations Connection Calculations	Canc
Structural Analysis Output	0 - Minimum	output (basic bridge structure)	

Click the Description tab, provide a general narrative description of the analysis event and click OK.

O Design Review	Rating	Rating Method:	ASD	~
Analysis Type:				
Line Girder	~			
Lane/Impact Loading T	ype:			
As Requested	~	Apply Preference Setting:	None	~
Analysis Event Descrip BrDR new analysis ev	otion vent			
				· · · · · · · · · · · · · · · · · · ·

13.6 CDOT BRIDGE TIMBER RATING PROGRAM DESCRIPTION

The TIMBER computer program performs the complete analysis and rating of simple span timber bridges. The program was developed in accordance with the AASHTO Standard Specifications and the AASHTO Manual for Condition Evaluation of Bridges.

The program will not rate flooring placed longitudinally, splined or doweled flooring, multiple layered decks, nor nontimber decks. In accordance with subsection 13.2, the program does not modify the user input values for allowable stresses.

The program does not consider dead loads other than those caused by the stringers, deck, and overlay. In the case where other dead loads are present that would substantially affect the rating, they shall be accounted for during the analysis.

In the TIMBER program, the nail laminated and plank timber decks shall be rated for non-continuous between stringers while the BrR program rates for continuous. Conventionally, the TIMBER program shall be used for conservative.

The asphalt overlay depth is used to compute the dead load, using the asphalt unit weight of 146.67 pcf. When the timber bridge has gravel overlay (unit weight = 120 pcf) the depth entered should be the equivalent depth of asphalt to gravel. This is done by taking the actual depth of gravel, dividing it by 1.2, and entering the result into the required depth column. The actual depth of gravel shall be shown on the Rating Summary Sheet.

The following information appears as output from the program.

13.6.1 Stringer (For Information Only)

The Bridge Rating Program shall not use for stringer rating. The BrR program shall be used for timber stringer ratings.

- A) Total dead load moment and shear for the stringer being rated.
- B) Live load moment and shear due to HS 20 truck.
- C) Stringer rating for bending and shear for Inventory and Operating stress levels.
- D) Live load moment and shear due to all three Colorado posting trucks.
- E) Posting ratings for bending and shear for all three Colorado posting trucks. If all posting rating values are greater than the respective posting truck weights, and the operating rating is greater than or equal to 36 tons, then the posting ratings are not printed.
- F) The Overload Color Code Rating for the stringer being rated is based on either shear or bending, depending on which controls.

13.6.2 Decking

- A) Deck rating for nail laminated and plank floors at Inventory and Operating stress levels. Only design vehicle deck load ratings shall be reported in the RSS.
- B) Posting ratings for all three Colorado posting trucks do not need to report in the RSS.
- C) The Overload Color Code Rating is not a function of the deck rating.

13.7 TIMBER BRIDGE DECK RATING EXAMPLES

Timber Rating Program Input:

A-27-A	Rater:	AI
1030	No. of Lanes:	2
385		
7		
Laminated 🚊	Deck Thickness (in):	6
6	Stringer Depth (in):	20
2.083	Effective Span Length (ft):	23
es		
1600	Inv. Shear Stress	113
	[A-27-A 1030 385 7 7 Laminated ∴ 6 2.083 s 1600	A.27.A Rater: 1030 No. of Lanes: 385 385 7 Deck Thickness (in): 6 Stringer Depth (in): 2.083 Effective Span Length (ft): es Inv. Shear Stress

Timber Rating Program Output:

Batch: 1030 Timber Bridge Rating Date: 6/13/2019 Rater: AI Structure Number: A-27-A State Highway: 385 Number of Lanes: 2 Floor Type: Laminated Effective Span Length: 23.000 ft. Stringer Spacing: 2.083 ft. Stringer Width: 6.000 in. Stringer Depth: 20.00 in. Floor Thickness: 6.00 in. Bituminous Overlay Thickness: 7.00 in. Allow. Stress in Bending: 1600.0 PSI Allow. Shear Stress: 113.0 PSI HS-20 Truck (Gross Wt. 36 Tons) Deadload Moment: 17.77 KIP-ft. Liveload Moment: 45.09 KIP-ft. Deadload Shear: 1.75 KIPS Liveload Shear: 8.34 KIPS Inventory Operating Rating Rating Deck Rating 134.5 Tons 179.1 Tons Stringer 28.4 Tons 42.4 Tons Bending 31.5 Tons 44.3 Tons Shear 70.93 KIP-ft Moment Capacity 53.33 KIP-ft Shear Capacity 9.04 KIPS 12.02 KIPS + + + Overload Information + + + + Color Code = White + + + + 1-Axle (KIPS) = 44.388 + + 2-Axles(4-0) = 53.245+ + 3-Axles(4-0) = 57.788+ + 4-Axles(4-0) = 67.282+ + + These Loads Assume 1-Lane + + Distribution Factor +

Rated using: Asphalt thickness: Colorado legal	7 in.	fulti-lane for Legal & Pern	nit Vehicles	Batch I.D. Structure	'ype	1030 TTS
Structural Member	No Split Int Girder	Split Int Girder	Repaired 3	Int Girder	Deck	NONE
	Tons					
Inventory	27.6	21.8	21	.8	134.5	
Operating	40.5	32.6	39	.3	179.1	
Type 3 truck	35.3	27.9	33	.6		
Type 3S2 truck	54.4	43.0	51	.9		
Type 3-2 truck	56.1	44.4	53	.5		
Type SU4 truck (27T)		28.9	34	.8		
Type SU5 truck (31T)		31.0	37	.4		
Type SU6 truck (35T)		34.8	40	.1		
Type SU7 truck (39T)		38.8	44	.7		
NRL (40T)	46.3	39.1	46	.2		
EV2 (28.75T)	36.2	28.6	34	.5		
EV3 (43T)	36.8	29.1	35	.1		
Permit Truck (96T)	84.9	70.9	84	.7		
Modified Tandem (50T)	50.0	39.5	47	.6		
Type 3 Truck Internate 24 tons / Colorad tons	27 loas	Type 3S2 Truck Laterstate 38 tons / Colorado 42.	5 tons	E.	Type 3-2 Tru Interstate 39 toos / Co tons	ick sloeado 42.5 tons s
Allowable Bending Allowable Split She Allowable Repaired Color Code:YELLC Re-rated per reque girders are splits an Rated with BrR v6.	stress=1600 ps ear stress =85 d Split Shear str W Based on me est from the Insp nd/or repaired. 8.2 for Timber g	i psi ess =97.74 ps odified tandem f pection Team. M pirders	i or Repa ore than	ired strir 25% of	igers the	

13.8 GUIDELINES FOR SISTER BEAM RATING

The term "Sister Beam" is used when a new steel beam/section or a new timber stringer is added to an existing timber structure, and placed adjacent to or side-by-side an existing damaged or deteriorated timber stringer, to add structural capacity or carry the existing stringer load.

Adding a Sister-Beam to an existing structure is a major rehabilitation and should be designed and rated using LRFD and LRFR methods respectively.

AASHTOWare BrR software should be used for the rating.

The existing timber stringers shall be rated using ASD method with single lane loaded for Legal Load vehicles and Colorado Permit vehicles. The new sister-beam/s shall be rated using LRFR method with single lane loaded for Legal Load vehicles and Colorado Permit vehicles. The Live Load Impact shall be considered for the sister-beam, but not for the timber stringer. The entire structure should be rated in both ASD and LRFR for the existing stringers and new sister-beam/s respectively.

Substructure does not need to be rated except as requested by the Bridge Inspection Engineer.

The Rating Summary sheet shall show both the existing stringers and the new sisterbeam ratings and denote the controlling one.

Major and Minor timber structures with sister-beam/s should be rated the in same manner in accordance with this section.

Damaged / Deteriorated stringer covers stringers that have been evaluated as broken, checked, cracked, split, or decayed stringer. Existing timber stringers condition evaluation should follow Subsection 13-3 and 13-4.

The rater and checker shall complete the rating documentation as described in Section 1 of the Bridge Rating Manual. Any variation from the original design assumptions shall be added to the Rating Summary Sheet as applicable. The rating package requirements shall be per Section 1.13 and Section 1.14 of the Bridge Rating Manual and as amended herein.

The Designer should review the superstructure rating to make sure it meets the design's load path and assumptions.

13.8.1 LIVE LOAD DISTRIBUTION

Matching the existing stringers deflection, stiffens, and load path should be considered when adding a structural support or a sister beam. To maintain the existing structure behavior and load path, the new sister beam is usually designed to match the existing stringers deflection, stiffness, depth, etc.

The load sharing between the new sister-beam and the damaged / deteriorated existing stringer can be calculated in different way. Different load sharing calculation could result

in different LLDF between the new and other existing stringers. The designer should be consulted in verifying the intent of the design, the LLDF calculation methodology, and the final load distribution factors.

Based on the provided load sharing example in this section and other load sharing calculations, in most cases, the damaged/deteriorated stringer carries about 10% to 20% of the load while the new sister-beam carries the rest. On the long term, the damaged/deteriorated stringer might continue to lose its capacity and the new sister-beam may be required to carry all the dead and live load. To minimize repetitive ratings, the new rating should ignore any capacity of the damaged/deteriorated stringer and apply all the load to the new beam, unless otherwise approved in advance by CDOT Staff Bridge Rating Engineer.

For consistency among ratings and for simplification purposes, distribution factors should be calculated based on average girder spacing since the spacing can differ. (In reality, the spacing might have not changed much considering the damaged/deteriorated timber stringer still exist).

The existing sound timber stringers should be the controlling stringers in the rating. The design should be re-evaluated if otherwise.

Service-II Limit State is intended to control the yielding of steel and slip-critical connections. It is considered to be midway between Service-I and Strength-I Limit States. Service-II usually does not control non-composite, non-compact steel sections. Accordingly, Service-II rating maybe ignored when rating steel sister-beam structures, (Reference AASHTO LRFD 9th edition and MBE 3 Edition).

Below is an example calculation of live load sharing between a split timber stringer and a new steel sister-beam. The rater and designer should convene to insure consistency between the rating and the design intent.

Sharing Live Load

The spacing between the sister beam and the split timber stringer is close (side by side). Therefore, the deflection of sister beam shall be the same as the split timber stringer.

Sister beam:	Split timber:	
$P_{s} \cdot L^3$	$P_{T} \cdot L^{3}$	
$Deflection_S = \frac{5}{48 \cdot F \cdot I}$	$Deflection_T = \frac{1}{48 \cdot F}$	T
40• <i>E</i> _S • <i>I</i> _S	$40 \cdot E_T$	1

$$Deflection_S = Deflection_T$$

 P_S + P_T = 100% of wheels load. It is shared between split timber stringer & sister beam.

$P_S \cdot L^3$	$P_T \cdot L^3$	or	P_S	P_T
$48 \cdot E_S \cdot I_S$	$48 \cdot E_T \cdot I_T$		$E_S \cdot I_S$	$E_T \cdot I_T$

Timber stringer: $h_T = 20 \cdot in$ $b_T = 6 \cdot in$ Sister beam: HSS 12 x 8 x 5/16

 $E_S \coloneqq 29000 \cdot ksi$ $E_T \coloneqq 1600 \cdot ksi$

 $I_{S} \coloneqq 224 \cdot in^{4} \qquad \qquad I_{T} \coloneqq \left(b_{T} \cdot \frac{\left(\frac{h_{T}}{2}\right)^{3}}{12}\right) \qquad \qquad I_{T} = 500 \ in^{4} \qquad (\text{Worst case when the split is at mid-high})$

 $P_{S} \coloneqq 100\% \cdot \frac{\left(E_{S} \cdot I_{S}\right)}{\left(E_{S} \cdot I_{S} + E_{T} \cdot I_{T}\right)} \qquad P_{S} = 0.89$

 $P_T = 100\% - P_S$ $P_T = 0.11$

The steel sister beams shall be rated with the LRFR mehod. Use AASHTO Table 4.6.2.2.2a-1 to determind the moment and shear LLDF for interior steel beam with plank wood deck.

Type of Deck	Applicable Cross- Section from Table 4.6.2.2.1-1	One Design Lane Loaded	Two or More Design Lanes Loaded	Range of Applicability
Plank	a, 1	\$/6.7	\$7.5	S ≤ 5.0
S≔2.229167 ft				
Single lane: $LLDF_{SL}$	$=\frac{S}{6.7} \cdot P_S$	LLDF _{SI}	,=0.296 (W	'heels)
	S			

13.9 SISTER BEAM RATING EXAMPLE, STRUCTURE X-XX-X.

Structure X-XX-X AASHTOWare BrR Rating is presented below as an example. This structure is a 1-Span 23'-0" c-c timber stringer with steel sister beam for Girder number 4, 6, 8, and 13. The structure is 30'-0" out-to-out with original stringer spacing of 2'-2 ³/4" c-c. The existing timber stringers are 6" wide x 20" deep Colorado Douglas Fir. The new Sister beam is 12x8x5/16 HSS steel section placed adjacent (side-by-side) the existing damaged or deteriorated stringer with spacing of 7" c-c. The damaged/deteriorated timber stringers are not modeled since it is assumed that the new sister-beam is carrying 100% of the load. Distribution factors should be calculated based on average girder spacing since the spacing can differ. The Live Load Impact shall be considered for the sister-beam, but not for the timber stringer. See Section 13.5 Example for more information

idge ID: X-XX-X sist	ter beam	NBI structure	e ID (8): X-XX-X sister b		Template Bridge comple	tely defined	Superstructures Culverts Substructures
Description Desc	cription (cont'd)	Alternatives	Global reference point	Traffic	Custom agency field	ls	
Name:	-1]	Year built:	1938	
Description:	X-XX-X rated fo for legal and pe design that con	r present timbe rmit loads have siders the beam	r girders and hss sister bea been ignored on the sister to go fully plastic	ms. Note: beam du	Service II e to a		
ocation:	SIA Item 9				Length:	23.00	ft
acility carried (7):	SIA item 7				Route number:	00	
eat. intersected (6):	SIA item 6				Mi. post:	0.00	
efault units:	US Customary	~					

The Description should include CDOT/the Consultant company's name, the rater and checker initials, and date of completion.

The fields under the "Global reference point" and "Traffic" tabs should be completed matching the latest structure inspection and appraisal (SIA) report information.

The Components folder contains bridge components that are applicable to the entire bridge like appurtenances, beam shapes, specifications, and materials properties, see capture below:

New Superstructure Definition	
Girder system superstructure	
Girder line superstructure	Superstructure definition wizard
Floor system superstructure	
Floor line superstructure	
Truss system superstructure	
Truss line superstructure	
Reinforced concrete slab system superstructure	
O Concrete multi-cell box superstructure	

Complete the new Girder System Superstructure Definition information:

Two superstructure definitions should be created, one for the ASD Timber stringer rating, and the other for the LRFD Steel beam rating. The information below is shown for the steel beam rating only.

Analy	sis Specs	Engine		
Name:	Steel System w	/ Timber Girders	_	Modeling
Description:	This girder syst timber stringer from an adjace	em applies only to the steel sister beam s. Since the assumption is the steel strin nt split stringer, the LLDFs have been rec	s adjacent to some of the ger takes 100% of the load calcuated (see spreadsheet	Multi-girder system MCB With frame structure simplified definition
	titled "Sister Be stiffness. Note:	am Rating") by multiplying by a ratio of this system is rated using LRFR	steel stiffness to timber	Deck type: Timber Deck
Default units:	US Customary	Enter span lengths along the reference		For PS/PT only
Number of spans:	1 0	line		Average humidity:
in a more of gridely		Span (ft)		Member alt. types
		• 1 23.00	Î	Steel
				P/S
				□ P/S □ R/C ☑ Timber
				□ P/S □ R/C ☑ Timber □ P/T
				□ P/S □ R/C ☑ Timber □ P/T
─ Horizontal curvatı	ure along refere	nce line	v	□ P/S □ R/C ☑ Timber □ P/T
Horizontal curvatı	ure along referen	nce line Distance from PC to first support line:	ft	□ P/S □ R/C ☑ Timber □ P/T
Horizontal curvatu	ure along referen vature alignment	nce line Distance from PC to first support line: Start tangent length:	ft ft	□ P/S □ R/C ☑ Timber □ P/T
Horizontal curvatu Horizontal curv Superstructure Curved	ure along referen vature alignment	nce line Distance from PC to first support line: Start tangent length: Radius:	ft ft	☐ P/S ☐ R/C ☑ Timber ☐ P/T
Horizontal curvatu Horizontal curv Superstructure Curved Tangent, cur Tangent, cur	ure along referen vature alignment rved, tangent	nce line Distance from PC to first support line: Start tangent length: Radius: Direction:	ft ft Left	☐ P/S ☐ R/C ☑ Timber ☐ P/T
Horizontal curvati Horizontal curv Superstructure Curved Tangent, cur Curved tand	ure along referen vature alignment rved, tangent rved cent	nce line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length:	ft ft Left v ft	□ P/S □ R/C ☑ Timber □ P/T
Horizontal curvati Horizontal cun Superstructure Curved Tangent, cur Curved, tang	ure along referen vature alignment rved, tangent rved gent	nce line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT:	ft ft Left ft	☐ P/S ☐ R/C ☑ Timber ☐ P/T
Horizontal curvati Horizontal cun Superstructure Curved Tangent, cur Curved, tang	ure along referen vature alignment rved, tangent rved gent	nce line Distance from PC to first support line: Start tangent length: Radius: Direction: End tangent length: Distance from last support line to PT: Design speed:	ft ft Left ~ ft ft ft ft	□ P/S □ R/C ☑ Timber □ P/T

	Load case name	Description	Stage		ד	уре	Time* (days)	
۲	HBP		Non-composite (Stage 1)	-	D,DW	•		
	Rail		Non-composite (Stage 1)	•	D,DC	-		

ut Diaphragms Lateral E	Bracing Rai	nges			
	Girder	Spacing Orier	ntation		
	Per	nendicular to	nirder		
pport Skew (Degrees)	⊖ Alo	ng support	gilder		
1 0.0000					
2 0.0000					
	Girder	Girder Sp (ft)	acing	_	
	Bay	Start of Girder	End of Girder		
	1	2.23	2.23		
	2	2.23	2.23		
	3	2.81	2.81		
	4	1.65	1.65		
	5	2.81	2.81		
	6	1.65	1.65		
	7	2.81	2.81		
	8	1.65	1.65		
	9	2.23	2.23		
	10	2.23	2.23		
	11	2.23	2.23		
	12	2.81	2.81		
		1 65	165		

Description Factors	ingine	
Default rating method	ASD V Deck rating parameters	
Analysis module ASD: Madero ASD		
Timber deck type:	Nail-Laminated Deck	
Timber material	Colorado Douglas Fir B 🔽	
Total deck thickness:	6.0000 in Nominal thick: 3.0000 in	
Lamination thickness:	3.0000 in Nominal width: 6.0000 in	
Deck LL distribution width:	21.0000 in	
Nail:	20 Pennyweight	

Distance from left edge of deck to superstructure definition ref. line	Distance from ri	ght ed definitio	lge of deck to on ref. line					
Deck thickness	K Superstructu	ire Del ine	finition [
.eft overhang			L	Right overhang				
Deck Parapet Railing Generic	Lane position	Str	iped lanes	Wearing surface)			
Superstructure definition reference line i	s within		✓ the bridge	je deck.				
	Start		End					
Distance from left edge of deck to superstructure definition reference line:	15.00	ft	15.00	ft				
Distance from right edge of deck to superstructure definition reference line:	15.00	ft	15.00	ft				
Left overhang:	0.51	ft	0.51	ft				
Computed right overhang:	0.51	ft	0.51	ft				

Complete Structure Typical Section information:

Complete each girder Supports information: A Supports Х 2 1 7 General Elastic 3D General **3D Elastic** Translation constraints Rotation constraints Support Support number type Х Y Ζ V V Þ 1 Pinned * 2 • 1 Roller OK Cancel Apply

13-59

🕰 Default Materia	ls		_	
Member alterna	tive name: EXT GIRDER			
Deck timber:	Colorado Douglas Fir Deck	~		
Beam timber:	Colorado Douglas Fir BeamsStringers	~		

OK Apply

Cancel

General Adjustment factors Support lengths Beam shape: 6.0" X 20" V Material: Splits Colorado Dougla V Beam projection I I Left: 12.0000 in Right: 12.0000 in Right: 12.0000 in OK Apply C OK Apply C Provide thermative Description - - ember alternative Description - - Description: Spess Factors Engine Import Control options - Description: Girder type: Rolled Modeling type: Multi Girder System Default units: US Customary V	General Adjustment factors Support lengths Beam shape: 60° X 20° Material: Splits Colorado Dougla V Beam projection Left: 12.0000 in Right: 12.0000 in CK Apply C New Steel Sister-Beams: Member Alternative Description - mether alternative Description - mether alternative Description Cost of Spees Factors Engine Import Control options Description Spees Factors Engine Import Control options Description Girder property input method Ford based Ford base Ford base Ford based Ford base For	General Adjustment factors Support lengths Beam shape: 6.0° X 20° V Material: Splits Colorado Dougla V Beam projection Left: 120000 in Right: 120000 in V OK Apply OK Apply or New Steel Sister-Beams: - - - Member Alternative: Rolled shape-1 - - Description	eam Details	<i>.</i> .		-	
Beam shape: 6.0° X 20° V Material: Splits Colorado Dougla V Beam projection Left: 12.0000 in Right: 12.0000 in New Steel Sister-Beams: Member Alternative Description - C ember alternative [Rolled shape-1] Description Specs Factors Engine Import Control options Description Specs Factors Engine Import Control options Description Specs Factors Engine Import Control options Description Material type: Steel Girder type: Rolled Material type: Rolled System Default units US Customary V	Beam shape: 6.0° X 20° ▼ Material: Splits Colorado Dougla ▼ Beam projection Left: 12,0000 in Right: 12,0000 in Right: 12,0000 in New Steel Sister-Beams: Member Alternative Description	Beam shape: 6.0" X 20" V Material: Splits Colorado Dougla V Beam projection Left: 12.0000 in Right: 12.0000 in Right: 12.0000 in New Steel Sister-Beams: Member Alternative Description – – – – – – – – – – – – – – – – – – –	eneral Adjustment factors Suppo	ort lengths			
OK Apply C • New Steel Sister-Beams: Member Alternative Description – – – – – – – – – – – – – – – – – – –	OK Apply C * New Steel Sister-Beams: - - Member Alternative Description - - ember alternative: Kolled shape~1 - Description Specs Factors Engine Description: Material type: Steel Girder type: Rolled Modeling type: Multi Girder System Default units: US Customary V Schedule based End bearing locations Left: 60000 in Self load Default rating method: Into End bearing Default rating method:	OK Apply	3eam shape: 6.0" X 20" ♥ Material: Splits Colorado Dougla ♥ Beam projection Left: 12.0000 in Right: 12.0000 in				
Description Specs Factors Engine Import Control options Description: Material type: Steel Girder type: Rolled Modeling type: Multi Girder System Default units: US Customary	Description Specs Factors Engine Import Control options Description:	Description Specs Factors Engine Import Control options Description:	New Steel Sister-Beams: Member Alternative Description mber alternative: [Rolled shape~1		OK	Apply	_ c
	Girder property input method End bearing locations • Schedule based Left: 6.0000 in Right: 6.0000 in Self load Default rating method: Lad case: Ennine Assigned	Girder property input method End bearing locations Schedule based Left: Cross-section based Right: 6.0000 in	escription Specs Factors Engine Import	Control options Control options Girder type: Stee Girder type: Roll Modeling type: Mul Default units: US of	el led lti Girder System Customary		

CDOT Bridge Rating Manual

Distribu	ition Factor	Input M	ethod			
٥Us	e Simplified	Method	OUs	e Advanced M	ethod	
Support Number	Start Distance (ft)	Length (ft)	End Distance (ft)	Distributio (Lar 1 Lane	on Factor nes) Multi-Lane	
1 🗸	0.00	23.000	23.00	0.333	0.297	

Rating results are shown below for the existing sound timber stringers in ASD and the new sister-beam in LRFR.

Asphalt thickness:	3 in.			Batch I.D		
Colorado legal	loads	Multi-lane for Legal & Pe Single lane for Legal & Pe	rmit Vehicles rmit Vehicles	Parallel S	tructure #	TS
				Totality		
Structural Member	Timber					
Inventory	34.56			10.494.545		
Operating	49.17					
Type 3 truck	42.04					
Type 3S2 truck	66.17					
Type 3-2 truck	66.17					8 365
Type SU4 truck (27T)	41.71					
Type SU5 truck (31T)	44.63					
Type SU6 truck (35T)	44.83		(Cassing			
Type SU7 truck (39T)	52.22					
NRL (40T)	53.91					
EV2 (28 75T)	44.15					
EV2 (23.751)	43.19					
Permit Truck (96T)	98.92					
Modified Tandem (50T)	61 51					
Type 3 Truck Interstate 24 tons / Colored 42.0 tons		Type 3S2 Truck Interstate 38 tens / Colerado 4 66.1 tons	12.5 toes	E.	Type 3-2 Truc Interstate 39 tens / Cole 66.1 tons	k rado 42.5 tors
Comments: Allowable Bending Allowable Split She Color Code: White	stress = 1600 ear Stress = 113	osi 3 psi			PE Sed	

Interstate legal	in. loads I Multi-lane for Legal & Per loads I Single lane for Legal & Per		mit Vehicles mit Vehicles	Batch LD. Structure Type TS w Steel Sister-E Parallel Structure #			
Structural Member	Steel 12x8						
	Rating Factor						
inventory	32.79						
Operating	42.51				Sec. 1		
	Tons						
Type 3 truck	42.08						
Гуре 3S2 truck	66.23						
Гуре 3-2 truck	66.23						
Type SU4 truck (27T)	41.75						
Type SU5 truck (31T)	44.67						
Type SU6 truck (35T)	52.27						
Type SU7 truck (39T)	52.27						
NRL (40T)	53.96		S. Print			0.00	
ane-Type Legal 1							
EV.2 (28 75T)	44.19						
EV2 (28751)	43 23						
Permit Truck (96T)	124 84						
Aodified Tandem (50T)	78 60						
Type 3 Truck Interstate 24 tons / Colorado 42.1 tons		Type 3S2 Truck Interstate 38 tens / Colorado 42.5 66.2 tons	5 toes	E.	Type 3-2 Interstate 39 to 66.2	Truck ns / Colorado	
Comments: Steel Sister Beam Color Code: White	is HSS - 12x8x	5/16.					