# DESIGN NOTES <br> FOR <br> STRUCTURE B-16-EV 

PROJECT NO. FBR 0142-055, SA.: 18085
BY: HOANG BUI

## TABLE OF CONTENTS:

1. Girder Design

- ConSpan input
- ConSpan output (girders $1 \& 4$, spans $1 \& 3$ )
- Specification check (using Opis)

2. Deck reinforcing design
3. Axial loads at abutments (phase I \& phase II)
4. Abutment bearing Type I design (phase I \& Phase II)
5. Axial loads at piers (phase I \& phase II)
6. Finite element structural analysis using CSI software

- Structure section property calculations
- Soil stiffness calculations
- Loads on structure
- CSI Bridge output
- Seismic loads on structure

7. Abutment diaphragm design
8. Caisson design at abutments and piers
9. Pier cap and column design
10. Pier cap dowel and bearing design
11. Abutment lower cap design
12. Abutment shear key design for seismic load
13. Deck overhang design at stone column
14. Scour design at abutments and piers
15. Temporary support calculations at abutment
16. Reinforcing field splice length calculations
17. Movement calculations at expansion joint
18. Summary of structure details
pg. 1-77
pg. 78-209
pg. 210-252
pg. 253-255
pg. 256-277
pg. 278-296
pg. 297-309
pg. 310-319
pg. 320-321
pg. 322-321
pg. 332-399
pg. 400-404
pg. 405-408
pg. 409-448
pg. 449-457
pg. 458-461
pg. 462-470
pg. 471-475
pg. 476-478
pg. 479-480
pg. 481
pg. 482
pg. 483
pg. 484-508

| $5 \text { Bentley }$ |  |  |  | Sheet \# | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

## PROJECT DATA

| Project: | Sh14 over Poudre River |
| :--- | :--- |
| Designer: | Hoang Bui |
| Date: | Dec/11/2012 |
| Checked By: |  |
| Date Checked: |  |
| User job number: |  |
| State: | Colorado, State Job \#:FBR 0142-055 |
| State Specification: | None |
| Design Code: | AASHTO LRFD - [6th Edition, 2012] |
| Units: | US |
| Span Type: | Multi-Span (Continuous) |
| Flared Girder: | No |
| File Name: | C:IProject_Hoang_BuilSH14 FORT COLLINSICalculationsIConspan Final_BX30a.CsI] |


| EB Bentley |  |  |  | Sheet \# | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

GEOMETRY DATA BRIDGE LAYOUT

| Overall Width (ft) | 124.000 |
| :--- | ---: |
| Left curb ( ft ) | 2.000 |
| Right curb (ft) | 2.000 |
| Curb-to-curb width (ft) | 120.000 |
| Number of spans | 5 |
| Number of lanes | 7 |
| Lane width ( ft$)$ | 12.000 |
| Eff Deck thick (in) | 5.000 |
| Sacrificial thick (in) | 0.000 |
| Haunch thickness (in) | 3.000 |
| Haunch width (in) | 72.000 |

SPAN DATA

| Span | Pier-to-pier <br> ft | Precast <br> ft | Brg-to-brg <br> ft | Pier CL <br> ft | Release <br> ft | StartSkew | EndSkew | Bridge c/s M.I. <br> $\mathrm{in4}$ |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 62.750 | 62.583 | 61.750 | -0.417 | 62.583 | 0.00 | 0.00 | 4901262.50 |
| 2 | 84.000 | 82.833 | 82.000 | 0.583 | 82.833 | 0.00 | 0.00 | 4901262.50 |
| 3 | 84.000 | 82.833 | 82.000 | 0.583 | 82.833 | 0.00 | 0.00 | 4901262.50 |
| 4 | 84.000 | 82.833 | 82.000 | 0.583 | 82.833 | 0.00 | 0.00 | 4901262.50 |
| 5 | 62.750 | 62.583 | 61.750 | 0.583 | 62.583 | 0.00 | 0.00 | 4901262.50 |

## BEAM DATA

Span: 1

| No | ID | Loc-prev <br> ft | Area <br> in2 | M1(Ixx) <br> in4 | Height <br> in | Yb <br> in | B-topg <br> in | B-trib <br> ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bui72X30 | 4.208 |  |  |  |  |  |  |
| 2 | Bui72X30 | 678.083 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |  |
| 3 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 4 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 5 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 6 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 7 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 8 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 9 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 10 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 11 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 12 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 13 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 14 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 15 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 16 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 17 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 18 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 19 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 20 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |


|  |  |  | Sheet \# | 3 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Job \# |  |

Span: 2

| No | ID | $\underset{\mathrm{ft}}{\text { Loc-prev }}$ | $\begin{gathered} \text { Area } \\ \text { in2 } \end{gathered}$ | $\begin{gathered} \hline \text { MI(Ixx) } \\ \text { in } 4 \end{gathered}$ | $\left.\begin{gathered} \text { Height } \\ \text { in } \end{gathered} \right\rvert\,$ | $\begin{aligned} & \text { Yb } \\ & \text { in } \end{aligned}$ | $\begin{gathered} \text { B-topg } \\ \text { in } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { B-trib } \\ \mathrm{ft} \end{gathered}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bui72X30 | 4.208 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |
| 2 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 3 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 4 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 5 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 6 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 7 | Bui72×30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 3 |
| 8 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72 | 33 |
| 9 | Bui72X30 | 6.083 | 978.0 | 120856 | 30.00 | 13.79 | 72.00 | 6. |
| 10 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 11 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 12 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 13 | Buil2x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 14 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 15 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 16 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 17 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 18 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 19 | Buil2×30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 20 | Buil2×30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.25 |

Span: 3

| No | ID | Loc-pre | $\begin{array}{\|c\|} \hline \text { Area } \\ \text { in2 } \end{array}$ | MII(Ixx) | $\begin{gathered} \text { Height } \\ \text { in } \end{gathered}$ | $\overline{\mathrm{Yb}}$ | $\begin{gathered} \text { B-topg } \\ \text { in } \end{gathered}$ | B-trib |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Buil2x30 | 4.208 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |
| 2 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 3 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.0 |
| 4 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13 | 72.00 | 6.083 |
| 5 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.7 | 72.00 | 6.0 |
| 6 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 7 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 8 | Bui72x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 9 | Buil2x30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13. | 72.00 | 6.08 |
| 10 | Bui72X30 | 6.083 | 978.0 | 120856. | 30.00 | 13.7 | 72.0 | 6.083 |
| 11 | Bui72X30 | 6.083 | 978.0 | 120856. | 30.00 | 13.79 | 72.00 | 6.083 |
| 12 | Bui72x30 | 6.083 | 978.0 | 120856. | 30.00 | 13.79 | 72.00 | 6.083 |
| 13 | Bui72X3 | 6.083 | 78.0 | 120856 | 30.00 |  | 72.00 | 6.083 |
| 14 | Bui72X3 | 6.083 | 978 | 120856 | 30.00 | 13.79 | 72.00 | . 0 |
| 15 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.0 |
| 16 | Buil2X30 | 6.083 | 978.0 | 120856. | 30.00 | 13.79 | 72.00 | 6.083 |
| 17 | Buil2X30 | 6.083 | 978.0 | 120856 | 30.00 | 13. | 72.00 | 6.0 |
| 18 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.7 | 72.00 | 6.0 |
| 19 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.7 | 72.00 | 6.0 |
|  | Bui72X | 6.0 | 978.0 | 120856.0 |  |  | 72.00 |  |

Span: 4


| No | ID | Loc-prev <br> ft | Area <br> in2 | Ml(Ixx) <br> in4 | Height <br> in |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bui72X30 | 4.208 | 978.0 | Yb <br> in | B-topg <br> in | B-trib <br> ft |  |  |
| 2 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |
| 3 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 4 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 5 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 6 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 7 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 8 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 9 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 10 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 11 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 12 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 13 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 14 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 15 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 16 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 17 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 18 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 19 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 10 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |

Span: 5

| No | ID | $\left\lvert\, \begin{gathered} \text { Loc-prev } \\ \mathrm{ft} \end{gathered}\right.$ | $\begin{array}{\|c\|} \hline \text { Area } \\ \text { in2 } \end{array}$ | $\begin{aligned} & \text { MI(IXx) } \\ & \text { in4 } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Height } \\ \text { in } \end{array}$ | $\begin{aligned} & \mathrm{Yb} \\ & \text { in } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { B-topg } \\ \text { in } \end{array}$ | $\left\|\begin{array}{c} B-t r i b \\ \mathrm{ft} \end{array}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bui72X30 | 4.208 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |
| 2 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 3 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 4 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 5 | Buī2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 6 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 7 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 8 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 9 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 10 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 11 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 12 | Buil2X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 13 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.7 | 72.00 | 6.08 |
| 14 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 15 | Bui72×30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 16 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 17 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 18 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.083 |
| 19 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 6.08 |
| 20 | Bui72X30 | 6.083 | 978.0 | 120856.0 | 30.00 | 13.79 | 72.00 | 7.250 |

## MATERIAL DATA - Project Level

As defined in Material Tab. For beam level properties look at Beam Specific output.

|  |  |  |  | Sheet \# | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

CONCRETE PROPERTIES

|  | Precast Release | $\begin{array}{\|c\|} \hline \text { Precast } \\ \text { Final } \end{array}$ | C.I.P |
| :---: | :---: | :---: | :---: |
| fc (ksi) | 6.500 | 8.500 | 4.500 |
| Wc (pcf) | 150.000 | 150.000 | 150.000 |
| Ec (ksi) | 4887.730 | 5589.340 | 4066.840 |
| K1 | 1.000 | 1.000 | 1.000 |
| Thermal coeff. $\left(1 /{ }^{\circ} \mathrm{F}\right)$ | 0.00000600 |  |  |

## STRAND AND REBAR PROPERTIES

PRESTRESSED STEEL:
6/10-270K-LL, Low relaxation strands
Straight Pattern
Strand Diameter $=0.600$ in
Tensile Strenghth $(\mathrm{ppu})=270.0 \mathrm{ksi}$
Use transformed strand and rebar: №
REINFORCING STEEL:
Tension/Shear steel: fy $=60.0 \mathrm{ksi}$ Es $=29000 \mathrm{ksi} \mathrm{fs}=24.0 \mathrm{ksi}$

| Fibentley |  |  |  | Sheet \# | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

LOADS DATA
Loads generated using Permanent Load Wizard: NO
DEAD LOADS ON PRECAST - NONE
DIAPHRAGM LOADS - NONE
DEAD LOADS ON COMPOSITE
UNITS: (Point: kips, Location: ft, Line: klf, Trapez: klf, Area: ksf, Width: ft)

| Span | DC/DW | Type | Mag. 1 | Loc.1/Width | Mag. 2 | Loc. 2 | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | DC | Line | 0.680 | 0.000 | 0.680 | 61.750 | Left Barrier Weight |
| 1 | DC | Line | 0.680 | 0.000 | 0.680 | 61.750 | Right Barrier Weight |
| 1 | DC | Line | 1.092 | 0.000 | 1.092 | 61.750 | Left Sidewalk |
| 1 | DC | Line | 1.092 | 0.000 | 1.092 | 61.750 | Right Sidewalk |
| 1 | DC | Area | 0.112 | 26.000 | - | - | Raised Concrete Median |
| 1 | DC | Area | 0.036 | 78.000 |  | - | Future Wearing Surface |
| 1 | DC | Trapez | 1.800 | 45.250 | 1.800 | 61.750 | Plinth |
| 1 | DC | Point | 1.060 | 47.500 | - | - | Planter pot |
| 1 | DC | Point | 5.200 | 56.750 | - | - | Planter pot |
| 1 | DC | Point | 1.060 | 51.750 | - | - | Planter pot |
| 2 | DC | Line | 0.680 | 0.000 | 0.680 | 82.000 | Left Barrier Weight |
| 2 | DC | Line | 0.680 | 0.000 | 0.680 | 82.000 | Right Barrier Weight |
| 2 | DC | Line | 1.092 | 0.000 | 1.092 | 82.000 | Left Sidewalk |
| 2 | DC | Line | 1.092 | 0.000 | 1.092 | 82.000 | Right Sidewalk |
| 2 | DC | Area | 0.112 | 26.000 | - | - | Raised Concrete Median |
| 2 | DC | Point | 5.200 | 6.000 | - | - | Planter Pot |
| 2 | DC | Point | 5.200 | 12.500 | - | - | Planter Pot |
| 2 | DC | Point | 5.200 | 71.500 | - | - | Planter Pot |
| 2 | DC | Point | 5.200 | 78.500 | - | - | Planter Pot |
| 2 | DC | Point | 5.200 | 0.000 | - | - | Planter Pot |
| 2 | DC | Trapez | 1.800 | 0.000 | 1.800 | 17.500 | Plinth |
| 2 | DC | Trapez | 1.800 | 66.500 | 1.800 | 82.833 | Plinth |
| 2 | DW | Area | 0.036 | 78.000 | - | - | Future Wearing Surface |
| 3 | DC | Line | 0.680 | 0.000 | 0.680 | 82.000 | Left Barrier Weight |
| 3 | DC | Line | 0.680 | 0.000 | 0.680 | 82.000 | Right Barrier Weight |
| 3 | DC | Line | 1.092 | 0.000 | 1.092 | 82.000 | Left Sidewalk |
| 3 | DC | Line | 1.092 | 0.000 | 1.092 | 82.000 | Right Sidewalk |
| 3 | DC | Area | 0.112 | 26.000 | - | - | Raised Concrete Median |
| 3 | DC | Point | 5.200 | 5.500 | - | - | Planter Pot |
| 3 | DC | Point | 5.200 | 12.500 | - | - | Planter Pot |
| 3 | DC | Point | 5.200 | 71.500 | - | - | Planter Pot |
| 3 | DC | Point | 5.200 | 78.500 | - | - | Planter Pot |
| 3 | DC | Point | 10.400 | 0.000 | - | - | Planter Pot |
| 3 | DC | Trapez | 1.800 | 0.000 | 1.800 | 17.500 | Plinth |
| 3 | DC | Trapez | 1.800 | 66.500 | 1.800 | 82.833 | Plinth |
| 3 | DW | Area | 0.036 | 78.000 | - | - | Future Wearing Surface |
| 4 | DC | Line | 0.680 | 0.000 | 0.680 | 82.000 | Left Barrier Weight |




| SiBentley |  |  |  | Sheet \# | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | unw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

LIVE LOADS USED
LIVE LOAD LIBRARY: Default.cs3
1 ID: Design Lane
Description: Design Lane as in AASHTO-LRFD
Type: Design Lane
Lane Load: Intensity $=0.64 \mathrm{klf}$, Width $=10.00 \mathrm{ft}$
2 ID: Design Tandem

| $\begin{array}{l}\text { Description: } \\ \text { Type: }\end{array}$ | $\begin{array}{l}\text { Design Tandem as in AASHTO-LRFD } \\ \text { Design Tandem }\end{array}$ |
| :--- | :--- |

First Axle Magnitude $=25.00 \mathrm{k}$, Wheel Spacing $=6.00 \mathrm{ft}$, Truck Width $=10.00 \mathrm{ft}$

| $\#$ | Magnitude, | Max Spacing, | Min Spacing, | Increment, |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{k}$ | ft | ft | ft |  |
| 1 | 25.00 | 4.00 | 4.00 | 0.00 |

## 3 ID: Design Truck

| $\begin{array}{l}\text { Description: } \\ \text { Type: }\end{array}$ | $\begin{array}{l}\text { Design Truck as in AASHTO-LRFD } \\ \text { Design Truck }\end{array}$ |
| :--- | :--- |

First Axle Magnitude $=8.00 \mathrm{k}$, Wheel Spacing $=6.00 \mathrm{ft},[$ Truck Width $=10.00 \mathrm{ft}$

| $\#$ | Magnitude, | Max Spacing, | Min Spacing, | Increment, |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{k}$ | $\mathbf{k}$ | $\mathbf{f t}$ | ft | ft |
| 1 | 32.00 | 14.00 | 14.00 | 0.00 |
| 2 | 32.00 | 30.00 | 14.00 | 2.00 |

## 4 ID: Double Truck

| Description: <br> Type: | Double Truck as in AASHTO-LRFD <br> Double Truck |
| :--- | :--- |

First Axie Magnitude $=8.00 \mathrm{k}$, Wheel Spacing $=6.00 \mathrm{ft}$, Truck Width $=10.00 \mathrm{ft}$

| $\#$ | Magnitude, | Max Spacing, | Min Spacing, | Increment, |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{k}$ | f | f | ft |  |
| 1 | 32.00 | 14.00 | 14.00 | 0.00 |
| 2 | 32.00 | 14.00 | 14.00 | 0.00 |
| 3 | 8.00 | 300.00 | 50.00 | 14.00 |
| 4 | 32.00 | 14.00 | 14.00 | 0.00 |
| 5 | 32.00 | 14.00 | 14.00 | 0.00 |

## 5 ID: Colorado Permit Vehicle

Description: Colorado Permit Vehicle
Type: Permit Vehicle

| GiBentley |  |  |  | Sheet \# | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |


| Uniform Load | Intensity, | Location, | Length, |
| :--- | :---: | :---: | :---: |
| klf | ft | ft |  |
| Preceding | 0.00 | 0.00 | 0.00 |
| Trailing | 0.00 | 0.00 | 0.00 |

First Axle Magnitude $=27.00 \mathrm{k}$, Wheel Spacing $=6.00 \mathrm{ft}$, Truck Width $=10.00 \mathrm{ft}$

| $\#$ | Magnitude, <br> $\mathbf{k}$ | Max Spacing, <br> ft <br> 1 | Min Spacing, <br> ft | Increment, <br> ft |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 25.00 | 14.00 | 14.00 | 0.00 |
| 2 | 25.00 | 4.00 | 4.00 | 0.00 |
| 3 | 25.00 | 12.00 | 12.00 | 0.00 |
| 4 | 25.00 | 4.00 | 4.00 | 0.00 |
| 5 | 21.70 | 35.00 | 35.00 | 0.00 |
| 6 | 21.70 | 4.00 | 4.00 | 0.00 |
| 7 | 21.70 | 4.00 | 4.00 | 0.00 |

6 ID: Fatigue Truck
Description: Fatigue Truck as in AASHTO-LRFD
Type: Fatigue Truck

First Axle Magnitude $=8.00 \mathrm{k}$, Wheel Spacing $=6.00 \mathrm{ft}$, Truck Width $=10.00 \mathrm{ft}$

| $\#$ | Magnitude, | Max Spacing, | Min Spacing, | Increment, |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{k}$ | ft | ft | ft |  |
| 1 | 32.00 | 14.00 | 14.00 | 0.00 |
| 2 | 32.00 | 30.00 | 30.00 | 0.00 |

RATING LOADS - NONE

| Bisentley |  |  |  | Sheet \# | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

```
ANALYSIS DATA
ANALYSIS PARAMETERS DATA
```

| Truck impact: | 1.330 |
| :--- | :--- |
| Lane impact: | 1.000 |
| Strength Il impact: | 1.330 |
| Fatigue impact: | 1.150 |

DISTRIBUTION FACTORS (Art. 4.6.2.2):

| Is Span Post-tensioned: | NO |
| :--- | :--- |
| ADTT (Average Daily Truck Traffic) : | 2000 |
| Percent of the specified force effect: | 0.96 |

NOTE: Beam specific dead and live load DFs are printed in beam level reports.

LOAD FACTORS: (Table 3.4.1-1 \& 3.4.1-2)

|  | Live | DC(max) | DC(min) | DW(max) | DW(min) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Service I: | 1.00 | 1.00 | - | 1.00 | - |
| Service III: | 0.80 | 1.00 | - | 1.00 | - |
| Strength I: | 1.75 | 1.25 | 0.90 | 1.50 | 0.65 |
| Fatigue I: | 1.50 | - | - | -1 | - |


| Ductility Factor: | 1.00 |
| :--- | :--- |
| Redundancy Factor: | 1.00 |
| Importance Factor: | 1.00 |


| SiBentley |  |  |  | Sheet \# | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

PROJECT DESIGN PARAMETERS MULTIPLIERS:

| Trans len mult: | Bonded | 1.00 |
| :--- | :--- | :--- |
| Dev len mult:: | Debonded | 1.00 |
|  | Bonded | 1.60 |
|  | Debonded | 2.00 |

Camber \& Deflection Multiplier (PCI ref.)

|  | Erection | Final |
| :--- | ---: | ---: |
| Prestress: | 1.80 | 2.20 |
| Self. Wt: | 1.85 | 2.40 |
| Deck + Haunch: |  | 2.30 |
| Diaphragm: |  | 3.00 |
| DL-Prec.: |  | 3.00 |
| DL-Comp.: |  | 3.00 |

MOMENT AND SHEAR PROVISIONS:

| Ultimate Moment Capacity, Mr-prvd computed: | Strain Compatibility method. |
| :--- | :--- |
| Ultimate Concrete Strain: |  |
| Horizontal Shear, Beam and Slab effects in Vu: | 0.0030 |
| Negative Moment Design, Non-composite Moment effects in Mu: | INCLUDED |

STRESS LIMITS (Art. 5.9.4):
STRESS LIMITS AT RELEASE BEFORE LOSSES:


STRESS LIMITS AT FINAL AFTER LOSSES:

|  | PRECAST |  | DECK |  |
| :--- | ---: | ---: | ---: | ---: |
| Strength | 8.50 | ksi | 4.50 | ksi |
| Elasticity | 5589.34 | ksi | 4066.84 | ksi |

STRESS LIMITS AT FINAL 1 (P/S + DL + LL):

|  | PRECAST | DECK |  |
| :--- | ---: | ---: | ---: |
| Max comp | 5.10 | ksi | 2.70 |$|$| ksi |
| :--- | :--- |

STRESS LIMITS AT FINAL 2 (P/S + DL):


| SiBentley |  |  |  | Sheet \# | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |


|  |  | PRECAST |  |
| ---: | ---: | ---: | ---: | ---: |
| Max comp | 3.82 | ksi | DECK |
| 2.02 | ksi |  |  |

FATIGUE I STRESS LIMITS AT FINAL 3 ( $50 \%$ P/S + 50\% DL + F_LL ) (Art. 5.5.3.1):

|  | PRECAST |  | DECK |  |
| ---: | ---: | ---: | ---: | ---: |
| Max comp | 3.40 | ksi | - | ksi |

## SERVICE III (Tension):

|  | PRECAST |  | DECK |  |
| :--- | ---: | ---: | ---: | ---: |
| Max tens | -0.55 | ksi | -0.40 | ksi |

RESISTANCE FACTORS (Art. 5.5.4.2):

| Flexure Reinforced |  |
| :--- | :--- |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 0.90 |
|  |  |
| Flexure Prestressed |  |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 1.00 |
|  |  |
| Shear | 0.90 |

PRESTRESS LOSSES:

| Time Dependent Losses, Approximate Method (Art.5.9.5.3) |
| :---: |
| Days to release $=0.75$ |
| Rel. Humid. $(\mathrm{RH})=60.0 \%$ |


| $5 \text { Bentley }$ |  |  |  | Sheet \# | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright (©) Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
|  |  |  |  | Date |  |

## RATING PARAMETERS

| Rating Factors | References | Values |
| :--- | :--- | :---: |
| Condition Factor | Table 6A.4.2.3-1 | 1.00 |
| System Factor for Flexural Effect | Table 6A.4.2.4-1 | 1.00 |
| System Factor for Shear Effect | Art. 6A.4.2.4 | 1.00 |
| ADTT | Section C3.6.1.1.2 | 2000 |
| Dynamic Load Factor for Design Level | Art. 6A.4.3.3 | 0.33 |
| Dynamic Load Factor for Legal and Permit Level | Table C6A.4.4.3-1 | 0.33 |

For Flexural Effect: Condition Factor * System Factor $=1.00>=0.85$ (Art. 6A.4.2.1) OK
For Shear Effect: Condition Factor *System Factor $=1.00>=0.85$ (Art. 6A.4.2.1 and 6A.4.2.4) OK
Dead Load Factors (Table 6A.4.2.2-1)

| Limit State | DC | DW |
| :--- | :---: | :---: |
| Strength I | 1.25 | 1.50 |
| Strength II | 1.25 | 1.50 |
| Service I | 1.00 | 1.00 |
| Service III | 1.00 | 1.00 |

## Allowable Stresses (ksi)

| Rating Level | Concrete Compression | Concrete Tension | Steel |
| :---: | :---: | :---: | :---: |
| Design Inventory | $0.60 \times{ }^{\text {f }} \mathrm{C}=5.10$ | $0.19 \times$ sqrt(fic) $=0.55$ | $0.90 \times \mathrm{fy}=218.70$ |
| Design Operating | $0.60 \times \mathrm{fc}=5.10$ | $0.19 \times \mathrm{sqrt}\left(\mathrm{f}^{\prime} \mathrm{c}\right)=0.55$ | $0.90 \times \mathrm{fy}=218.70$ |
| Legal | $0.60 \times \mathrm{fc}=5.10$ | $0.19 \times \operatorname{sqr}\left(\mathrm{f}^{\prime} \mathrm{c}\right)=0.55$ |  |
| Permit | $0.60 \times \mathrm{fc}=5.10$ | $0.19 \times \operatorname{sqrt}(\mathrm{fc})=0.55$ | $0.90 \mathrm{xfy}^{\text {f }}=218.70$ |

Consider shear reinf. across plane (FDOT alternative): No

| 5 Bentley |  |  |  | Sheet \# | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: $\mid$ Conspan Final_BX30a.csI | Conspan Final_BX30a.csI |  |  | Date |  |

BEAM REINFORCEMENT BEAM SPECIFIC MATERIAL PROPERTIES:

| Span\#, Beam\# | Tendon-ID | Girder-f'ci ksi | Girder-f'c ksi | Deck-f'c ksi |
| :---: | :---: | :---: | :---: | :---: |
| Span:1, Beam:1 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:2 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:3 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:4 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:5 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:6 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:7 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:8 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:9 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:10 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:11 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:12 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:13 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:14 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:15 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:16 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:17 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:18 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:19 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:1, Beam:20 | 6/110-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:1 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:2 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:3 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:4 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:5 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:6 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:7 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:8 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:9 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:10 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:11 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:12 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:13 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:14 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:15 | 6/110-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:16 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:17 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:18 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:19 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:2, Beam:20 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:1 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:2 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:3 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:4 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:5 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:6 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:3, Beam:7 | 6/10-270K-LL | 6.50 | 8.50 | 4. |



| FiBentley |  |  |  | Sheet \# | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {a }}$ Conspan Final_BX30a.csI |  |  |  | Date |  |


| Span\#, Beam\# | Tendon-ID | Girder-f'ci | Girder-f'c | Deck-f'c |
| :---: | :---: | :---: | :---: | :---: |
|  | ksi | ksi | ksi |  |
| Span:5, Beam:19 | 6/10-270K-LL | 6.50 | 8.50 | 4.50 |
| Span:5, Beam:20 | $6 / 10-270 K-L L$ | 6.50 | 8.50 | 4.50 |

Span:1, Beam:1

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in |
| :--- | :--- | :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | Spacing |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| (ksi) | Start <br> (in2) <br> (in) | End <br> (ft) | Extends <br> ( ft$)$ | into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:2

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ )
$12 @ 2.250$ in $12 @ 4.250$ in $\square$

| EBentley |  |  |  | Sheet \# | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:3

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | Spacing | Start | End | Extends |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (in2) |  |  |  | into |
|  | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:4

| FBentley |  |  |  | Sheet\# | 19 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |

## PRESTRESSED STEEL:

24 strands, $6 / 10-270 K-L L$, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in $12 @ 4.250$ in П
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline f y \\ (\text { (ksi) } \end{array}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:5

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL. Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.25 \mathrm{in})$ :

| $12 @ 2.250$ in $12 @ 4.250$ in |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| SiBentley |  |  |  | Sheet\# | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


| \# legs | Size | $\left\|\begin{array}{c} \mathrm{fy} \\ (\mathrm{ksi}) \end{array}\right\|$ | Area (in2) | Spacing (in) | Start <br> (ft) | End (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:6

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in $12 @ 4.250$ in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\left.\begin{array}{\|c\|} \hline f y \\ (\mathrm{ksi}) \end{array} \right\rvert\,$ | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing (in) | Start <br> (ft) | End <br> (ft) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.580 | Yes |

Span:1, Beam:7

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in $\square$

| $5 \rightarrow B=\square T \mathrm{~B}$ |  |  |  | Sheet \# | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline \text { fy } \\ (\text { ksi) } \end{array}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | $\begin{gathered} \text { Spacing } \\ \text { (in) } \end{gathered}$ | Start <br> (ft) | End <br> ( ft ) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:8

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | (fy ${ }_{\text {(ksi) }}$ | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | $\begin{gathered} \text { Extends } \\ \text { into Deck } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:9

|  |  |  | Sheet\# | 22 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Job \# |  |

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in 12 @ 4.250 in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | (krea | Spacing |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ksi) |  |  |  |  |  |  |  |
| (in2) | Start |  |  |  |  |  |  |
| (in) | End <br> (ft) | Extends <br> (ft) <br> into Deck |  |  |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |

Span:1, Beam:10

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.25 \mathrm{in})$ :

| $12 @ 2.250 \mathrm{in}$ | $12 @ 4.250 \mathrm{in}$ П |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  |  |  | Sheet \# | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

Span:1, Beam:11

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (fi) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4M13] |  |  |  |  |  |  |
| 200.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:12

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.25 \mathrm{in})$ :
$12 @ 2.250$ in $12 @ 4.250$ in П

| $52 \text { Bentey }$ |  |  |  | Sheet \# | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_8X30a.csi |  |  | Date |  |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | (fy | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:13

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in —
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\left.\begin{gathered} \mathbf{f y} \\ (\mathrm{ksi}) \end{gathered} \right\rvert\,$ | $\left\lvert\, \begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}\right.$ | Spacing (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:14

| $5 \text { 53 5MTey }$ |  |  |  | Sheet \# | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in $\square \square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy ${ }_{\text {f }}$ | Area | Spacing | Start | End | Extends |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (in2) |  |  | (ft) | into Deck |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:15

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in 12 @ 4.250 in $\square \square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> $($ (ksi) $)$ | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ti) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| SiBentley |  |  |  | Sheet \# | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentiev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:16

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.25 in ):

| $12 @ 2.250$ in | $12 @ 4.250$ in |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) $)$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:17

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in $\square$

| Ei Bentley |  |  |  | Sheet \# | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

## Stirrups:

| \# legs | Size | ¢ $\begin{gathered}\text { fy } \\ \text { (ksi) }\end{gathered}$ | $\left\|\begin{array}{l} \text { Area } \\ \text { (in2) } \end{array}\right\|$ | Spacing (in) | Start <br> ( ft ) | $\begin{aligned} & \text { End } \\ & \text { (ft) } \end{aligned}$ | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1، Beam:18

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in $12 @ 4.250$ in $\square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | (Area | (ksi) |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in2) | Stacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:19

| EB Bentley |  |  |  | Sheet \# | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csi |  |  | Date |  |

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

## $12 @ 2.250$ in $12 @ 4.250$ in $\square$

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (kSi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:1, Beam:20

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straighl Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in $12 @ 4.250$ in П
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (tt) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| EBentley |  |  |  | Sheet \# | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | unw.bentiey.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

Span:2, Beam:1

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (fi) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:2

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in $\square$

| BiBentley |  |  |  | Sheet \# | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | (ky | $\begin{array}{l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing (in) | Start <br> (ft) | $\begin{aligned} & \text { End } \\ & \text { (ft) } \end{aligned}$ | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Ye |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:3

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in 口
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | Spacing | Start | (ti) | Ex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| g |  |  | (in2) |  |  |  | int |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:4

| $52 \text { Bentey }$ |  |  |  | Sheet \# | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | muw.bentiey.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\left\|\begin{array}{c} \text { fy } \\ \text { (ksi) } \end{array}\right\|$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | $\underset{\text { (in) }}{\substack{\text { Spacing }}}$ | Start <br> (ft) | End <br> (ft) | $\begin{gathered} \text { Extends } \\ \text { into Deck } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | es |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:5

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in $]^{\prime}$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (fit) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  | Sheet\# | 32 |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Job \# |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:6

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):

18 @ 2.250 in 16 @ 4.250 in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:7

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in | $16 @ 4.250$ in $\square$ |
| :--- | :--- | :--- |


| Fibentley |  |  |  | Sheet \# | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs! |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

## Stirrups:

| \# legs | Size | $\begin{gathered} \mathbf{f y}^{\prime}(\mathrm{ksi}) \end{gathered}$ | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (f) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:8

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | (ksea) | (ksacing |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in2) | Start <br> (in) | Sta <br> (ft) | End <br> (ft) | Extends <br> into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:9

| $5 \text { Bentley }$ |  |  |  | Sheet \# | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_ BX30a.csI |  |  | Date |  |

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:10

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.19 \mathrm{in})$ :
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| $52 \text { 포 Bentey }$ |  |  |  | Sheet \# | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) $)$ | Spacing <br> (in) | Start <br> (ft) | End <br> ( ft$)$ | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:11

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in$)$ :
18 @ 2.250 in 16 @ 4.250 in —
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> ( ft$)$ | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:12

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):
18 @ 2.250 in $16 @ 4.250$ in $\square$

| BiBentley |  |  |  | Sheet \# | 36 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | frea |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| (ksi) | Area |  |  |  |  |  |  |
| (in2) | Spacing |  |  |  |  |  |  |
| (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |  |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8300 | Yes |

Span:2, Beam:13

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | (kacing |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ksi) | Start <br> (in2) | End <br> (in) <br> (ft) | Extends <br> (ft) | into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:14

|  |  |  |  | Sheet \# | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in $16 @ 4.250$ in $\square \square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\left\lvert\, \begin{array}{c\|} \hline{ }^{f y} \\ (\mathrm{ksi}) \end{array}\right.$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing (in) | Start <br> (ft) | $\begin{aligned} & \text { End } \\ & \text { (ft) } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:15

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in П
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) $)$ | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| $5280$ |  |  |  | Sheet \# | 38 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:16

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):

18 @ 2.250 in 16 @ 4.250 in $\square$

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:17

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Vcg}=3.19 \mathrm{in}$ ):

| 18 @ 2.250 in | $16 @ 4.250$ in |
| :--- | :--- |


| $5 \rightarrow 5$ |  |  |  | Sheet \# | 39 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | uww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_8X30a.csI |  |  | Date |  |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#44 $M 13]$ | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:18

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | (ksacing |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ksi) | Start <br> (in2) | End <br> (in) | Extends <br> (ft) <br> (ft) | into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:19

| Bentley |  |  |  | Sheet \# | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):

| $18 @ 2.250$ in | $16 @ 4.250$ in $\square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> ( ft$)$ | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:2, Beam:20

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Y} \mathrm{cg}=3.19 \mathrm{in}$ ):

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| SiBenfley |  |  |  | Sheet \# | 41 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | umw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:3, Beam:1

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):
18 @ 2.250 in 16 @ 4.250 in —
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> ( <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8301 | 82.8301 | Yes |

Span:3, Beam:2

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in$)$ :

18 @ 2.250 in 16 @ 4.250 in $\square$

| $\text { F } B \text { Benteu }$ |  |  |  |  |  |  |  |  | Sheet \# | 42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) |  |  |  |  |  | Colo | orado DOT | Designed | Hoang Bui |
| Version: | 12.01.00.57 |  |  |  |  | Copyright © Bentley Systems, Inc. 1984-2012 |  |  | Date | Dec/11/2012 |
|  |  |  |  |  |  | umw.ben | lley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {a }}$ Conspan Final_BX30a.csI |  |  |  |  |  |  |  |  | Date |  |
| REINFORCING STEEL: |  |  |  |  |  |  |  |  |  |  |
| Tension <br> fy <br> Es <br> fs | steel:  <br> 60.0 ksi <br> 29000 ks <br> 24.0 ks |  |  |  |  |  |  |  |  |  |
| Stirrups: |  |  |  |  |  |  |  |  |  |  |
| \# legs ${ }^{\text {l }}$ ( ${ }^{\text {a }}$ | Size US\#4[M13] US\#4[M13] US\#4[M13] | fy (ksi) 60.0 60.0 60.0 | Area <br> (in2) <br> 0.40 <br> 0.40 <br> 0.40 | Spacing <br> (in) <br> 4.00 <br> 7.00 <br> 4.00 | Start (ft) 0.0000 2.0000 80.8333 | End (ft) 2.0000 80.8333 82.8333 | Extends <br> into Deck <br> No <br> No <br> No |  |  |  |
| Span:3, Beam:3 |  |  |  |  |  |  |  |  |  |  |
| PRESTRESSED STEEL: <br> 34 strands, 6/10-270K-LL, Low relaxation strands Straight Pattern |  |  |  |  |  |  |  |  |  |  |
| END PATTERN (Ycg = 3.19 in ): |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| REINFORCING STEEL: |  |  |  |  |  |  |  |  |  |  |
| Tension <br> fy <br> Es <br> fs |  |  |  |  |  |  |  |  |  |  |
| Stirrups: |  |  |  |  |  |  |  |  |  |  |
| \# legs ${ }^{\text {P }}$ ( | Size US\#4[M13] US\#4[M13] US\#4[M13] | fy (ksi) 60.0 60.0 60.0 | Area <br> (in2) <br> 0.40 <br> 0.40 <br> 0.40 | Spacing (in) 4.00 7.00 4.00 | Start (ft) 0.0000 2.0000 80.8333 | End (ft) 2.0000 80.8333 82.8333 | Extends into Deck <br> No <br> No <br> No |  |  |  |
| Span:3, Beam:4 |  |  |  |  |  |  |  |  |  |  |


| Si Bentley |  |  |  | Sheet \# | 43 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: Conspan Final_BX30a.csI $^{\text {a }}$ | Conspan Final_BX30a.csI |  |  | Date |  |

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):

| $18 @ 2.250$ in | $16 @ 4.250$ in — |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | Spacing | Start | End | Extends |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#legs | Size |  | (in2) |  | (ft) | (ft) | into Deck |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8301 | 82.8301 | Yes |

Span:3, Beam:5

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in П
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Si Bentley |  |  |  | Sheel \# | 44 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designea | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:6

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):

18 @ 2.250 in 16 @ 4.250 in $\square$

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> ((ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:7

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.19 \mathrm{in}):$
18 @ 2.250 in $16 @ 4.250$ in П

| Gi Bentley |  |  |  | Sheet \# | 45 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | Spacing |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| (ksi) | Start <br> (in2) <br> (in) | End <br> ( ft$)$ | Extends <br> (ft) | into Deck |  |  |  |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:3, Beam:8

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in $16 @ 4.250$ in $\square \square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline \text { fy } \\ (\mathrm{ksi}) \end{array}$ | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:9

| Figentley |  |  |  | Sheet \# | 46 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csI }}$ |  |  |  | Date |  |

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250 \mathrm{in}$ | $16 @ 4.250 \mathrm{in}$ П |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | (Area | Spacing | Start <br> (ksi) <br> (in2) | End <br> (in) | Extends <br> (ft) |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ft) | into Deck |  |  |  |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| US\#4M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |  |

Span:3, Beam:10

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| $525=9$ |  |  |  | Sheet \# | 47 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


| \# legs | Size | fy ${ }_{\text {(ksi) }}$ | $\left[\left.\begin{array}{c} \text { Area } \\ \text { (in2) } \end{array} \right\rvert\,\right.$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:11

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\gamma \mathrm{cg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in $16 @ 4.250$ in |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy ${ }_{\text {(ksi) }}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:12

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in D

| EBentley |  |  |  | Sheet \# | 48 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:13

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{gathered} \hline \text { fy } \\ (\text { (ksi) } \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:14


## Span:3, Beam:15

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in П
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> $(\mathrm{ft})$ | End <br> (ft) $)$ | Extends <br> into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| SiBentley |  |  |  | Sheet \# | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | uww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:16

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| 18 @ 2.250 in $16 @ 4.250$ in $\square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:17

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in | $16 @ 4.250$ in $\square$ |
| :--- | :--- | :--- |


| GiBentley |  |  |  | Sheet \# | 51 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


| REINFORCING STEEL: |
| :--- | :--- | :--- |
| Tension steel:  <br> fy 60.0 ksi <br> Es 29000 ksi <br> fs 24.0 ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:18

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline(\mathrm{ksi}) \\ \left(\begin{array}{l} \text { ksi) } \end{array}\right. \end{array}$ | Area (in2) | Spacing (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:19

| SiBentley |  |  |  | Sheet \# | 52 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in $16 @ 4.250$ in |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | (ksacing | Start |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ksin) |  |  |  |  |  |  |  |
| (in2) | End <br> (in) | Extends <br> (ft) | (ft) <br> (into Deck |  |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:3, Beam:20

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Gentley |  |  |  | Sheet \# | 53 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8333 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8333 | 82.8333 | No |

Span:4, Beam:1

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| 18 @ 2.250 in | $16 @ 4.250$ in $\square$ |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | pacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:2

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in $\rrbracket$

| SiBentley |  |  |  | Sheet \# | 54 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline{ }^{f y}(\mathrm{ksi}) \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> ( ft ) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:3

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | (ksaci) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ksi) | (in2) | Start <br> (in) | End <br> (ft) | Extends <br> (ft) | into Deck |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:4

| FiBentley |  |  |  | Sheet \# | 55 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## PRESTRESSED STEEL:

34 strands, $6 / 10-270 K-L L$, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | (ksi) |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:5

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> $($ (ksi) | Areal <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Fi Bentley |  |  |  | Sheet \# | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs! |  |  | Date |  |


| gS | S | (ksi) | $\left[\begin{array}{l} \text { Area } \\ \text { (in2) } \end{array}\right]$ | Spacing <br> (in) | (ft) | (ft) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[ | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Ye |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Ye |
| 2 | US\#4[M13] | 60.0 | 0.4 | 6.00 | 20. | 828301 |  |

Span:4, Beam:6

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.19 \mathrm{in})$ :
18 @ 2.250 in $16 @ 4.250$ in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline \text { fy } \\ (\text { (ksi) } \end{array}$ | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:7

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.19 \mathrm{in})$ :
18 @ 2.250 in $16 @ 4.250$ in П

| FiBentley |  |  |  | Sheet \# | 57 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{c\|} \hline \text { fy } \\ \text { (ksi) } \end{array}$ | $\left[\left.\begin{array}{c} \text { Area } \\ \text { (in2) } \end{array} \right\rvert\,\right.$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

## Span:4, Beam:8

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

|  |  | fy | Area | Spacing | Start | End | Extends |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Size | (ksi) | (in2) |  | (ft) | (ft) | into Deck |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:9

| SiBentley |  |  |  | Sheet \# | 58 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designeo | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.19 \mathrm{in})$ :

| 18 @ 2.250 in $16 @ 4.250$ in $\square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | (krea | (ksi) |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in2) | Stacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:10

PRESTRESSED STEEL:
34 strands, $6 / 10-270 \mathrm{~K}-\mathrm{LL}$, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in ):
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| BiBentley |  |  |  | Sheet \# | 59 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:11

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (kSi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:12

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in |】

|  |  |  |  | Sheet \# | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright (c) Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | $k s i$ |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

## Span:4, Beam:13

PRESTRESSED STEEL:
34 strands, $6 / 10-270 K-L L$, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in | $16 @ 4.250$ in |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | area <br> (ksi) <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#44M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | SS\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:14

| 5 5 Mi |  |  |  | Sheet \# | 61 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.19 in$)$ :

| $18 @ 2.250$ in | $16 @ 4.250$ in $\square \square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{gathered} \text { fy } \\ (\text { (ksi) } \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | es |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:15

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in 】
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 2900 | ksi |
| ks | 24.0 | ksi |

Stirrups:

| \# legs | Size | (yy <br> (ksi) $)$ | (irea <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Fis Benticu |  |  |  | Sheet \# | 62 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designea | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> $(\mathbf{k s i})$ | rrea <br> (in2) | Spacing <br> (in) | Start <br> $(\mathrm{ft})$ | End <br> $(\mathrm{ft})$ | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

## Span:4, Beam:16

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

| $18 @ 2.250$ in | $16 @ 4.250$ in $\square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:17

## PRESTRESSED STEEL:

34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in I

|  |  |  |  | Sheet \# | 63 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright (c) Bentl | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:18

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in $16 @ 4.250$ in $\square \square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | Spacing | Start <br> (ksi) <br> (in2) <br> (it) | End <br> (in) <br> (f) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:19

| SiBentley |  |  |  | Sheet \# | 64 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN $(\mathrm{Ycg}=3.19 \mathrm{in})$ :
18 @ 2.250 in $16 @ 4.250$ in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\left\lvert\, \begin{gathered} \hline f y \\ (\mathrm{ksi}) \end{gathered}\right.$ | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> ( ft ) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:4, Beam:20

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):
18 @ 2.250 in 16 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


|  |  |  |  | Sheet \# | 65 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designee | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |


| \# legs | Size | $\left\|\begin{array}{c} f y \\ (\mathrm{ksi}) \end{array}\right\|$ | Area (in2) | Spacing (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 80.8301 | 82.8301 | Yes |

Span:5, Beam:1

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in 12 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy ${ }_{(k s i)}$ | $\left\|\begin{array}{l} \text { Area } \\ \text { (in2) } \end{array}\right\|$ | $\begin{gathered} \text { Spacing } \\ \text { (in) } \end{gathered}$ | Start <br> (ft) | End <br> (ft) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#\#[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

Span:5, Beam:2

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in П

| Gentley |  |  |  | Sheet \# | 66 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy ${ }_{\text {f }}$ (ksi) | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing (in) | Start <br> (ft) | $\begin{aligned} & \text { End } \\ & \text { (ft) } \end{aligned}$ | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:3

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in 12 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{\|c\|} \hline f y \\ (\mathrm{ksi}) \end{array}$ | Area (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:4

| SiBentley |  |  |  | Sheet \# | 67 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csI |  |  | Date |  |

## PRESTRESSED STEEL:

24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.25 in ):
$12 @ 2.250$ in $12 @ 4.250$ in $\square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:5

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN (Ycg = 3.25 in ):
12 @ 2.250 in $12 @ 4.250$ in П
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |


| $5 \underline{2} 50 \text { ontey }$ |  |  |  | Sheet\# | 68 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

Span:5, Beam:6

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in $12 @ 4.250 ~ i n$ |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | $\begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:7

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in 12 @ 4.250 in $\square \square$

| Sentley |  |  |  | Sheet \# | 69 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designea | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (kSi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:8

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in $12 @ 4.250$ in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy ${ }_{(k s i)}$ | $\left\|\begin{array}{l} \text { Area } \\ \text { (in2) } \end{array}\right\|$ | Spacing (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:9

| Fibentley |  |  |  | Sheet \# | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP(8) CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in $12 @ 4.250$ in |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy ${ }_{\text {(ksi) }}$ | $\begin{array}{\|c\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | $\begin{aligned} & \text { End } \\ & (\mathrm{ft}) \end{aligned}$ | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:10

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| E Bentley |  |  |  | Sheet \# | 71 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentiey.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:11

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in $\square$ |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:12

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in $\square$ |
| :--- | :--- |


| $52 \text { Bontoy }$ |  |  |  | Sheet \# | 72 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13]] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:13

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

12 @ 2.250 in 12 @ 4.250 in D
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:14

| FiBentley |  |  |  | Sheet \# | 73 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\gamma c \mathrm{cg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250$ in $\square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{array}{c\|} \hline \text { fy } \\ (\text { (ksi) } \end{array}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | $\begin{gathered} \text { Spacing } \\ \text { (in) } \end{gathered}$ | Start <br> (ft) | End <br> (ft) | $\begin{array}{\|c\|} \hline \text { Extends } \\ \text { into Deck } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:15

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in | $12 @ 4.250 \mathrm{in}$ D |
| :--- | :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |


| Bentley |  |  |  | Sheet \# | 74 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP(8) CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {a }}$ Conspan Final_BX30a.csi |  |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:16

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in $12 @ 4.250$ in $]$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | (fy | $\begin{array}{\|c\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:17

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
12 @ 2.250 in $12 @ 4.250$ in $\square$

| BiBntley |  |  |  | Sheet \# | 75 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentiey.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | $\begin{gathered} \text { fy } \\ (\text { (ksi) } \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { Area } \\ \text { (in2) } \end{array}$ | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:18

PRESTRESSED STEEL:
24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

| $12 @ 2.250$ in $12 @ 4.250 \mathrm{in} \square$ |
| :--- | :--- |

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | Area | (ksacing |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in2) | Start <br> (in) | End <br> (ft) | (ftends <br> (ft) | into Deck |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |

Span:5, Beam:19

| Si Benfley |  |  |  | Sheet \# | 76 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## PRESTRESSED STEEL:

24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):

## 12 @ 2.250 in $12 @ 4.250$ in $\square \square$

REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy | (Area | Spacing | Start | End | Extends <br> (ksi) <br> (in2) |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| (in) | (ft) | (ft) <br> (into Deck |  |  |  |  |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |

Span:5, Beam:20

## PRESTRESSED STEEL:

24 strands, 6/10-270K-LL, Low relaxation strands
Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.25 \mathrm{in}$ ):
$12 @ 2.250$ in $12 @ 4.250$ in $\mid \square$
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| $\#$ legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| BiBentley |  |  |  | Sheet \# | 77 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy | Area | Spacing | Start | End | Extends |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (ksi) | (in2) | (in) | ( 1 | (ft) | into Deck |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 60.5833 | No |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 60.5833 | 62.5833 | No |


| Bentley |  |  |  | Sheet \# | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentler.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

PROPERTIES
Span:1, Beam:1
PRECAST DATA:


Minimum Thickness Criteria, Article 5.14.1.2.2 checked: OK.

GENERAL BRIDGE DATA:

| Bridge Width | 124.00 | f |
| :---: | :---: | :---: |
| Curb-to-curb | 120.00 | $f t$ |
| Beam Spac. Lt./Rt | 4.21/6.08 | $f$ |
| Lane width | 12.00 | ft |
| Number of lanes |  |  |
| Interior/Exterior | Exterior |  |
| Start Skew Angle | 0.00 | degrees |
| End Skew Angle | 0.00 | degrees |

TOPPING DATA:

| Deck Haunch: <br> Effective | Thickness <br> Thickness Width width | 5.000 <br> 3.000 <br> 72.000 <br> 87.000 |  | (Art. 4.6.2.6.1) |
| :---: | :---: | :---: | :---: | :---: |

GENERAL LOAD DATA:
DEAD LOADS ON PRECAST - NONE

Dead loads on composite: See Project info for composite loads

GENERAL SPAN DATA:

| Overall length | 62.583 | ft |
| :--- | :--- | :--- |
| Release length | 62.583 | ft |
| Design length | 61.750 | ft |

KERN POINTS:

| F2s Bent en |  |  |  | Sheet \# | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| Upper | 22.75 | in |
| :--- | :--- | :--- |
| Lower | 6.17 | in |

## DISTRIBUTION FACTORS (Art. 4.6.2.2):

Type $f$, with deck

| Live Negative Moment | Left Side | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Live Negative Moment | Right Side | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| Live Negative Moment | Left Side | (1 lane loaded) | 0.335 | (Calculated) | (\#) |
| Live Negative Moment | Right Side | (1 lane loaded) | 0.335 | (Calculated) | (\#) |
| Live Positive Moment |  | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| Live Positive Moment |  | (1 lane loaded) | 0.335 | (Calculated) | (\#) |
| Live Shear |  | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| Live Shear |  | (1 lane loaded) | 0.335 | (Calculated) | $(\#)$ |

(\#) Lever rule (C4.6.2.2.1)


Dead Loads and Pedestrian Load distributed equally to all beams (Art. 4.6.2.2.1) RESISTANCE FACTORS (Art. 5.5.4.2):

| Flexure Reinforced |  |
| :--- | :---: |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 0.90 |
|  |  |
| Flexure Prestressed |  |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 1.00 |
|  |  |
| Shear | 0.90 |

## SECTION PROPERTIES:

|  | PRECAST |  | COMPOSITE |  |  |
| :--- | ---: | :--- | ---: | :--- | :--- |
| Area | 978.0 | in2 | 1451.7 | in2 | $\#$ |
| Total Height | 30.00 | in | 38.00 | in |  |
| Mom. of Inertia (lxx) | 120856 | in4 | 255893 | in4 | $\#$ |
| Ht. of c.g. | 13.79 | in | 20.44 | in | $\#$ |
| Density | 150.00 | pcf | 150.00 | pcf |  |
| Self-weight | 1018.8 | plf | 1696.9 | plf |  |
| Mom. of Inertia (lyy) | 588267.0 | in4 |  |  |  |
| Poisson's Ratio | 0.2 |  |  |  |  |


| Gentley |  |  |  | Sheet \# | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| Thermal Coeff. | $\begin{gathered} \text { PRECAST } \\ 0.000006000 \end{gathered}$ | $1 /{ }^{\circ} \mathrm{F}$ | COMPOSITE |  |
| :---: | :---: | :---: | :---: | :---: |

(\#) Of Total Section using Ect/Ec $=0.7276$
Use transformed strand and rebar: No

Span:1, Beam:1
STRESS LIMITS (Art. 5.9.4):
STRESS LIMITS AT RELEASE BEFORE LOSSES:

|  |  | PRECAST |  |
| :--- | :--- | :--- | :--- |
| Strength |  | 6.50 | ksi |
| Elasticity |  | 4887.7 | ksi |
| Max comp |  | 3.90 | ksi |
| Max tens |  | -0.20 | ksi |
| Max tens, | w/reinf | -0.61 | ksi |

STRESS LIMITS AT FINAL AFTER LOSSES:

|  | PRECAST |  | DECK |  |
| :--- | ---: | :---: | :---: | :---: |
| Strength | 8.50 | ksi | 4.50 | ksi |
| Elasticity | 5589.34 | ksi | 4066.84 | ksi |

STRESS LIMITS AT FINAL 1 (P/S + DL + LL):

|  | PRECAST |  | DECK |  |
| ---: | ---: | ---: | ---: | ---: |
| Max comp | 5.10 | ksi | 2.70 | ksi |

STRESS LIMITS AT FINAL 2 (P/S + DL):

|  |  | PRECAST |  | DECK |
| ---: | ---: | ---: | ---: | ---: |
| Max comp | 3.83 | ksi | 2.03 | ksi |

FATIGUE I STRESS LIMITS AT FINAL 3 ( 50\% P/S + 50\% DL + F_LL ) (Art. 5.5.3.1):

|  |  | PRECAST |  | DECK |
| ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| Max comp | 3.40 | ksi | - | ksi |

SERVICE III (Tension):

|  | PRECAST |  | DECK |  |
| ---: | ---: | ---: | ---: | ---: |
| Max tens | -0.55 | ksi | -0.40 | ksi |

[^0]

Check for Art. 5.11.4.3 (debond termination distances): OK

| Strand Diameter | 0.600 | in |
| :--- | ---: | ---: |
| Strand Area | 0.217 | in2 |
| Total Strand Area | 5.208 | in2 |
| Trans. Len, bonded | 3.000 | ft |
| Trans. Len, debonded | 3.000 | ft |
| Dev. Len, bonded | 11.248 | ft |
| Dev. Len, debonded | 14.059 | ft |
| Holddown Force | 0.000 | kips |
| Tensile Strength(fpu) | 270.0 | ksi |
| Initial Prestress =0.75fpu | 202.5 | ksi |
| Initial Pull | 1054.6 | kips |
| Beam Shring (PL/AE) | 0.159 | in |

## Span:1, Beam:1

ESTIMATED QUANTITIES

| Prestressing | Strands |  | Beam | Concrete | Stirrups | Longitudinal Bars |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (linear ft) | (LB/1000ft) | (LB) | Vol(C.Y.) | Wt(LB) | (LB) | (LB) |
| 1501.999 | 740 | 1111.479 | 15.742 | 63756.875 | 444.684 | 0.000 |

Span:1, Beam:1
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| $\#$ legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



| FiBentley |  |  |  | Sheet \# | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

SHEARIMOMENT ENVELOPE (\&REACTIONS)

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 1, SERVICE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cat | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Self wt | M | 0.0 | 77.9 | 48.5 | 166.4 | 306.0 | 405.8 | 465.6 | 485.6 |
| (Max) | V | 31.5 | 28.8 | 29.8 | 25.5 | 19.1 | 12.8 | 6.4 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + | M | 0.0 | 51.8 | 32.3 | 110.7 | 203.7 | 270.1 | 309.9 | 323.2 |
| Haunch (Max) | V | 20.9 | 19.2 | 19.9 | 17.0 | 12.7 | 8.5 | 4.2 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 0.0 | 27.6 | 17.3 | 57.9 | 102.4 | 128.8 | 136.9 | 126.9 |
| DC(Max) | V | 11.3 | 10.1 | 10.5 | 8.6 | 5.7 | 2.8 | 0.1 | 3.0 |
| DL-Comp : | M | 0.0 | -1.8 | -1.1 | -4.1 | -8.6 | -13.0 | -17.4 | -21.9 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I: | M + | 0.0 | 78.8 | 49.4 | 164.9 | 288.7 | 361.2 | 396.9 | 397.0 |
|  | V | 6.5 | 15.8 | 12.2 | 27.6 | 22.6 | 4.2 | 3.7 | 2.1 |
| LL + 1 : | M- | -0.0 | -13.3 | -8.1 | -30.1 | -62.3 | -94.5 | -126.7 | -158.9 |
|  | V | 6.5 | 5.9 | 6.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 |
| LL + I: | Vmx | 32.7 | 30.4 | 31.3 | 27.6 | 22.8 | 18.3 | 14.6 | 15.8 |
|  | M | 0.0 | 80.3 | 50.6 | 164.9 | 275.8 | 336.1 | 292.8 | 268.4 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |
| Total : | M+ | 0.0 | 234.3 | 146.4 | 495.8 | 892.3 | 1152.9 | 1292.0 | 1310.9 |
|  | V | 70.8 | 74.6 | 73.1 | 79.4 | 60.8 | 28.9 | 15.2 | 5.9 |
| Total | M- | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $V$ | 70.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vmx | 97.0 | 89.2 | 92.3 | 79.4 | 61.0 | 43.0 | 26.1 | 19.6 |
|  | M | 0.0 | 235.7 | 147.5 | 495.8 | 879.4 | 1127.7 | 1187.9 | 1182.3 |


| Location, | ft |
| :--- | :--- |
| Self wt.: | M |
| (Max) | V |
| DL-Prec.: | M |
| DC(Max) | V |
| DL-Prec.: | M |
| DW(Max) | V |
| Deck $: ~$ | M |
| Haunch (Max) | V |


| 0.60 L | 0.70 L | 0.80 L | 0.90 L | H/2 | Trans | Bearing |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 37.13 | 43.39 | 49.65 | 55.91 | 60.17 | 59.17 | 61.75 |
| 465.6 | 405.8 | 306.0 | 166.4 | 48.5 | 77.9 | 0.0 |
| 6.4 | 12.8 | 19.1 | 25.5 | 29.8 | 28.8 | 31.5 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 309.9 | 270.1 | 203.7 | 110.7 | 32.3 | 51.8 | 0.0 |
| 4.2 | 8.5 | 12.7 | 17.0 | 19.9 | 19.2 | 20.9 |


| 53 50MTEy |  |  |  | Sheet \# | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | unw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 98.8 | 52.4 | -13.0 | -100.5 | -173.2 | -155.2 | -203.0 |
| DC(Max) | V | 6.0 | 8.9 | 12.2 | 15.7 | 18.2 | 17.6 | 19.1 |
| DL-Comp | M | -26.3 | -30.7 | -35.2 | -39.6 | -42.6 | -41.9 | -43.7 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I: | M + | 365.6 | 295.4 | 193.1 | 93.7 | 76.4 | 76.8 | 80.4 |
|  | V | 3.2 | 9.0 | 13.4 | 11.1 | 5.0 | 6.5 | 2.8 |
| $L L+1:$ | M- | -191.1 | -223.3 | -248.7 | -312.1 | -400.4 | -376.4 | -442.6 |
|  | V | 5.1 | 5.1 | 5.0 | 19.7 | 24.0 | 23.0 | 25.6 |
| LL + I: | Vmx | 19.8 | 24.2 | 28.5 | 32.6 | 35.4 | 34.8 | 36.5 |
|  | M | 245.6 | 184.1 | 83.4 | -53.4 | -148.5 | -126.0 | -184.3 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | M + | 1213.6 | 993.0 | 654.6 | 230.7 | 0.0 | 9.4 | 0.0 |
|  | V | 20.5 | 39.8 | 58.2 | 70.0 | 0.0 | 72.8 | 0.0 |
| Total : | M- | 0.0 | 0.0 | 0.0 | -175.2 | -535.5 | -443.9 | -689.4 |
|  | V | 0.0 | 0.0 | 0.0 | 78.7 | 92.6 | 89.3 | 97.8 |
| Total : | Vmx | 37.1 | 55.0 | 73.2 | 91.5 | 104.0 | 101.1 | 108.7 |
|  | M | 1093.6 | 881.6 | 544.8 | 83.6 | -283.6 | -193.5 | -431.1 |

REACTIONS (kips), SERVICEI

| Load Type |  | Left Support | Right Support |
| :--- | :--- | ---: | ---: |
| Self Wt. |  | 31.5 | 31.5 |
| Deck+Haunch |  | 20.9 | 20.9 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 0.0 | 0.0 |
| DL-Comp.(DC) |  | 225.4 | 712.5 |
| DL-Comp.(DW) |  | -14.2 | 120.7 |
| Live | 78.0 | 129.2 |  |
| (Max) | -12.6 | -14.6 |  |
| Live | (Min) | 0.0 | 0.1 |
| Pedestrian | (Max) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.
Live Load reaction reported at intermediate supports is full reaction at support.

| BiBntley |  |  |  | Sheet \# | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 1, SERVICE III Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Self wt. | M | 0.0 | 77.9 | 48.5 | 166.4 | 306.0 | 405.8 | 465.6 | 485.6 |
| (Max) | V | 31.5 | 28.8 | 29.8 | 25.5 | 19.1 | 12.8 | 6.4 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + | M | 0.0 | 51.8 | 32.3 | 110.7 | 203.7 | 270.1 | 309.9 | 323.2 |
| Haunch (Max) | V | 20.9 | 19.2 | 19.9 | 17.0 | 12.7 | 8.5 | 4.2 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | $V$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 0.0 | 27.6 | 17.3 | 57.9 | 102.4 | 128.8 | 136.9 | 126.9 |
| DC(Max) | V | 11.3 | 10.1 | 10.5 | 8.6 | 5.7 | 2.8 | 0.1 | 3.0 |
| DL-Comp | M | 0.0 | -1.8 | -1.1 | 4.1 | -8.6 | -13.0 | -17.4 | -21.9 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I: | M ${ }^{\text {+ }}$ | 0.0 | 63.1 | 39.5 | 131.9 | 230.9 | 289.0 | 317.5 | 317.6 |
|  | V | 5.2 | 12.6 | 9.7 | 22.1 | 18.0 | 3.4 | 3.0 | 1.7 |
| LL+I: | M- | -0.0 | -10.6 | -6.5 | -24.0 | -49.8 | -75.6 | -101.3 | -127.1 |
|  | $V$ | 5.2 | 4.7 | 4.9 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 |
| LL + I: | Vmx | 26.1 | 24.3 | 25.0 | 22.1 | 18.2 | 14.6 | 11.7 | 12.7 |
|  | M | 0.0 | 64.2 | 40.5 | 131.9 | 220.6 | 268.9 | 234.3 | 214.8 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |
| Total | M + | 0.0 | 218.5 | 136.5 | 462.9 | 834.5 | 1080.6 | 1212.6 | 1231.5 |
|  | V | 69.5 | 71.4 | 70.7 | 73.8 | 56.3 | 28.1 | 14.5 | 5.4 |
| Total : | M- | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | v | 69.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vmx | 90.5 | 83.1 | 86.0 | 73.8 | 56.5 | 39.4 | 23.1 | 16.4 |
|  | M | 0.0 | 219.6 | 137.4 | 462.9 | 824.2 | 1060.5 | 1129.3 | 1128.6 |


| Location: | ft |
| :--- | :--- |
| Self wt.: | $M$ |
| (Max) | V |
| DL-Prec.: | $M$ |
| DC(Max) | $V$ |
| DL-Prec.: | $M$ |
| DW(Max) | $V$ |
| Deck +: | $M$ |
| Haunch (Max) | $V$ |
| Diaphragm : | $M$ |


| 0.60 L | 0.70 L | 0.80 L | 0.90 L | H/2 | Trans | Bearing |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 37.13 | 43.39 | 49.65 | 55.91 | 60.17 | 59.17 | 61.75 |
| 465.6 | 405.8 | 306.0 | 166.4 | 48.5 | 77.9 | 0.0 |
| 6.4 | 12.8 | 19.1 | 25.5 | 29.8 | 28.8 | 31.5 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 309.9 | 270.1 | 203.7 | 10.7 | 32.3 | 51.8 | 0.0 |
| 4.2 | 8.5 | 12.7 | 17.0 | 19.9 | 19.2 | 20.9 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  |  |  |  |  |  |


| SiBentley |  |  |  | Sheet \# | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | mww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp: | M | 98.8 | 52.4 | -13.0 | -100.5 | -173.2 | -155.2 | -203.0 |
| DC(Max) | V | 6.0 | 8.9 | 12.2 | 15.7 | 18.2 | 17.6 | 19.1 |
| DL-Comp : | M | -26.3 | -30.7 | -35.2 | -39.6 | -42.6 | -41.9 | -43.7 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL+I: | M + | 292.5 | 236.3 | 154.5 | 74.9 | 61.1 | 61.4 | 64.3 |
|  | V | 2.6 | 7.2 | 10.8 | 8.9 | 4.0 | 5.2 | 2.2 |
| LL + I: | M- | -152.9 | -178.6 | -198.9 | -249.7 | -320.3 | -301.1 | -354.1 |
|  | V | 4.1 | 4.1 | 4.0 | 15.8 | 19.2 | 18.4 | 20.4 |
| LL + I: | Vmx | 15.9 | 19.3 | 22.8 | 26.1 | 28.3 | 27.8 | 29.2 |
|  | M | 196.5 | 147.2 | 66.7 | -42.7 | -118.8 | -100.8 | -147.5 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | $V$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | M + | 1140.5 | 933.9 | 616.0 | 211.9 | 0.0 | 0.0 | 0.0 |
|  | V | 19.9 | 38.0 | 55.5 | 67.8 | 0.0 | 0.0 | 0.0 |
| Total : | M- | 0.0 | 0.0 | 0.0 | -112.7 | -455.4 | -368.6 | -600.8 |
|  | $V$ | 0.0 | 0.0 | 0.0 | 74.7 | 87.8 | 84.7 | 92.7 |
| Total : | Vmx | 33.1 | 50.1 | 67.6 | 85.0 | 96.9 | 94.1 | 101.4 |
|  | M | 1044.5 | 844.8 | 528.2 | 94.2 | -253.9 | -168.3 | -394.2 |

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 1, STRENGTH I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Self w | M | 0.0 | 97.3 | 60.7 | 208.0 | 382.5 | 507.2 | 582.0 | 607.0 |
| (Max) | V | 39.3 | 36.0 | 37.3 | 31.9 | 23.9 | 15.9 | 8.0 | 0.0 |
| Self wt. | M | 0.0 | 70.1 | 43.7 | 149.7 | 275.4 | 365.2 | 419.1 | 437.0 |
| (Min) | V | 28.3 | 25.9 | 26.9 | 23.0 | 17.2 | 11.5 | 5.7 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + : | M | 0.0 | 64.8 | 40.4 | 138.4 | 254.6 | 337.6 | 387.4 | 404.0 |
| Haunch (Max) | V | 26.2 | 24.0 | 24.8 | 21.2 | 15.9 | 10.6 | 5.3 | 0.0 |
| Deck + | M | 0.0 | 46.6 | 29.1 | 99.7 | 183.3 | 243.1 | 278.9 | 290.9 |
| Haunch (Min) | V | 18.8 | 17.3 | 17.9 | 15.3 | 11.5 | 7.6 | 3.8 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| Espentey |  |  |  |  |  |  |  |  |  | Sheet\# | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) |  |  |  |  |  |  | lorado DOT |  | Designed | Hoang Bui |
| Version: 12 | 12.01.00.57 |  |  |  |  | Copyright | (c) Bentle | y Systems, | s, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  |  |  |  |  | unw.bent | ley.com | Phone: 1 | 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csI }}$ |  |  |  |  |  |  |  |  |  | Date |  |
| (Max) <br> Diaphragm : <br> (Min) |  | Bearing | Trans | H/2 | 0.10L | 0.20 L | 0.30L | 0.40L | Midspan |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
|  | M | 0.0 | 34.5 | 21.6 | 72.4 | 128.0 | 161.0 | 171.2 | 158.7 |  |  |
|  | v | 14.1 | 12.6 | 13.2 | 10.7 | 7.1 | 3.4 | 0.2 | 3.8 |  |  |
| DC(Max) DL-Comp | M | 0.0 | 24.8 | 15.5 | 52.1 | 92.2 | 115.9 | 123.2 | 114.2 |  |  |
| DC(Min) | V | 10.1 | 9.1 | 9.5 | 7.7 | 5.1 | 2.5 |  | 2.7 |  |  |
| DL-Comp : | M | 0.0 | -2.7 | -1.7 | -6.2 | -12.9 | -19.5 | -26.2 | -32.8 |  |  |
|  | V | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |  |  |
| DW(Max) <br> DL-Comp | M | 0.0 | -1.2 | -0.7 | -2.7 | -5.6 | -8.5 | -11.3 | -14.2 |  |  |
|  | V | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |  |  |
| DW(Min) <br> LL + I: | $\mathrm{M}+$ | 0.0 | 137.9 | 86.5 | 288.6 | 505.2 | 632.2 | 694.6 | 694.7 |  |  |
|  | V | 11.3 | 27.7 | 21.3 | 48.3 | 39.5 | 7.3 | 6.5 | 3.7 |  |  |
| LL+I: | M- | -0.0 | -23.3 | -14.3 | -52.6 | -109.0 | -165.3 | -221.7 | -278.1 |  |  |
|  | V | 11.3 | 10.3 | 10.7 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |  |  |
| LL + I: | Vmx | 57.2 | 53.3 | 54.8 | 48.3 | 39.9 | 32.0 | 25.5 | 27.7 |  |  |
|  | M | 0.0 | 140.5 | 88.5 | 288.6 | 482.7 | 588.2 | 512.5 | 469.8 |  |  |
| Pedestrian: | M ${ }^{+}$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |  |  |
| Total : | M + | 0.0 | 333.3 | 208.4 | 704.8 | 1264.8 | 1629.5 | 1824.0 | 1850.2 |  |  |
|  | V | 91.9 | 101.3 | 97.7 | 113.2 | 87.4 | 38.4 |  | 8.5 |  |  |
| Total : | M- | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
|  | V | 69.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |
| Total : | Vmx | 137.8 | 126.9 | 131.1 | 113.2 | 87.9 | 63.1 | 40.1 | 32.5 |  |  |
|  | M | 0.0 | 334.3 | 209.4 | 701.2 | 1235.0 | 1574.5 | 1626.9 | 1606.6 |  |  |
|  |  | 0.60 L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |  |  |  |
| Location, | ft | 37.13 | 43.39 | 49.65 | 55.91 | 160.17 | 59.17 | 61.75 |  |  |  |
| Self wt. : | M | 582.0 | 507.2 | 382.5 | 208.0 | O 60.7 | 97.3 | 0.0 |  |  |  |
| (Max) | V | 8.0 | 15.9 | 23.9 | 31.9 | 37.3 | 36.0 | 39.3 |  |  |  |
|  | M | 419.1 | 365.2 | 275.4 | 149.7 | 743.7 | 70.1 | 0.0 |  |  |  |
| Self wt. (Min) | V | 5.7 | 11.5 | 17.2 | 23.0 | 26.9 | 25.9 | 28.3 |  |  |  |
| DL-Prec. DC(Max) | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| DC(Min). | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| DL-Prec. : DW(Max) | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | M | 387.4 | 337.6 | 254.6 | 138.4 | 40.4 | 64.8 | 0.0 |  |  |  |
| Deck + : <br> Haunch (Max) | - | 5.3 | 10.6 | 15.9 | 21.2 | 24.8 | 24.0 | 26.2 |  |  |  |
| Deck +: | M | 278.9 | 243.1 | 183.3 | 99.7 | 729.1 | 46.6 | 0.0 |  |  |  |
| Haunch (Min) | V | 3.8 | 7.6 | 11.5 | 15.3 | 317.9 | 17.3 | 18.8 |  |  |  |
| ( Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |


| $525010$ |  |  |  | Sheet \# | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 123.5 | 65.6 | -16.3 | -125.6 | -216.5 | -194.0 | -253.8 |
| DC(Max) | V | 7.4 | 11.1 | 15.3 | 19.7 | 22.7 | 22.0 | 23.9 |
| DL-Comp | M | 88.9 | 47.2 | -11.7 | -90.5 | -155.9 | -139.7 | -182.7 |
| DC(Min) | V | 5.4 | 8.0 | 11.0 | 14.2 | 16.4 | 15.9 | 17.2 |
| DL-Comp: | M | -39.5 | -46.1 | -52.8 | -59.4 | -63.9 | -62.9 | -65.6 |
| DW(Max) | V | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
| DL-Comp : | M | -17.1 | -20.0 | -22.9 | -25.7 | -27.7 | -27.2 | -28.4 |
| DW(Min) | V | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| LL + 1 : | $\mathrm{M}+$ | 639.8 | 517.0 | 337.9 | 163.9 | 133.7 | 134.4 | 140.7 |
|  | V | 5.7 | 15.8 | 23.5 | 19.4 | 8.8 | 11.3 | 4.9 |
| $L L+1$ : | M- | -334.4 | -390.8 | -435.2 | -546.2 | -700.7 | -658.7 | -774.5 |
|  | V | 9.0 | 9.0 | 8.8 | 34.5 | 42.0 | 40.2 | 44.7 |
| $L L+I$ : | Vmx | 34.7 | 42.3 | 49.8 | 57.1 | 62.0 | 60.8 | 63.8 |
|  | M | 429.8 | 322.1 | 145.9 | -93.5 | -259.9 | -220.6 | -322.6 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.1 | -0.1 | -0.1 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.1 | -0.1 | -0.1 |
| Total : | M + | 1715.7 | 1407.5 | 940.5 | 394.1 | 51.1 | 129.6 | 0.0 |
|  | V | 27.4 | 54.4 | 79.7 | 93.2 | 94.7 | 94.4 | 0.0 |
| Total : | M- | 0.0 | 0.0 | -45.5 | -481.9 | -908.5 | -798.9 | -1093.9 |
|  | V | 0.0 | 0.0 | 48.9 | 87.4 | 103.5 | 99.7 | 109.5 |
| Total : | Vmx | 56.5 | 81.0 | 106.0 | 130.9 | 147.9 | 143.9 | 154.2 |
|  | M | 1483.3 | 1186.4 | 713.9 | 67.8 | -439.4 | -315.4 | -642.0 |

## REACTIONS (kips), STRENGTH I

| Load Type |  | Left Support | Right Support |
| :--- | :--- | ---: | ---: |
| Self W. |  | 39.3 | 39.3 |
| Deck+Haunch |  | 26.2 | 26.2 |
| Diaphragm |  | 0.0 | 0.0 |
| Dial |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 281.8 | 890.6 |
| DL-Comp.(DC) |  | -21.3 | 181.0 |
| DL-Comp.(DW) |  | (Max) | 136.4 |
| Live | 226.1 |  |  |
| Live | (Min) | -22.1 | -25.5 |
| Pedestrian | (Max) | 0.1 | 0.2 |
| Pedestrian | (Min) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.

| Bentley |  |  |  | Sheet \# | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

Live Load reaction reported at intermediate supports is full reaction at support.

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 1, FATIGUE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Self wt. | M | 0.0 | 77.9 | 48.5 | 166.4 | 306.0 | 405.8 | 465.6 | 485.6 |
| (Max) | V | 31.5 | 28.8 | 29.8 | 25.5 | 19.1 | 12.8 | 6.4 | 0.0 |
| Self wt. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + : | M | 0.0 | 51.8 | 32.3 | 110.7 | 203.7 | 270.1 | 309.9 | 323.2 |
| Haunch (Max) | V | 20.9 | 19.2 | 19.9 | 17.0 | 12.7 | 8.5 | 4.2 | 0.0 |
| Deck + : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Haunch (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 0.0 | 27.6 | 17.3 | 57.9 | 102.4 | 128.8 | 136.9 | 126.9 |
| DC(Max) | V | 11.3 | 10.1 | 10.5 | 8.6 | 5.7 | 2.8 | 0.1 | 3.0 |
| DL-Comp : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 0.0 | -1.8 | -1.1 | -4.1 | -8.6 | -13.0 | -17.4 | -21.9 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| DL-Comp : | M | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| LL + I: | M | 0.0 | 54.5 | 34.3 | 112.3 | 188.6 | 235.0 | 249.2 | 229.5 |
|  | V | 0.1 | 8.6 | 5.3 | 19.2 | 15.6 | 11.8 | 8.4 | 5.3 |
| LL+I: | M- | -0.0 | -8.8 | -5.4 | -19.9 | -41.2 | -62.5 | -83.7 | -105.0 |
|  | V | 0.1 | 1.6 | 1.0 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
| LL + I: | Vmx | 23.0 | 21.3 | 22.0 | 19.2 | 15.6 | 12.2 | 9.2 | 8.7 |
|  | M | 0.0 | 54.5 | 34.3 | 112.3 | 188.6 | 223.7 | 226.9 | 189.0 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total | M+ | 0.0 | 210.0 | 131.3 | 443.2 | 792.1 | 1026.6 | 1144.2 | 1143.4 |
|  | V | 64.5 | 67.4 | 66.3 | 71.0 | 53.8 | 36.5 | 19.9 | 9.0 |




| SiBentley |  |  |  | Sheet \# | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | mww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

POSITIVE ENVELOPE STRESSES

Span: 1, Beam : 1, SERVICE I

RELEASE STRESSES, (ksi) (LOSS = 4.18 \%)

|  | Trans | $\begin{array}{\|c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \\ \hline \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 3.00 | 6.26 | 12.52 | 18.77 | 25.03 | 31.29 |
| Beam-Self |  |  |  |  |  |  |
| Precast-top | 0.147 | 0.289 | 0.514 | 0.674 | 0.771 | 0.803 |
| Bottom | -0.125 | -0.246 | -0.437 | -0.574 | -0.656 | -0.683 |
| Prestress Precast-top |  |  |  |  |  |  |
| Precast-top | -0.292 | -0.373 2.151 | -0.395 2 | -0.395 | -0.395 2248 | -0.395 2 |
| Bottom | 1.736 | 2.151 | 2.248 | 2.248 | 2.248 | 2.248 |
| Total Precast-top |  | -0.084 | 0.118 | 0.279 |  |  |
| Bottom | 1.611 | 1.905 | 1.811 | 1.675 | 1.593 | 1.566 |

SERVICE I

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 11.96 \%)

|  | Bearing | Trans | H/2 | $\begin{aligned} & 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\left\|\begin{array}{c\|} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}\right\|$ | $\begin{array}{\|l} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.036 | -0.269 | -0.175 | -0.343 | -0.363 | -0.363 | -0.363 | -0.363 |
| Bottom | 0.214 | 1.595 | 1.027 | 1.977 | 2.066 | 2.066 | 2.066 | 2.066 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.125 | 0.078 | 0.268 | 0.493 | 0.653 | 0.749 | 0.782 |
| Bottom | -0.000 | -0.107 | -0.066 | -0.228 | -0.419 | -0.556 | -0.638 | -0.665 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top Botom | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |




| FiBentley |  |  |  | Sheet \# | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  | Bearing | Trans | H/2 | $\begin{aligned} & 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bottom | -0.000 | -0.026 | -0.017 | -0.056 | -0.098 | -0.123 | -0.131 | -0.122 |
| DL-Comp (DW) Precast-top | -0.00 | -0.001 | -0.001 | -0.002 | -0.004 | -0.006 | -0.008 | . 010 |
| Bottom | 0.000 | 0.002 | 0.001 | 0.004 | 0.008 | 0.012 | 0.017 | 0.021 |
| LL+1(+) |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.028 | 0.018 | 0.059 | 0.104 | 0.130 | 0.142 | 0.142 |
| Bottom | -0.000 | -0.060 | -0.038 | -0.126 | -0.221 | -0.277 | -0.304 | -0.304 |
| Pedestrian(+) |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 1 (P/S + DL + LL) |  |  |  |  |  |  |  |  |
| Precast-top | -0.036 | -0.020 | -0.020 | 0.186 | 0.603 | 0.906 | 1.081 | 1.128 |
| Bottom | 0.214 | 1.333 | 0.863 | 1.419 | 1.057 | 0.753 | 0.585 | 0.554 |

Span: 1, Beam : 1, FATIGUE I
POSITIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\begin{array}{\|c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \hline 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{gathered} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| F_LL+1(+) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | 0.000 | 0.024 | 0.015 | 0.050 | 0.085 | 0.105 | 0.112 | 0.103 |
| Bottom |  | -0.000 | -0.052 | -0.033 | -0.108 | -0.181 | -0.225 | -0.239 | -0.220 |
| Pedestrian( + ) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 3 ( 50\% P/S | +50\% | $\left.D L+F_{-} L L\right)$ |  |  |  |  |  |  |  |
| Precast-top |  | -0.018 | 0.000 | -0.003 | 0.114 | 0.334 | 0.494 | 0.581 | 0.596 |
| Bottom |  | 0.107 | 0.644 | 0.418 | 0.665 | 0.458 | 0.290 | 0.206 | 0.209 |




| Location(ft) <br> Vu <br> (kips) | bv <br> (in) | de <br> (in) | Aps <br> (in2) | $\underset{\text { (kips) }}{\text { Vp }}$ | eps_x | Theta | Vs-reqd (kips) | Av/s (in2/ft) | Av-prvd (in2/ft) | Al_reqd (in2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mcor <br> (kft) | $\begin{gathered} a \\ \text { (in) } \end{gathered}$ | dv <br> (in) | fpo <br> (ksi) | vulfc | Vc-com (kips) | Beta | Max.spc. <br> (in) | $\begin{gathered} \min . A v / s \\ \text { (in2/ft) } \end{gathered}$ | $\mathrm{pVn} / \mathrm{Nu}$ | Aps* <br> (in2) |
| 1186.4 | 4.19 | 32.66 | 189.0 | 0.027 | 189.1 | 5.24 | 24.00 | 0.221 | 4.382 | 5.208 |
| 0.8L: | 50.07 12.00 |  | 08 |  |  | 5 | 0 |  |  |  |
| 713.9 | 4.14 | 32.68 | 189.0 | 0.035 | 194.9 | 5.39 | 24.00 | 0.221 | 3.408 | 4.634 |
| $\text { 0.9L: }{ }_{130.9}$ | $\begin{aligned} & 56.32 \\ & 12.00 \end{aligned}$ | 34.75 | 5.208 | 0.0 | -0.17e-3 | 28.4 | 0.0 | 0.221 | 0.686 | 0.00 |
| 67.8 | 3.19 | 33.16 | 189.0 | 0.043 | 202.0 | 5.51 | 24.00 | 0.221 | 2.835 | 3.870 |
| Critical : | 59.27 |  |  |  |  |  |  |  |  |  |
| 142.6 | 12.00 | 34.79 | 0.000 | 0.0 | $1.79 \mathrm{e}-3$ | 35.3 | 79.6 | 0.323 | 0.686 | 3.49 |
| -282.7 | 0.00 | 34.79 | 189.0 | 0.045 | 78.9 | 2.05 | 24.00 | 0.221 | 1.563 | 0.000 |
| Transfer: $143.9$ | $\begin{aligned} & 59.58 \\ & 1000 \end{aligned}$ | 34.79 | 0.000 | 0.0 | $1.72 \mathrm{e}-3$ | 35.0 | 79.3 | 0.319 |  | 0.35 |
| -315.4 | 0.00 | 34.79 | 189.0 | 0.045 | 80.6 | 2.10 | 24.00 | 0.221 | 1.569 | 0.750 |
| Bearing : | 62.17 |  |  |  |  |  |  |  |  |  |
| 154.2 | 12.00 | 34.79 | 0.000 | 0.0 | 1.64e-3 | 34.7 | 88.6 | 0.353 | 1.200 | 5.19 |
| -642.0 | 0.00 | 34.79 | 26.2 | 0.048 | 82.7 | 2.15 | 24.00 | 0.221 | 2.239 | 0.124 |

ANCHORAGE ZONE REINFORCEMENT (Art. 5.10.10)
Span : 1, Beam : 1

| Fpi | fs | h/4 | Abrst_rqrd |
| :---: | :---: | :---: | :---: |
| (kips) | (ksi) | (in) | (in2) <br> 790.96 |
| 20.00 | 7.50 | 1.58 |  |

HORIZONTAL SHEAR (Art. 5.8.4) - Span : 1, Beam : 1
(Beam and Slab effects are INCLUDED in Vu ).
Computed Interface width considered to be engaged in shear transfer, bvi $=72.00$ (in).

| Location (ft) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vu (kips) | Vnh-req (kips/in) | de <br> (in) | $\begin{gathered} \mathrm{a} \\ \text { (in) } \end{gathered}$ | dv (in) | s_max (in) | Avh-min (in2/ft) | Avh-sm (in2/ft) | Avh-rg (in2/ft) | Avh-prvd (in2/ft) |
| Bearing : $137.8$ | $\begin{array}{\|} 0.00 \\ 4.42 \end{array}$ | 34.64 | 0.00 | 34.64 | 24.00 | 0.720 | 0.000 | 0.000 | 1.200 |


| SBentley |  |  |  | Sheet \# | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| Location (ft) <br> Vu <br> (kips) | Vnh-req (kips/in) | de <br> (in) | $\begin{gathered} a \\ \text { (in) } \end{gathered}$ | dv <br> (in) | s_max <br> (in) | Avh-min (in2/ft) | Avh-sm (in2/ft) | Avh-rg (in2/ft) | Avh-prvd (in2/ft) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer : $126.9$ | 2.58 4.08 | 34.55 | 0.00 | 34.55 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| Critical : $126.1$ | $\begin{array}{\|r\|} 2.78 \\ 4.19 \end{array}$ | 34.55 | 2.31 | 33.40 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| 0.1L: 113.2 | 5.84 3.79 | 34.75 | 3.19 | 33.16 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| 0.2L : 87.9 | $\left.\begin{array}{\|c\|} 12.10 \\ 2.99 \end{array} \right\rvert\,$ | 34.75 | 4.14 | 32.68 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| 0.3L: 63.1 | $\begin{array}{\|r\|} 18.36 \\ 2.15 \end{array}$ | 34.75 | 4.19 | 32.66 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| 0.4L: 40.1 | $\begin{array}{\|c\|} 24.62 \\ 1.36 \end{array}$ | 34.75 | 4.19 | 32.66 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| $0.5 \mathrm{~L}: \quad 3$ | $\begin{array}{\|r\|} 30.88 \\ 1.11 \end{array}$ | 34.75 | 4.19 | 32.66 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| $0.6 \mathrm{~L}: \quad{ }_{56.5}$ | $37.13$ | 34.75 | 4.19 | 32.66 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| 0.7L : | 43.39 |  |  |  |  |  |  |  |  |
| 81.0 | 2.76 | 34.75 | 4.19 | 32.66 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| $0.8 \mathrm{~L}:{ }_{106.0}$ | $\left\|\begin{array}{c} 49.65 \\ 3.60 \end{array}\right\|$ | 34.75 | 4.14 | 32.68 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| $0.9 \mathrm{~L}: \underset{ }{ } 130.9$ | $55.91$ |  |  |  |  |  |  |  |  |
| 130.9 |  | 34.75 | 3.19 | 33.16 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| Critical : $142.6$ | $\begin{array}{r} 58.85 \\ 4.56 \end{array}$ | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| Transfer : $143.9$ | $\begin{array}{r} 59.17 \\ 4.60 \end{array}$ | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.000 | 0.000 | 0.686 |
| Bearing : $154.2$ | $\begin{array}{r} 61.75 \\ 4.93 \end{array}$ | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.000 | 0.000 | 1.200 |


| $52 \text { ? } 5 \text { ? }$ |  |  |  | Sheet \# | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

## CAMBERIDEFLECTION

CAMBER AND DEFLECTIONS: SERVICE I
(Span: 1, Beam : 1; Units: in)

| At $0.1 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 5.84 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 0.453 | 1.80 | 0.815 | 2.20 | 0.996 |
| Self Wt. | -0.187 | 1.85 | -0.346 | 2.40 | -0.448 |
| Deck + Haunch |  |  | -0.098 | 2.30 | -0.225 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.018 | 3.00 | -0.054 |
| DL-Comp. (DW) |  |  | 0.003 | 3.00 | 0.010 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.266 |  | 0.357 |  | 0.278 |


| At $0.2 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 12.10 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 0.800 | 1.80 | 1.440 | 2.20 | 1.760 |
| Self Wt. | -0.354 | 1.85 | -0.654 | 2.40 | -0.848 |
| Deck + Haunch |  |  | -0.192 | 2.30 | -0.441 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.035 | 3.00 | -0.104 |
| DL-Comp. (DW) |  |  | 0.007 | 3.00 | 0.020 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.446 |  | 0.566 |  | 0.386 |


| At $0.3 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 18.36 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.054 | 1.80 | 1.898 | 2.20 | 2.319 |
| Self Wt. | -0.484 | 1.85 | -0.895 | 2.40 | -1.162 |
| Deck + Haunch |  |  | -0.265 | 2.30 | -0.610 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.047 | 3.00 | -0.140 |
| DL-Comp. (DW) |  |  | 0.009 | 3.00 | 0.028 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | . 000 |
| Total | 0.570 |  | 0.700 |  | 0.436 |


|  |  |  |  | Sheet \# | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright (c) Bentley | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| At $0.4 \times \mathrm{L}=$ | $\begin{aligned} & \text { Release } \\ & 24.62 \mathrm{ft} \end{aligned}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.207 | 1.80 | 2.172 | 2.20 | 2.655 |
| Self Wt. | -0.567 | 1.85 | -1.049 | 2.40 | -1.361 |
| Deck + Haunch |  |  | -0.312 | 2.30 | -0.718 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.053 | 3.00 | -0.158 |
| DL-Comp. (DW) |  |  | 0.012 | 3.00 | 0.035 |
| Live Load Pedestrian Load | Not Included |  |  |  | -0.000 |
| Total | 0.640 |  | 0.770 |  | 0.454 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.5 \times \mathrm{L}$ | 30.88 ft |  |  |  |  |
| Prestress | 1.258 | 1.80 | 2.264 | 2.20 | 2.767 |
| Self Wt. | -0.595 | 1.85 | -1.101 | 2.40 | -1.429 |
| Deck + Haunch |  |  | -0.328 | 2.30 | -0.755 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.052 | 3.00 | -0.156 |
| DL-Comp. (DW) |  |  | 0.013 | 3.00 | 0.039 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total | 0.662 |  | 0.795 |  | 0.466 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.6 \times \mathrm{L}=$ | 37.13 ft |  |  |  |  |
| Prestress | 1.207 | 1.80 | 2.172 | 2.20 | 2.655 |
| Self Wt. | -0.567 | 1.85 | -1.049 | 2.40 | -1.361 |
| Deck + Haunch |  |  | -0.312 | 2.30 | -0.718 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.046 | 3.00 | -0.137 |
| DL-Comp. (DW) |  |  | 0.014 | 3.00 | 0.041 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total | 0.640 |  | 0.779 |  | 0.480 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.7 \times \mathrm{xL}=$ | 43.39 ft |  |  |  |  |
| Prestress | 1.054 | 1.80 | 1.898 | 2.20 | 2.319 |
| Self Wt. | -0.484 | 1.85 | -0.895 | 2.40 | -1.162 |
| Deck + Haunch |  |  | -0.265 | 2.30 | -0.610 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |


|  |  |  |  | Sheet \# | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  | Release | Mult | Erection | Mult | Final |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | -0.034 | 3.00 | -0.103 |
| DL-Comp. (DC) |  |  | 0.013 | 3.00 | 0.038 |
| DL-Comp. (DW) |  |  |  |  |  |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total | 0.570 |  | 0.715 |  | 0.482 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.8 \times \mathrm{L}=$ | 49.65 ft |  |  |  |  |
| Prestress | 0.800 | 1.80 | 1.440 | 2.20 | 1.760 |
| Self WI. | -0.354 | 1.85 | -0.654 | 2.40 | -0.848 |
| Deck + Haunch |  |  | -0.192 | 2.30 | -0.441 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.021 | 3.00 | -0.063 |
| DL-Comp. (DW) |  |  | 0.010 | 3.00 | 0.031 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total | 0.446 |  | 0.584 |  | 0.439 |


| At $0.9 \times \mathrm{L}=$ | Release 55.91 ft | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 0.453 | 1.80 | 0.815 | 2.20 | 0.996 |
| Self Wt. | -0.187 | 1.85 | -0.346 | 2.40 | -0.448 |
| Deck + Haunch |  |  | -0.098 | 2.30 | -0.225 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.008 | 3.00 | -0.025 |
| DL-Comp. (DW) |  |  | 0.006 | 3.00 | 0.019 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.266 |  | 0.370 |  | 0.318 |


| FiBentley |  |  |  | Sheet \# | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

ULTIMATE MOMENT

## ULTIMATE-Span: 1, Beam : 1, STRENGTH I

(Mr-prvd computed by Strain Compatibility method. Ult. Conc. Strain $=\mathbf{0 . 0 0 3 0 0}$ )

| $\begin{gathered} \hline \text { Location } \\ \text { (ft) } \\ \text { Muk.ft } \end{gathered}$ | $\begin{aligned} & \text { dp } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { Aps } \\ & \text { in2 } \end{aligned}$ | $\begin{aligned} & \text { fps } \\ & \text { ksi } \end{aligned}$ | $\begin{gathered} c \\ \text { in } \end{gathered}$ | $\begin{aligned} & \mathrm{a} \\ & \text { in } \end{aligned}$ | Mr-prud k.ft | c/dt | Phi | $\begin{aligned} & \text { Mcr } \\ & \text { k.ft } \end{aligned}$ | min Mr | Crkg | Mu-p/r |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer | 2.58 |  |  |  |  |  |  |  |  |  |  |  |
| 333.3 | 34.6 | 2.785 | 268.8 | 2.7 | 2.2 | 2088.9 | 0.076 T | 1.00 |  |  |  |  |
| H/2 | 1.58 |  |  |  |  |  |  |  |  |  |  |  |
| 208.4 | 34.6 | 1.790 | 269.3 | 1.7 | 1.4 | 1362.4 | 0.049T | 1.00 |  |  |  |  |
| 0.1 L | 5.84 |  |  |  |  |  |  |  |  |  |  |  |
| $0^{70.2 L}{ }^{704.8}$ | 34.7 | 3.931 | 268.3 | 3.8 | 3.2 | 2926.5 | 0.1087 | 1.00 |  |  |  |  |
| 126 | 34.7 | 5.029 | 267.7 | 5.0 | 4.1 | 3754.8 | 0.140T | 1.00 | 3320.5 | 1682.2 | 1.13 |  |
| 0.3L | 18.36 |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 4.8 | 5.208 | 7 | 5.1 | 4.2 | 3793.6 |  | 1.00 | 3249.4 | 2167.3 | 1.17 |  |
| 0.4 L | 24.62 |  |  |  |  |  |  |  |  |  |  |  |
| 1824.0 | 34.8 | 5.208 | 267.7 | 5.1 | 4.2 | 3793.6 | $0.141 T$ | 1.00 | 3206.6 | 2425.9 | 1.18 |  |
| $\left.\begin{array}{\|c\|} 0.5 \mathrm{~L} \\ 1850.2 \end{array} \right\rvert\,$ | $\left\|\begin{array}{r} 30.88 \\ 34.8 \end{array}\right\|$ | 5.208 |  | 5.1 | 4.2 | 3793.6 |  | 1.00 | 3192.4 | 2460.8 | 1.19 |  |
| 0.6 L | 37.13 |  |  |  |  |  |  |  |  |  |  |  |
| 1715 | 34.8 | 5.208 | 7.7 | 5.1 | 4.2 | 3793.6 | 0.14 | 1.00 | 3206.6 | 2281.8 | 1.18 |  |
| 0.7L | 43.3 |  |  |  |  |  |  |  |  |  |  |  |
| 1407.5 | 34.8 | 5.208 | 7.7 | 5.1 | 4.2 | 3793.6 | $0.141 T$ | 1.00 | 3249.4 | 1871.9 | 1.17 |  |
| 0.8L <br> 0.8L | 49.65 34.7 |  |  |  |  |  |  |  |  |  |  |  |
| $0^{9.9}{ }^{940.5}$ | 34.7 55.91 | 5.029 | 267.7 | 5.0 | 4.1 | 3754.8 | 0.140T | 1.00 | 3320.5 | 1250.8 | 1.13 |  |
| 394.1 | 34.7 | 3.931 | . 3 | 3.8 | 3.2 | 2926.5 | 0.108 T | 1.00 |  |  |  |  |
| H/2 | 60.17 |  |  |  |  |  |  |  |  |  |  |  |
| 51.1 | 34.6 | 1.790 | . 3 | 1.7 | 1.4 | 1362.4 | 0.049T | 0 |  |  |  |  |
| Transfer 129.6 | 59 |  |  |  |  |  |  |  |  |  |  |  |

Legend: C = Compression-Controlled (c/dt > 0.600 )
$\mathrm{I}=\mathrm{ln}$-Transition ( $0.60>=\mathrm{c} / \mathrm{dt}>0.375$ )
$\mathrm{T}=$ Tension-Controlled (c/dt $<=0.375$ )
Note : fr used for calculating Mcr is computed using AASHTO method (Art.5.4.2.6.)
Consider Bottom Tension Steel Conlribution : NO

| SiBentley |  |  |  | Sheet \# | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

DETENSIONING

Span : 1, Beam : 1; Groups 1-12; Units: ksi

| Grp | Str |  | Ys,in |  | 3.00 ft | 5.00 ft | 7.00ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | E | 2.25 | Ft | 0.147 | 0.222 | 0.275 |
|  |  | M | M 2.25 | Fb | -0.125 | -0.135 | -0.075 |
| 2 | 2 | E | 4.25 | Ft | 0.140 | 0.200 | 0.253 |
|  |  | M | 4.25 | Fb | -0.066 | 0.042 | 0.103 |
| 3 | 2 | E | 4.25 | Ft | 0.118 | 0.178 | 0.232 |
|  |  | M | 4.25 | Fb | 0.112 | 0.220 | 0.281 |
| 4 | 2 | E | 4.25 | Ft | 0.096 | 0.157 | 0.210 |
|  |  | M | 4.25 | Fb | 0.290 | 0.398 | 0.459 |
| 5 | 2 | E | 4.25 | Ft | 0.075 | 0.135 | 0.189 |
|  |  | M | M 4.25 | Fb | 0.468 | 0.576 | 0.636 |
| 6 | 2 | E | 4.25 | Ft | 0.053 | 0.113 | 0.167 |
|  |  | M | 4.25 | Fb | 0.645 | 0.753 | 0.814 |
| 7 | 2 | E | 4.25 | Ft | 0.031 | 0.092 | 0.145 |
|  |  | M | 4.25 | Fb | 0.823 | 0.931 | 0.992 |
| 8 | 2 | E | 2.25 | Ft | -0.013 | 0.047 | 0.101 |
|  |  | M | 2.25 | Fb | 1.020 | 1.128 | 1.189 |
| 9 | 2 | E | 2.25 | Ft | -0.057 | 0.003 | 0.057 |
|  |  | M | 2.25 | Fb | 1.217 | 1.325 | 1.386 |
| 10 | 2 | E | 2.25 | Ft | -0.101 | -0.041 | 0.013 |
|  |  | M | 2.25 | Fb | 1.414 | 1.522 | 1.583 |
| 11 | 2 | E | 2.25 | Ft | -0.146 | -0.085 | -0.032 |
|  |  | M | 2.25 | Fb | 1.611 | 1.719 | 1.780 |
| 12 | 2 | E | 2.25 | Ft | -0.146 | -0.100 | -0.076 |
|  |  | M | M 2.25 | Fb | 1.611 | 1.785 | 1.977 |


| Fi Pen \%ey |  |  |  | Sheet \# | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designea | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | uww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## NEGATIVE ENVELOPE STRESSES

Span : 1, Beam : 1, SERVICE I
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = 11.96 \%)

|  | Bearing | Trans | H/2 | $\left.\begin{array}{\|c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array} \right\rvert\,$ | $\left.\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array} \right\rvert\,$ | $\begin{array}{\|c\|} \hline 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.036 | -0.269 | -0.175 | -0.343 | -0.363 | -0.363 | -0.363 | -0.363 |
| Bottom | 0.214 | 1.595 | 1.027 | 1.977 | 2.066 | 2.066 | 2.066 | 2.066 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.125 | 0.078 | 0.268 | 0.493 | 0.653 | 0.749 | 0.782 |
| Bottom | -0.000 | -0.107 | -0.066 | -0.228 | -0.419 | -0.556 | -0.638 | -0.665 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top Bottom | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 -0.000 | -0.000 | -0.000 -0.000 | -0.000 -0.000 |
| Deck + Haunch |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.083 | 0.052 | 0.178 | 0.328 | 0.435 | 0.499 | 0.520 |
| Bottom | -0.000 | -0.071 | -0.044 | -0.152 | -0.279 | -0.370 | -0.424 | -0.443 |
| DL-Comp (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.091 | -0.070 | -0.078 | -0.045 | -0.006 | 0.024 | 0.044 | 0.057 |
| Bottom | 0.195 | 0.149 | 0.166 | 0.096 | 0.013 | -0.050 | -0.095 | -0.122 |
| DL-Comp (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.020 | -0.019 | -0.019 | -0.018 | -0.016 | -0.014 | -0.012 |  |
| Bottom | 0.042 | 0.040 | 0.041 | 0.038 | 0.034 | 0.029 | 0.025 | 0.021 |
| LL+1(-) |  |  |  |  |  |  |  |  |
| Precast-top | -0.198 | -0.169 | -0.180 0.384 | -0.140 0 | -0.111 | -0.100 | -0.086 | $\begin{array}{r}-0.071 \\ \hline 0.152\end{array}$ |
| Bottom | $0.424$ | $0.361$ | 0.384 | 0.299 | 0.238 | 0.214 | 0.183 | 0.152 |
| Pedestrian(-) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Final 1 (P/S + DL + LL) Precast-top | -0.345 | -0.317 | -0.321 | -0.100 | 0.324 | 0.634 | 0.832 | 0.914 |


| SiBentley |  |  |  | Sheet \# | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| Bottom | Bearing 0.875 | Trans | $H / 2$ 1.507 | $\begin{array}{r} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \\ 2.031 \end{array}$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \\ 1.653 \end{gathered}$ | $\begin{array}{r} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \\ 1.334 \end{array}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \\ 1.118 \end{gathered}$ | Midspan 1.010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Final $2(P / S+D L)$ |  |  |  |  |  |  |  |  |
| Precast-top | -0.147 | -0.148 | -0.141 | 0.040 | 0.436 | 0.734 | 0.918 | 0.986 |
| Bottom | 0.451 | 1.607 | 1.123 | 1.732 | 1.414 | 1.120 | 0.935 | 0.858 |

Span : 1, Beam : 1, SERVICE III
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = 11.96 \%)

| Location, ft | Bearing | Trans | $H / 2$ 1.58 | $\begin{array}{\|r\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \\ 5.84 \end{array}$ | 0.20 L <br> 10.80 L <br> 12.10 | $\begin{array}{r} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \\ 18.36 \end{array}$ | $\begin{array}{\|r\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \\ 24.62 \end{array}$ | Midspan <br> 30.88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.036 | -0.269 | -0.175 | -0.343 | -0.363 | -0.363 | -0.363 | -0.363 |
| Bottom | 0.214 | 1.595 | 1.027 | 1.977 | 2.066 | 2.066 | 2.066 | 2.066 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.125 | 0.078 | 0.268 | 0.493 | 0.653 | 0.749 | 0.782 |
| Bottom | -0.000 | -0.107 | -0.066 | -0.228 | -0.419 | -0.556 | -0.638 | -0.665 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch Precast-top | 0.000 | 0.083 | 0.052 | 0.178 | 0.328 | 0.435 | 0.499 |  |
| Bottom | -0.000 | -0.071 | -0.044 | -0.152 | -0.279 | -0.370 | -0.424 | -0.443 |
| DL-Comp (DC) Precast-top | -0.091 | -0.070 | -0.078 | -0.045 | -0.006 | 0.024 | 0.044 | 0.057 |
| Bottom | 0.195 | 0.149 | 0.166 | 0.096 | 0.013 | -0.050 | -0.095 | -0.122 |
| DL-Comp (DW) Precast-top | -0.020 | -0.019 | -0.019 | -0.018 | -0.016 | -0.014 | -0.012 | -0.010 |
| Bottom | 0.042 | 0.040 | 0.041 | 0.038 | 0.034 | 0.029 | 0.025 | 0.021 |


|  |  |  |  | Sheet \# | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  | Bearing | Trans | H/2 | $\left[\begin{array}{c} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}\right.$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{gathered} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL $+1(-)$ |  |  |  |  |  |  |  |  |
| Precast-top | -0.159 | -0.135 | -0.144 | -0.112 | -0.089 | -0.080 | -0.069 | -0.057 |
| Bottom | 0.339 | 0.289 | 0.307 | 0.239 | 0.191 | 0.171 | 0.147 | 0.122 |
| Pedestrian(-) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Final 1 (P/S + DL + LL) Precast-top | -0.306 | -0.283 | -0.285 | -0.072 | 0.346 | 0.654 | 0.849 | 0.929 |
| Bottom | 0.790 | 1.895 | 1.430 | 1.971 | 1.605 | 1.291 | 1.081 | 0.980 |

Span : 1, Beam : 1, FATIGUE I
NEGATIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\left\|\begin{array}{c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}\right\|$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\left.\begin{gathered} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered} \right\rvert\,$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| F_LL+1(-) Precast-top |  | -0.094 | -0.090 | -0.092 | -0.085 | -0.076 | -0.066 | -0.057 | 047 |
| Bottom |  | 0.201 | 0.193 | 0.196 | 0.182 | 0.162 | 0.141 | 0.121 | 0.101 |
| Pedestrian(-) Precast-top |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 3 ( $50 \%$ P/S | +50\% | $\left.D L+F_{-} L L\right)$ |  |  |  |  |  |  |  |
| Bottom |  | 0.427 | -0.164 0.996 | 0.758 | 1.048 | 0.869 | $\begin{aligned} & 0.301 \\ & 0.701 \\ & \hline \end{aligned}$ | 0.402 0.588 | 0.446 0.530 |


| FB Bentioy |  |  |  | Sheet \# | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

REINFORCED DESIGN

REINFORCED DESIGN - Span : 1, Beam : 1, STRENGTH I (fy = $\mathbf{6 0 . 0 0} \mathrm{ksi}$ )
(a) NEGATIVE MOMENTS ALONG SPAN (Non-composite Moment effects are INCLUDED in Mu)

Negative Moment Continuity Steel:

| \#bars | Size | $\left\lvert\, \begin{array}{\|c\|} \hline \text { Dist. from Top } \\ \text { (in) } \end{array}\right.$ | $\left\|\begin{array}{c\|} \text { Area } \\ \text { (in2) } \end{array}\right\|$ | Start <br> ( t ) | End <br> (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | US\#4[M13] | 2.88 | 2.80 | 0.0000 | 62.7500 |
| 7 | US\#10[M32] | 3.26 | 8.89 | 34.7500 | 62.7500 |
| 7 | US\#10[M32] | 3.26 | 8.89 | 50.7500 | 62.7500 |


| fc | b | bw |
| :---: | :---: | :---: |
| (ksi) | (in) | (in) |
| 8.50 | 72.00 | 12.00 |


| Sec | Dist $(\mathrm{ft})$ | $\begin{aligned} & \overline{\text { Mu-reqd }} \\ & (\mathrm{k} . \mathrm{ft}) \end{aligned}$ | $\begin{array}{\|c\|} \hline \mathrm{hf} \\ \text { (in) } \\ \hline \end{array}$ | (in) | $\begin{gathered} \mathrm{d}^{\prime} \\ \text { (in) } \end{gathered}$ | Phi | Phi*Mn-r (k.ft) | cldt | n2) | (in2) | 12) | $\begin{aligned} & \text { Phi*Mn-p } \\ & \text { (k.ft) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.800 | . 5 |
|  | 5.84 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.800 | -440.5 |
|  | 12.10 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.800 | -440.5 |
|  | 18.36 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2800 | -440.5 |
|  | 24.62 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.00 | 0.0 | 0.000 | 2800 | -440.5 |
|  | 30.88 | 0.0 | 6.00 | 35 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.800 | 440.5 |
|  | 37.13 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 11.690 | -1812.0 |
|  | 43.39 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.000 | 0.000 | 2.62 | 11.69 | 181 |
|  | 49. | 5.5 | 6.00 | 34.8 | 2.0 | 0.9 | 45.5 | 0.001 | 0.000 | 2.62 | 11.690 | -1812 |
| 10 | 55.9 | -481.9 | 6.0 | 34. | 2.00 | 0.9 | 481.9 | 0.0158 | 0.000 | 3.09 | 2. | -31 |
|  |  |  |  |  |  | 0.9 |  |  |  |  |  |  |

(b) POSITIVE MOMENTS AT PIERS

NONE

| 家Bentley |  |  |  | Sheet \# | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

## DESIGN SUMMARY

Span: 1, Beam: 1, Exterior beam

| Beam type: | Adjacent Box Beam, | Bui72X30 |
| :---: | :---: | :---: |
| Precast Length, | ft | 62.58 |
| Release Length, | $f$ | 62.58 |
| Strand Pattern: | Straight |  |
| Strand: | 6/10-270K-LL |  |
| Strand Es, | ksi: | 28500.0 |
| No. of strands: |  |  |
|  | Draped: | $0$ |
|  |  |  |
| Concrete Strength: |  |  |
|  | fci: | 6.5 ksi |
|  | fc: | 8.5 ksi |
|  | fct: | 4.5 ksi |
| Initial losses: | 4.18 \% |  |
| Final losses: | 11.96 \% |  |


| Specification | Allowable | Computed | Location | Status |
| :---: | :---: | :---: | :---: | :---: |
| Release Stresses (ksi) (Art. 5.9.4.1) |  |  |  |  |
| Precast Bot (compression) | 3.900 | 1.905 | 0.11/0.9L | OK |
| Precast Top w/ no reinf. (tension) | -0.200 | -0.146 | Trans |  |
| Precast Top w/ reinf. (tension) | -0.612 |  |  |  |
| Strength I (Art. 3.4.1, 5.7.3.1.1) | Provided | Required | Location | Status |
| Ult. Moment (k.ft) | 3793.57 | 1850.22 | Midspan | O |
| Debonding Limits (Art. 5.11.4.3) | Allowable | Computed |  | Status |
| Max. Debond per Row | 40.00\% | $33.33 \%$ |  | OK |
| Max. Debond Total | 25.00\% | 25.00\% |  | OK |

Positive Moment Envelope Stresses (ksi) (Art. 3.4.1 and 5.9.4.2)

| 官Bentley |  |  |  | Sheet \# | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: Conspan Final_BX30a.csI $^{\text {www.bentley.com }}$ ( Phone: 1-800-778-4277 |  |  |  | Date |  |


| Specification | Allow | Final 1 Comp | Loc. | Allow | Final 2 Comp | Loc. | Allow | Final 3 Comp | Loc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Service I Limit State - Compressive | Stresses | Only |  |  |  |  |  |  |  |
| Precast Top | 5.100 | 1.164 | Midspan | 3.825 | 0.986 | Midspan |  |  |  |
| Precast Bot | 5.100 | 1.388 | 0.1 1 /0.9L | 3.825 | 1.546 | 0.1L/0.9L |  |  |  |
| Service III Limit State - Tensile | Stresses | Only |  |  |  |  |  |  |  |
| Precast Top | -0.554 | -0.036 | Bearing |  |  |  |  |  |  |
| Precast Bot | -0.554 | 0.214 | Bearing |  |  |  |  |  |  |
| Fatigue I Limit State - Compressive Precast Top | Stresses | Only |  |  |  |  | 3.400 | 0.596 |  |
| Precast Bot |  |  |  |  |  |  | 3.400 | 0.665 | 0.1L/0.9L |

Negative Moment Envelope Stresses (ksi) (Art. 3.4.1 and 5.9.4.2)


CAMBER / DEFLECTION: (PCI Design Handbook - 4th Ed.- Table 4.6.2)
$0.5 \times \mathrm{L}=30.88 \mathrm{ft}$

|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Prestress | 1.258 | 1.80 | 2.264 | 2.20 | 2.767 |
| Self Wt. | -0.595 | 1.85 | -1.101 | 2.40 | -1.429 |
| Deck + Haunch |  |  | -0.328 | 2.30 | -0.755 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.052 | 3.00 | -0.156 |
| DL-Comp. (DW) |  |  | 0.013 | 3.00 | 0.039 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total |  |  |  |  |  |


|  |  |  |  | Sheet \# | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: $\mid$ Conspan Final_BX30a.csI | Conspan Final_BX30a.csI |  |  | Date |  |

Positive values indicate upward deflection.

|  |  |  |  | Sheet \# | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | unw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |

PROPERTIES
Span:3, Beam:1
PRECAST DATA:


Minimum Thickness Criteria, Article 5.14.1.2.2 checked: OK.

GENERAL BRIDGE DATA:

| Bridge Width | 124.00 | ft |
| :--- | ---: | ---: |
| Crurb-to-curb | 120.00 | ft |
| Beam Spac. Lt./Rt | $4.21 / 6.08$ | ft |
| Lane width | 12.00 | ft |
| Number of lanes | 7 |  |
| Interior/Exterior | Exterior |  |
| Stant Skew Angle | 0.00 | degrees |
| End Skew Angle | 0.00 | degrees |

TOPPING DATA:


GENERAL LOAD DATA:
DEAD LOADS ON PRECAST - NONE

Dead loads on composite: See Project info for composite loads

GENERAL SPAN DATA:

| Overall length | 82.833 | ft |
| :--- | :--- | :--- |
| Release length | 82.83 | ft |
| Design length | 82.000 | ft |

KERN POINTS:

| FiBentley |  |  |  | Sheet \# | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| Upper | 22.75 | in |
| :--- | :--- | :--- |
| Lower | 6.17 | in |

## DISTRIBUTION FACTORS (Art. 4.6.2.2): <br> Type $f$, with deck

| Live Negative Moment | Left Side | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Live Negative Moment | Right Side | (2+ lanes loaded) | 0.335 | (Calculated) | $(\#)$ |
| (\#ive Negative Moment | Left Side | (1 lane loaded) | 0.335 | (Calculated) | (\#) |
| Live Negative Moment | Right Side | (1 lane loaded) | 0.335 | (Calculated) | (\#) |
| Live |  |  |  |  |  |
| Live Positive Moment |  | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| Live Positive Moment |  | (1 lane loaded) | 0.335 | (Calculated) | $(\#)$ |
| (\#ive Shear |  | (2+ lanes loaded) | 0.335 | (Calculated) | (\#) |
| Live Shear |  | (1 lane loaded) | 0.335 | (Calculated) | (\#) |

(\#) Lever rule (C4.6.2.2.1)

| Pedestrian | 0.050 | (Calculated) |
| :--- | :--- | :--- |
| Comp. DC | 0.050 | $\left(\begin{array}{l}\text { (Calculated) } \\ \text { Comp. DW }\end{array}\right.$ |
| 0.050 | (Calculated) |  |

Dead Loads and Pedestrian Load distributed equally to all beams (Art. 4.6.2.2.1)
RESISTANCE FACTORS (Art. 5.5.4.2):

| Flexure Reinforced |  |
| :--- | :---: |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 0.90 |
| Flexure Prestressed |  |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 1.00 |
| Shear | 0.90 |

## SECTION PROPERTIES:

|  | PRECAST |  | COMPOSITE |  |  |
| :--- | ---: | :--- | ---: | :--- | :--- |
| Area | 978.0 | in2 | 1451.7 | in2 | $\#$ |
| Total Height | 30.00 | in | 38.00 | in |  |
| Mom. of Inertia (lxx) | 120856 | in4 | 255893 | in4 | $\#$ |
| Ht. of c.g. | 13.79 | in | 20.44 | in | $\#$ |
| Density | 150.00 | pcf | 150.00 | pcf |  |
| Self-weight | 1018.8 | plf | 1696.9 | plf |  |
| Mom. of Inertia (lyy) | 588267.0 | in4 |  |  |  |
| Poisson's Ratio | 0.2 |  |  |  |  |


| Fibentley |  |  |  | Sheet \# | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


(\#) Of Total Section using Ect/Ec $=0.7276$ Use transformed strand and rebar: No

Span:3, Beam:1
STRESS LIMITS (Art. 5.9.4):
STRESS LIMITS AT RELEASE BEFORE LOSSES:

| Strength <br> Elasticity <br> Max comp <br> Max tens <br> Max tens, | w/reinf | $\begin{array}{\|l\|} \hline \text { PRECAST } \\ 6.50 \\ 4887.7 \\ 3.90 \\ -0.20 \\ -0.61 \\ \hline \end{array}$ | ksi ksi ksi ksi ksi |
| :---: | :---: | :---: | :---: |

STRESS LIMITS AT FINAL AFTER LOSSES:

|  | PRECAST |  | DECK |  |
| :--- | ---: | ---: | ---: | ---: |
| Strength | 8.50 | ksi | 4.50 | ksi |
| Elasticity | 5589.34 | ksi | 4066.84 | ksi |

STRESS LIMITS AT FINAL 1 (P/S + DL + LL):


STRESS LIMITS AT FINAL 2 (P/S + DL):

|  | PRECAST | DECK |  |  |
| ---: | ---: | ---: | ---: | ---: |
| Max comp | 3.83 | ksi | 2.03 | ksi |

FATIGUE I STRESS LIMITS AT FINAL 3 ( $50 \%$ P/S + 50\% DL + F_LL ) (Art. 5.5.3.1):


SERVICE III (Tension):

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Max tens | PRECAST |  | DECK |  |
|  | -0.55 | ksi | -0.40 | ksi |

## Span:3, Beam:1

PRESTRESSED STEEL:
34 strands, 6/10-270K-LL, Low relaxation strands

| $5 \text { Bentley }$ |  |  |  | Sheet \# | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | unw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## Straight Pattern

END PATTERN (Ycg = 3.19 in ):

\section*{| $18 @ 2.250$ in | 16 @ 4.250 in $\square$ |
| :--- | :--- |}

SHIELDING AND REDUCED INITIAL PULLS:

| Group | Strands | End | Heights | Mid |  | End |  | Shielding | Mid |  | Distance to center |  | Initial Frac | $\begin{array}{\|c\|} \hline \text { Pull } \\ \text { Pull/Str } \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 2.250 | in | 2.250 | in | 4.00 | $f t$ |  | 0.00 | ft | 1.000 | in | 75.0 \% | 43.9 | kips |
| 2 | 2 | 4.250 | in | 4.250 | in | 2.00 | ft |  | 0.00 | ft | 1.000 | in | 75.0 \% | 43.9 | kips |
| 16 | 2 | 2.250 | in | 2.250 | in | 2.00 | ft |  | 0.00 | ft | 15.000 | in | 75.0 \% | 43.9 | kips |
| 17 | 2 | 2.250 | in | 2.250 | in | 4.00 | ft |  | 0.00 | ft | 17.000 | in | 75.0\% | 43.9 | kips |

Check for Art. 5.11.4.3 (debond termination distances): OK

| Strand Diameter | 0.600 | in |
| :--- | ---: | :--- |
| Strand Area | 0.217 | in2 |
| Total Strand Area | 7.378 | in2 |
| Trans. Len,bonded | 3.000 | ft |
| Trans. Len, debonded | 3.000 | ft |
| Dev. Len, bonded | 10.593 | ft |
| Dev. Len, debonded | 13.241 | ft |
| Holddown Force | 0.000 | kips |
| Tensile Strength(fpu) | 270.0 | ksi |
| lnitial Prestress =0.75fpu | 202.5 | ksi |
| Initial Pull | 1494.0 | kips |
| Beam Shrtng (PL/AE) | 0.294 | in |

Span:3, Beam:1
ESTIMATED QUANTITIES

| Prestressing | Strands |  |  | Beam | Concrete | Stirrups | Longitudinal Bars |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (linear ft) | (LB/1000ft) | (LB) | Vol(C.Y.) | Wt(LB) | (LB) | (LB) |  |
| 2816.332 | 740 | 2084.086 | 20.836 | 84386.602 | 583.648 | 0.000 |  |

Span:3, Beam:1
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| Bi Bentley |  |  |  | Sheet \# | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentey Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csI }}$ |  |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8301 | 82.8301 | Yes |

LOSSES
Note: Values are calculated at Midspan

| Str. area | 7.3780 | in2 |
| :--- | ---: | :--- |
| Ycg | 3.19 | in |
| P_init | 1494.0 | kips |
| Ecc | 10.60 | in |
| Days to release | 0.75 |  |
| Rel. Humid.(RH) | 60.0 | $\%$ |
| Es | 28500.0 | ksi |
| Eci | 4888 | ksi |

## AASHTO LOSSES

## Elastic Shortening 10.83 ksi (Eq 5.9.5.2.3a-1), (fcgp= 1.858 ksi$)$

| Elastic Gains <br> due | to Precast Loads |  | Gains |  | Adjustment |
| :--- | :---: | :---: | ---: | ---: | ---: |
|  |  |  |  |  |  |
| due | to Composite Loads |  | -0.5 | ksi |  |
| due | to Live Loads |  | 0.20 | ksi |  |

Time Dependent Losses (Approximate Method (Art.5.9.5.3))


Prestressing Stress Limit Check (Table 5.9.3.1)
initial fpi $=202.5 \mathrm{ksi}<0.75 \mathrm{fpu}, \mathrm{OK}$
initial fpe $=174.1 \mathrm{ksi}<0.80 \mathrm{fpy}$, OK

| Bentley |  |  |  | Sheet \# | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | mww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs\| |  |  | Date |  |

SHEAR/MOMENT ENVELOPE (\&REACTIONS)

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 1, SERVICE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | idspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Loca | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self w | M | 0.0 | 104.5 | 64.9 | 297.1 | 541.7 | 716.5 | 821.3 | 856.3 |
| (Max) | V | 41.8 | 39.1 | 40.2 | 33.8 | 25.3 | 16.9 | 8.4 | 0.0 |
| DL-Prec | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Ma | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck | M | 0.0 | 69.6 | 43.2 | 197.7 | 360.6 | 476.9 | 546.7 | 570.0 |
| Haunch (Max) | V | 27.8 | 26.1 | 26.7 | 22.5 | 16.9 | 11.2 | 5.6 | 0.0 |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 |
| DL-Com | M | -185.3 | -147.5 | -161.8 | -79.9 | 0.9 | 55.4 | 87.6 | 97.6 |
| DC(Max) | V | 15.1 | 14.0 | 14.4 | 11.6 | 7.9 | 5.2 | 2.5 | . |
| DL-C | M | -86.4 | -71.7 | -77.3 | -44.4 | -9.6 | 15.5 | 31.0 | 36.9 |
| DW(Max) | V | 5.9 | 5.5 | 5.7 | 4.8 | 3.6 | 2.5 | 1.3 | 0.1 |
| LL+1: | M | 88.3 | 87.2 | 86.6 | 113.9 | 234.2 | 364.6 | 444.6 | 466.7 |
|  | , | 5.3 | 7.0 | 6.3 | 10.5 | 12.3 | 7.1 | 1.9 | 10.4 |
| LL+I: | M- | -506.1 | -433.0 | -460.2 | -312.2 | -200.1 | -187.7 | -161.2 | -134.7 |
|  | $\checkmark$ | 27.7 | 25.6 | 26.4 | 21.3 | 5.1 | 3.2 | 3.2 | 3.2 |
| LL + I: | Vn | 38.5 | 37.1 | 37.6 | 34.0 | 29.1 | 24.1 | 19.2 | 15.4 |
|  | 1 | -218.8 | -156.0 | -180.1 | -33.7 | 141.7 | 263.8 | 328.7 | 361.7 |
| Pedestrian: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | $v$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | $V_{m}$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| Total |  | 0.0 | 42.1 | 0.0 | 484.4 | 1127.8 | 1628.9 | 1931.3 | 2027.5 |
|  | V | 0.0 | 91.7 | 0.0 | 83.1 | 66.1 | 42.8 | 19.8 | 10.7 |
| Total | M- | -777.8 | -478.2 | -591.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 118.3 | 110.3 | 113.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : |  | 129.1 | 121.7 | 124.6 | 106.7 | 82.8 | 59.9 | 37.1 | 15.7 |
|  | M | -490.5 | -201.2 | -311.1 | 336.7 | 1035.3 | 1528.0 | 1815.3 | 1922.5 |


|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | H/2 | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | ft | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt. : | M | 821.3 | 716.5 | 541.7 | 297.1 | 64.9 | 104.5 | 0.0 |
| (MMax) | V | 8.4 | 16.9 | 25.3 | 33.8 | 40.2 | 3.1 | 41.8 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 546.7 | 476.9 | 360.6 | 197.7 | 43.2 | 69.6 | 0.0 |
| Haunch (Max) | V | 5.6 | 11.2 | 16.9 | 22.5 | 26.7 | 26.1 | 27.8 |


| FiBentley |  |  |  | Sheet \# | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csI }}$ |  |  |  | Date |  |


|  |  | 0.60 L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 85.4 | 51.0 | -5.5 | -88.6 | -172.1 | -157.6 | -195.9 |
| DC(Max) | V | 2.8 | 5.5 | 8.2 | 11.9 | 14.6 | 14.2 | 15.3 |
| DL-Comp : | M | 33.2 | 19.8 | -3.2 | -35.8 | -67.0 | -61.7 | -75.8 |
| DW(Max) | V | 1.0 | 2.2 | 3.4 | 4.5 | 5.4 | 5.3 | 5.6 |
| LL + I: | $\mathrm{M}+$ | 444.6 | 364.6 | 234.2 | 113.9 | 86.6 | 87.2 | 88.3 |
|  | $V$ | 1.9 | 7.1 | 12.3 | 10.5 | 6.3 | 7.0 | 5.3 |
| $L L+1:$ | M- | -161.2 | -187.7 | -200.1 | -312.2 | -460.2 | -433.0 | -506.1 |
|  | V | 3.2 | 3.2 | 5.1 | 21.3 | 26.4 | 25.6 | 27.7 |
| LL + 1: | Vmx | 19.2 | 24.1 | 29.1 | 34.0 | 37.6 | 37.1 | 38.5 |
|  | M | 328.7 | 263.8 | 141.7 | -33.7 | -180.1 | -156.0 | -218.8 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M - | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | M+ | 1931.3 | 1628.9 | 1127.8 | 484.3 | 0.0 | 42.0 | 0.0 |
|  | V | 19.8 | 42.8 | 66.1 | 83.1 | 0.0 | 91.6 | 0.0 |
| Total : | M- | 0.0 | 0.0 | 0.0 | 0.0 | -591.3 | -478.3 | -777.8 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 113.3 | 110.2 | 118.2 |
| Total : | Vmx | 37.1 | 59.9 | 82.8 | 106.7 | 124.5 | 121.7 | 129.0 |
|  | M | 1815.3 | 1528.0 | 1035.3 | 336.6 | -311.2 | -201.3 | -490.5 |

REACTIONS (kips), SERVICE I

| Load Type |  | Left Support | Right Support |
| :--- | ---: | ---: | ---: |
| Self Wt. |  | 41.8 | 41.8 |
| Deck+Haunch |  | 27.8 | 27.8 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 0.0 | 0.0 |
| DL-Comp.(DC) |  | 617.3 | 632.9 |
| DL-Comp.(DW) |  | 249.9 | 234.3 |
| Live | (Max) | 137.8 | 137.8 |
| Live | (Min) | -16.4 | -16.4 |
| Pedestrian | (Max) | 0.1 | 0.1 |
| Pedestrian | (Min) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.
Live Load reaction reported at intermediate supports is full reaction at support.

| Fibentley |  |  |  | Sheet \# | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | unw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 1, SERVICE III
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self wt | M | 0.0 | 104.5 | 64.9 | 297.1 | 541.7 | 716.5 | 821.3 | 856.3 |
| (Max) | V | 41.8 | 39.1 | 40.2 | 33.8 | 25.3 | 16.9 | 8.4 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + | M | 0.0 | 69.6 | 43.2 | 197.7 | 360.6 | 476.9 | 546.7 | 570.0 |
| Haunch (Max) | $V$ | 27.8 | 26.1 | 26.7 | 22.5 | 16.9 | 11.2 | 5.6 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | -185.3 | -147.5 | -161.8 | -79.9 | 0.9 | 55.4 | 87.6 | 97.6 |
| DC(Max) | V | 15.1 | 14.0 | 14.4 | 11.6 | 7.9 | 5.2 | 2.5 | 0.1 |
| DL-Comp | M | -86.4 | -71.7 | -77.3 | -44.4 | -9.6 | 15.5 | 31.0 | 36.9 |
| DW(Max) | V | 5.9 | 5.5 | 5.7 | 4.8 | 3.6 | 2.5 | 1.3 | 0.1 |
| LL + I: | M+ | 70.7 | 69.8 | 69.2 | 91.2 | 187.4 | 291.7 | 355.7 | 373.4 |
|  | V | 4.2 | 5.6 | 5.0 | 8.4 | 9.9 | 5.6 | 1.5 | 8.3 |
| LL + $1:$ | M- | -404.8 | -346.4 | -368.2 | -249.8 | -160.1 | -150.2 | -129.0 | -107.8 |
|  | V | 22.2 | 20.5 | 21.2 | 17.0 | 4.1 | 2.6 | 2.6 | 2.6 |
| $L L+1:$ | Vm | 30.8 | 29.6 | 30.1 | 27.2 | 23.3 | 19.3 | 15.4 | 12.3 |
|  | M | -175.0 | -124.8 | -144.1 | -27.0 | 113.4 | 211.0 | 262.9 | 289.4 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | $V$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| Total: | M + | 0.0 | 24.7 | 0.0 | 461.6 | 1081.0 | 1556.0 | 1842.3 | 1934.1 |
|  | V | 0.0 | 90.3 | 0.0 | 81.0 | 63.6 | 41.4 | 19.4 | 8.6 |
| Total : | M- | -676.5 | -391.6 | -499.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 112.8 | 105.2 | 108.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vmx | 121.4 | 114.3 | 117.1 | 99.8 | 77.0 | 55.1 | 33.3 | 12.6 |
|  | M | -446.7 | -170.0 | -275.1 | 343.4 | 1007.0 | 1475.3 | 1749.5 | 1850.1 |


|  |  | 0.60 L | 0.70 L | $\mathbf{0 . 8 0 L}$ | 0.90 L | H/2 | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | ft | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt.: | M | 821.3 | 716.5 | 541.7 | 297.1 | 64.9 | 104.5 | 0.0 |
| (Max) | V | 8.4 | 16.9 | 25.3 | 33.8 | 40.2 | 39.1 | 41.8 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck : : | M | 546.7 | 476.9 | 360.6 | 197.7 | 43.2 | 69.6 | 0.0 |
| Haunch (Max) | V | 5.6 | 11.2 | 16.9 | 22.5 | 26.7 | 26.1 | 27.8 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| FBentley |  |  |  |  |  |  |  |  |  | Sheet \# | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) |  |  |  |  |  |  | - |  |  |  |
|  |  |  |  |  |  | Copyright © Bentley Systems, Inc. 1984-2012 |  |  |  |  |  |
| Version: ${ }^{\text {a }}$ 12.01.00.57 |  |  |  |  |  |  |  |  |  | Date | Dec/11/2012 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | www.bentley.com $\mid$ Phone: 1-800-778-4277 |  |  |  | Checked |  |
| File Name: ${ }^{\text {Conspan Finat_BX30a.cst }}$ |  |  |  |  |  |  |  |  |  | Date |  |
| (Max) <br> DL-Comp : <br> DC(Max) <br> DL-Comp : <br> DW(Max) <br> LL + I: |  | 0.60 L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | M | 85.4 | 51.0 | -5.5 | -88.6 | -172.1 | -157.6 | -195.9 |  |  |  |
|  | V | 2.8 | 5.5 | 8.2 | 11.9 | 14.6 | 14.2 | 15.3 |  |  |  |
|  | M | 33.2 | 19.8 | -3.2 | -35.8 | -67.0 | -61.7 | -75.8 |  |  |  |
|  | V | 1.0 | 2.2 | 3.4 | 4.5 | 5.4 | 5.3 | 5.6 |  |  |  |
|  | M + | 355.7 | 291.7 | 187.4 | 91.2 | 69.2 | 69.8 | 70.7 |  |  |  |
|  | V | 1.5 | 5.6 | 9.9 | 8.4 | 5.0 | 5.6 | 4.2 |  |  |  |
| LL + I: | M- | -129.0 | -150.2 | -160.1 | -249.8 | -368.2 | -346.4 | -404.8 |  |  |  |
|  | V | 2.6 | 2.6 | 4.1 | 17.0 | 21.2 | 20.5 | 22.2 |  |  |  |
| LL+I: | Vmx | 15.4 | 19.3 | 23.3 | 27.2 | 30.1 | 29.6 | 30.8 |  |  |  |
|  | M | 262.9 | 211.0 | 113.4 | -27.0 | -144.1 | -124.8 | -175.0 |  |  |  |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |
|  | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |  |  |  |
| Total | M ${ }^{+}$ | 1842.3 | 1555.9 | 1080.9 | 461.5 | 0.0 | 24.5 | 0.0 |  |  |  |
|  | V | 19.4 | 41.4 | 63.6 | 81.0 | 0.0 | 90.2 | 0.0 |  |  |  |
| Total | M- | 0.0 | 0.0 | 0.0 | 0.0 | -499.3 | -391.7 | -676.6 |  |  |  |
|  | $V$ | 0.0 | 0.0 | 0.0 | 0.0 | 108.0 | 105.1 | 112.7 |  |  |  |
| Total : | Vmx | 33.3 | 55.1 | 77.0 | 99.9 | 117.0 | 114.3 | 121.3 |  |  |  |
|  | M | 1749.5 | 1475.2 | 1006.9 | 343.4 | -275.2 | -170.1 | -446.8 |  |  |  |

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 1, STRENGTH I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10 L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self wt. | M | 0.0 | 130.6 | 81.1 | 371.3 | 677.1 | 895.6 | 1026.6 | 1070.3 |
| (Max) | V | 52.2 | 48.9 | 50.2 | 42.2 | 31.6 | 21.1 | 10.5 | 0.0 |
| Self wt. | M | 0.0 | 94.1 | 58.4 | 267.4 | 487.5 | 644.8 | 739.2 | 770.6 |
| (Min) | V | 37.6 | 35.2 | 36.1 | 30.4 | 22.8 | 15.2 | 7.6 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 0.0 | 87.0 | 54.0 | 247.2 | 450.7 | 596.1 | 683.4 | 712.5 |
| Haunch (Max) | V | 34.8 | 32.6 | 33.4 | 28.1 | 21.1 | 14.0 | 7.0 | 0.0 |
| Deck + | M | 0.0 | 62.6 | 38.9 | 178.0 | 324.5 | 429.2 | 492.0 | 513.0 |
| Haunch (Min) | V | 25.0 | 23.4 | 24.1 | 20.2 | 15.2 | 10.1 | 5.1 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| $5 \text { Bentley }$ |  |  |  | Sheet \# | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designeo | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Ded/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragn | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | -231.6 | -184.4 | -202.2 | -99.9 | 1.2 | 69.2 | 109.5 | 122.0 |
| DC(Max) | V | 18.9 | 17.5 | 18.0 | 14.5 | 9.9 | 6.5 | 3.2 | 0.2 |
| DL-Comp | M | -166.7 | -132.8 | -145.6 | -71.9 | 0.9 | 49.8 | 78.8 | 87.8 |
| DC(Min) | V | 13.6 | 12.6 | 13.0 | 10.5 | 7.1 | 4.7 | 2.3 | 0.1 |
| DL-Comp | M | -129.6 | -107.5 | -115.9 | -66.7 | -14.5 | 23.3 | 46.5 | 55.4 |
| DW(Max) | V | 8.8 | 8.3 | 8.5 | 7.2 | 5.4 | 3.7 | 1.9 | 0.2 |
| DL-Comp | M | -56.2 | -46.6 | -50.2 | -28.9 | -6.3 | 10.1 | 20.2 | 24.0 |
| DW(Min) | V | 3.8 | 3.6 | 3.7 | 3.1 | 2.4 | 1.6 | 0.8 | 0.1 |
| LL+1: | M + | 154.6 | 152.6 | 151.5 | 199.4 | 409.9 | 638.1 | 778.1 | 816.7 |
|  | V | 9.2 | 12.2 | 11.0 | 18.4 | 21.6 | 12.3 | 3.4 | 18.2 |
| $L L+1$ | M- | -885.6 | -757.8 | -805.4 | -546.4 | -350.2 | -328.5 | -282.1 | -235.8 |
|  | V | 48.6 | 44.8 | 46.3 | 37.2 | 9.0 | 5.6 | 5.6 | 5.6 |
| LL + I: | Vm | 67.4 | 64.8 | 65.9 | 59.5 | 50.9 | 42.2 | 33.7 | 27.0 |
|  | M | -382.9 | -273.1 | -315.2 | -59.0 | 248.0 | 461.6 | 575.2 | 633.0 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.1 | -0.1 | -0.1 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | $V$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.1 | -0.1 | -0.1 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| Total | M+ | 0.0 | 190.9 | 90.7 | 717.1 | 1532.7 | 2222.3 | 2644.2 | 2776.9 |
|  | V | 0.0 | 114.5 | 116.1 | 110.4 | 89.6 | 57.7 | 26.1 | 18.6 |
| Total : | M- | -1246.8 | -893.1 | -1026.3 | -267.7 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 133.9 | 124.6 | 128.2 | 101.4 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total | Vmx | 182.1 | 172.1 | 176.0 | 151.5 | 119.0 | 87.6 | 56.4 | 27.3 |
|  | M | -744.1 | -347.4 | -498.3 | 392.8 | 1362.6 | 2045.8 | 2441.2 | 2593.2 |


|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | H/2 | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | Ct | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt. : | M | 1026.6 | 895.6 | 677.1 | 371.3 | 81.1 | 130.6 | 0.0 |
| (Max) | V | 10.5 | 21.1 | 31.6 | 42.2 | 50.2 | 48.9 | 52.2 |
| Self wt. : | M | 739.2 | 644.8 | 487.5 | 267.4 | 58.4 | 94.1 | 0.0 |
| (Min) | V | 7.6 | 15.2 | 22.8 | 30.4 | 36.1 | 35.2 | 37.6 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 683.4 | 596.1 | 450.7 | 247.2 | 54.0 | 87.0 | 0.0 |
| Haunch (Max) | V | 7.0 | 14.0 | 21.1 | 28.1 | 33.4 | 32.6 | 34.8 |
| Deck +: | M | 492.0 | 429.2 | 324.5 | 178.0 | 38.9 | 62.6 | 0.0 |
| Haunch (Min) | V | 5.1 | 10.1 | 15.2 | 20.2 | 24.1 | 23.4 | 25.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| SBentley |  |  |  | Sheet \# | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentiey.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 106.8 | 63.8 | -6.9 | -110.7 | -215.1 | -197.0 | -244.9 |
| DC(Max) | V | 3.5 | 6.9 | 10.2 | 14.9 | 18.2 | 17.7 | 19.1 |
| DL-Comp : | M | 76.9 | 45.9 | -5.0 | -79.7 | -154.9 | -141.9 | -176.3 |
| DC(Min) | V | 2.5 | 4.9 | 7.4 | 10.7 | 13.1 | 12.7 | 13.7 |
| DL-Comp : | M | 49.8 | 29.7 | -4.8 | -53.8 | -100.6 | -92.6 | -113.7 |
| DW(Max) | V | 1.6 | 3.3 | 5.0 | 6.8 | 8.1 | 7.9 | 8.4 |
| DL-Comp : | M | 21.6 | 12.9 | -2.1 | -23.3 | -43.6 | -40.1 | -49.2 |
| DW(Min) | V | 0.7 | 1.4 | 2.2 | 2.9 | 3.5 | 3.4 | 3.7 |
| LL + I: | M+ | 778.1 | 638.1 | 409.9 | 199.4 | 151.5 | 152.6 | 154.6 |
|  | V | 3.4 | 12.3 | 21.6 | 18.4 | 11.0 | 12.2 | 9.2 |
| $L L+1:$ | M- | -282.1 | -328.5 | -350.2 | -546.4 | -805.4 | -757.8 | -885.6 |
|  | V | 5.6 | 5.6 | 9.0 | 37.2 | 46.3 | 44.8 | 48.6 |
| $L L+1$ : | Vmx | 33.7 | 42.2 | 50.9 | 59.5 | 65.9 | 64.8 | 67.4 |
|  | M | 575.2 | 461.6 | 248.0 | -59.0 | -315.2 | -273.1 | -382.9 |
| Pedestrian: | M+ | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M - | -0.0 | -0.0 | -0.0 | -0.0 | -0.1 | -0.1 | -0.1 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.1 | -0.1 | -0.1 |
| Total : | M+ | 2644.7 | 2223.4 | 1530.7 | 714.9 | 88.1 | 188.3 | 0.0 |
|  | V | 26.0 | 57.6 | 89.6 | 110.3 | 121.0 | 119.3 | 0.0 |
| Total : | M - | 0.0 | 0.0 | 0.0 | -265.6 | -1023.9 | -890.8 | -1244.2 |
|  | V | 0.0 | 0.0 | 0.0 | 101.5 | 123.1 | 119.7 | 128.6 |
| Total : | Vmx | 56.3 | 87.5 | 118.9 | 151.5 | 175.8 | 171.9 | 181.9 |
|  | M | 2441.7 | 2046.9 | 1364.2 | 394.9 | -495.9 | -345.1 | -741.5 |

## REACTIONS (kips), STRENGTH I

| Load Type |  | Left Support | Right Support |
| :--- | ---: | ---: | ---: |
| Self Wt. |  | 52.2 | 52.2 |
| Deck+Haunch |  | 34.8 | 34.8 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 0.0 | 0.0 |
| DL-Comp.(DC) |  | 771.7 | 791.1 |
| DL-Comp.(DW) | 374.8 | 351.5 |  |
| Live | (Max) | 241.1 | 241.1 |
| Live | (Min) | -28.7 | -28.7 |
| Pedestrian | (Max) | 0.2 | 0.2 |
| Pedestrian | (Min) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.

|  |  |  |  | Sheet \# | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

Live Load reaction reported at intermediate supports is full reaction at support.

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 1, FATIGUE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self wt. | M | 0.0 | 104.5 | 64.9 | 297.1 | 541.7 | 716.5 | 821.3 | 856.3 |
| (Max) | V | 41.8 | 39.1 | 40.2 | 33.8 | 25.3 | 16.9 | 8.4 | 0.0 |
| Self wt. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + : | M | 0.0 | 69.6 | 43.2 | 197.7 | 360.6 | 476.9 | 546.7 | 570.0 |
| Haunch (Max) | V | 27.8 | 26.1 | 26.7 | 22.5 | 16.9 | 11.2 | 5.6 | 0.0 |
| Deck + | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Haunch (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | -185.3 | -147.5 | -161.8 | -79.9 | 0.9 | 55.4 | 87.6 | 97.6 |
| DC(Max) | $\checkmark$ | 15.1 | 14.0 | 14.4 | 11.6 | 7.9 | 5.2 | 2.5 | 0.1 |
| DL-Comp | M | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | -86.4 | -71.7 | -77.3 | -44.4 | -9.6 | 15.5 | 31.0 | 36.9 |
| DW(Max) | V | 5.9 | 5.5 | 5.7 | 4.8 | 3.6 | 2.5 | 1.3 | 0.1 |
| DL-Comp | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| LL+I: | M+ | 50.1 | 48.3 | 48.2 | 65.8 | 150.3 | 241.0 | 289.7 | 294.0 |
|  | V | 2.8 | 2.5 | 2.6 | 1.8 | 4.0 | 0.3 | 3.5 | 8.2 |
| LL+1: | M- | -195.9 | -186.7 | -190.3 | -169.1 | -144.7 | -120.2 | -95.8 | -71.3 |
|  | V | 17.7 | 12.9 | 14.8 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| LL + I: | Vmx | 27.0 | 25.5 | 26.1 | 22.6 | 18.9 | 15.1 | 11.4 | 9.4 |
|  | M | -118.3 | -75.5 | -91.9 | 7.6 | 125.1 | 200.4 | 230.6 | 262.9 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | M + | 0.0 | 3.2 | 0.0 | 436.3 | 1043.9 | 1505.2 | 1776.3 | 1854.7 |
|  | V | 0.0 | 87.2 | 0.0 | 74.5 | 57.8 | 36.1 | 21.4 | 8.5 |




| E M N M O |  |  |  | Sheet \# | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

POSITIVE ENVELOPE STRESSES

Span : 3, Beam : 1, SERVICE I

RELEASE STRESSES, (ksi) (LOSS = $5.35 \%)$

|  | Trans | $\begin{gathered} \hline 0.10 \mathrm{~L} \\ / 0.90 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \hline 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.30 \mathrm{~L} \\ / 0.70 \mathrm{~L} \end{gathered}$ | $\begin{gathered} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 3.00 | 8.28 | 16.57 | 24.85 | 33.13 | 41.42 |
| Beam-Self |  |  |  |  |  |  |
| Precast-top | 0.196 | 0.506 | 0.900 | 1.181 | 1.350 | 1.406 |
| Bottom | -0.167 | -0.431 | -0.766 | -1.005 | -1.149 | -1.196 |
| Prestress Precast-top |  | -0.564 | -0.564 | -0.564 | -0.564 | -0.564 |
| Bottom | -0.434 | - 3.156 | -0.564 | -0.564 3.156 | -0.564 3.156 | 3.156 |
| Total <br> Precast-top |  |  |  |  |  |  |
| Bottom | -0.237 2.353 | -0.058 2.725 | 2.390 | 2.151 | 0.786 2.008 | $\begin{aligned} & 0.842 \\ & 1.960 \end{aligned}$ |

## SERVICEI

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 14.05 \%)

|  | Bearing | Trans | H/2 | $\begin{aligned} & 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{array}{\|c} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\begin{array}{\|l\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.394 | -0.249 | -0.513 | -0.513 | -0.513 | -0.513 | -0.513 |
| Bottom | 0.302 | 2.289 | 1.451 | 2.866 | 2.866 | 2.866 | 2.866 | 2.866 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Botlom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |


| $5380$ |  |  |  | Sheet\# | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  | Bearing | Trans | H/2 | $\begin{aligned} & 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\left[\begin{array}{l} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}\right.$ | $\begin{gathered} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch Precast-top | -0.000 | 0.112 | 0.069 | 0.318 | 0.580 | 0.768 | 0.880 | . 917 |
| Pottom | -0.000 -0.000 | -0.095 | -0.069 | -0.271 | -0.494 | -0.653 | -0.880 | -0.780 |
| DL-Comp (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.083 | -0.066 | -0.073 | -0.036 | 0.000 | 0.025 | 0.039 | 0.044 |
| Bottom | 0.178 | 0.141 | 0.155 | 0.077 | -0.001 | -0.053 | -0.084 | -0.094 |
| DL-Comp (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.039 | -0.032 | -0.035 | -0.020 | -0.004 | 0.007 | 0.014 | 0.017 |
| Bottom | 0.083 | 0.069 | 0.074 | 0.043 | 0.009 | -0.015 | -0.030 | -0.035 |
| LL+I(+) |  |  |  |  |  |  |  |  |
| Precast-top | 0.040 | 0.039 | 0.039 | 0.051 | 0.105 | 0.163 | 0.199 | 0.209 |
| Boltom | -0.085 | -0.084 | -0.083 | -0.109 | -0.225 | -0.350 | -0.426 | -0.447 |
| Pedestrian( + ) |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 1 (P/S + DL + LL) Precast-top |  |  |  |  |  |  |  |  |
| Bottom | -0.134 0.478 | -0.173 2.177 | -0.144 1.449 | 0.279 2.199 | 1.414 | 0.815 | 1.942 0.453 | 2.053 0.337 |
| Final 2 (P/S + DL) |  |  |  |  |  |  |  |  |
| Precast-top | -0.174 | -0.212 | -0.183 | 0.228 | 0.936 | 1.440 | 1.742 | 1.843 |
| Bottom | 0.563 | 2.260 | 1.532 | 2.308 | 1.639 | 1.164 | 0.879 | 0.784 |

Span : 3, Beam : 1, SERVICE III

RELEASE STRESSES, (ksi) (LOSS = $5.35 \%$ )

|  | Trans | $\begin{gathered} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 3.00 | 8.28 | 16.57 | 24.85 | 33.13 | 41.42 |
| Beam-Self |  |  |  |  |  |  |
| Precast-top | 0.196 | 0.506 | 0.900 | 1.181 | 1.350 | 1.406 |
| Bottom | -0.167 | -0.431 | -0.766 | -1.005 | -1.149 | -1.196 |


| 家Bentley |  |  |  | Sheet \# | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  |  |  |  | Checked |  |
|  |  |  |  |  | Date |  |


|  | Trans | $\begin{gathered} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress Precast-top | -0.434 | -0.564 | -0.564 | -0.564 | -0.564 | -0.564 |
| Bottom | 2.520 | 3.156 | 3.156 | 3.156 | 3.156 | 3.156 |
| Total |  |  |  |  |  |  |
| Precast-top | -0.237 | -0.058 | 0.336 | 0.617 | 0.786 | 0.842 |
| Bottom | 2.353 | 2.725 | 2.390 | 2.151 | 2.008 | 1.960 |
| As_top, in2 | 0.782 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Ast_prvd, in2 | $0.000^{*}$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

SERVICE III

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 14.05 \%)

|  | Bearing | Trans | H/2 | $\begin{gathered} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{gathered} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.30 \mathrm{~L} \\ \hline 10.70 \mathrm{~L} \\ \hline \end{array}$ | $\begin{aligned} & 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.394 | -0.249 | -0.513 | -0.513 | -0.513 | -0.513 | -0.513 |
| Bottom | 0.302 | 2.289 | 1.451 | 2.866 | 2.866 | 2.866 | 2.866 | 2.866 |
| Self wi. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | $-0.000$ | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 -0.000 | -0.112 | 0.069 -0.059 | 0.318 -0.271 | -0.580 | -0.768 | 0.880 -0.749 | 0.917 -0.780 |
| Botiom | -0.000 | -0.095 | -0.059 | -0.271 | -0.494 | -0.653 | -0.749 | -0.780 |
| DL-Comp (DC) Precast-top | -0.083 | -0.066 | -0.073 | -0.036 | 0.000 | 0.025 | 0.039 | 0.044 |


| SiBentley |  |  |  | Sheet \# | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | uww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  | Bearing | Trans | H/2 | $\begin{aligned} & 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $1 \begin{aligned} & 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bottom | 0.178 | 0.141 | 0.155 | 0.077 | -0.001 | -0.053 | -0.084 | -0.094 |
| DL-Comp (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.039 | -0.032 | -0.035 | -0.020 | -0.004 | 0.007 | 0.014 | 0.017 |
| Bottom | 0.083 | 0.069 | 0.074 | 0.043 | 0.009 | -0.015 | -0.030 | -0.035 |
| LL+1(+) |  |  |  |  |  |  |  |  |
| Precast-top | 0.032 | 0.031 | 0.031 | 0.041 | 0.084 | 0.131 | 0.159 | 0.167 |
| Bottom | -0.068 | -0.067 | -0.066 | -0.087 | -0.180 | -0.280 | -0.341 | -0.358 |
| Pedestrian(+) |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final $1(P / S+D L+L L)$ Precast-top | -0.142 | -0.181 | -0.152 | 0.269 | 1.020 | 1.571 | . 902 |  |
| Bottom | 0.495 | 2.193 | 1.466 | 2.220 | 1.459 | 0.885 | 0.538 | 0.426 |

Span : 3, Beam : 1, FATIGUE I POSITIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\begin{array}{\|l\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| F_LL+1(+) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | 0.022 | 0.022 | 0.022 | 0.030 | 0.067 | 0.108 | 0.130 | 0.132 |
| Bottom |  | -0.048 | -0.046 | -0.046 | -0.063 | -0.144 | -0.231 | -0.278 | -0.282 |
| Pedestrian( + ) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 3 50\% P/S | +50\% | $\left.D L+F_{-} L L\right)$ |  |  |  |  |  |  |  |
| Precast-top |  | -0.064 | -0.084 | -0.070 | 0.144 | 0.535 | 0.828 | 1.001 | 1.053 |
| Bottom |  | 0.233 | 1.084 | 0.720 | 1.091 | 0.675 | 0.351 | 0.162 | 0.110 |



VERTICALHORIZONTAL SHEAR

VERTICAL SHEAR (Art. 5.8) - Span : 3, Beam : 1, STRENGTH I
Using General Beta Theta Equation procedure - Art .5.8.3.4.2



## ANCHORAGE ZONE REINFORCEMENT (Art. 5.10.10)

Span : 3, Beam : 1

| $\begin{gathered} \hline \text { Fpi } \\ \text { (kips) } \end{gathered}$ | $\begin{gathered} \text { fs } \\ (\mathrm{ksi}) \end{gathered}$ | $h / 4$ (in) | Abrst_rqra (in2) |
| :---: | :---: | :---: | :---: |
| 1142.50 | 20.00 | 7.50 | 2.29 |

HORIZONTAL SHEAR (Art. 5.8.4) - Span : 3, Beam : 1
(Beam and Slab effects are INCLUDED in Vu).
Computed Interface width considered to be engaged in shear transfer, bvi $=72.00$ (in).

| Location (ft) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { (kips) }}{\mathrm{Vu}}$ | Vnh-req (kips/in) | de (in) | $\begin{gathered} a \\ \text { (in) } \end{gathered}$ | dv <br> (in) | $\frac{s_{\text {_max }}}{}$ | Avh-min (in2/ft) | Avh-sm (in2/ft) | $\begin{aligned} & \text { Avh-rg } \\ & \text { (in2/ft) } \end{aligned}$ | Avh-prvd (in2/ft) |
| Bearing : | 0.00 |  |  |  |  |  |  |  |  |
| 182.1 | 5.90 | 34.79 | 1.04 | 34.27 | 24.00 | 0.720 | 0.168 | 0.000 | 1.200 |



| Bentley |  |  |  | Sheet \# | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

CAMBERIDEFLECTION

CAMBER AND DEFLECTIONS: SERVICE I
(Span: 3, Beam : 1; Units: in)

| At $0.1 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 7.87 \mathrm{ft} \end{gathered}$ | Muit | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.111 | 1.80 | 2.000 | 2.20 | 2.445 |
| Self Wt. | -0.573 | 1.85 | -1.061 | 2.40 | -1.376 |
| Deck + Haunch |  |  | -0.308 | 2.30 | -0.708 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.008 | 3.00 | -0.025 |
| DL-Comp. (DW) |  |  | -0.001 | 3.00 | -0.002 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.538 |  | 0.622 |  | 0.333 |


| At $0.2 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 16.15 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.989 | 1.80 | 3.580 | 2.20 | 4.375 |
| Self Wt. | -1.085 | 1.85 | -2.007 | 2.40 | -2.604 |
| Deck + Haunch |  |  | -0.599 | 2.30 | -1.377 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.023 | 3.00 | -0.070 |
| DL-Comp. (DW) |  |  | -0.006 | 3.00 | -0.017 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.904 |  | 0.945 |  | 0.308 |


| At $0.3 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 24.43 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 2.615 | 1.80 | 4.708 | 2.20 | 5.754 |
| Self Wt. | -1.485 | 1.85 | -2.748 | 2.40 | -3.565 |
| Deck + Haunch |  |  | -0.827 | 2.30 | -1.901 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.038 | 3.00 | -0.115 |
| DL-Comp. (DW) |  |  | -0.011 | 3.00 | -0.033 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 1.130 |  | 1.083 |  | 0.139 |


| Bentley |  |  |  | Sheet\# | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designeo | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: Conspan Final_BX30a.csl $^{\text {a }}$ |  |  |  | Date |  |


| At $0.4 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 32.72 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 2.991 | 1.80 | 5.385 | 2.20 | 6.581 |
| Self Wt. | -1.740 | 1.85 | -3.218 | 2.40 | -4.175 |
| Deck + Haunch |  |  | -0.972 | 2.30 | -2.235 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.049 | 3.00 | -0.148 |
| DL-Comp. (DW) |  |  | -0.015 | 3.00 | -0.046 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 1.252 |  | 1.130 |  | -0.023 |


| At $0.5 \times \mathrm{L}=$ | Release 41.00 ft | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 3.117 | 1.80 | 5.610 | 2.20 | 6.857 |
| Self Wt. | -1.827 | 1.85 | -3.380 | 2.40 | -4.384 |
| Deck + Haunch |  |  | -1.021 | 2.30 | -2.349 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.053 | 3.00 | -0.158 |
| DL-Comp. (DW) |  |  | -0.017 | 3.00 | -0.052 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 1.290 |  | 1.139 |  | -0.087 |



|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.7 \times \mathrm{L}=$ | 57.57 ft |  |  |  |  |
| Prestress | 2.615 | 1.80 | 4.708 | 2.20 | 5.754 |
| Self Wt. | -1.485 | 1.85 | -2.748 | 2.40 | -3.565 |
| Deck + Haunch |  |  | -0.827 | 2.30 | -1.901 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |




| SiBentley |  |  |  | Sheet \# | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | File Name: $\mid$ Conspan Final_BX30a.csI |  |  |  | Checked |  |
|  |  |  |  |  |  | Date |  |

## DETENSIONING

Span : 3, Beam : 1; Groups 1-17; Units: ksi

| Grp | Str |  | $Y_{\text {s, }}$ in |  | 3.00ft | 5.00ft | 7.00ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | E | 2.25 | Ft | 0.197 | 0.305 | 0.392 |
|  |  | M | 2.25 | Fb | -0.167 | -0.207 | -0.176 |
| 2 | 2 | E | 4.25 | Ft | 0.189 | 0.283 | 0.371 |
|  |  | M | 4.25 | Fb | -0.109 | -0.031 | -0.000 |
| 3 | 2 | E | 4.25 | Ft | 0.168 | 0.262 | 0.349 |
|  |  | M | 4.25 | Fb | 0.067 | 0.144 | 0.175 |
| 4 | 2 | E | 4.25 | Ft | 0.147 | 0.241 | 0.328 |
|  |  | M | 4.25 | Fb | 0.242 | 0.320 | 0.351 |
| 5 | 2 | E | 4.25 | Ft | 0.125 | 0.219 | 0.307 |
|  |  | M | 4.25 | Fb | 0.418 | 0.496 | 0.526 |
| 6 | 2 | E | 4.25 | Ft | 0.104 | 0.198 | 0.285 |
|  |  | M | 4.25 | Fb | 0.594 | 0.671 | 0.702 |
| 7 | 2 | E | 4.25 | Ft | 0.083 | 0.177 | 0.264 |
|  |  | M | 4.25 | Fb | 0.769 | 0.847 | 0.878 |
| 8 | 2 | E | 4.25 | Ft | 0.061 | 0.155 | 0.242 |
|  |  | M | 4.25 | Fb | 0.945 | 1.022 | 1.053 |
| 9 | 2 | E | 4.25 | Ft | 0.040 | 0.134 | 0.221 |
|  |  | M | 4.25 | Fb | 1.121 | 1.198 | 1.229 |
| 10 | 2 | , | 2.25 | Ft | -0.004 | 0.090 | 0.177 |
|  |  | M | 2.25 | Fb | 1.315 | 1.393 | 1.423 |
| 11 | 2 | E | 2.25 | Ft | -0.048 | 0.046 | 0.134 |
|  |  | M | 2.25 | Fb | 1.510 | 1.587 | 1.618 |
| 12 | 2 | E | 2.25 | Ft | -0.091 | 0.003 | 0.090 |
|  |  | M | 2.25 | Fb | 1.704 | 1.782 | 1.812 |
| 13 | 2 | E | 2.25 | Ft | -0.135 | -0.041 | 0.046 |
|  |  | M | 2.25 | Fb | 1.899 | 1.976 | 2.007 |
| 14 | 2 | E | 2.25 | Ft | -0.179 | -0.085 | 0.002 |
|  |  | M | 2.25 | Fb | 2.093 | 2.171 | 2.202 |
| 15 | 2 | E | 2.25 | Ft | -0.222 | -0.128 | -0.041 |
|  |  | M | 2.25 | Fb | 2.288 | 2.365 | 2.396 |
| 16 | 2 | E | 2.25 | Ft | -0.237 | -0.172 | -0.085 |
|  |  | M | 2.25 | Fb | 2.353 | 2.560 | 2.591 |
| 17 | 2 | E | 2.25 | Ft | -0.237 | -0.187 | -0.129 |
|  |  | M | 2.25 | Fb | 2.353 | 2.625 | 2.78 |


|  |  |  |  | Sheet \# | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |

NEGATIVE ENVELOPE STRESSES

Span : 3, Beam : 1, SERVICE I
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = 14.05 \%)

|  | Bearing | Trans | H/2 | $\begin{aligned} & \hline 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{array}{\|l\|} \hline 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.394 | -0.249 | -0.513 | -0.513 | -0.513 | -0.513 | -0.513 |
| Bottom | 0.302 | 2.289 | 1.451 | 2.866 | 2.866 | 2.866 | 2.866 | 2.866 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch Precast-top | -0.000 | 0.112 | 0.069 | 0.318 | 0.580 | 0.768 | 0.880 | 917 |
| Bottom | -0.000 | -0.095 | -0.059 | -0.271 | -0.494 | -0.653 | -0.749 | -0.780 |
| DL-Comp (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.088 | -0.071 | -0.077 | -0.040 | -0.002 | 0.023 | 0.038 | 0.044 |
| Bottom | 0.188 | 0.151 | 0.165 | 0.085 | 0.005 | -0.049 | -0.082 | -0.094 |
| DL-Comp (DW) Precast-top | -0.034 | -0.028 | -0.030 | -0.016 | -0.001 | 0.009 |  |  |
| Precast-top Bottom | -0.034 0.073 | -0.028 0.059 | -0.030 0.064 | -0.016 0.034 | -0.001 0.003 | -0.009 | -0.032 | 0.017 -0.035 |
| $\mid L L+1(-)$ |  |  |  |  |  |  |  |  |
| Precast-top Bottom | -0.227 0 | -0.194 0.415 | -0.206 0.441 | -0.140 | -0.090 | -0.084 | -0.072 0.155 | -0.060 0.129 |
| Bottom |  |  | 0.441 | 0.29 | 0.192 | 0.18 | 0.155 | 0.129 |
| Pedestrian(-) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Final 1 (P/S + DL + LL) Precast-top | -0.401 | -0.406 | -0.389 | 0.088 | 0.846 | 1.356 | 1.670 | 1.783 |



Span : 3, Beam : 1, SERVICE III
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = 14.05 \%)



Span : 3, Beam : 1, FATIGUE I
NEGATIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\begin{gathered} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \hline 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ \hline 10.60 \mathrm{~L} \\ \hline \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| F_LL+1(-) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.088 | -0.084 | -0.085 | -0.076 | -0.065 | -0.054 | -0.043 | -0.032 |
| Bottom |  | 0.188 | 0.179 | 0.182 | 0.162 | 0.139 | 0.115 | 0.092 | 0.068 |
| Pedestrian(-) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 3 ( 50\% P/S | +50\% | $D L+F+L L)$ |  |  |  |  |  |  |  |
| Precast-top |  | -0.175 | -0.190 | -0.177 | 0.038 | 0.403 | 0.666 | 0.828 | 0.890 |
| Bottom |  | 0.469 | 1.309 | 0.949 | 1.316 | 0.958 | 0.697 | 0.531 | 0.461 |


| Fi Bentley |  |  |  | Sheet \# | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentiey.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

REINFORCED DESIGN

REINFORCED DESIGN - Span : 3, Beam : 1, STRENGTH I (fy = 60.00 ksi )
(a) NEGATIVE MOMENTS ALONG SPAN (Non-composite Moment effects are INCLUDED in Mu)

Negative Moment Continuity Steel:

| \#bars | Size | $\left\lvert\, \begin{array}{\|c\|} \hline \text { Dist. from Top } \\ \text { (in) } \end{array}\right.$ | $\begin{aligned} & \text { Area } \\ & \text { fin2) } \end{aligned}$ | Start <br> (ft) | End <br> (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | US\#4[M13] | 2.88 | 2.40 | 0.0000 | 84.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 0.0000 | 12.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 0.0000 | 28.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 56.0000 | 84.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 72.0000 | 84.0000 |


| f'c | b | bw |
| :---: | :---: | :---: |
| (ksi) | (in) | (in) |
| 8.50 | 72.00 | 12.00 |


| Sec | $\begin{array}{c\|} \hline \text { Dist } \\ \text { (ft) } \end{array}$ | $\left\lvert\, \begin{gathered} \text { Mu-reqd } \\ (\mathbf{k} . \mathrm{ft}) \end{gathered}\right.$ | $\begin{gathered} \hline \mathrm{hf} \\ \text { (in) } \end{gathered}$ | (in) | $\begin{array}{\|c\|} \hline \mathrm{d}^{\prime} \\ \text { (in) } \end{array}$ | Phi |  | c/dt | $\begin{aligned} & \text { Asb } \\ & \text { (in2) } \end{aligned}$ | $\begin{aligned} & \text { Ast-r } \\ & \text { (in2) } \end{aligned}$ | $\begin{aligned} & \text { Ast-p } \\ & \text { (in2) } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | -1392.2 | 6.00 | 34.79 | 2.00 | 0.9 | -1392.2 | 0.0460 | 0.000 | 9.027 | 17.640 |  |
| 2 | 8.87 | -267.7 | 6.00 | 34.79 | 2.00 | 0.9 | -267.7 | 0.0087 | 0.000 | 3.009 | 17.640 | -2681.1 |
| 3 | 17.15 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.000 | 0.00 | 3.0 | 10. | -15 |
| 4 | 25.4 | 0.0 | 6.00 | 34. | 2.00 | 0.9 | -0.0 | 0.0000 | 0.00 | 0.000 | 10.020 | -154 |
| 5 | 33.72 | 0.0 | 6.00 | 35.13 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.4 | -374.3 |
| 6 | 42.00 | 0.0 | 6.00 | 35.13 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.4 | -374 |
|  | 50.28 | 0.0 | 6.00 | 35.13 | 2.00 | 0.9 | -0.0 | 0.000 | 0.00 | 0.000 | 2.40 | -374 |
|  | 58.57 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.00 | 0.000 | 10.020 | -1542.7 |
| 9 | 66.85 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 3.00 | 10.020 | -1542. |
| 10 | 75.13 | -265.6 | 6.00 | 34.79 | 2.00 | 0.9 | -265.6 | 0.0087 | 0.000 | 3.00 | 17.6 | 2681.1 |
| 11 | 84.00 | -1389.5 | 6.0 | 34.7 | 2.0 | - | -1389.5 | 0.0460 |  | 9.010 | 17.6 | -2681.1 |

(b) POSITIVE MOMENTS AT PIERS

NONE

|  |  |  |  | Sheet \# | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

DESIGN SUMMARY

Span: 3, Beam: 1, Exterior beam

| Beam type: | Adjacent Box Beam, | Bui72X30 |
| :---: | :---: | :---: |
| Precast Length, Release Length, |  | $\begin{aligned} & 82.83 \\ & 82.83 \end{aligned}$ |
| Strand Pattern: Strand: Strand Es, | Straight 6/10-270K-LL ksi: | 28500.0 |
| No. of strands: | 34 <br> Draped: <br> Straight: | $\begin{aligned} & 0 \\ & 34 \end{aligned}$ |
| Concrete Strength: | fci: fc: fct: | 6.5 ksi 8.5 ksi 4.5 ksi |
| Initial losses: <br> Final losses: | $\begin{aligned} & 5.35 \% \\ & 14.05 \% \end{aligned}$ |  |


| Specification | Allowable | Computed | Location | Status |
| :--- | ---: | ---: | ---: | ---: |
| Release Stresses (ksi) (Art. 5.9.4.1) |  |  |  |  |
| Precast Bot (compression) | 3.900 | 2.725 | O.1L0.2L | OK |
| Precast Top w/ no reinf. (tension) | -0.200 | -0.237 | Trans |  |
| Precast Top w/ reinf. (tension) | -0.612 |  |  |  |
| Strength I (Art. 3.4.1, 5.7.3.1.1) | Provided | Required | Location | Status |
| Ult. Moment (k.ft) | 5157.27 | 2776.92 | Midspan | OK |
|  |  |  |  |  |
| Debonding Limits (Arrt. 5.11.4.3) | Allowable | Computed |  | Status |
| Max. Debond per Row | $40.00 \%$ | $33.33 \%$ |  | OK |
| Max. Debond Total | $25.00 \%$ | $23.53 \%$ |  | OK |



| SiBentley |  |  |  | Sheet \# | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  |  |  |  | Checked |  |
|  |  |  |  |  | Date |  |

Positive values indicate upward deflection.

| $5 \text { Bentley }$ |  |  |  | Sheet \# | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## PROPERTIES <br> Span:1, Beam:4 <br> PRECAST DATA:

| Section Id Type | Buil2×30 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Adjacent Box Beam |  |  |  |  |  |
| Fling width | Top | 72.000 | in | Bot | 72.000 | in |
| thick | Top | 4.000 | in | Bot | 6.000 | in |
| Stems | No |  |  |  |  |  |
|  | Top | 6.000 | in |  |  |  |
|  | Bot | 6.000 | in |  |  |  |
| Shear width |  | 12.000 | in |  |  |  |

Minimum Thickness Criteria, Article 5.14.1.2.2 checked: OK.

GENERAL BRIDGE DATA:

| Bridge Width | 124.00 | ft |
| :--- | :--- | :--- |
| Curb-to-curb | 120.00 | ft |
| Beam Spac. Lt./Rt | 6.0816 .08 | ft |
| Lane width | 12.00 | ft |
| Number of lanes | 7 |  |
| Interior/Exterior | Interior |  |
| Start Skew Angle | 0.00 | degrees |
| End Skew Angle | 0.00 | degrees |

TOPPING DATA:

| Deck | Thickness | 5.000 | in |  |
| :--- | :--- | :---: | :---: | :---: |
| Haunch: |  |  |  |  |
|  | Thickness | 3.000 | in |  |
| Width | 72.000 | in |  |  |
| Effective | (Adth | 73.000 | in | (Art. 4.6.2.6.1) |

GENERAL LOAD DATA:
DEAD LOADS ON PRECAST - NONE

Dead loads on composite: See Project info for composite loads

GENERAL SPAN DATA:

| Overall length | 62.583 | ft |
| :--- | :--- | :--- |
| Release length | 62.583 | ft |
| Design length | 61.750 | ft |

KERN POINTS:

| Bentley |  |  |  | Sheet \# | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP(8) CONSPAN(8) V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| Upper | 22.75 | in |
| :--- | :--- | :--- |
| Lower | 6.17 | in |

DISTRIBUTION FACTORS (Art. 4.6.2.2):
Type $f$, with deck

| Live Negative Moment | Left Side | (2+ lanes loaded) | 0.651 | (Calculated) | $(\#)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Live Negative Moment | Right Side | (2+ lanes loaded) | 0.651 | (Calculated) | (\#) |
| Live Negative Moment | Left Side | (1 lane loaded) | 0.584 | (Calculated) | (\#) |
| Live Negative Moment | Right Side | (1 lane loaded) | 0.584 | (Calculated) | (\#) |
| Live Positive Moment |  | (2+ lanes loaded) | 0.651 | (Calculated) | (\#) |
| Live Positive Moment |  | (1 lane loaded) | 0.584 | (Calculated) | (\#) |
| Live Shear |  | (2+ lanes loaded) | 0.651 | (Calculated) | (\#) |
| Live Shear |  | (1 lane loaded) | 0.584 | (Calculated) | (\#) |

(\#) Lever rule (C4.6.2.2.1)

| Pedestrian | 0.050 | (Calculated) |
| :--- | :--- | :--- |
| Comp. DC | 0.050 | $($ Calculated) $)$ |
| Comp. DW | 0.050 | (Calculated) |

Dead Loads and Pedestrian Load distributed equally to all beams (Art. 4.6.2.2.1) RESISTANCE FACTORS (Art. 5.5.4.2):

| Flexure Reinforced |  |
| :--- | :---: |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 0.90 |
| Flexure Prestressed |  |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 1.00 |
| Shear | 0.90 |

## SECTION PROPERTIES:

|  | PRECAST |  | COMPOSITE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Area | 978.0 | in2 | 1400.7 | in2 | \# |
| Total Height | 30.00 | in | 38.00 | in |  |
| Mom. of Inertia (lxx) | 120856 | in4 | 243816 | in |  |
| Ht. of c.g. | 13.79 | in | 19.89 | in | \# |
| Density | 150.00 | pcf | 150.00 | pcf |  |
| Self-weight | 1018.8 | plf | 1624.0 | plf |  |
| Mom. of Inertia (lyy) | 588267.0 | in4 |  |  |  |
| Poisson's Ratio | 0.2 |  |  |  |  |


| $52 \text { Bentey }$ |  |  |  | Sheet \# | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bente | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {a }}$ Conspan Final_BX30a.cs! |  |  |  | Date |  |


| Thermal Coeff. | PRECAST <br> 0.000006000 | $1 /{ }^{\circ} \mathrm{F}$ | COMPOSITE |  |
| :---: | :---: | :---: | :---: | :---: |

(\#) Of Total Section using Ect/Ec $=0.7276$
Use transformed strand and rebar: No

Span:1, Beam:4
STRESS LIMITS (Art. 5.9.4):
STRESS LIMITS AT RELEASE BEFORE LOSSES:


STRESS LIMITS AT FINAL AFTER LOSSES:

|  | PRECAST |  | DECK |  |
| :--- | ---: | ---: | ---: | ---: |
| Strength | 8.50 | ksi | 4.50 | ksi |
| Elasticity | 5589.34 | ksi | 4066.84 | ksi |

STRESS LIMITS AT FINAL 1 (P/S + DL + LL):

|  | PRECAST |  | DECK |  |
| ---: | ---: | ---: | ---: | ---: |
| Max comp | 5.10 | ksi | 2.70 | ksi |

STRESS LIMITS AT FINAL 2 (P/S + DL):

|  | PRECAST |  | DECK |
| ---: | ---: | ---: | ---: |
| Max comp | 3.83 | ksi | 2.03 |
| ksi |  |  |  |

FATIGUE I STRESS LIMITS AT FINAL 3 ( $50 \%$ P/S + 50\% DL + F_LL ) (Art. 5.5.3.1):


SERVICE III (Tension):

|  | PRECAST | DECK |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Max tens | -0.55 | ksi | -0.40 | ksi |

Span:1, Beam:4
PRESTRESSED STEEL:
24 strands, 6/10-270K-LL. Low relaxation strands

| $5 \text { 5-5 Milou }$ |  |  |  | Sheet \# | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

Straight Pattern

END PATTERN (Ycg = 3.25 in ):

| $12 @ 2.250$ in | $12 @ 4.250$ in $】 \square$ |
| :--- | :--- |

SHIELDING AND REDUCED INITIAL PULLS:


Check for Art. 5.11.4.3 (debond termination distances): OK

| Strand Diameter | 0.600 | in |
| :--- | ---: | :--- |
| Strand Area | 0.217 | in2 |
| Total Strand Area | 5.208 | in2 |
| Trans. Len, bonded | 3.000 | ft |
| Trans. Len,debonded | 3.000 | ft |
| Dev. Len, bonded | 11.038 | ft |
| Dev. Len, debonded | 13.798 | ft |
| Holddown Force | 0.000 | kips |
| Tessile Strength(fpu) | 270.0 | ksi |
| Initial Prestress = 0.75fpu | 202.5 | ksi |
| Initial Pull | 1054.6 | kips |
| Beam Shring (PL/AE) | 0.159 | in |

## Span:1, Beam:4 <br> ESTIMATED QUANTITIES

| $\begin{gathered} \text { Prestreasing } \\ \text { (linear ft) } \\ 1501.999 \\ \hline \end{gathered}$ | Strands (LB1000ft) 740 <br> 740 | $\begin{gathered} \text { (LB) } \\ 1111.47 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Vol(C.Y.) } \\ 15.742 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Wt(LB) } \\ 63756.875 \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { (LB) } \\ 496.299 \end{gathered}\right.$ | $\begin{array}{r} \text { (LB) } \\ 0.000 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Span:1, Beam:4
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |


| SiBentley |  |  |  | Sheet \# | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csi }}$ |  |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | Extends <br> into Deck |  |  |  |  |  |
| 2 | 60.0 | 0.40 | 6.00 | 0.0000 | 2.0000 | Yes |  |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 2.0000 | 60.5801 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 6.00 | 60.5801 | 62.5801 | Yes |

LOSSES
Note: Values are calculated at Midspan

| Str. area | 5.2080 | in2 |
| :--- | ---: | :--- |
| Ycg | 3.25 | in |
| P_init | 1054.6 | kips |
| Ecc | 10.54 | in |
| Days to release | 0.75 |  |
| Rel. Humid.(RH) | 60.0 | $\%$ |
| Es | 28500.0 | ksi |
| Eci | 4888 | ksi |

## AASHTO LOSSES

## Elastic Shortening 8.47 ksi (Eq 5.9.5.2.3a-1), (fcgp $=1.453 \mathrm{ksi}$ ]

|  | Elastic Gains <br> due | to Precast Loads |  |  |  |
| :--- | :---: | :---: | :---: | :---: | ---: | ---: |
| due | to Composite Loads |  |  | Adjustment |  |
| due | to Live Loads |  |  |  |  |

Time Dependent Losses (Approximate Method (Art.5.9.5.3))

| Steel relaxation |  | Initial |  | Final |  |  |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Concrete shrinkage |  |  |  |  |  |  |
| Concrete creep |  |  |  |  |  |  |

Prestressing Stress Limit Check (Table 5.9.3.1)
initial fpi $=202.5 \mathrm{ksi}<0.75 \mathrm{fpu}, \mathrm{OK}$
initial fpe $=179.3 \mathrm{ksi}<0.80 \mathrm{fpy}$, OK

|  |  |  |  | Sheet \# | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP(8) CONSPAN(8) V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

SHEARIMOMENT ENVELOPE (\&REACTIONS)

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 4, SERVICE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| S | M | 0.0 | 77.9 | 48.5 | 166.4 | 306.0 | 405.8 | 465.6 | 485.6 |
| (Max) | V | 31.5 | 28.8 | 29.8 | 25.5 | 19.1 | 12.8 | 6.4 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Pr | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck | M | 0.0 | 46.3 | 28.8 | 98.8 | 181.8 | 241.1 | 276.6 | 288.5 |
| Haunch (Max) | V | 18.7 | 17.1 | 17.7 | 15.2 | 11.4 | 7.6 | 3.8 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 0.0 | 27.6 | 17.3 | 57.9 | 102.4 | 128.8 | 136.9 | 126.9 |
| DC(Max) | V | 11.3 | 10.1 | 10.5 | 8.6 | 5.7 | 2.8 | 0.1 | 3.0 |
| DL-Comp | M | 0.0 | -1.8 | -1.1 | -4.1 | -8.6 | -13.0 | -17.4 | -21.9 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I : | M | 0.0 | 153.0 | 95.9 | 320.2 | 560.4 | 701.2 | 770.5 | 770.6 |
|  | V | 12.5 | 30.7 | 23.7 | 53.6 | 43.8 | 8.2 | 7.2 | 4.1 |
| LL + I: | M- | -0.0 | -25.8 | -15.8 | -58.4 | -120.9 | -183.4 | -245.9 | -308.4 |
|  | $V$ | 12.5 | 11.4 | 11.8 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
| LL + $1:$ | Vm | 63.4 | 59.1 | 60.8 | 53.6 | 44.2 | 35.5 | 28.3 | 30.7 |
|  | M | 0.0 | 155.8 | 98.2 | 320.2 | 535.4 | 652.4 | 568.4 | 521.1 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |
| Total : | M | 0.0 | 302.9 | 189.4 | 639.2 | 1142.1 | 1463.8 | 1632.3 | 1649.7 |
|  | V | 74.6 | 87.4 | 82.5 | 103.5 | 80.7 | 31.9 | 18.3 | 7.8 |
| Total : | M- | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $V$ | 74.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vm | 125.6 | 115.8 | 119.6 | 103.5 | 81.1 | 59.3 | 39.3 | 34.5 |
|  | M | 0.0 | 305.7 | 191.7 | 639.2 | 1117.1 | 1415.0 | 1430.2 | 1400.2 |


|  |  |
| :--- | :--- |
| Location, | ft |
| Self wt. : | M |
| (Max) | V |
| DL-Prec. : | M |
| DC(Max) | V |
| DL-Prec. : | M |
| DW(Max) | V |
| Deck + : | M |
| Haunch (Max) | V |


| 0.60 L | 0.70 L | 0.80 L | 0.90 L |
| ---: | ---: | ---: | ---: |
| 37.13 | 43.39 | 49.65 | 55.91 |
| 465.6 | 405.8 | 306.0 | 166.4 |
| 6.4 | 12.8 | 19.1 | 25.5 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 276.6 | 241.1 | 181.8 | 98.8 |
| 3.8 | 7.6 | 11.4 | 15.2 |


| H/2 | Trans | Bearing |
| ---: | ---: | ---: |
| 60.17 | 59.17 | 61.75 |
| 48.5 | 77.9 | 0.0 |
| 29.8 | 28.8 | 31.5 |
| 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 |
| 28.8 | 46.3 | 0.0 |
| 17.7 | 17.1 | 18.7 |


| BiBentley |  |  |  | Sheet \# | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 98.8 | 52.4 | -13.0 | -100.5 | -173.2 | -155.2 | -203.0 |
| DC(Max) | V | 6.0 | 8.9 | 12.2 | 15.7 | 18.2 | 17.6 | 19.1 |
| DL-Comp | M | -26.3 | -30.7 | -35.2 | -39.6 | -42.6 | -41.9 | -43.7 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I: | M+ | 709.7 | 573.5 | 374.8 | 181.8 | 148.3 | 149.1 | 156.1 |
|  | V | 6.3 | 17.5 | 26.1 | 21.5 | 9.8 | 12.5 | 5.4 |
| LL + I: | M- | -370.9 | -433.5 | -482.7 | -605.9 | -777.3 | -730.7 | -859.1 |
|  | V | 10.0 | 10.0 | 9.7 | 38.3 | 46.5 | 44.6 | 49.6 |
| LL + 1 : | Vmx | 38.5 | 46.9 | 55.3 | 63.3 | 68.7 | 67.5 | 70.8 |
|  | M | 476.8 | 357.3 | 161.8 | -103.7 | -288.3 | -244.7 | -357.8 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | M+ | 1524.4 | 1242.0 | 814.4 | 306.9 | 9.8 | 76.1 | 0.0 |
|  | V | 23.1 | 47.4 | 69.5 | 78.6 | 76.2 | 76.8 | 0.0 |
| Total: | M- | 0.0 | 0.0 | -43.2 | -480.9 | -915.8 | -803.7 | -1105.9 |
|  | $V$ | 0.0 | 0.0 | 53.1 | 95.4 | 113.0 | 108.9 | 119.6 |
| Total : | Vmx | 55.3 | 76.8 | 98.7 | 120.4 | 135.2 | 131.7 | 140.7 |
|  | M | 1291.5 | 1025.8 | 601.4 | 21.4 | -426.9 | -317.7 | -604.6 |

## REACTIONS (kips), SERVICE I

| Load Type |  | Left Support | Right Support |
| :--- | ---: | ---: | ---: |
| Self Wt. |  | 31.5 | 31.5 |
| Deck+Haunch |  | 18.7 | 18.7 |
| Den |  | 0.0 | 0.0 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 712.5 |  |
| DL-Comp.(DC) |  | 225.4 | 120.7 |
| DL-Comp.(DW) | -14.2 | 129.2 |  |
| Live | (Max) | 78.0 | 10.6 |
| Live | (Min) | -12.6 | -14.0 |
| Pedestrian | (Max) | 0.0 | 0.1 |
| Pedestrian | (Min) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.
Live Load reaction reported at intermediate supports is full reaction at support.

|  |  |  |  | Sheet \# | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP(8) CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 4, SERVICE III Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Self wt. | M | 0.0 | 77.9 | 48.5 | 166.4 | 306.0 | 405.8 | 465.6 | 485.6 |
| (Max) | V | 31.5 | 28.8 | 29.8 | 25.5 | 19.1 | 12.8 | 6.4 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + : | M | 0.0 | 46.3 | 28.8 | 98.8 | 181.8 | 241.1 | 276.6 | 288.5 |
| Haunch (Max) | V | 18.7 | 17.1 | 17.7 | 15.2 | 11.4 | 7.6 | 3.8 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 0.0 | 27.6 | 17.3 | 57.9 | 102.4 | 128.8 | 136.9 | 126.9 |
| DC(Max) | V | 11.3 | 10.1 | 10.5 | 8.6 | 5.7 | 2.8 | 0.1 | 3.0 |
| DL-Comp : | M | 0.0 | -1.8 | -1.1 | -4.1 | -8.6 | -13.0 | -17.4 | -21.9 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I: | M+ | 0.0 | 122.4 | 76.7 | 256.1 | 448.3 | 561.0 | 616.4 | 616.5 |
|  | V | 10.0 | 24.5 | 18.9 | 42.9 | 35.0 | 6.5 | 5.8 | 3.2 |
| $L L+1:$ | M- | -0.0 | -20.6 | -12.7 | -46.7 | -96.7 | -146.7 | -196.7 | -246.7 |
|  | V | 10.0 | 9.1 | 9.5 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 |
| LL + 1: | Vmx | 50.7 | 47.3 | 48.6 | 42.9 | 35.4 | 28.4 | 22.7 | 24.6 |
|  | M | 0.0 | 124.6 | 78.5 | 256.1 | 428.3 | 521.9 | 454.7 | 416.9 |
| Pedestrian: | $\mathrm{M}+$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 |
| Total : | M + | 0.0 | 272.3 | 170.2 | 575.1 | 1030.0 | 1323.6 | 1478.2 | 1495.6 |
|  | V | 72.1 | 81.3 | 77.7 | 92.8 | 71.9 | 30.3 | 16.8 | 7.0 |
| Total : | M- | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 72.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vmx | 112.9 | 104.0 | 107.4 | 92.8 | 72.3 | 52.2 | 33.7 | 28.3 |
|  | M | 0.0 | 274.5 | 172.0 | 575.1 | 1010.0 | 1284.5 | 1316.5 | 1296.0 |


|  |  | 0.60 L | $\mathbf{0 . 7 0 L}$ | $\mathbf{0 . 8 0 \mathrm { L }}$ | $\mathbf{0 . 9 0 \mathrm { L }}$ | $\mathrm{H} / 2$ | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | ft | 37.13 | 43.39 | 49.65 | 55.91 | 60.17 | 59.17 | 61.75 |
| Self wt. : | M | 465.6 | 405.8 | 306.0 | 166.4 | 48.5 | 77.9 | 0.0 |
| (Max) | V | 6.4 | 12.8 | 19.1 | 25.5 | 29.8 | 28.8 | 31.5 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 276.6 | 241.1 | 181.8 | 98.8 | 28.8 | 46.3 | 0.0 |
| Haunch (Max) | V | 3.8 | 7.6 | 11.4 | 15.2 | 17.7 | 17.1 | 18.7 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| FiBentley |  |  |  | Sheet \# | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designeo | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | uww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | $\mathrm{H} / 2$ | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 98.8 | 52.4 | -13.0 | -100.5 | -173.2 | -155.2 | -203.0 |
| DC(Max) | V | 6.0 | 8.9 | 12.2 | 15.7 | 18.2 | 17.6 | 19.1 |
| DL-Comp : | M | -26.3 | -30.7 | -35.2 | -39.6 | -42.6 | -41.9 | -43.7 |
| DW(Max) | V | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
| LL + I: | $\mathrm{M}+$ | 567.7 | 458.8 | 299.8 | 145.5 | 118.7 | 119.3 | 124.8 |
|  | V | 5.0 | 14.0 | 20.9 | 17.2 | 7.8 | 10.0 | 4.3 |
| LL $+\mathrm{I}:$ | $\mathrm{M}-$ | -296.8 | -346.8 | -386.2 | -484.7 | -621.8 | -584.5 | -687.3 |
|  | V | 8.0 | 8.0 | 7.8 | 30.7 | 37.2 | 35.7 | 39.7 |
| $\mathrm{LL}+\mathrm{I}:$ | Vmx | 30.8 | 37.5 | 44.2 | 50.6 | 55.0 | 54.0 | 56.6 |
|  | M | 381.4 | 285.8 | 129.4 | -82.9 | -230.7 | -195.7 | -286.2 |
| Pedestrian: | $\mathrm{M}+$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | $\mathrm{M}-$ | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | $\mathrm{M}+$ | 1382.5 | 1127.3 | 739.4 | 270.5 | 0.0 | 46.3 | 0.0 |
|  | V | 21.8 | 43.9 | 64.3 | 74.3 | 0.0 | 74.3 | 0.0 |
| Total : | $\mathrm{M}-$ | 0.0 | 0.0 | 0.0 | -359.7 | -760.4 | -657.6 | -934.1 |
|  | V | 0.0 | 0.0 | 0.0 | 87.7 | 103.7 | 100.0 | 109.6 |
| Total : | Vmx | 47.6 | 67.4 | 87.6 | 107.7 | 121.5 | 118.2 | 126.6 |
|  | M | 1196.1 | 954.4 | 569.0 | 42.1 | -369.2 | -268.8 | -533.0 |

SHEAR AND MOMENT ENVELOPE : Span : 1, Beam : 4, STRENGTH I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10 L | 0.20 L | 0.30 L | 0.40 L | Midspan |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Self wt. : | M | 0.0 | 97.3 | 60.7 | 208.0 | 382.5 | 507.2 | 582.0 | 607.0 |
| (Max) | V | 39.3 | 36.0 | 37.3 | 31.9 | 23.9 | 15.9 | 8.0 | 0.0 |
| Self wt. : | M | 0.0 | 70.1 | 43.7 | 149.7 | 275.4 | 365.2 | 419.1 | 437.0 |
| (Min) | V | 28.3 | 25.9 | 26.9 | 23.0 | 17.2 | 11.5 | 5.7 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 0.0 | 57.8 | 36.0 | 123.5 | 227.2 | 301.3 | 345.8 | 360.6 |
| Haunch (Max) | V | 23.4 | 21.4 | 22.2 | 18.9 | 14.2 | 9.5 | 4.7 | 0.0 |
| Deck +: | M | 0.0 | 41.6 | 25.9 | 88.9 | 163.6 | 216.9 | 248.9 | 259.6 |
| Haunch (Min) | V | 16.8 | 15.4 | 16.0 | 13.6 | 10.2 | 6.8 | 3.4 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| E Bentleu |  |  |  |  |  |  |  |  |  |  |  | Sheet \# | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | Job \# |  |
| Program: LEA | LEAP® CONSPAN® V8i (SELECTseries 5) |  |  |  |  |  |  | ora | ado |  |  | Designed | Hoang Bui |
| Version: 12 | 12.01.00.57 |  |  |  |  | Copyright © Bentley Systems, Inc. 1984-2012 |  |  |  |  |  | Date | Dec/11/2012 |
|  |  |  |  |  |  | ww, bentle | y.com |  | Phon | 1 | -800 | Checked |  |
| File Name: Conspan Final_BX30a.csi $^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  | Date |  |
| (Max) <br> Diaphragm : <br> (Min) <br> DL-Comp: <br> DC(Max) <br> DL-Comp : <br> DC(Min) <br> DL-Comp : <br> DW(Max) <br> DL-Comp: <br> DW(Min) <br> LL + 1 : |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30 |  | 0.40 |  |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
|  | M | 0.0 | 34.5 | 21.6 | 72.4 | 128.0 | 161 |  | 171 |  |  |  |  |
|  | V | 14.1 | 12.6 | 13.2 | 10.7 | 7.1 |  |  |  |  |  |  |  |
|  | M | 0.0 | 24.8 | 15.5 | 52.1 | 92.2 | 115 |  | 123 |  |  |  |  |
|  | V | 10.1 | 9.1 | 9.5 | 7.7 | 5.1 |  |  |  |  |  |  |  |
|  | M | 0.0 | -2.7 | -1.7 | -6.2 | -12.9 | -19 |  | -26 |  |  |  |  |
|  | V | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |  |  |  |  |  |  |  |
|  | M | 0.0 | -1.2 | -0.7 | -2.7 | -5.6 |  |  | -11 |  |  |  |  |
|  | V | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |  |  | 0 |  |  |  |  |
|  | $\mathrm{M}+$ | 0.0 | 267.8 | 167.9 | 560.3 | 980.7 | 1227 |  | 348 |  |  |  |  |
|  | V | 21.9 | 53.7 | 41.4 | 93.8 | 76.6 | 14 |  | 12 |  |  |  |  |
| LL + I: | M- | -0.0 | -45.2 | -27.7 | -102.1 | -211.5 | -320 |  | 430 |  |  |  |  |
|  | V | 21.9 | 20.0 | 20.7 | 17.5 | 17.5 | 17 |  | 17 |  |  |  |  |
| LL + I : | Vmx $M$ | 111.0 0.0 | 103.4 272.6 | 106.3 171.8 | 93.8 560.3 | 77.4 936.9 | 62 |  | 49 994 |  |  |  |  |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 114 |  | 0 |  |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0. |  | -0. |  |  |  |  |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  | -0. |  |  |  |  |
| Total : | M + | 0.0 | 456.2 | 285.4 | 961.5 | 1712.9 | 2188 |  | 436 |  |  |  |  |
|  | V | 99.8 | 124.8 | 115.1 | 156.4 | 122.9 | 44 |  | 26 |  |  |  |  |
| Total : | M- | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
|  | V | 77.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |  |  |
| Total : | Vmx | 188.8 | 174.5 | 180.0 | 156.4 | 123.7 | 92 |  | 63 |  |  |  |  |
|  | M | 0.0 | 459.5 | 288.4 | 958.0 | 1661.9 | 2091 |  | 067 |  |  |  |  |
|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 |  | ans |  | arin |  |  |  |
| Location,Self wt. : | ft | 37.13 | 43.39 | 49.65 | 55.91 | 160.17 |  | 9.17 |  | 61.7 |  |  |  |
|  | M | 582.0 | 507.2 | 382.5 | 208.0 | - 60.7 |  | 97.3 |  |  | 0.0 |  |  |
| (Max) | V | 8.0 | 15.9 | 23.9 | 31.9 | 937.3 |  | 36.0 |  | 39 | 9,3 |  |  |
| Self wt. : | M | 419.1 | 365.2 | 275.4 | 149.7 | 743.7 |  | 70.1 |  |  | 0.0 |  |  |
| (Min) | V | 5.7 | 11.5 | 17.2 | 23.0 | - 26.9 |  | 25.9 |  | 28 | 8.3 |  |  |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 |  |  | 0.0 |  |  |
| DC(Max)DL-Prec. : | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 | 0 |  | 0.0 |  |  |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 |  |  | 0.0 |  |  |
| DL-Prec. : DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 | 0 |  | 0.0 |  |  |
| DC(Min) | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 | 0 |  | 0.0 |  |  |
| DW(Max) DL-Prec. | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 |  |  | 0.0 |  |  |
| DL-Prec. : | M | 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 | 0.0 | . 0 | 0.0 0.0 |  |  | 0.0 |  |  |
| DW(Min) | V | 0.0 345.8 | 0.0 301.3 | 0.0 227.2 | 0.0 123.5 | 0.0 <br> 36.0 | . 0 | 0.0 57.8 |  |  | 0.0 |  |  |
| Haunch (Max) | V | 4.7 | 9.5 | 14.2 | 18.9 | - 22.2 |  | 21.4 |  |  | 3.4 |  |  |
| Deck + : | M | 248.9 | 216.9 | 163.6 | 88.9 | 95.9 |  | 41.6 |  |  | 0.0 |  |  |
| Haunch (Min) | $V$ | 3.4 | 6.8 | 10.2 | 13.6 | 616.0 | . 0 | 15.4 |  |  | 6.8 |  |  |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 | 0 |  | 0.0 |  |  |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 |  |  | 0.0 |  |  |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 | 0.0 |  |  | 0.0 |  |  |



|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | $\mathrm{H} / 2$ | Trans |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Min) | V | 0.0 | 0.0 |  |  |  |  |
| ( |  |  |  |  |  |  |  |

## REACTIONS (kips), STRENGTH I

| Load Type |  | Left Support | Right Support |
| :--- | :--- | ---: | ---: |
| Self Wt. |  | 39.3 | 39.3 |
| Deck+Haunch |  | 23.4 | 23.4 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 0.0 | 0.0 |
| DL-Comp.(DC) |  | 281.8 | 890.6 |
| DL-Comp.(DW) | -21.3 | 181.0 |  |
| Live | (Max) | 136.4 | 226.1 |
| Live | (Min) | -22.1 | -25.5 |
| Pedestrian | (Max) | 0.1 | 0.2 |
| Pedestrian | (Min) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.




| B Bentley |  |  |  | Sheet\# | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | unw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

POSITIVE ENVELOPE STRESSES

Span : 1, Beam : 4, SERVICE I

RELEASE STRESSES, (ksi) (LOSS = 4.18 \%)

|  | Trans | $\begin{array}{\|c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\binom{0.20 \mathrm{~L}}{10.80 \mathrm{~L}}$ | $0.30 \mathrm{~L}$ | $\begin{aligned} & 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 3.00 | 6.26 | 12.52 | 18.77 | 25.03 | 31.29 |
| Beam-Self |  |  |  |  |  |  |
| Precast-top | 0.147 | 0.289 | 0.514 | 0.674 | 0.771 | 0.803 |
| Bottom | -0.125 | -0.246 | -0.437 | -0.574 | -0.656 | $-0.683$ |
| Prestress |  |  |  |  |  |  |
| Precast-top Bottom | $\begin{array}{\|c} -0.292 \\ 1736 \end{array}$ | $\left.\begin{array}{r} -0.373 \\ 2.151 \end{array} \right\rvert\,$ | $\left\|\begin{array}{c} -0.395 \\ 2018 \end{array}\right\|$ | $\left\|\begin{array}{c} -0.395 \\ 2.348 \end{array}\right\|$ |  | $\begin{array}{r}-0.395 \\ \hline 2.248\end{array}$ |
| Bottom |  | $\text { \| } 2.151$ | 2.248 | $2.248$ | 2.248 | 2.248 |
| Total Precast-top | -0.146 |  | 0.118 | 0.279 |  |  |
| Bottom | 1.611 | 1.905 | 1.811 | 1.675 | 1.593 | 1.566 |

## SERVICEI

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 11.45 \%)

|  | Bearing | Trans | H/2 | $\begin{array}{\|c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{array}{\|c} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-lop | -0.037 | -0.270 | -0.176 | -0.345 | -0.365 | -0.365 | -0.365 | -0.365 |
| Bottom | 0.215 | 1.604 | 1.033 | 1.988 | 2.078 | 2.078 | 2.078 | 2.078 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.125 | 0.078 | 0.268 | 0.493 | 0.653 | 0.749 | 0.782 |
| Bottom | -0.000 | -0.107 | -0.066 | -0.228 | -0.419 | -0.556 | -0.638 | -0.665 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |



| Bentley |  |  |  | Sheet \# | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | uww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: Conspan Final_BX30a.csI $^{\text {a }}$ |  |  |  | Date |  |


|  | Trans | $\begin{gathered} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress Precast-top | -0.292 | -0.373 | -0.395 | -0.395 | -0.395 | -0.395 |
| Bottom | 1.736 | 2.151 | 2.248 | 2.248 | 2.248 | 2.248 |
| Total |  |  |  |  |  |  |
| Precast-top | -0.146 | -0.084 | 0.118 | 0.279 | 0.375 | 0.407 |
| Bottom | 1.611 | 1.905 | 1.811 | 1.675 | 1.593 | 1.566 |
| As_top, in2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Ast_prvd, in2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

SERVICE III

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 11.45 \%)



Span : 1, Beam : 4, FATIGUE I
POSITIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\begin{array}{\|c\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\left.\begin{array}{\|c\|} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array} \right\rvert\,$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| F_LL+1(+) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | 0.000 | 0.047 | 0.030 | 0.097 | 0.163 | 0.203 | 0.216 | 0.199 |
| Bottom |  | -0.000 | -0.093 | -0.059 | -0.191 | -0.321 | -0.401 | -0.425 | -0.391 |
| Pedestrian( + ) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | $-0.000$ |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 3 ( $50 \%$ P/S | +50\% | $\left.D L+F \_L L\right)$ |  |  |  |  |  |  |  |
| Precast-top |  | -0.018 | 0.018 | 0.008 | 0.151 | 0.397 | 0.570 | 0.660 | 0.665 |
| Bottom |  | 0.108 | 0.612 | 0.397 | 0.595 | 0.338 | 0.139 | 0.048 | 0.066 |


|  |  |  |  | Sheet \# | 19 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentl | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs1 |  |  | Date |  |

VERTICALHORIZONTAL SHEAR

VERTICAL SHEAR (Art. 5.8) - Span : 1, Beam : 4, STRENGTH I
Using General Beta Theta Equation procedure - Art.5.8.3.4.2

| Location(ft) <br> Vu <br> (kips) | $\begin{gathered} \text { bv } \\ \text { (in) } \end{gathered}$ | de <br> (in) | Aps <br> (in2) | $\begin{array}{\|c} \text { Vp } \\ \text { (kips) } \end{array}$ | eps_x | Theta | Vs-reqd (kips) | Av/s (in2/ft) | $\left.\begin{gathered} \text { Av-prvd } \\ \text { (in2/ft) } \end{gathered} \right\rvert\,$ | $\underset{\text { (in2) }}{A l} \mid$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mcor <br> (kft) | $\begin{gathered} a \\ \text { (in) } \end{gathered}$ | $d v$ <br> (in) | fpo <br> (ksi) | vulfc | Vc-com (kips) | Beta | Max.spc. <br> (in) | $\begin{array}{\|c} \text { min.Av/s } \\ \text { (in2/ft) } \end{array}$ | $\mathrm{pVn} / \mathrm{Vu}$ | Aps* <br> (in2) |
| Bearing: $\begin{array}{r} 188.8 \\ 0.0 \end{array}$ | $\begin{aligned} & 0.42 \\ & 12.00 \\ & 0.00 \end{aligned}$ | 34.64 34.64 | 0.345 26.2 | 0.0 0.059 | $6.00 \mathrm{e}-3$ 33.4 | 50.0 0.87 | 176.4 24.00 | 1.214 0.221 | 0.800 $0.713^{*}$ | $\begin{array}{r} 0.42 \\ 0.378 \end{array}$ |
| Transfer : $\begin{aligned} & 174.5 \\ & 459.5 \end{aligned}$ | $\begin{array}{r} 3.00 \\ 12.00 \\ 0.00 \end{array}$ | 34.55 34.55 | 4.340 189.0 | 0.0 0.055 | $-0.12 \mathrm{e}-3$ 201.0 | 28.6 5.26 | 0.0 24.00 | 0.221 0.221 | 0.800 2.345 | 0.00 2.866 |
| Critical : <br> 173.5 <br> 473.7 | $\begin{array}{r} 3.18 \\ 12.00 \\ 2.78 \end{array}$ | 34.55 | 4.340 189.0 | 0.0 0.057 | $-0.12 \mathrm{e}-3$ 193.0 | 28.6 5.26 | 0.0 24.00 | 0.221 0.221 | 0.800 2.264 | 0.00 3.053 |
| $\begin{array}{r} 0.1 \mathrm{~L}: \\ 156.4 \\ 958.0 \end{array}$ | $\begin{array}{r} 6.26 \\ 12.00 \\ 0.00 \end{array}$ | 34.75 34.75 | 5.208 189.0 | 0.0 0.049 | $-0.12 \mathrm{e}-3$ 203.1 | 28.6 5.28 | 0.0 24.00 | 0.221 0.221 | 0.800 2.638 | 0.00 3.905 |
| $\begin{array}{\|r\|} \hline 0.2 \mathrm{~L}: \\ 123.7 \\ 1661.9 \end{array}$ | 12.52 12.00 4.94 | 34.75 32.28 | 5.208 189.0 | 0.0 0.042 | $-0.06 \mathrm{e}-3$ 179.4 | 28.8 5.03 | 0.0 24.00 | 0.221 0.221 | 0.800 3.015 | 0.00 4.652 |
| $\begin{array}{\|r\|} \hline 0.3 \mathrm{~L}: \\ 92.1 \\ 2091.7 \end{array}$ | 18.77 12.00 4.98 | 34.75 32.26 | 5.208 189.0 | 0.0 0.031 | $-0.03 \mathrm{e}-3$ 174.9 | 28.9 4.90 | 0.0 24.00 | 0.221 0.221 | 0.800 3.993 | 0.00 5.208 |
| $\begin{array}{r} \text { 0.4L: } \\ 63.5 \\ 2067.6 \end{array}$ | $\begin{array}{r} 25.03 \\ 12.00 \\ 4.98 \end{array}$ | 34.75 | 5.208 189.0 | 0.0 0.021 | $-0.04 \mathrm{e}-3$ 176.2 | 28.9 4.94 | 0.0 24.00 | 0.221 0.221 | 0.800 5.813 | 0.00 5.208 |
| $\begin{array}{r} 0.5 \mathrm{~L}: \\ 58.6 \\ 2005.3 \end{array}$ | $\begin{array}{r} 31.29 \\ 12.00 \\ 4.98 \end{array}$ | 34.75 | 5.208 189.0 | 0.0 0.020 | $-0.04 \mathrm{e}-3$ 177.1 | 28.8 4.96 | 0.0 24.00 | 0.221 0.221 | 0.800 6.319 | 0.00 5.208 |
| $\begin{array}{\|r\|} \hline 0.6 \mathrm{~L}: \\ 88.5 \\ 1846.1 \end{array}$ | $\begin{array}{r} 37.55 \\ 12.00 \\ 4.98 \end{array}$ | 34.75 32.26 | $\begin{aligned} & 5.208 \\ & 189.0 \end{aligned}$ | 0.0 0.030 | $\begin{array}{r} -0.05 \mathrm{e}-3 \\ 178.1 \end{array}$ | 28.8 4.99 | 0.0 24.00 | 0.221 0.221 | 0.800 4.195 | $\begin{array}{r} 0.00 \\ 5.208 \end{array}$ |
| $0.7 \mathrm{~L}:{ }_{119.7}$ | $\begin{aligned} & 43.81 \\ & 12.00 \end{aligned}$ | 34.75 | 5.208 | 0.0 | -0.08e-3 | 28.7 | 0.0 | 0.221 | 0.800 | 0.00 |

ANCHORAGE ZONE REINFORCEMENT (Art. 5.10.10) Span: 1, Beam : 4

|  | fs | h/4 |  |
| :---: | :---: | :---: | :---: |
| ps) | (ksi) | (in) |  |
| 790.96 | 20.00 | 7.50 | 1.58 |

HORIZONTAL SHEAR (Art. 5.8.4) - Span : 1, Beam : 4
(Beam and Slab effects are INCLUDED in Vu).
Computed Interface width considered to be engaged in shear transfer, bvi $=72.00$ (in).



| Location (ft) <br> Vu <br> (kips) | Vnh-req (kips/in) | de <br> (in) | $\begin{gathered} \mathrm{a} \\ \text { (in) } \end{gathered}$ | $\begin{gathered} d v \\ \text { (in) } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { s_max } \\ \text { (in) } \end{gathered}\right.$ | Avh-min (in2/ft) | $\begin{aligned} & \text { Avh-sm } \\ & \text { (in2/ft) } \end{aligned}$ | Avh-rg (in2/ft) | Avh-prvd (in2/ft) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer : 174.5 | 2.58 5.61 | 34.55 | 0.00 | 34.55 | 24.00 | 0.720 | 0.070 | 0.000 | 0.800 |
| Critical: $173.5$ | 2.76 5.81 | 34.55 | 2.78 | 33.16 | 24.00 | 0.720 | 0.138 | 0.000 | 0.800 |
| 0.1L: 156.4 | 5.84 5.00 | 34.75 | 0.00 | 34.75 | 24.00 | 0.720 | 0.000 | 0.000 | 0.800 |
| 0.2L : 123.7 | 12.10 4.26 | 34.75 | 4.94 | 32.28 | 24.00 | 0.720 | 0.000 | 0.000 | 800 |
| \|0.3L : | $18.36$ |  |  |  |  |  | 0.000 | 000 | 00 |
|  |  |  | 4.98 | 32.26 | 24.0 | 0.72 | 0.00 | . 000 | . 800 |
| 0.4L : 63.5 | 24.62 2.19 | 34.75 | 4.98 | 32.26 | 24.00 | 0.720 | 0.000 | 0.000 | 0.800 |
|  |  | 34.75 | 4.98 | 32.26 |  | 0.720 | 0.000 | 0.000 | 0.800 |
| 0.5L : $58.6$ | $\left\|\begin{array}{r} 30.88 \\ 2.02 \end{array}\right\|$ | 34.75 | 4.98 | 32.26 | 24.00 | 0.720 | 0.000 | 0.000 | 800 |
|  |  |  |  |  |  |  |  |  |  |
| 0.6L: 88.5 | 37.13 3.05 | 34.75 | 4.98 | 32.26 | 24.00 | 0.720 | 0.000 | 0.000 | 0.800 |
| 88.5 | 3.05 | 34.75 | 4.98 | 32.26 | 24.00 | 0.72 | 0.000 | 0.000 | 0.800 |
| 0.7L : | 43.39 |  |  |  |  |  |  |  |  |
| 119.7 | 4.12 | 34.75 | 4.98 | 32.26 | 24.00 | 0.720 | 0.000 | 0.000 | 0.800 |
| \|0.8L : | 49.65 |  |  |  |  |  |  |  |  |
| 151.2 | 5.20 | 34.75 | 4.94 | 32.28 | 24.00 | 0.720 | 0.000 | 0.000 | 0.800 |
| $0.9 \mathrm{~L}:$ $182.3$ | $55.91$ $5.82$ | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.141 | 0.000 | 0.800 |
| 182.3 | 5.82 | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.14 | 0.000 | 0.800 |
| Critical : <br> 197.0 | $\left.\begin{array}{\|r\|} 58.85 \\ 6.29 \end{array} \right\rvert\,$ | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.297 | 0.000 | 0.800 |
|  |  |  |  |  |  |  |  |  |  |
| Transfer : <br> 198.6 | $59.17$ $6.34$ | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.314 | 0.000 | 0.800 |
|  |  |  |  |  |  |  |  |  |  |
| Bearing : | 61.75 |  |  |  |  |  |  |  |  |
| 211.5 | 6.75 | 34.79 | 0.00 | 34.79 | 24.00 | 0.720 | 0.451 | 0.000 | 0.800 |


| Si Bentley |  |  |  | Sheet \# | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

## CAMBERIDEFLECTION

CAMBER AND DEFLECTIONS: SERVICE I
(Span: 1, Beam : 4; Units: in)

| At $0.1 \times \mathrm{L}=$ | Release 5.84 ft | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 0.453 | 1.80 | 0.815 | 2.20 | 0.996 |
| Self Wt. | -0.187 | 1.85 | -0.346 | 2.40 | -0.448 |
| Deck + Haunch |  |  | -0.087 | 2.30 | -0.201 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.019 | 3.00 | -0.057 |
| DL-Comp. (DW) |  |  | 0.003 | 3.00 | 0.010 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.266 |  | 0.367 |  | 0.300 |




| 富Bentley |  |  |  | Sheet \# | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentler.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| At $0.4 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 24.62 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.207 | 1.80 | 2.172 | 2.20 | 2.655 |
| Self Wt. | -0.567 | 1.85 | -1.049 | 2.40 | -1.361 |
| Deck + Haunch |  |  | -0.279 | 2.30 | -0.641 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.055 | 3.00 | -0.165 |
| DL-Comp. (DW) |  |  | 0.012 | 3.00 | 0.037 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.640 |  | 0.802 |  | 0.525 |


| At $0.5 \times \mathrm{L}=$ | $\begin{aligned} & \text { Release } \\ & 30.88 \mathrm{ft} \end{aligned}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.258 | 1.80 | 2.264 | 2.20 | 2.767 |
| Self Wt. | -0.595 | 1.85 | -1.101 | 2.40 | -1.429 |
| Deck + Haunch |  |  | -0.293 | 2.30 | -0.674 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.055 | 3.00 | -0.164 |
| DL-Comp. (DW) |  |  | 0.014 | 3.00 | 0.041 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.662 |  | 0.829 |  | 0.542 |


| At $0.6 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 37.13 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.207 | 1.80 | 2.172 | 2.20 | 2.655 |
| Self Wt. | -0.567 | 1.85 | -1.049 | 2.40 | -1.361 |
| Deck + Haunch |  |  | -0.279 | 2.30 | -0.641 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.048 | 3.00 | -0.143 |
| DL-Comp. (DW) |  |  | 0.014 | 3.00 | 0.043 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | $-0.000$ |
| Total | 0.640 |  | 0.811 |  | 0.553 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.7 \times \mathrm{L}=$ | 43.39 ft |  |  |  |  |
| Prestress | 1.054 | 1.80 | 1.898 | 2.20 | 2.319 |
| Self Wt. | -0.484 | 1.85 | -0.895 | 2.40 | -1.162 |
| Deck + Haunch |  |  | -0.237 | 2.30 | -0.545 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |


| B Bentley |  |  |  | Sheet \# | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | ww.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |



|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.8 \times \mathrm{L}=$ | 49.65 ft |  |  |  |  |
| Prestress | 0.800 | 1.80 | 1.440 | 2.20 | 1.760 |
| Self Wt. | -0.354 | 1.85 | -0.654 | 2.40 | -0.848 |
| Deck + Haunch |  |  | -0.171 | 2.30 | -0.393 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.022 | 3.00 | -0.066 |
| DL-Comp. (DW) |  |  | 0.011 | 3.00 | 0.033 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total | 0.446 |  | 0.604 |  | 0.485 |


| $\left\lvert\, \begin{aligned} & \text { At } 0.9 \times \mathrm{L}= \\ & \text { Prestress } \end{aligned}\right.$ | Release 55.91 ft 0.453 | Mult 1.80 | Erection | Mult 2.20 | Final 0.996 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Self Wt. | -0.187 | 1.85 | -0.346 | 2.40 | -0.448 |
| Deck + Haunch |  |  | -0.087 | 2.30 | -0.201 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.009 | 3.00 | -0.026 |
| DL-Comp. (DW) |  |  | 0.007 | 3.00 | 0.020 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.266 |  | 0.380 |  | 0.341 |


| Sisentley |  |  |  | Sheet \# | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

ULTIMATE MOMENT

ULTIMATE - Span : 1, Beam : 4, STRENGTH I
(Mr-prvd computed by Strain Compatibility method. Ult. Conc. Strain $=\mathbf{0 . 0 0 3 0 0}$ )

| Location <br> (ft) Mu k.ft | $\begin{aligned} & \text { dp } \\ & \text { in } \end{aligned}$ | Aps <br> in2 | $\begin{aligned} & \text { fps } \\ & \text { ksi } \end{aligned}$ | c in | $\begin{aligned} & \text { a } \\ & \text { in } \end{aligned}$ | Mr-prvd | c/dt | Phi | Mcr k.ft | min Mr | Crkg | Mu-p/r |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer | 2.58 |  |  |  |  |  |  |  |  |  |  |  |
| 456.2 | 34.6 | 2.822 | 268.6 | 3.3 | 2.7 | 2100.1 | 0.0927 | 1.00 |  |  |  |  |
| H/2 | 1.58 |  |  |  |  |  |  |  |  |  |  |  |
| 285.4 | 34.6 | 1.814 | 269.1 | 2.1 | 1.7 | 1373.7 | 0.059T | 1.00 | - |  |  | - |
| 0.1L | 5.84 |  |  |  |  |  |  |  |  |  |  |  |
| 961.5 | 34.7 | 3.974 | 267.9 | 4.6 | 3.8 | 2925.5 | 0.130 T | 1.00 |  |  |  |  |
| 0.2L | 12.10 |  |  |  |  |  |  |  |  |  |  |  |
| 1712.9 | 34.7 | 5.039 | 267.2 | 6.0 | 4.9 | 3708.9 | 0.167T | 1.00 | 3283.7 | 2278.2 | 1.13 |  |
| 0.3L | 18.36 |  |  |  |  |  |  |  |  |  |  |  |
| 2188.2 | 34.8 | 5.208 | 267.1 | 6.0 | 5.0 | 3739.9 | 0.168T | 1.00 | 3220.3 | 2910.3 | 1.16 | - |
| 0.4L | 24.62 |  |  |  |  |  |  |  |  |  |  |  |
| 2436.1 | 34.8 | 5.208 | 267.1 | 6.0 | 5.0 | 3739.9 | 0.168T | 1.00 | 3182.3 | 3182.3 | 1.18 |  |
| 0.5L | 30.88 |  |  |  |  |  |  |  |  |  |  |  |
| 2460.6 | 34.8 | 5.208 | 267.1 | 6.0 | 5.0 | 3739.9 | 0.168 T | 1.00 | 3169.6 | 3169.6 | 1.18 |  |
| 0.6L | 37.13 |  |  |  |  |  |  |  |  |  |  |  |
| 2276.1 | 34.8 | 5.208 | 267.1 | 6.0 | 5.0 | 3739.9 | 0.168 T | 1.00 | 3182.3 | 3027.3 | 1.18 |  |
| 0.7L | 43.39 |  |  |  |  |  |  |  |  |  |  |  |
| 1857.7 | 34.8 | 5.208 | 267.1 | 6.0 | 5.0 | 3739.9 | 0.168 T | 1.00 | 3220.3 | 2470.8 | 1.16 |  |
| 0.8L | 49.65 |  |  |  |  |  |  |  |  |  |  |  |
| 1231.1 | 34.7 | 5.039 | 267.2 | 6.0 | 4.9 | 3708.9 | 0.167 T | 1.00 | 3283.7 | 1637.3 | 1.13 |  |
| 0.9 L | 55.91 |  |  |  |  |  |  |  |  |  |  |  |
| 533.5 | 34.7 | 3.974 | 267.9 | 4.6 | 3.8 | 2925.5 | 0.130T | 1.00 | - | - | - |  |
| H/2 | 60.17 |  |  |  |  |  |  |  |  |  |  |  |
| 172.6 | 34.6 | 1.814 | 269.1 | 2.1 | 1.7 | 1373.7 | 0.059T | 1.00 | - | - | - |  |
| Transfer | 59.17 |  |  |  |  |  |  |  |  |  |  |  |
| 249.1 | 34.6 | 2.822 | 268.6 | 3.3 | 2.7 | 2100.1 | 0.092 T | 1.00 |  |  |  | - |

Legend: $\mathrm{C}=$ Compression-Controlled (c/dt $>0.600$ )
$I=\operatorname{In}$-Transition ( $0.60>=c / d t>0.375)$
$T=$ Tension-Controlled $(c / d t<=0.375)$

Note : fr used for calculating Mcr is computed using AASHTO method (Art.5.4.2.6.)
Consider Bottom Tension Steel Contribution : NO

| 家Bentley |  |  |  | Sheet \# | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

DETENSIONING

Span : 1, Beam : 4; Groups 1-12; Units: ksi

| Grp | Str |  | Ys,in |  | 3.00 ft | 5.00ft | 7.00ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | E | 2.25 | Ft | 0.147 | 0.222 | 0.275 |
|  |  | M | 2.25 | Fb | -0.125 | -0.135 | -0.075 |
| 2 | 2 | E | 4.25 | Ft | 0.140 | 0.200 | 0.253 |
|  |  | M | 4.25 | Fb | -0.066 | 0.042 | 0.103 |
| 3 | 2 | E | 4.25 | Ft | 0.118 | 0.178 | 0.232 |
|  |  | M | 4.25 | Fb | 0.112 | 0.220 | 0.281 |
| 4 | 2 | E | 4.25 | Ft | 0.096 | 0.157 | 0.210 |
|  |  | M | 4.25 | Fb | 0.290 | 0.398 | 0.459 |
| 5 | 2 | E | 4.25 | Ft | 0.075 | 0.135 | 0.189 |
|  |  | M | 4.25 | Fb | 0.468 | 0.576 | 0.636 |
| 6 | 2 | E | 4.25 | Ft | 0.053 | 0.113 | 0.167 |
|  |  | M | 4.25 | Fb | 0.645 | 0.753 | 0.814 |
| 7 | 2 | E | 4.25 | Ft | 0.031 | 0.092 | 0.145 |
|  |  | M | 4.25 | Fb | 0.823 | 0.931 | 0.992 |
| 8 | 2 | E | 2.25 | Ft | -0.013 | 0.047 | 0.101 |
|  |  | M | 2.25 | Fb | 1.020 | 1.128 | 1.189 |
| 9 | 2 | E | 2.25 | Ft | -0.057 | 0.003 | 0.057 |
|  |  | M | 2.25 | Fb | 1.217 | 1.325 | 1.386 |
| 10 | 2 | E | 2.25 | Ft | -0.101 | -0.041 | 0.013 |
|  |  | M | 2.25 | Fb | 1.414 | 1.522 | 1.583 |
| 11 | 2 | E | 2.25 | Ft | -0.146 | -0.085 | -0.032 |
|  |  | M | 2.25 | Fb | 1.611 | 1.719 | 1.780 |
| 12 | 2 | E | 2.25 | Ft | -0.146 | -0.100 | -0.076 |
|  |  | M | 2.25 | Fb | 1.611 | 1.785 | 1.977 |


| Sisentley |  |  |  | Sheet \# | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

NEGATIVE ENVELOPE STRESSES

Span : 1, Beam : 4, SERVICE I
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = $11.45 \%$ )



Span : 1, Beam : 4, SERVICE III
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = $11.45 \%$ )



Span : 1, Beam : 4, FATIGUE I
NEGATIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\begin{aligned} & \hline 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \hline 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{gathered} \hline 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered}$ | $\begin{gathered} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 5.84 | 12.10 | 18.36 | 24.62 | 30.88 |
| F_LL+I( - ) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.182 | -0.174 | -0.177 | -0.165 | -0.146 | -0.128 | -0.109 | $-0.091$ |
| Bottom |  | 0.358 | 0.343 | 0.349 | 0.324 | 0.288 | 0.252 | 0.215 | $0.179$ |
| Pedestrian(-) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.000 | $-0.000$ | -0.000 -0.000 | -0.000 -0.000 | -0.000 | -0.000 | -0.000 -0.000 | $-0.000$ |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | $-0.000$ |
| Final 3 ( 50\% P/S | +50\% | $\left.D L+F_{-} L L\right)$ |  |  |  |  |  |  |  |
| Precast-top |  | -0.262 | -0.259 | -0.257 | -0.159 | 0.052 | 0.215 | 0.323 | 0.375 |
| Bottom |  | 0.587 | 1.157 | 0.918 | 1.205 | 1.017 | 0.837 | 0.711 | 0.637 |


| BiBentley |  |  |  | Sheet \# | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Ded/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs! |  |  | Date |  |

REINFORCED DESIGN

REINFORCED DESIGN - Span : 1, Beam : 4, STRENGTH I (fy = 60.00 ksi )
(a) NEGATIVE MOMENTS ALONG SPAN (Non-composite Moment effects are INCLUDED in Mu)

Negative Moment Continuity Steel:

| \#bars | Size | Dist. from Top <br> (in) | Area <br> (in2) | Start <br> (ft) | End <br> (ft) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 12 | US\#4[M13] |  | 2.88 | 2.40 | 0.0000 |
| 62.7500 |  |  |  |  |  |
| 6 | US\#10[M32] |  | 3.26 | 7.62 | 34.7500 |
| 62.7500 |  |  |  |  |  |
| 6 | US\#10[M32] |  | 3.26 | 7.62 | 50.7500 |


| fc | b | bw |
| :---: | :---: | :---: |
| (ksi) | (in) | (in) |
| 8.50 | 72.00 | 12.00 |


| Sec | $\begin{aligned} & \hline \text { Dist } \\ & \text { (ft) } \end{aligned}$ | $\left\|\begin{array}{c} \text { Mu-reqd } \\ (k . f t) \end{array}\right\|$ | $\begin{array}{\|l\|l\|} \hline \text { hf } \\ \text { (in) } \end{array}$ | $\begin{gathered} d \\ \text { (in) } \end{gathered}$ | $\begin{gathered} \mathrm{d}^{\prime} \\ \text { (in) } \end{gathered}$ | Phi | $\left\lvert\, \begin{gathered} \text { Phi'Mn-r } \\ \text { (k.ft) } \end{gathered}\right.$ | c/dt | $\begin{aligned} & \hline \text { Asb } \\ & \text { (in2) } \end{aligned}$ | $\begin{aligned} & \text { Ast-r } \\ & \text { (in2) } \end{aligned}$ | $\begin{aligned} & \text { Ast-p } \\ & \text { (in2) } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Phi*Mn-p } \\ \text { (k.ft) } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -377.8 |
| 2 | 5.84 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -377.8 |
| 3 | 12.10 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -377.8 |
| 4 | 18.36 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -377.8 |
| 5 | 24.62 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -377.8 |
| 6 | 30.88 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -377.8 |
| 7 | 37.13 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 4.338 | 10.020 | -1557.5 |
| 8 | 43.39 | -175.4 | 6.00 | 34.83 | 2.00 | 0.9 | -175.4 | 0.0057 | 0.000 | 4.338 | 10.020 | -1557.5 |
| 9 | 49.65 | -474.9 | 6.00 | 34.83 | 2.00 | 0.9 | -474.9 | 0.0155 | 0.000 | 4.338 | 10.020 | -1557.5 |
| 10 | 55.91 | -1006.8 | 6.00 | 34.79 | 2.00 | 0.9 | -1006.8 | 0.0332 | 0.000 | 6.500 | 17.640 | -2707.1 |
| 11 | 62.75 | -1993.5 | 6.00 | 34.79 | 2.00 | 0.9 | -1993.5 | 0.0664 | 0.000 | 13.014 | 17.640 | -2707.1 |

(b) POSITIVE MOMENTS AT PIERS

NONE

| 家Bentley |  |  |  | Sheet \# | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  |  | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {a }}$ Conspan Final_BX30a.csI |  |  |  | Date |  |

## DESIGN SUMMARY

## Span: 1, Beam: 4, Interior beam

| Beam type: | Adjacent Box Beam, | Bui72X30 |
| :---: | :---: | :---: |
| Precast Length, | ft | 62.58 |
| Release Length, | ft | 62.58 |
| Strand Pattern: | Straight |  |
| Strand: | 6/10-270K-LL |  |
| Strand Es, | ksi: | 28500.0 |
| No. of strands: | 24 |  |
|  | Draped: | 0 |
|  | Straight: | 24 |
| Concrete Strength: |  |  |
|  |  | $6.5 \mathrm{ksi}$ |
|  | fct: | $\begin{aligned} & 8.5 \mathrm{ksi} \\ & 4.5 \mathrm{ksi} \end{aligned}$ |
| Initial losses: | 4.18 \% |  |
| Final losses: | 11.45 \% |  |


| Specification | Allowable | Computed | Location | Status |
| :--- | ---: | ---: | ---: | ---: |
| Release Stresses (ksi) (Art. 5.9.4.1) |  |  |  |  |
| Precast Bot (compression) | 3.900 | 1.905 | $0.1 \mathrm{~L} / 0.9 \mathrm{~L}$ | OK |
| Precast Top w/ no reinf. (tension) | -0.200 | -0.146 | Trans |  |
| Precast Top w/ reinf. (tension) | -0.612 |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Strength I (Art. 3.4.1, 5.7.3.1.1) | Provided | Required | Location | Status |
| Ult. Moment (k.ft) | 3739.91 | 2460.63 | Midspan | OK |
|  |  |  |  |  |
| Debonding Limits (Art. 5.11.4.3) | Allowable | Computed |  | Status |
| Max. Debond per Row | $40.00 \%$ | $33.33 \%$ |  | OK |
| Max. Debond Total | $25.00 \%$ | $25.00 \%$ |  | OK |

Positive Moment Envelope Stresses (ksi) (Art. 3.4.1 and 5.9.4.2)

174/508


| $5 \rightarrow 50 \text { NTH }$ |  |  |  | Sheet \# | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: Conspan Final_BX30a.csi |  |  |  | Date |  |

Positive values indicate upward deflection.

| $5 \text { Bentley }$ |  |  |  | Sheet \# | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

## PROPERTIES <br> Span:3, Beam:4 <br> PRECAST DATA:



Minimum Thickness Criteria, Article 5.14.1.2.2 checked: OK.

GENERAL BRIDGE DATA:

| Bridge Width | 124.00 | ft |
| :--- | ---: | ---: |
| Curb-to-curb | 120.00 | ft |
| Beam Spac. Lt./Rt | $6.08 / 6.08$ | ft |
| Lane width | 12.00 | ft |
| Lumber of lanes | 7 |  |
| Nuterior |  |  |
| Interior/Exterior | Interior |  |
| Start Skew Angle | 0.00 | degrees |
| End Skew Angle | 0.00 | degrees |

TOPPING DATA:

| Deck Haunch: <br> Effective | Thickness <br> Thickness <br> Width <br> width | $\begin{array}{\|c} \hline 5.000 \\ 3.000 \\ 72.000 \\ 73.000 \end{array}$ |  | (Art. 4.6.2.6.1) |
| :---: | :---: | :---: | :---: | :---: |

GENERAL LOAD DATA:
DEAD LOADS ON PRECAST - NONE

Dead loads on composite: See Project info for composite loads

GENERAL SPAN DATA:

| Overall length | 82.833 | ft |
| :--- | :--- | :--- |
| Release length | 82.833 | ft |
| Design length | 82.000 | ft |

KERN POINTS:

| 5— Peßncy |  |  |  | Sheet \# | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csi }}$ |  |  |  | Date |  |


| Upper | 22.75 | in |
| :--- | :--- | :--- |
| Lower | 6.17 | in |

## DISTRIBUTION FACTORS (Art. 4.6.2.2):

Type f, with deck

| Live Negative Moment | Left Side | (2+ lanes loaded) | 0.651 | (Calculated) | $(\#)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Live Negative Moment | Right Side | (2+ lanes loaded) | 0.651 | (Calculated) | $(\#)$ |
| (\#) |  |  |  |  |  |
| Live Negative Moment | Left Side | (1 lane loaded) | 0.584 | (Calculated) | $(\#)$ |
| Live Negative Moment | Right Side | (1 lane loaded) | 0.584 | (Calculated) | (\#) |
| Live Positive Moment |  | (2+ lanes loaded) | 0.651 | (Calculated) | (\#) |
| Live Positive Moment |  | (1 lane loaded) | 0.584 | (Calculated) | (\#) |
| Live Shear |  | (2+ lanes loaded) | 0.651 | (Calculated) | $(\#)$ |
| Live Shear |  | (1 lane loaded) | 0.584 | (Calculated) | $(\#)$ |

(\#) Lever rule (C4.6.2.2.1)

| Pedestrian | 0.050 | (Calculated) |
| :--- | :--- | :--- |
| Comp. DC | 0.050 | (Calculated) |
| Comp. DW | 0.050 | (Calculated) |

Dead Loads and Pedestrian Load distributed equally to all beams (Art. 4.6.2.2.1) RESISTANCE FACTORS (Art. 5.5.4.2):

| Flexure Reinforced |  |
| :--- | :--- |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 0.90 |
|  |  |
| Flexure Prestressed |  |
| Compression controlled sections | 0.75 |
| Tension controlled sections | 1.00 |
|  |  |
| Shear | 0.90 |

SECTION PROPERTIES:

|  | PRECAST |  | COMPOSITE |  |  |
| :--- | ---: | ---: | ---: | :--- | :--- |
|  | 978.0 | in2 | 1400.7 | in2 | $\#$ |
| Area | 30.00 | in | 38.00 | in |  |
| Total Height | 120856 | in4 | 243816 | in4 | $\#$ |
| Mom. of Inertia (lxx) | 13.79 | in | 19.89 | in | $\#$ |
| Ht. of c.g. | 150.00 | pcf | 150.00 | pcf |  |
| Density | 1018.8 | plf | 1624.0 | plf |  |
| Self-weight | 588267.0 | in4 |  |  |  |
| Mom. of Inertia (lyy) | 0.2 |  |  |  |  |
| Poisson's Ratio |  |  |  |  |  |


| FiBentley |  |  |  | Sheet \# | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: Conspan Final_BX30a.cs |  |  |  | Date |  |


| Thermal Coeff. | $\begin{gathered} \text { PRECAST } \\ 0.000006000 \end{gathered}$ | $1 /{ }^{\circ} \mathrm{F}$ | COMPOSITE |  |
| :---: | :---: | :---: | :---: | :---: |

(\#) Of Total Section using $E c t E c=0.7276$
Use transformed strand and rebar: №

Span:3, Beam:4
STRESS LIMITS (Art. 5.9.4):
STRESS LIMITS AT RELEASE BEFORE LOSSES:

| Strength <br> Elasticity <br> Max comp <br> Max tens <br> Max tens, | w/reinf | $\begin{aligned} & \text { PRECAST } \\ & 6.50 \\ & 4887.7 \\ & 3.90 \\ & -0.20 \\ & -0.61 \\ & \hline \end{aligned}$ | ksi ksi ksi ksi ksi ksi |
| :---: | :---: | :---: | :---: |

STRESS LIMITS AT FINAL AFTER LOSSES:

|  | PRECAST |  | DECK |  |
| :--- | ---: | ---: | ---: | ---: |
| Strength | 8.50 | ksi | 4.50 | ksi |
| Elasticity | 5589.34 | ksi | 4066.84 | ksi |

STRESS LIMITS AT FINAL 1 (P/S + DL + LL):

|  |  |  |
| :--- | ---: | ---: | ---: |
| Max comp | PRECAST | DECK |

STRESS LIMITS AT FINAL 2 (P/S + DL):


FATIGUE I STRESS LIMITS AT FINAL 3 ( $50 \%$ P/S + 50\% DL + F_LL ) (Art. 5.5.3.1):

|  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Max comp | PRECAST |  |  |

SERVICE III (Tension):

|  | PRECAST |  | DECK |  |
| :--- | ---: | ---: | ---: | ---: |
| Max tens | -0.55 | ksi | -0.40 | ksi |

[^1]| SiBentley |  |  |  | Sheet \# | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | De6/11/2012 |
|  |  | www bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: ${ }^{\text {Conspan Final_BX30a.csi }}$ |  |  |  | Date |  |

## Straight Pattern

END PATTERN ( $\mathrm{Ycg}=3.19 \mathrm{in}$ ):

SHIELDING AND REDUCED INITIAL PULLS:

| Group | Strands | End | Heights | Mid |  | End |  | Shielding | Mid |  | Distance to center |  | Initial Frac | $\begin{array}{\|c\|} \hline \text { Pull } \\ \text { Pull/Str } \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 2.250 | in | 2.250 | in | 4.00 | ft |  | 0.00 | ft | 1.000 | in | 75.0 \% | 43.9 | kips |
| 2 | 2 | 4.250 | in | 4.250 | in | 2.00 | ft |  | 0.00 | ft | 1.000 | in | 75.0 \% | 43.9 | kips |
| 16 | 2 | 2.250 | in | 2.250 | in | 2.00 | ft |  | 0.00 | ft | 15.000 | in | 75.0 \% | 43.9 | kips |
| 17 | 2 | 2.250 | in | 2.250 | in | 4.00 | ft |  | 0.00 | ft | 17.000 | in | 75.0 \% | 43.9 | kips |

Check for Art. 5.11.4.3 (debond termination distances): OK

| Strand Diameter | 0.600 | in |
| :--- | ---: | :--- |
| Strand Area | 0.217 | in2 |
| Total Strand Area | 7.378 | in2 |
| Trans. Len,bonded | 3.000 | ft |
| Trans. Len,debonded | 3.000 | ft |
| Dev. Len, bonded | 10.432 | ft |
| Dev. Len, debonded | 13.040 | ft |
| Holddown Force | 0.000 | kips |
| Tensile Strength(fpu) | 270.0 | ksi |
| lnitial Prestress = 0.75fpu | 202.5 | ksi |
| Initial Pull | 1494.0 | kips |
| Beam Shrtng (PL/AE) | 0.294 | in |

## Span:3, Beam:4 <br> ESTIMATED QUANTITIES

| Prestressing | Strands |  | Beam | Concrete | Stirrups | Longitudinal Bars |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (linear ft) | (LB/1000ft) | (LB) | Vol(C.Y.) | Wt(LB) | (LB) | (LB) |
| 2816.332 | 740 | 2084.086 | 20.836 | 84386.602 | 583.648 | 0.000 |

Span:3, Beam:4
REINFORCING STEEL:

| Tension | steel: |  |
| :--- | :--- | :--- |
| fy | 60.0 | ksi |
| Es | 29000 | ksi |
| fs | 24.0 | ksi |

Stirrups:

| EB Bentley |  |  |  | Sheet \# | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentler.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| \# legs | Size | fy <br> (ksi) | Area <br> (in2) | Spacing <br> (in) | Start <br> (ft) | End <br> (ft) | Extends <br> into Deck |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 0.0000 | 2.0000 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 7.00 | 2.0000 | 80.8301 | Yes |
| 2 | US\#4[M13] | 60.0 | 0.40 | 4.00 | 80.8301 | 82.8301 | Yes |

LOSSES
Note: Values are calculated at Midspan

| Str. area | 7.3780 | in2 |
| :--- | ---: | ---: |
| Ycg | 3.9 | in |
| P init | 1494.0 | kips |
| Ecc | 10.60 | in |
| Days to release | 0.75 |  |
| Rel. Humid.(RH) | 60.0 | $\%$ |
| Es | 28500.0 | ksi |
| Eci | 4888 | ssi |

AASHTO LOSSES
Elastic Shortening 10.83 ksi (Eq 5.9.5.2.3a-1), (fcgp $=1.858 \mathrm{ksi})$

|  | Elastic Gains | Gains |  | Adjustment |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| due | to Precast Loads | -2.73 | ksi | 0.18 | ksi |
| due | to Composite Loads | -0.56 | ksi | 0.04 | ksi |
| due | to Live Loads | -3.04 | ksi | 0.25 | si |

Time Dependent Losses (Approximate Method (Art.5.9.5.3))

|  |  | Initial |  | Final |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Steel relaxation | 0.00 | ksi |  | 2.40 | ksi | (Eq 5.9.5.3-1) |
| Concrete shrinkage | 0.00 | ksi |  | 8.80 | ksi | (Eq 5.9.5.3-1) |
| Concrete creep | 0.00 | ksi |  | 11.20 | ksi | (Eq 5.9.5.3-1) |
| Sub-total | 10.83 | ksi | ( $5.35 \%$ ) | 16.53 | ksi | ( $8.17 \%$ ) |
| Total Prestress Losses |  |  |  | 27.37 | ksi | (13.52\%) |

Prestressing Stress Limit Check (Table 5.9.3.1)
initial fpi $=202.5 \mathrm{ksi}<0.75 \mathrm{fpu}, \mathrm{OK}$
initial fpe $=175.1 \mathrm{ksi}<0.80 \mathrm{fpy}$, OK

| $5 \underline{5} \text { 5 Pn ey }$ |  |  |  | Sheet \# | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

SHEARIMOMENT ENVELOPE (\&REACTIONS)

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 4, SERVICE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | , | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self wt. : | M | 0.0 | 104.5 | 64.9 | 297.1 | 541.7 | 716.5 | 821.3 | 856.3 |
| (Max) | V | 41.8 | 39.1 | 40.2 | 33.8 | 25.3 | 16.9 | 8.4 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + : | M | 0.0 | 62.1 | 38.5 | 176.5 | 321.8 | 425.6 | 487.9 | 508.7 |
| Haunch (Max) | V | 24.8 | 23.3 | 23.9 | 20.1 | 15.0 | 10.0 | 5.0 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | -185.3 | -147.5 | -161.8 | -79.9 | 0.9 | 55.4 | 87.6 | 97.6 |
| DC(Max) | V | 15.1 | 14.0 | 14.4 | 11.6 | 7.9 | 5.2 | 2.5 | 0.1 |
| DL-Comp | M | -86.4 | -71.7 | -77.3 | -44.4 | -9.6 | 15.5 | 31.0 | 36.9 |
| DW(Max) | V | 5.9 | 5.5 | 5.7 | 4.8 | 3.6 | 2.5 | 1.3 | 0.1 |
| LL + 1 : | M+ | 171.5 | 169.3 | 168.0 | 221.2 | 454.6 | 707.8 | 863.1 | 905.9 |
|  | $V$ | 10.2 | 13.5 | 12.2 | 20.4 | 23.9 | 13.7 | 3.7 | 20.2 |
| LL + 1 : | M- | -982.4 | -840.6 | -893.3 | -606.1 | -388.4 | -364.4 | -313.0 | -261.5 |
|  | $V$ | 53.9 | 49.7 | 51.3 | 41.3 | 9.9 | 6.2 | 6.2 | 6.2 |
| LL + 1 : | Vmx | 74.8 | 71.9 | 73.0 | 66.0 | 56.5 | 46.8 | 37.3 | 29.9 |
|  | M | -424.7 | -302.9 | -349.6 | -65.5 | 275.1 | 512.1 | 638.0 | 702.2 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| Total : | M+ | 0.0 | 116.7 | 32.4 | 570.3 | 1309.5 | 1920.8 | 2291.0 | 2405.4 |
|  | V | 0.0 | 95.4 | 96.3 | 90.6 | 75.9 | 48.3 | 21.0 | 20.5 |
| Total : | M- | -1254.0 | -893.2 | -1029.0 | -257.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 141.4 | 131.6 | 135.4 | 111.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vmx | 162.4 | 153.8 | 157.1 | 136.3 | 108.4 | 81.4 | 54.6 | 30.2 |
|  | M | -696.4 | -355.5 | -485.3 | 283.7 | 1129.9 | 1725.0 | 2065.8 | 2201.6 |


|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | H/2 | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | fl | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt. : | M | 821.3 | 716.5 | 541.7 | 297.1 | 64.9 | 104.5 | 0.0 |
| (Max) | V | 8.4 | 66.9 | 25.3 | 33.8 | 40.2 | 39.1 | 41.8 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 487.9 | 425.6 | 321.8 | 176.5 | 38.5 | 62.1 | 0.0 |
| Haunch (Max) | V | 5.0 | 10.0 | 15.0 | 20.1 | 23.9 | 23.3 | 24.8 |


| $5 \text { Bentley }$ |  |  |  | Sheet \# | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 85.4 | 51.0 | -5.5 | -88.6 | -172.1 | -157.6 | -195.9 |
| DC(Max) | V | 2.8 | 5.5 | 8.2 | 11.9 | 14.6 | 14.2 | 15.3 |
| DL-Comp : | M | 33.2 | 19.8 | -3.2 | -35.8 | -67.0 | -61.7 | -75.8 |
| DW(Max) | V | 1.0 | 2.2 | 3.4 | 4.5 | 5.4 | 5.3 | 5.6 |
| LL + I: | M | 863.1 | 707.8 | 454.6 | 221.2 | 168.0 | 169.3 | 171.5 |
|  | V | 3.7 | 13.7 | 23.9 | 20.4 | 12.2 | 13.5 | 10.2 |
| $\mathrm{LL}+\mathrm{l}$ : | M- | -313.0 | -364.4 | -388.4 | -606.1 | -893.3 | -840.6 | -982.3 |
|  | $V$ | 6.2 | 6.2 | 9.9 | 41.3 | 51.3 | 49.7 | 53.9 |
| LL + I: | Vm | 37.3 | 46.8 | 56.5 | 66.0 | 73.0 | 71.9 | 74.8 |
|  | M | 638.0 | 512.1 | 275.1 | -65.5 | -349.6 | -302.9 | -424.7 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | M + | 2291.0 | 1920.8 | 1309.4 | 570.3 | 32.3 | 116.6 | 0.0 |
|  | V | 21.0 | 48.3 | 75.9 | 90.6 | 96.3 | 95.4 | 0.0 |
| Total : | M- | 0.0 | 0.0 | 0.0 | -257.0 | -1029.1 | -893.3 | -1254.1 |
|  | $V$ | 0.0 | 0.0 | 0.0 | 111.5 | 135.3 | 131.6 | 141.4 |
| Total : | Vmx | 54.6 | 81.4 | 108.4 | 136.3 | 157.1 | 153.7 | 162.3 |
|  | M | 2065.8 | 1725.0 | 1129.9 | 283.6 | -485.4 | -355.7 | -696.4 |

## REACTIONS (kips), SERVICE I

| Load Type |  | Left Support | Right Support |
| :--- | :--- | ---: | ---: |
| Self Wt. |  | 41.8 | 41.8 |
| Deck+Haunch |  | 24.8 | 24.8 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 0.0 | 0.0 |
| DL-Comp.(DC) |  | 617.3 | 632.9 |
| DL-Comp.(DW) |  | 249.9 | 234.3 |
| Live | 137.8 | 137.8 |  |
| (Max) | -16.4 | -16.4 |  |
| Live | (Min) | 0.1 | 0.1 |
| Pedestrian | (Max) | -0.0 | -0.0 |
| Pedestrian | (Min) |  |  |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.
Live Load reaction reported at intermediate supports is full reaction at support.

| Brentley |  |  |  | Sheet \# | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 4, SERVICE III
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10 L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self wt | M | 0.0 | 104.5 | 64.9 | 297.1 | 541.7 | 716.5 | 821.3 | 856.3 |
| (Max) | V | 41.8 | 39.1 | 40.2 | 33.8 | 25.3 | 16.9 | 8.4 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | . 0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + | M | 0.0 | 62.1 | 38.5 | 176.5 | 321.8 | 425.6 | 487.9 | 508.7 |
| Haunch (Max) | v | 24.8 | 23.3 | 23.9 | 20.1 | 15.0 | 10.0 | 5.0 | 0.0 |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Com | M | -185.3 | -147.5 | -161.8 | -79.9 | 0.9 | 55.4 | 87.6 | 97.6 |
| DC(M | V | 15.1 | 14.0 | 14.4 | 11.6 | 7.9 | 5.2 | 2.5 | 0.1 |
| DL-Com | M | -86.4 | -71.7 | -77.3 | -44.4 | -9.6 | 15.5 | 31.0 | 36.9 |
| DW(Max) | V | 5.9 | 5.5 | 5.7 | 4.8 | 3.6 | 2.5 | 1.3 | 0.1 |
| LL + I: | M | 137.2 | 135.5 | 134.4 | 176.9 | 363.7 | 566.3 | 690.5 | 724.8 |
|  | V | 8.2 | 10.8 | 9.8 | 16.3 | 19.2 | 10.9 | 3.0 | 16.2 |
|  | M- | -785.9 | -672.5 | -714.7 | -484.9 | -310.7 | -291.5 | -250.4 | -209.2 |
|  | $v$ | 43.1 | 39.8 | 41.1 | 33.0 | 8.0 | 5.0 | 5.0 | 5.0 |
| LL | Vm | 59.8 | 57.5 | 58.4 | 52.8 | 45.2 | 37.4 | 29.9 | 23.9 |
|  | M | -339.8 | -242.3 | -279.7 | -52.4 | 220.1 | 409.7 | 510.4 | 561.7 |
| Pedestrian | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestir | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| Total | M + | 0.0 | 82.9 | 0.0 | 526.1 | 1218.5 | 1779.2 | 2118.4 | 2224.2 |
|  | V | 0.0 | 92.7 | 0.0 | 86.5 | 71.1 | 45.5 | 20.3 | 16.4 |
| To | , | -1057.6 | -725.1 | -850.3 | -135.7 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 130.7 | 121.7 | 125.2 | 103.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vm | 147.4 | 139.4 | 142.5 | 123.1 | 97.1 | 72.0 | 47.2 | 24.2 |
|  | M | -61 | -294.9 | -415.3 | 296.8 | 1074.9 | 1622.6 | 1938.2 | 2061.2 |


|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | H/2 | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, | ft | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt.: | M | 821.3 | 716.5 | 541.7 | 297.1 | 64.9 | 104.5 | 0.0 |
| (Max) | V | 8.4 | 16.9 | 25.3 | 33.8 | 40.2 | 39.1 | 41.8 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec.: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck +: | M | 487.9 | 425.6 | 321.8 | 176.5 | 38.5 | 62.1 | 0.0 |
| Haunch (Max) | V | 5.0 | 10.0 | 15.0 | 20.1 | 23.9 | 23.3 | 24.8 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| 52 50n Bu ey |  |  |  | Sheet \# | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | $\mathrm{H} / 2$ | Trans | Bearing |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 85.4 | 51.0 | -5.5 | -88.6 | -172.1 | -157.6 | -195.9 |
| DC(Max) | V | 2.8 | 5.5 | 8.2 | 11.9 | 14.6 | 14.2 | 15.3 |
| DL-Comp : | M | 33.2 | 19.8 | -3.2 | -35.8 | -67.0 | -61.7 | -75.8 |
| DW(Max) | V | 1.0 | 2.2 | 3.4 | 4.5 | 5.4 | 5.3 | 5.6 |
| LL + I : | $\mathrm{M}+$ | 690.5 | 566.3 | 363.7 | 176.9 | 134.4 | 135.5 | 137.2 |
|  | V | 3.0 | 10.9 | 19.2 | 16.3 | 9.8 | 10.8 | 8.2 |
| LL $+\mathrm{I}:$ | $\mathrm{M}-$ | -250.4 | -291.5 | -310.7 | -484.9 | -714.7 | -672.4 | -785.9 |
|  | V | 5.0 | 5.0 | 8.0 | 33.0 | 41.1 | 39.8 | 43.1 |
| LL $+\mathrm{I}:$ | Vmx | 29.9 | 37.4 | 45.2 | 52.8 | 58.4 | 57.5 | 59.8 |
|  | M | 510.4 | 409.7 | 220.1 | -52.4 | -279.7 | -242.3 | -339.8 |
| Pedestrian: | $\mathrm{M}+$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| Total : | $\mathrm{M}+$ | 2118.3 | 1779.2 | 1218.5 | 526.1 | 0.0 | 82.7 | 0.0 |
|  | V | 20.3 | 45.5 | 71.1 | 86.5 | 0.0 | 92.6 | 0.0 |
| Total : | $\mathrm{M}-$ | 0.0 | 0.0 | 0.0 | -135.8 | -850.4 | -725.2 | -1057.6 |
|  | V | 0.0 | 0.0 | 0.0 | 103.3 | 125.1 | 121.6 | 130.6 |
| Total : | Vmx | 47.2 | 72.0 | 97.1 | 123.1 | 142.4 | 139.4 | 147.3 |
|  | M | 1938.2 | 1622.6 | 1074.9 | 296.7 | -415.5 | -295.1 | -611.5 |

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 4, STRENGTH I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self wt. : | M | 0.0 | 130.6 | 81.1 | 371.3 | 677.1 | 895.6 | 1026.6 | 1070.3 |
| (Max) | V | 52.2 | 48.9 | 50.2 | 42.2 | 31.6 | 21.1 | 10.5 | 0.0 |
| Self wt. | M | 0.0 | 94.1 | 58.4 | 267.4 | 487.5 | 644.8 | 739.2 | 770.6 |
| (Min) | V | 37.6 | 35.2 | 36.1 | 30.4 | 22.8 | 15.2 | 7.6 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + : | M | 0.0 | 77.6 | 48.2 | 220.6 | 402.3 | 532.0 | 609.9 | 635.8 |
| Haunch (Max) | V | 31.0 | 29.1 | 29.8 | 25.1 | 18.8 | 12.5 | 6.3 | 0.0 |
| Deck + : | M | 0.0 | 55.9 | 34.7 | 158.8 | 289.6 | 383.1 | 439.1 | 457.8 |
| Haunch (Min) | V | 22.3 | 20.9 | 21.5 | 18.0 | 13.5 | 9.0 | 4.5 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

$185 / 508$

| FBentley |  |  |  | Sheet \# | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | muw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |


|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | -231.6 | -184.4 | -202.2 | -99.9 | 1.2 | 69.2 | 109.5 | 122.0 |
| DC(Max) | V | 18.9 | 17.5 | 18.0 | 14.5 | 9.9 | 6.5 | 3.2 | 0.2 |
| DL-Comp | M | -166.7 | -132.8 | -145.6 | -71.9 | 0.9 | 49.8 | 78.8 | 87.8 |
| DC(Min) | V | 13.6 | 12.6 | 13.0 | 10.5 | 7.1 | 4.7 | 2.3 | 0.1 |
| DL-Comp : | M | -129.6 | -107.5 | -115.9 | -66.7 | -14.5 | 23.3 | 46.5 | 55.4 |
| DW(Max) | V | 8.8 | 8.3 | 8.5 | 7.2 | 5.4 | 3.7 | 1.9 | 0.2 |
| DL-Comp : | M | -56.2 | -46.6 | -50.2 | -28.9 | -6.3 | 10.1 | 20.2 | 24.0 |
| DW(Min) | V | 3.8 | 3.6 | 3.7 | 3.1 | 2.4 | 1.6 | 0.8 | 0.1 |
| LL + I: | M | 300.1 | 296.3 | 294.0 | 387.1 | 795.6 | 1238.7 | 1510.5 | 1585.4 |
|  | V | 17.8 | 23.7 | 21.4 | 35.7 | 41.9 | 24.0 | 6.6 | 35.4 |
| LL + I: | M- | -1719.1 | -1471.0 | -1563.3 | -1060.6 | -679.8 | -637.8 | -547.7 | -457.6 |
|  | V | 94.3 | 87.0 | 89.8 | 72.3 | 17.4 | 10.9 | 10.9 | 10.9 |
| LL + I: | Vmx | 130.9 | 125.9 | 127.8 | 115.6 | 98.9 | 81.9 | 65.3 | 52.3 |
|  | M | -743.2 | -530.1 | -611.8 | -114.6 | 481.5 | 896.1 | 1116.5 | 1228.8 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.1 | -0.1 | -0.1 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | -0.1 | -0.1 | -0.1 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| Total : | M + | 77.2 | 325.2 | 227.5 | 878.2 | 1870.0 | 2758.8 | 3303.1 | 3469.0 |
|  | V | 123.5 | 122.5 | 122.9 | 124.7 | 107.7 | 67.8 | 28.5 | 35.7 |
| Total : | M- | -2080.4 | -1613.0 | -1788.4 | -801.1 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 176.9 | 164.2 | 169.1 | 134.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | Vmx | 241.9 | 229.6 | 234.4 | 204.5 | 164.7 | 125.8 | 87.3 | 52.7 |
|  | M | -1104.5 | -613.8 | -800.7 | 310.7 | 1547.6 | 2416.2 | 2909.0 | 3112.3 |


|  |  | 0.60 L | 0.70 L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt. | M | 1026.6 | 895.6 | 677.1 | 371.3 | 81.1 | 130.6 | 0.0 |
| (Max) | V | 10.5 | 21.1 | 31.6 | 42.2 | 50.2 | 48.9 | 52.2 |
| Self wt. | M | 739.2 | 644.8 | 487.5 | 267.4 | 58.4 | 94.1 | 0.0 |
| (Min) | V | 7.6 | 15.2 | 22.8 | 30.4 | 36.1 | 35.2 | 37.6 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck + | M | 609.9 | 532.0 | 402.3 | 220.6 | 48.2 | 77.6 | 0.0 |
| Haunch (Max) | $V$ | 6.3 | 12.5 | 18.8 | 25.1 | 29.8 | 29.1 | 31.0 |
| Deck +: | M | 439.1 | 383.1 | 289.6 | 158.8 | 34.7 | 55.9 | 0.0 |
| Haunch (Min) | V | 4.5 | 9.0 | 13.5 | 18.0 | 21.5 | 20.9 | 22.3 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |


| Fibentley |  |  |  | Sheet \# | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs! |  |  | Date |  |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | 106.8 | 63.8 | -6.9 | -110.7 | -215.1 | -197.0 | -244.9 |
| DC(Max) | V | 3.5 | 6.9 | 10.2 | 14.9 | 18.2 | 17.7 | 19.1 |
| DL-Comp | M | 76.9 | 45.9 | -5.0 | -79.7 | -154.9 | -141.9 | -176.3 |
| DC(Min) | V | 2.5 | 4.9 | 7.4 | 10.7 | 13.1 | 12.7 | 13.7 |
| DL-Comp : | M | 49.8 | 29.7 | -4.8 | -53.8 | -100.6 | -92.6 | -113.7 |
| DW(Max) | V | 1.6 | 3.3 | 5.0 | 6.8 | 8.1 | 7.9 | 8.4 |
| DL-Comp : | M | 21.6 | 12.9 | -2.1 | -23.3 | -43.6 | -40.1 | -49.2 |
| DW(Min) | V | 0.7 | 1.4 | 2.2 | 2.9 | 3.5 | 3.4 | 3.7 |
| LL + 1: | M + | 1510.5 | 1238.7 | 795.6 | 387.1 | 294.0 | 296.3 | 300.1 |
|  | V | 6.6 | 24.0 | 41.9 | 35.7 | 21.4 | 23.7 | 17.8 |
| LL + I: | M- | -547.7 | -637.8 | -679.8 | -1060.6 | -1563.3 | -1471.0 | -1719.1 |
|  | V | 10.9 | 10.9 | 17.4 | 72.3 | 89.8 | 87.0 | 94.3 |
| LL + 1 : | Vmx | 65.3 | 81.9 | 98.9 | 115.6 | 127.8 | 125.9 | 130.9 |
|  | M | 1116.5 | 896.1 | 481.5 | -114.5 | -611.8 | -530.0 | -743.2 |
| Pedestrian: | M+ | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | -0.0 | -0.0 | -0.0 | -0.0 | -0.1 | -0.1 | -0.1 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.1 | -0.1 | -0.1 |
| Total : | M+ | 3303.6 | 2759.8 | 1868.0 | 876.0 | 224.8 | 322.6 | 74.5 |
|  | V | 28.4 | 67.7 | 107.6 | 124.6 | 127.8 | 127.3 | 128.6 |
| Total : | M- | 0.0 | 0.0 | 0.0 | -799.0 | -1786.0 | -1610.7 | -2077.8 |
|  | V | 0.0 | 0.0 | 0.0 | 134.3 | 164.1 | 159.4 | 171.6 |
| Total : | Vmx | 87.2 | 125.7 | 164.6 | 204.5 | 234.2 | 229.5 | 241.7 |
|  | M | 2909.6 | 2417.2 | 1549.2 | 312.8 | -798.3 | -611.5 | -1101.9 |

REACTIONS (kips), STRENGTH I

| Load Type |  | Left Support | Right Support |
| :--- | :--- | ---: | ---: |
| Self Wt. |  | 52.2 | 52.2 |
| Deck+Haunch |  | 31.0 | 31.0 |
| Diaphragm |  | 0.0 | 0.0 |
| DL-Prec.(DC) |  | 0.0 | 0.0 |
| DL-Prec.(DW) |  | 0.0 | 0.0 |
| DL-Comp.(DC) |  | 771.7 | 791.1 |
| DL-Comp.(DW) |  | 374.8 | 351.5 |
| Live | (Max) | 241.1 | 241.1 |
| Live | (Min) | -28.7 | -28.7 |
| Pedestrian | (Max) | 0.2 | 0.2 |
| Pedestrian | (Min) | -0.0 | -0.0 |

Upward reactions are positive.
Live Load reactions are per lane with no distribution factor and no impact.
Reactions are not multiplied by Load Modifiers (ductility, redundancy and operational importance).
Non-composite load types are per beam.
Composite and Pedestrian load types are per total bridge width.


Live Load reaction reported at intermediate supports is full reaction at support.

SHEAR AND MOMENT ENVELOPE : Span : 3, Beam : 4, FATIGUE I
Shears: kips, Moments: kft

|  |  | Bearing | Trans | H/2 | 0.10L | 0.20L | 0.30L | 0.40L | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Self w | M | 0.0 | 104.5 | 64.9 | 297.1 | 541.7 | 716.5 | 821.3 | 856.3 |
| (Max) | V | 41.8 | 39.1 | 40.2 | 33.8 | 25.3 | 16.9 | 8.4 | 0.0 |
| Self wt. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck | M | 0.0 | 62.1 | 38.5 | 176.5 | 321.8 | 425.6 | 487.9 | 508.7 |
| Haunch (Max) | $V$ | 24.8 | 23.3 | 23.9 | 20.1 | 15.0 | 10.0 | 5.0 | 0.0 |
| Deck + | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Haunch (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm: | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphrag | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | $\checkmark$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | -185.3 | -147.5 | -161.8 | -79.9 | 0.9 | 55.4 | 87.6 | 97.6 |
| DC(Max) | V | 15.1 | 14.0 | 14.4 | 11.6 | 7.9 | 5.2 | 2.5 | 0.1 |
| DL-Comp | M | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp : | M | -86.4 | -71.7 | -77.3 | -44.4 | -9.6 | 15.5 | 31.0 | 36.9 |
| DW(Max) | V | 5.9 | 5.5 | 5.7 | 4.8 | 3.6 | 2.5 | 1.3 | 0.1 |
| DL-Comp : | M | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| LL + I: | M | 87.2 | 84.2 | 83.9 | 114.7 | 261.7 | 419.7 | 504.4 | 511.9 |
|  | V | 4.9 | 4.3 | 4.6 | 3.2 | 7.0 | 0.6 | 6.0 | 14.3 |
| $L L+1:$ | M- | -341.2 | -325.2 | -331.3 | -294.5 | -251.9 | -209.3 | -166.8 | -124.2 |
|  | V | 30.9 | 22.4 | 25.7 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 |
| LL + I: | Vmx | 47.0 | 44.5 | 45.4 | 39.4 | 32.9 | 26.3 | 19.8 | 16.4 |
|  | M | -206.1 | -131.4 | -160.0 | 13.2 | 217.9 | 349.0 | 401.6 | 457.8 |
| Pedestrian: | M+ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | $\mathrm{M}+$ | 0.0 | 31.6 | 0.0 | 463.8 | 1116.6 | 1632.6 | 1932.2 | 2011.4 |
|  | V | 0.0 | 86.2 | 0.0 | 73.4 | 59.0 | 35.2 | 23.3 | 14.6 |



|  |  | Bearing | Trans | $\mathrm{H} / 2$ | 0.10 L | 0.20 L | 0.30 L | 0.40 L | Midspan |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total : | M- | -612.8 | -377.7 | -466.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 118.5 | 104.3 | 109.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | $V_{m x}$ | 134.6 | 126.4 | 129.5 | 109.6 | 84.8 | 60.9 | 37.1 | 16.7 |
|  | M | -477.7 | -184.0 | -295.6 | 362.3 | 1072.7 | 1561.9 | 1829.4 | 1957.2 |


|  |  | 0.60L | 0.70L | 0.80L | 0.90L | H/2 | Trans | Bearing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, | ft | 49.28 | 57.57 | 65.85 | 74.13 | 80.42 | 79.42 | 82.00 |
| Self wt. | M | 821.3 | 716.5 | 541.7 | 297.1 | 64.9 | 104.5 | 0.0 |
| (Max) | V | 8.4 | 16.9 | 25.3 | 33.8 | 40.2 | 39.1 | 41.8 |
| Self wt. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Max) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DC(Min) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Max) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Prec. | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DW(Min) | $v$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Deck ${ }^{\text {+ }}$ | M | 487.9 | 425.6 | 321.8 | 176.5 | 38.5 | 62.1 | 0.0 |
| Haunch (Max) | V | 5.0 | 10.0 | 15.0 | 20.1 | 23.9 | 23.3 | 24.8 |
| Deck + | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Haunch (Min) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm : | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Max) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Diaphragm | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| (Min) | v | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 85.4 | 51.0 | -5.5 | -88.6 | -172.1 | -157.6 | -195.9 |
| DC(Max) | v | 2.8 | 5.5 | 8.2 | 11.9 | 14.6 | 14.2 | 15.3 |
| DL-Comp | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| DC(Min) | $v$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| DL-Comp | M | 33.2 | 19.8 | -3.2 | -35.8 | -67.0 | -61.7 | -75.8 |
| DW(Max) | V | 1.0 | 2.2 | 3.4 | 4.5 | 5.4 | 5.3 | 5.6 |
| DL-Comp | M | 0.0 | 0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 |
| DW(Min) | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| LL+1: | M+ | 504.4 | 419.7 | 261.7 | 114.7 | 83.9 | 84.2 | 87.2 |
|  | $V$ | 6.0 | 0.6 | 7.0 | 3.2 | 4.6 | 4.3 | 4.9 |
| LL + 1 | M- | -166.8 | -209.3 | -251.9 | -294.5 | -331.3 | -325.2 | -341.2 |
|  | V | 5.1 | 5.1 | 5.1 | 5.1 | 25.7 | 22.4 | 30.9 |
| LL+1: | Vmx | 19.8 | 26.3 | 32.9 | 39.4 | 45.4 | 44.5 | 47.0 |
|  | M | 401.6 | 349.0 | 217.9 | 13.2 | -160.0 | -131.4 | -206.1 |
| Pedestrian: | M + | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | M- | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Pedestrian: | Vmx | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | M | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Total : | M+ | 1932.2 | 1632.6 | 1116.5 | 463.8 | 0.0 | 31.4 | 0.0 |
|  | V | 23.3 | 35.2 | 59.0 | 73.4 | 0.0 | 86.2 | 0.0 |
| Total | M- | 0.0 | 0.0 | 0.0 | 0.0 | -467.0 | -377.9 | -612.9 |
|  | V | 0.0 | 0.0 | 0.0 | 0.0 | 109.7 | 104.2 | 118.4 |


| 52 Dentoy |  |  |  | Sheet \# | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csI |  |  | Date |  |


|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total : |  |  | 0.60 L | 0.70 L | 0.80 L | 0.90 L | $\mathrm{H} / 2$ | Trans | Bearing |
|  |  | 37.1 | 60.9 | 84.8 | 109.6 | 129.5 | 126.3 | 134.5 |  |
|  | M | 1829.4 | 1561.9 | 1072.7 | 362.3 | -295.7 | -184.1 | -477.8 |  |


| 家Bentley |  |  |  | Sheet \# | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentler.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

POSITIVE ENVELOPE STRESSES

Span : 3, Beam : 4, SERVICE I

RELEASE STRESSES, (ksi) (LOSS = $5.35 \%)$

|  | Trans | 0.10 L | 0.20 L | 0.30 L | 0.40 L | Midspan |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 10.90 L | 10.80 L | 10.70 L | 10.60 L | Midspan |  |
| Location, ft | 3.00 | 8.28 | 16.57 | 24.85 | 33.13 | 41.42 |
|  |  |  |  |  |  |  |
| Beam-Self |  |  |  |  |  |  |
| Precast-top | 0.196 | 0.506 | 0.900 | 1.181 | 1.350 | 1.406 |
| Bottom | -0.167 | -0.431 | -0.766 | -1.005 | -1.149 | -1.196 |
|  |  |  |  |  |  |  |
| Prestress |  |  |  |  |  |  |
| Precast-top | -0.434 | -0.564 | -0.564 | -0.564 | -0.564 | -0.564 |
| Bottom | 2.520 | 3.156 | 3.156 | 3.156 | 3.156 | 3.156 |
|  |  |  |  |  |  |  |
| Total |  |  |  |  |  |  |
| Precast-top | -0.237 | -0.058 | 0.336 | 0.617 | 0.786 | 0.842 |
| Bottom | 2.353 | 2.725 | 2.390 | 2.151 | 2.008 | 1.960 |
|  |  |  |  |  |  |  |

## SERVICE I

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 13.52 \%)

|  | Bearing | Trans | H/2 | $\begin{array}{\|l\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\begin{array}{\|l\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{array}{\|l\|} \hline 0.30 \mathrm{~L} \\ / 0.70 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.396 | -0.251 | -0.516 | -0.516 | -0.516 | -0.516 | -0.516 |
| Bottom | 0.304 | 2.303 | 1.460 | 2.884 | 2.884 | 2.884 | 2.884 | 2.884 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |


| SiBentley |  |  |  | Sheet \# | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_ BX30a.csI |  |  | Date |  |


|  | Bearing | Trans | H/2 | $\begin{aligned} & 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{gathered} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch |  |  |  |  |  |  |  |  |
| Precast-lop | 0.000 | 0.100 | 0.062 | 0.284 | 0.518 | 0.685 | 0.785 | 0.819 |
| Bottom | -0.000 | -0.085 | -0.053 | -0.242 | -0.441 | -0.583 | -0.668 | -0.696 |
| DL-Comp (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.092 | -0.073 | -0.080 | -0.040 | 0.000 | 0.028 | 0.044 | 0.049 |
| Bottom | 0.181 | 0.144 | 0.158 | 0.078 | -0.001 | -0.054 | -0.086 | -0.096 |
| DL-Comp (DW) Precast-top | -0.043 | -0.036 | -0.038 | -0.022 | -0.005 | 0.008 | 0.015 | 0.018 |
| Bottom | 0.085 | 0.070 | 0.076 | 0.044 | 0.009 | -0.015 | -0.030 | -0.036 |
| LL+1(+) |  |  |  |  |  |  |  |  |
| Precast-top | 0.085 | 0.084 | 0.084 | 0.110 | 0.226 | 0.352 | 0.429 | 0.451 |
| Bottom | -0.168 | -0.166 | -0.165 | -0.217 | -0.445 | -0.693 | -0.845 | -0.887 |
| Pedestrian( + ) |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final $1(\mathrm{P} / \mathrm{S}+\mathrm{DL}+\mathrm{LL})$ |  |  |  |  |  |  |  |  |
| Precast-top | -0.102 | -0.153 | -0.120 | 0.295 | 1.096 | 1.710 | 2.080 | 2.199 |
| Bottom | 0.402 | 2.123 | 1.388 | 2.141 | 1.265 | 0.558 | 0.130 | -0.004 |
| Final 2 (P/S + DL) |  |  |  |  |  |  |  |  |
| Precast-top | -0.187 | -0.237 | -0.203 | 0.185 | 0.870 | 1.358 | 1.651 | 1.748 |
| Bottom | 0.570 | 2.289 | 1.552 | 2.357 | 1.710 | 1.251 | 0.975 | 0.883 |

Span : 3, Beam : 4, SERVICE III

RELEASE STRESSES, (ksi) (LOSS = 5.35 \%)

|  | Trans | 0.10 L | 0.20 L | 0.30 L | 0.40 L | Midspan |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Location, ft | 3.00 | 8.28 | 16.80 L | 10.70 L | 10.60 L | 24.85 |
|  | 33.13 | 41.42 |  |  |  |  |
| Beam-Self |  |  |  |  |  |  |
| Precast-top | 0.196 | 0.506 | 0.900 | 1.181 | 1.350 | 1.406 |
| Bottom | -0.167 | -0.431 | -0.766 | -1.005 | -1.149 | -1.196 |


| Bentley |  |  |  | Sheet \# | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


|  | Trans | $\begin{gathered} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & 0.20 \mathrm{~L} \\ & 10.80 \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{gathered} 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{gathered}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress Precast-top | -0.434 | -0.564 | -0.564 | -0.564 | -0.564 |  |
| Bottom | 2.520 | 3.156 | 3.156 | 3.156 | 3.156 | 3.156 |
| Total Precast-top | -0.237 | -0.058 | 0.336 | 0.617 | 0.786 |  |
| Bottom | 2.353 | 2.725 | 2.390 | 2.151 | 2.008 | 1.960 |
| As_top, in2 | 0.782 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Ast_prvd, in2 | 0.000* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

SERVICE III

POSITIVE ENVELOPE STRESSES, (ksi) (LOSS = 13.52 \%)

|  | Bearing | Trans | H/2 | $\begin{gathered} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{gathered} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{array}$ | $\begin{array}{\|c\|} \hline 0.40 \mathrm{~L} \\ \hline 10.60 \mathrm{~L} \\ \hline \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.396 | -0.251 | -0.516 | -0.516 | -0.516 | -0.516 | -0.516 |
| Bottom | 0.304 | 2.303 | 1.460 | 2.884 | 2.884 | 2.884 | 2.884 | 2.884 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  | -0.000 | -0.000 |  |  |  |
| Precast-lop Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 -0.000 | -0.000 -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-lop | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.100 | 0.062 | 0.284 | 0.518 | 0.685 | 0.785 | 0.819 |
| Bottom | -0.000 | -0.085 | -0.053 | -0.242 | -0.441 | -0.583 | -0.668 | -0.696 |
| DL-Comp (DC) Precast-top | -0.092 | -0.073 | -0.080 | -0.040 | 0.000 | 0.028 | 0.044 | 0.049 |



Span : 3, Beam : 4, FATIGUE I
POSITIVE ENVELOPE STRESSES, (ksi)

|  |  | Bearing | Trans | H/2 | $\begin{gathered} 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $0.40 \mathrm{~L}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft |  | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| F_LL+1(+) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | 0.043 | 0.042 | 0.042 | 0.057 | 0.130 | 0.209 | 0.251 | 0.255 |
| Bottom |  | -0.085 | -0.082 | -0.082 | -0.112 | -0.256 | -0.411 | -0.494 | -0.501 |
| Pedestrian ( + ) |  |  |  |  |  |  |  |  |  |
| Precast-top |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom |  | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Final 3 ( $50 \%$ P/S | +50\% | DL + F_LL) |  |  |  |  |  |  |  |
| Precast-top |  | -0.050 | -0.077 | -0.060 | 0.149 | 0.565 | 0.888 | 1.076 | 1.129 |
| Bottom |  | 0.200 | 1.062 | 0.694 | 1.066 | 0.599 | 0.214 | -0.006 | -0.060 |


| 家Bentley |  |  |  | Sheet \# | 19 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPANQ V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.cs! |  |  | Date |  |

VERTICALHORIZONTAL SHEAR

VERTICAL SHEAR (Art. 5.8) - Span : 3, Beam : 4, STRENGTH I
Using General Beta Theta Equation procedure - Art.5.8.3.4.2

| Location(ft) <br> Vu <br> (kips) | bv <br> (in) | de <br> (in) | Aps <br> (in2) | $\underset{(\mathrm{kips})}{\mathrm{Vp}}$ | eps_x | Theta | Vs-reqd (kips) | Av/s (in2ft) | $\begin{gathered} \text { Av-prvd } \\ \text { (in2/ft) } \end{gathered}$ | $\begin{array}{\|l} \text { Al_reqd } \\ \text { (in2) } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mcor (kft) | $\begin{gathered} \mathbf{a} \\ \text { (in) } \end{gathered}$ | $d v$ <br> (in) | fpo <br> (ksi) | vulfc | Vc-com (kips) | Beta | Max.spc. (in) | min.Av/s (in2/ft) | pVn/Nu | Aps* <br> (in2) |
| Bearing : 2419 | $\begin{aligned} & 0.42 \\ & 12.00 \end{aligned}$ | 34.79 | 0.000 | 0.0 | 1.46e- | 34.1 | 182.9 | 0.731 | 1.200 | 9.05 |
| -1104.5 | 1.72 | 33.93 | 26.2 | 0.078 | 1.46 .8 | 2.29 | 24.00 | 0.221 | 1.437 | 0.171 |
| Transfer : | 3.00 |  |  |  |  |  |  |  |  |  |
| 229.6 | 12.00 | 34.79 | 0.000 | 0.0 | 1.35e-3 | 33.7 | 165.8 | 0.653 | 0.686 | 3.61 |
| -613.8 | 1.72 | 33.93 | 189.0 | 0.074 | 89.4 | 2.38 | 24.00 | 0.221 | 1.033 | 0.942 |
| Critical : | 3.24 |  |  |  |  |  |  |  |  |  |
| 228.5 | 12.00 | 34.79 | 0.000 | 0.0 | $1.38 \mathrm{e}-3$ | 33.8 | 165.4 | 0.654 | 0.686 | 7.58 |
| -580.6 | 1.72 | 33.93 | 189.0 | 0.073 | 88.4 | 2.36 | 24.00 | 0.221 | 1.032 | 0.000 |
| 0.1L : | 8.28 |  |  |  |  |  |  |  |  |  |
| 204.5 | 12.00 | 34.81 | 7.378 | 0.0 | -0.24e-3 | 28.2 | 24.7 | 0.221 | 0.686 | 0.00 |
| 310.7 | 8.70 | 31.33 | 189.0 | 0.071 | 202.6 | 5.85 | 24.00 | 0.221 | 1.774 | 5.563 |
| 0.2L: | 16.57 |  |  |  |  |  |  |  |  |  |
| 164.7 | 12.00 | 34.81 | 7.378 | 0.0 | -0.15e-3 | 28.5 | 0.0 | 0.221 | 0.686 | 0.00 |
| 1547.6 | 9.10 | 31.33 | 189.0 | 0.057 | 188.1 | 5.43 | 24.00 | 0.221 | 2.111 | 7.337 |
| $0.3 \mathrm{~L}:$ | $\begin{aligned} & 24.85 \\ & 12.00 \end{aligned}$ | 34.81 | 7.378 | 0.0 | -0.08e-3 | 28.7 | 0.0 |  | 0.686 | 0.00 |
| 125.8 2416.2 | 9.05 | 34.81 31.33 | 189.0 | 0.044 | $-0.08 \mathrm{e}-3$ 177.4 | 28.1 5.12 | 24.00 | 0.221 0.221 | 0.686 2.673 | 7.378 |
| 0.4L : | 33.13 |  |  |  |  |  |  |  |  |  |
| 87.3 | 12.00 | 34.81 | 7.378 | 0.0 | -0.05e-3 | 28.8 | 0.0 | 0.221 | 0.686 | 0.00 |
| 2909.0 | 9.05 | 31.33 | 189.0 | 0.030 | 172.3 | 4.97 | 24.00 | 0.221 | 3.789 | 7.378 |
| 0.5L : | 41.42 |  |  |  |  |  |  |  |  |  |
| 52.7 | 12.00 | 34.81 | 7.378 | 0.0 | -0.04e-3 | 28.9 | 0.0 | 0.221 | 0.686 | 0.00 |
| 3112.3 | 9.05 | 31.33 | 189.0 | 0.018 | 170.9 | 4.93 | 24.00 | 0.221 | 6.246 | 7.378 |
| 0.6L : | 49.70 |  |  |  |  |  |  |  |  |  |
| 87.2 | 12.00 | 34.81 | 7.378 | 0.0 | -0.05e-3 | 28.8 | 0.0 | 0.221 | 0.686 | 0.00 |
| 2909.6 | 9.05 | 31.33 | 189.0 | 0.030 | 172.3 | 4.97 | 24.00 | 0.221 | 3.792 | 7.378 |
| 0.7L : | 57.98 |  |  |  |  |  |  |  |  |  |
| 125.7 | 12.00 | 34.81 | 7.378 | 0.0 | -0.08e-3 | 28.7 | 0.0 | 0.221 | 0.686 | 0.00 |


| Location(ft) <br> Vu <br> (kips) | $\begin{aligned} & \text { bv } \\ & \text { (in) } \end{aligned}$ | de <br> (in) | Aps <br> (in2) | $\underset{(\mathrm{kips})}{\mathrm{Vp}}$ | eps_x | Theta | Vs-reqd (kips) | Av/s (in2ft) | $\begin{gathered} \text { Av-prvd } \\ \text { (in2ft) } \end{gathered}$ | Al_reqd (in2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mcor <br> (kft) | $\begin{gathered} a \\ \text { (in) } \end{gathered}$ | $d v$ <br> (in) | fpo <br> (ksi) | vulfc | Vc-com (kips) | Beta | Max.spc. (in) | min.Av/s (in2/ft) | $\mathrm{pVn} / \mathrm{Vu}$ | Aps* <br> (in2) |
| 2417.2 | 9.05 | 31.33 | 189.0 | 0.044 | 177.4 | 5.12 | 24.00 | 0.221 | 2.674 | 7.378 |
| 0.8L : 164.6 | 66.27 12.00 | 34.81 | 7378 | 0.0 | -0.15e-3 | 28.5 | 0.0 | 0.221 | 0.686 | 0.00 |
| 164.6 1549.2 | 12.00 | 34.81 31.33 | 189.0 | 0.057 | $-0.15 \mathrm{e}-3$ 188.1 | 28.5 5.43 | 24.00 | 0.221 | 0.686 2.112 | 7.337 |
| 0.9L: 204.5 | $74.55$ |  |  |  |  |  |  |  |  |  |
| 204.5 312.8 | 12.00 8.70 | 34.81 31.33 | 7.378 189.0 | 0.0 0.071 | $-0.24 \mathrm{e}-3$ 202.6 | 28.2 5.85 | 24.6 24.00 | 0.221 0.221 | 0.686 1.775 | 0.00 5.563 |
| Critical : | 79.59 |  |  |  |  |  |  |  |  |  |
| 228.3 | 12.00 | 34.79 | 0.000 | 0.0 | $1.38 \mathrm{e}-3$ | 33.8 | 165.3 | 0.653 | 0.686 | 7.56 |
| -578.2 | 1.72 | 33.93 | 189.0 | 0.073 | 88.4 | 2.36 | 24.00 | 0.221 | 1.032 | 0.000 |
| Transfer | 79.83 |  |  |  |  |  |  |  |  |  |
| 229.5 | 12.00 | 34.79 | 0.000 | 0.0 | $1.36 \mathrm{e}-3$ | 33.7 | 165.6 | 0.652 | 0.686 | 3.59 |
| -611.5 | 1.72 | 33.93 | 189.0 | 0.074 | 89.3 | 2.38 | 24.00 | 0.221 | 1.033 | 0.942 |
| Bearing: | 82.42 |  |  |  |  |  |  |  |  |  |
| 241.7 | 12.00 | 34.79 | 0.000 | 0.0 | 1.46e-3 | 34.1 | 182.7 | 0.730 | 1.200 | 9.03 |
| -1101.9 | 1.72 | 33.93 | 26.2 | 0.078 | 85.9 | 2.29 | 24.00 | 0.221 | 1.439 | 0.171 |

## ANCHORAGE ZONE REINFORCEMENT (Art. 5.10.10)

Span: 3, Beam: 4

| Fpi | fs | h/4 <br> (kips) <br> (ksi) | (inst_rqrd <br> (in2) <br> (in2.50 |
| :---: | :---: | :---: | :---: |
| 20.00 | 7.50 | 2.29 |  |

HORIZONTAL SHEAR (Art. 5.8.4) - Span : 3, Beam : 4
(Beam and Slab effects are INCLUDED in Vu).
Computed Interface width considered to be engaged in shear transfer, bvi $=72.00$ (in).



|  |  |  |  | Sheet \# | 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

CAMBERIDEFLECTION

CAMBER AND DEFLECTIONS: SERVICE I
(Span : 3, Beam : 4; Units: in )


| At $0.2 \times \mathrm{L}=$ | Release 16.15 ft | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 1.989 | 1.80 | 3.580 | 2.20 | 4.375 |
| Self Wt. | -1.085 | 1.85 | -2.007 | 2.40 | -2.604 |
| Deck + Haunch |  |  | -0.534 | 2.30 | -1.229 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.024 | 3.00 | -0.073 |
| DL-Comp. (DW) |  |  | -0.006 | 3.00 | -0.017 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 0.904 |  | 1.008 |  | 0.451 |


| At $0.3 \times \mathrm{L}=$ | $\begin{gathered} \text { Release } \\ 24.43 \mathrm{ft} \end{gathered}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 2.615 | 1.80 | 4.708 | 2.20 | 5.754 |
| Self Wt. | -1.485 | 1.85 | -2.748 | 2.40 | -3.565 |
| Deck + Haunch |  |  | -0.738 | 2.30 | -1.697 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.040 | 3.00 | -0.121 |
| DL-Comp. (DW) |  |  | -0.012 | 3.00 | -0.035 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 1.130 |  | 1.170 |  | 0.336 |


| SiBentley |  |  |  | Sheet\# | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |


| At $0.4 \times \mathrm{L}=$ | $\begin{aligned} & \text { Release } \\ & 32.72 \mathrm{ft} \end{aligned}$ | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 2.991 | 1.80 | 5.385 | 2.20 | 6.581 |
| Self Wt. | -1.740 | 1.85 | -3.218 | 2.40 | -4.175 |
| Deck + Haunch |  |  | -0.867 | 2.30 | -1.994 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.052 | 3.00 | -0.155 |
| DL-Comp. (DW) |  |  | -0.016 | 3.00 | -0.049 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 1.252 |  | 1.231 |  | 0.208 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.5 \times \mathrm{L}=$ | 41.00 ft |  |  |  |  |
| Prestress | 3.117 | 1.80 | 5.610 | 2.20 | 6.857 |
| Self Wt. | -1.827 | 1.85 | -3.380 | 2.40 | -4.384 |
| Deck + Haunch |  |  | -0.911 | 2.30 | -2.096 |
| DL_Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.055 | 3.00 | -0.166 |
| DL-Comp. (DW) |  |  | -0.018 | 3.00 | -0.055 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total |  |  |  |  |  |
|  |  |  |  |  |  |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.6 \times \mathrm{L}=$ | 49.28 ft |  |  |  |  |
| Prestress | 2.991 | 1.80 | 5.385 | 2.20 | 6.581 |
| Self Wt. | -1.740 | 1.85 | -3.218 | 2.40 | -4.175 |
| Deck + Haunch |  |  | -0.867 | 2.30 | -1.994 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.051 | 3.00 | -0.153 |
| DL-Comp. (DW) |  |  | -0.017 | 3.00 | -0.051 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total |  |  |  |  |  |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.7 \times \mathrm{L}=$ | 57.57 ft |  |  |  |  |
| Prestress | 2.615 | 1.80 | 4.708 | 2.20 | 5.754 |
| Self Wt. | -1.485 | 1.85 | -2.748 | 2.40 | -3.565 |
| Deck + Haunch |  |  | -0.738 | 2.30 | -1.697 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |


|  |  |  | Sheet \# | 24 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Job \# |  |


|  | Release | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.039 | 3.00 | -0.117 |
| DL-Comp. (DW) |  |  | -0.013 | 3.00 | -0.039 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
| Total | 1.130 |  | 1.170 |  | 0.336 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.8 \times \mathrm{L}=$ | 65.85 ft |  |  |  |  |
| Prestress | 1.989 | 1.80 | 3.580 | 2.20 | 4.375 |
| Self Wt. | -1.085 | 1.85 | -2.007 | 2.40 | -2.604 |
| Deck + Haunch |  |  | -0.534 | 2.30 | -1.229 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.023 | 3.00 | -0.069 |
| DL-Comp. (DW) |  |  | -0.007 | 3.00 | -0.022 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total | 0.904 |  | 1.008 |  | 0.451 |


|  | Release | Mult | Erection | Mult | Final |
| :--- | ---: | ---: | ---: | ---: | ---: |
| At $0.9 \times \mathrm{L}=$ | 74.13 ft |  |  |  |  |
| Prestress | 1.111 | 1.80 | 2.000 | 2.20 | 2.445 |
| Self Wt. | -0.573 | 1.85 | -1.061 | 2.40 | -1.376 |
| Deck + Haunch |  |  | -0.275 | 2.30 | -0.632 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.007 | 3.00 | -0.022 |
| DL-Comp. (DW) |  |  | -0.002 | 3.00 | -0.006 |
| Live Load | Not Included |  |  |  |  |
| Pedestrian Load |  |  |  |  | -0.000 |
|  |  |  |  |  |  |
| Total |  |  |  |  |  |


|  |  |  |  | Sheet \# | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw. bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name | Conspan Final_BX30a.csI |  |  | Date |  |

ULTIMATE MOMENT

ULTIMATE - Span : 3, Beam : 4, STRENGTH I (Mr-prvd computed by Strain Compatibility method. Ult. Conc. Strain $=\mathbf{0 . 0 0 3 0 0}$ )

| Location <br> (ft) <br> Mu k.ft | $\begin{aligned} & \text { dp } \\ & \text { in } \end{aligned}$ | $\begin{gathered} \text { Aps } \\ \text { in2 } \end{gathered}$ | $\underset{\text { ksi }}{\text { fps }}$ | $\begin{gathered} \text { C } \\ \text { in } \end{gathered}$ | $\begin{aligned} & \text { a } \\ & \text { in } \end{aligned}$ | $\left\lvert\, \begin{gathered}\text { Mr-prvd } \\ \text { k.ft }\end{gathered}\right.$ | c/dt | Phi | $\begin{aligned} & \text { Mcr } \\ & k f t \end{aligned}$ | min Mr k.ft | Crkg | Mu-p/r <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer | 2.58 |  |  |  |  |  |  |  |  |  |  |  |
| 325.2 | 34.7 | 4.208 | 267.7 | 4.9 | 4.0 | 3066.0 | 0.136 T | 1.00 |  |  |  |  |
| H/2 | 1.58 |  |  |  |  |  |  |  |  |  |  |  |
| 227.5 | 34.7 | 2.668 | 268.7 | 3.1 | 2.6 | 1994.5 | 0.087T | 1.00 |  |  |  |  |
| 0.1L | 7.87 |  |  |  |  |  |  |  |  |  |  |  |
| 878.2 | 34.8 | 6.514 | 263.8 | 10.5 | 8.7 | 4556.8 | 0.294 T | 1.00 |  |  |  |  |
| 0.2L | 16.15 |  |  |  |  |  |  |  |  |  |  |  |
| 1870.0 | 34.8 | 7.366 | 263.4 | 11.0 | 9.1 | 5010.0 | 0.307T | 1.00 | 4039.3 | 2487.0 | 1.24 |  |
| 0.3L | 24.43 |  |  |  |  |  |  |  |  |  |  |  |
| 2758.8 | 34.8 | 7.378 | 263.5 | 10.9 | 9.1 | 4958.8 | 0.306T | 1.00 | 3928.3 | 3669.2 | 1.26 |  |
| 0.4 L | 32.72 |  |  |  |  |  |  |  |  |  |  |  |
| 3303.1 | 34.8 | 7.378 | 263.5 | 10.9 | 9.1 | 4958.8 | 0.306T | 1.00 | 3861.7 | 3861.7 | 1.28 |  |
| 0.5L | 41.00 |  |  |  |  |  |  |  |  |  |  |  |
| 3469.0 | 34.8 | 7.378 | 263.5 | 10.9 | 9.1 | 4958.8 | 0.306T | 1.00 | 3839.5 | 3839.5 | 1.29 |  |
| 0.6L | 49.28 |  |  |  |  |  |  |  |  |  |  |  |
| 3303.6 | 34.8 | 7.378 | 263.5 | 10.9 | 9.1 | 4958.8 | 0.306T | 1.00 | 3861.7 | 3861.7 | 1.28 |  |
| 0.7 L | 57.57 |  |  |  |  |  |  |  |  |  |  |  |
| 2759.8 | 34.8 | 7.378 | 263.5 | 10.9 | 9.1 | 4958.8 | 0.306T | 1.00 | 3928.3 | 3670.6 | 1.26 |  |
| 0.8L | 65.85 |  |  |  |  |  |  |  |  |  |  |  |
| 1868.0 | 34.8 | 7.366 | 263.4 | 11.0 | 9.1 | 5010.0 | 0.307T | 1.00 | 4039.3 | 2484.4 | 1.24 |  |
| 0.9L | 74.13 |  |  |  |  |  |  |  |  |  |  |  |
| 876.0 | 34.8 | 6.514 | 263.8 | 10.5 | 8.7 | 4556.8 | 0.294T | 1.00 | - |  | - |  |
| H/2 | 80.42 |  |  |  |  |  |  |  |  |  |  |  |
| 224.8 | 34.7 | 2.668 | 268.7 | 3.1 | 2.6 | 1994.5 | 0.087T | 1.00 | - |  | - | - |
| Transfer | 79.42 |  |  |  |  |  |  |  |  |  |  |  |
| 322.6 | 34.7 | 4.208 | 267.7 | 4.9 | 4.0 | 3066.0 | 0.136T | 1.00 |  | - |  |  |

Legend: C = Compression-Controlled (c/dt > 0.600)
$\mathrm{I}=\ln$-Transition ( $0.60>=\mathrm{c} / \mathrm{dt}>0.375$ )
$T=$ Tension-Controlled (c/dt $<=0.375$ )
Note : fr used for calculating Mcr is computed using AASHTO method (Art.5.4.2.6.)
Consider Bottom Tension Steel Contribution : NO

|  |  |  |  | Sheet \# | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

DETENSIONING

Span : 3, Beam : 4; Groups 1-17; Units: ksi

| Grp | Str |  | Ys,in |  | 3.00ft | 5.00 ft | 7.00ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | - | 2.25 | Ft | 0.197 | 0.305 | 0.392 |
|  |  | M | 2.25 | Fb | -0.167 | -0.207 | -0.176 |
| 2 | 2 | E | 4.25 | Ft | 0.189 | 0.283 | 0.371 |
|  |  | M | 4.25 | Fb | -0.109 | -0.031 | -0.000 |
| 3 | 2 | E | 4.25 | Ft | 0.168 | 0.262 | 0.349 |
|  |  | M | 4.25 | Fb | 0.067 | 0.144 | 0.175 |
| 4 | 2 | E | 4.25 | Ft | 0.147 | 0.241 | 0.328 |
|  |  | M | 4.25 | Fb | 0.242 | 0.320 | 0.351 |
| 5 | 2 | E | 4.25 | Ft | 0.125 | 0.219 | 0.307 |
|  |  | M | 4.25 | Fb | 0.418 | 0.496 | 0.526 |
| 6 | 2 | E | 4.25 | Ft | 0.104 | 0.198 | 0.285 |
|  |  | M | 4.25 | Fb | 0.594 | 0.671 | 0.702 |
| 7 | 2 | E | 4.25 | Ft | 0.083 | 0.177 | 0.264 |
|  |  | M | 4.25 | Fb | 0.769 | 0.847 | 0.878 |
| 8 | 2 | , | 4.25 | Ft | 0.061 | 0.155 | 0.242 |
|  |  | M | 4.25 | Fb | 0.945 | 1.022 | 1.053 |
| 9 | 2 | , | 4.25 | Ft | 0.040 | 0.134 | 0.221 |
|  |  | M | 4.25 | Fb | 1.121 | 1.198 | 1.229 |
| 10 | 2 | E | 2.25 | Ft | -0.004 | 0.090 | 0.177 |
|  |  | M | 2.25 | Fb | 1.315 | 1.393 | 1.423 |
| 11 | 2 | E | 2.25 | Ft | -0.048 | 0.046 | 0.134 |
|  |  | M | 2.25 | Fb | 1.510 | 1.587 | 1.618 |
| 12 | 2 | E | 2.25 | Ft | -0.091 | 0.003 | 0.090 |
|  |  | M | 2.25 | Fb | 1.704 | 1.782 | 1.812 |
| 13 | 2 | E | 2.25 | Ft | -0.135 | -0.041 | 0.046 |
|  |  | M | 2.25 | Fb | 1.899 | 1.976 | 2.007 |
| 14 | 2 | E | 2.25 | Ft | -0.179 | -0.085 | 0.002 |
|  |  | M | 2.25 | Fb | 2.093 | 2.171 | 2.202 |
| 15 | 2 | E | 2.25 | Ft | -0.222 | -0.128 | -0.041 |
|  |  | M | 2.25 | Fb | 2.288 | 2.365 | 2.396 |
| 16 | 2 | E | 2.25 | Ft | -0.237 | -0.172 | -0.085 |
|  |  | M | 2.25 | Fb | 2.353 | 2.560 | 2.591 |
| 17 | 2 | E | 2.25 | Ft | -0.237 | -0.187 | -0.129 |
|  |  |  | 2.25 | Fb | 2.353 | 2.62 | 2.785 |


|  |  |  |  | Sheet \# | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csi |  |  | Date |  |

NEGATIVE ENVELOPE STRESSES

Span : 3, Beam : 4, SERVICE I
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = 13.52 \%)

|  | Bearing | Trans | H/2 | $\begin{aligned} & \hline 0.10 \mathrm{~L} \\ & 10.90 \mathrm{~L} \end{aligned}$ | $\begin{array}{\|c\|} \hline 0.20 \mathrm{~L} \\ 10.80 \mathrm{~L} \end{array}$ | $\begin{gathered} 0.30 \mathrm{~L} \\ 10.70 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \hline 0.40 \mathrm{~L} \\ & 10.60 \mathrm{~L} \end{aligned}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.396 | -0.251 | -0.516 | -0.516 | -0.516 | -0.516 | -0.516 |
| Bottom | 0.304 | 2.303 | 1.460 | 2.884 | 2.884 | 2.884 | 2.884 | 2.884 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) Precast-top |  |  |  |  |  |  |  |  |
| Precast-top Bottom | -0.000 | -0.000 -0.000 | -0.000 -0.080 | -0.000 -0.000 | -0.000 | -0.000 | -0.000 -0.000 | -0.000 -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch Precast-top |  | 0.100 | 0.062 | 0.284 | 0.518 | 0.685 |  |  |
| Prettom | -0.000 | -0.085 | -0.053 | -0.242 | -0.441 | -0.583 | -0.668 | -0.696 |
| DL-Comp (DC) |  |  |  |  |  |  |  |  |
| Precast-top Bottom | -0.092 0.181 | -0.078 | -0.086 0.169 | -0.044 0.087 | -0.003 | -0.025 | -0.042 | $\begin{array}{r} 0.049 \\ -0.096 \end{array}$ |
| DL-Comp (DW) Precast-top | -0.043 | -0.031 | -0.033 | -0.018 | -0.002 | 0.010 | 0.017 |  |
| Brecast-lop | -0.043 0.085 | -0.060 | -0.033 0.066 | -0.018 0.035 | -0.002 | -0.019 | -0.032 | -0.036 |
| LL+I( - ) Precast-top |  |  |  |  |  |  |  |  |
| Precast-top Bottom | -0.489 0.962 | -0.418 0.823 | -0.444 0.875 | -0.301 0.593 | -0.193 0.380 | -0.181 | -0.156 0.306 | -0.130 0.256 |
| Bottom | 0.962 | 0.823 | 0.875 | 0.593 | 0.380 | 0.357 | 0.306 | 0.256 |
| Pedestrian(-) <br> Precast-top | -0.000 | -0.000 |  |  |  |  |  |  |
| Bottom | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 0.000 |
| Final $1(P / S+D L+L L)$ Precast-top | -0.676 | -0.655 | -0.648 | -0.117 | 0.677 | 1.176 | 1.495 | 1.618 |

$203 / 508$


Span : 3, Beam : 4, SERVICE III
NEGATIVE ENVELOPE STRESSES, (ksi) (LOSS = 13.52 \%)

|  | Bearing | Trans | H/2 | $\begin{array}{\|l\|} \hline 0.10 \mathrm{~L} \\ 10.90 \mathrm{~L} \end{array}$ | $\begin{array}{\|l\|} \hline 0.20 \mathrm{~L} \\ / 0.80 \mathrm{~L} \end{array}$ | $\begin{aligned} & 0.30 \mathrm{~L} \\ & 10.70 \mathrm{~L} \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.40 \mathrm{~L} \\ 10.60 \mathrm{~L} \end{array}$ | Midspan |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location, ft | 0.00 | 2.58 | 1.58 | 7.87 | 16.15 | 24.43 | 32.72 | 41.00 |
| Prestress |  |  |  |  |  |  |  |  |
| Precast-top | -0.052 | -0.396 | -0.251 | -0.516 | -0.516 | -0.516 | -0.516 | -0.516 |
| Bottom | 0.304 | 2.303 | 1.460 | 2.884 | 2.884 | 2.884 | 2.884 | 2.884 |
| Self wt. |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | 0.168 | 0.104 | 0.478 | 0.872 | 1.153 | 1.322 | 1.378 |
| Bottom | -0.000 | -0.143 | -0.089 | -0.407 | -0.742 | -0.981 | -1.125 | -1.172 |
| DL-Prec (DC) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| DL-Prec (DW) |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | $-0.000$ | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Diaphragm |  |  |  |  |  |  |  |  |
| Precast-top | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Bottom | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| Deck + Haunch |  |  |  |  |  |  |  |  |
| Precast-top | 0.000 | - | 0.062 | 0.284 | 0.518 | 0.685 | 0.785 | 0.819 |
| Bottom | -0.000 | -0.085 | -0.053 | -0.242 | -0.441 | -0.583 | -0.668 | -0.696 |
| DL-Comp (DC) Precast-top | -0.097 |  |  |  |  |  |  |  |
| Bottom | -0.097 0.192 | -0.078 0.154 | -0.169 | -0.044 0.087 | -0.003 | -0.050 | -0.042 | -0.096 |
| DL-Comp (DW) <br> Precast-top |  |  |  |  |  |  |  |  |
| Bottom | -0.038 0.074 | -0.031 0.060 | -0.033 0.066 | -0.018 0.035 | -0.002 | -0.019 | -0.017 | $\begin{array}{r} 0.018 \\ -0.036 \end{array}$ |



| FBentley |  |  |  | Sheet \# | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | unw.bentlev.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csl |  |  | Date |  |

## REINFORCED DESIGN

REINFORCED DESIGN - Span : 3, Beam : 4, STRENGTH I (fy = 60.00 ksi )
(a) NEGATIVE MOMENTS ALONG SPAN (Non-composite Moment effects are INCLUDED in Mu)

Negative Moment Continuity Steel:

| \#bars | Size | $\left\lvert\, \begin{gathered} \text { Dist. from Top } \\ \text { (in) } \end{gathered}\right.$ | $\left\lvert\, \begin{aligned} & \text { Area } \\ & \text { (in2) } \end{aligned}\right.$ | Start <br> (ft) | End <br> (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | US\#4[M13] | 2.88 | 2.40 | 0.0000 | 84.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 0.0000 | 12.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 0.0000 | 28.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 56.0000 | 84.0000 |
| 6 | US\#10[M32] | 3.26 | 7.62 | 72.0000 | 84.0000 |


| fc | b | bw |
| :---: | :---: | :---: |
| (ksi) | (in) | (in) |
| 8.50 | 72.00 | 12.00 |


| Sec | $\begin{array}{c\|} \hline \text { Dist } \\ (\mathrm{ft}) \end{array}$ | $\left\lvert\, \begin{array}{\|c\|} \hline \text { Mu-reqd } \\ (k . f t) \end{array}\right.$ | $\begin{array}{\|c\|} \hline \mathrm{hf} \\ \text { (in) } \end{array}$ | $\begin{gathered} \mathrm{d} \\ \text { (in) } \end{gathered}$ | $\begin{gathered} \mathrm{d}^{\prime} \\ \text { (in) } \end{gathered}$ | Phi | $\begin{gathered} \text { Phi+Mn-r } \\ (k . f t) \end{gathered}$ | c/dt | $\begin{aligned} & \text { Asb } \\ & \text { (in2) } \end{aligned}$ | $\begin{aligned} & \hline \text { Ast-r } \\ & \text { (in2) } \end{aligned}$ | $\begin{aligned} & \hline \text { Ast-p } \\ & \text { (in2) } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { Phi*Mn-p } \\ \text { (k.ft) } \end{gathered}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | -2273.7 | 6.00 | 34.79 | 2.00 | 0.9 | -2273.7 | 0.0759 | 0.000 | 14.890 | 17.640 | -2681.0 |
| 2 | 8.87 | -801.1 | 6.00 | 34.79 | 2.00 | 0.9 | -801.1 | 0.0263 | 0.000 | 5.161 | 17.640 | -2681.0 |
| 3 | 17.15 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 4.963 | 10.020 | -1542.7 |
| 4 | 25.43 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 10.020 | -1542.7 |
| 5 | 33.72 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 2.400 | -374.3 |
| 6 | 42.00 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.00 | 2.400 | 4.3 |
|  | 50.28 | 0.0 | 6.00 | 35.12 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.00 | 0.000 | 2.400 | -374.3 |
| 8 | 58.57 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 0.000 | 10.020 | -1542.7 |
|  | 66.85 | 0.0 | 6.00 | 34.83 | 2.00 | 0.9 | -0.0 | 0.0000 | 0.000 | 4.957 | 10.020 | -1542.7 |
| 10 | 75.13 | -799.0 | 6.00 | 34.79 | 2.00 | 0.9 | -799.0 | 0.0263 | 0.000 | 5.147 | 17.640 | -2681.0 |
| 11 | 84.0 | -2270.9 | 6.00 | 34. | 2.0 | 0.9 | -2270.9 | 0.0758 | 0.0 | 14.872 | 17.6 | -2681.0 |

(b) POSITIVE MOMENTS AT PIERS

NONE

| 家Bentley |  |  |  | Sheet \# | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentle | Systems, Inc. 1984-2012 | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

DESIGN SUMMARY

Span: 3, Beam: 4, Interior beam

| Beam type: | Adjacent Box Beam, | Bui72X30 |
| :---: | :---: | :---: |
| Precast Length, | ft | 82.83 |
| Release Length, | ft | 82.83 |
| Strand Pattern: Strand: | Straight 6/10-270K-LL |  |
| Strand Es, | ksi: | 28500.0 |
| No. of strands: | 34 |  |
|  | Draped: <br> Straight: | $\left\lvert\, \begin{aligned} & 0 \\ & 34 \end{aligned}\right.$ |
| Concrete Strength: |  |  |
|  | fci: | 6.5 ksi |
|  | fc: | 8.5 ksi |
|  |  |  |
| Initial losses: | 5.35\% |  |
| Final losses: | 13.52\% |  |


| Specification | Allowable | Computed | Location | Status |
| :--- | ---: | ---: | ---: | ---: |
| Release Stresses (ksi) (Art. 5.9.4.1) |  |  |  |  |
| Precast Bot (compression) | 3.900 | 2.725 | 0.1 L 0.9 L | OK |
| Precast Top w/ no reinf. (tension) | -0.200 | -0.237 | Trans |  |
| Precast Top w/ reinf. (tension) | -0.612 |  |  |  |
|  |  |  |  |  |
| Strength I (Art. 3.4.1, 5.7.3.1.1) | Provided | Required | Location | Status |
| Ult. Moment (k.ft) | 5010.01 | 3468.98 | Midspan | OK |
|  |  |  |  |  |
| Debonding Limits. (Art. 5.11.4.3) | Allowable | Computed |  | Status |
| Max. Debond per Row | $40.00 \%$ | $33.33 \%$ |  | OK |
| Max. Debond Total | $25.00 \%$ | $23.53 \%$ |  | OK |

Positive Moment Envelope Stresses (ksi) (Art. 3.4.1 and 5.9.4.2)


Negative Moment Envelope Stresses (ksi) (Art. 3.4.1 and 5.9.4.2)

| Specification <br> Service I Limit State - Compressive <br> Precast Top <br> Precast Bot <br> Service III Limit State - Tensile <br> Precast Top <br> Precast Bot <br> Fatigue I Limit State - Compressive <br> Precast Top <br> Precast Bot | Allow Stresses 5.100 5.100 Stresses -0.554 -0.554 Stresses | Final 1 <br> Comp <br> Only <br> 1.618 <br> 3.112 <br> Only <br> $-0.578^{*}$ <br> 1.088 <br> only | Loc. <br> Midspan <br> Transfer <br> Bearing <br> Midspan | Allow | $\begin{array}{\|c\|} \hline \text { Final 2 } \\ \text { Comp } \\ \\ 1.748 \\ 2.357 \\ \hline \end{array}$ | Loc. <br> Midspan 0.1L/0.9L |  | Final 3 Comp | Loc. <br> Midspan <br> 0.1L/0.9L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{0.578}{0.554}=1.043 \Rightarrow 4.3 \%<5 \% \text { say OR }$ |  |  |  |  |  |  |  |  |  |

CAMBER / DEFLECTION: (PCI Design Handbook - 4th Ed.- Table 4.6.2)
$0.5 \times \mathrm{L}=41.00 \mathrm{ft}$

|  | Release | Mult | Erection | Mult | Final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Prestress | 3.117 | 1.80 | 5.610 | 2.20 | 6.857 |
| Self Wt. | -1.827 | 1.85 | -3.380 | 2.40 | -4.384 |
| Deck + Haunch |  |  | -0.911 | 2.30 | -2.096 |
| DL-Prec. (DC) |  |  | 0.000 | 3.00 | 0.000 |
| Diaphragm |  |  | 0.000 | 3.00 | 0.000 |
| DL-Prec. (DW) |  |  | 0.000 | 3.00 | 0.000 |
| DL-Comp. (DC) |  |  | -0.055 | 3.00 | -0.166 |
| DL-Comp. (DW) |  |  | -0.018 | 3.00 | -0.055 |
| Live Load Pedestrian Load | Not Included |  |  |  | -0.000 |
| Total | 1.290 |  | 1.246 |  | 0.155 |


| 家Bentley |  |  |  | Sheet \# | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Job \# |  |
| Program: | LEAP® CONSPAN® V8i (SELECTseries 5) | Colorado DOT |  | Designed | Hoang Bui |
| Version: | 12.01.00.57 | Copyright © Bentley Systems, Inc. 1984-2012 |  | Date | Dec/11/2012 |
|  |  | wuw.bentley.com | Phone: 1-800-778-4277 | Checked |  |
| File Name: | Conspan Final_BX30a.csI |  |  | Date |  |

Positive values indicate upward deflection.

Bridge ID : 57
Bridge : CBGCP 5span
Superstructure Def : 5 span 20-Box30 System w/Sidewalk Member: G3
Analysis Preference Setting : None
AASHTO LRFD Specification, Edition 5, Interim 2010

## Specification Check Summary

| Article | Status |
| :---: | :---: |
| Initial Stress at Transfer (5.9.4.1.1, 5.9.4.1.2) | Pass |
| Final Stress due to Permanent and Transient <br> Loads (5.9.4.2.1, 5.9.4.2.2) | Pass |
| Flexure (5.7.3.2, 5.7.3.3.2) | Pass |
| Shear (5.8.3.3, 5.8.2.5, 5.8.2.7, 5.8.3.5) | Pass |
| Deflection (5.7.3.6.2) | Pass |

## Initial Compression Stress At Transfer of Prestress

| Location <br> (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | -3.90 | 0.04 | -0.23 | 16.78 | Pass |
| 2.583 | -3.90 | 0.16 | -1.62 | 2.41 | Pass |
| 2.850 | -3.90 | 0.15 | -1.63 | 2.40 | Pass |
| 4.583 | -3.90 | 0.14 | -1.81 | 2.15 | Pass |
| 6.275 | -3.90 | 0.10 | -1.96 | 1.99 | Pass |
| 6.583 | -3.90 | 0.10 | -1.99 | 1.96 | Pass |
| 10.460 | -3.90 | -0.04 | -1.88 | 2.08 | Pass |
| 12.550 | -3.90 | -0.11 | -1.81 | 2.15 | Pass |
| 18.825 | -3.90 | -0.27 | -1.68 | 2.32 | Pass |
| 20.920 | -3.90 | -0.30 | -1.65 | 2.36 | Pass |
| 25.100 | -3.90 | -0.36 | -1.60 | 2.43 | Pass |
| 30.875 | -3.90 | -0.39 | -1.58 | 2.47 | Pass |
| 31.375 | -3.90 | -0.39 | -1.58 | 2.47 | Pass |
| 37.650 | -3.90 | -0.35 | -1.61 | 2.42 | Pass |
| 41.830 | -3.90 | -0.28 | -1.67 | 2.34 | Pass |
| 43.925 | -3.90 | -0.25 | -1.70 | 2.30 | Pass |
| 50.200 | -3.90 | -0.08 | -1.84 | 2.12 | Pass |
| 52.290 | -3.90 | -0.01 | -1.90 | 2.05 | Pass |
| 55.167 | -3.90 | 0.10 | -1.99 | 1.96 | Pass |
|  |  |  |  |  |  |


| Location <br> (ft) | Allowable <br> Stress <br> (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 56.475 | -3.90 | 0.12 | -1.87 | 2.08 | Pass |
| 57.167 | -3.90 | 0.14 | -1.81 | 2.15 | Pass |
| 58.891 | -3.90 | 0.15 | -1.63 | 2.40 | Pass |
| 59.167 | -3.90 | 0.16 | -1.62 | 2.41 | Pass |
| 61.750 | -3.90 | 0.04 | -0.23 | 16.78 | Pass |
| 63.750 | -3.90 | 0.06 | -0.33 | 11.75 | Pass |
| 66.333 | -3.90 | 0.27 | -2.37 | 1.64 | Pass |
| 66.602 | -3.90 | 0.25 | -2.39 | 1.63 | Pass |
| 68.333 | -3.90 | 0.23 | -2.65 | 1.47 | Pass |
| 70.333 | -3.90 | 0.16 | -2.80 | 1.39 | Pass |
| 71.150 | -3.90 | 0.11 | -2.76 | 1.41 | Pass |
| 76.750 | -3.90 | -0.16 | -2.53 | 1.54 | Pass |
| 79.550 | -3.90 | -0.29 | -2.42 | 1.61 | Pass |
| 87.950 | -3.90 | -0.58 | -2.17 | 1.80 | Pass |
| 90.750 | -3.90 | -0.64 | -2.12 | 1.84 | Pass |
| 96.350 | -3.90 | -0.76 | -2.02 | 1.93 | Pass |
| 104.750 | -3.90 | -0.82 | -1.98 | 1.97 | Pass |
| 113.150 | -3.90 | -0.76 | -2.02 | 1.93 | Pass |
| 118.750 | -3.90 | -0.64 | -2.12 | 1.84 | Pass |
| 121.550 | -3.90 | -0.58 | -2.17 | 1.80 | Pass |
| 129.950 | -3.90 | -0.29 | -2.42 | 1.61 | Pass |
| 132.750 | -3.90 | -0.16 | -2.53 | 1.54 | Pass |
| 138.350 | -3.90 | 0.11 | -2.76 | 1.41 | Pass |
| 139.167 | -3.90 | 0.16 | -2.80 | 1.39 | Pass |
| 141.167 | -3.90 | 0.23 | -2.65 | 1.47 | Pass |
| 142.898 | -3.90 | 0.25 | -2.39 | 1.63 | Pass |
| 143.167 | -3.90 | 0.27 | -2.37 | 1.64 | Pass |
| 145.750 | -3.90 | 0.06 | -0.33 | 11.75 | Pass |
| 147.750 | -3.90 | 0.06 | -0.33 | 11.75 | Pass |
| 150.333 | -3.90 | 0.27 | -2.37 | 1.64 | Pass |
| 150.602 | -3.90 | 0.25 | -2.39 | 1.63 | Pass |
| 152.333 | -3.90 | 0.23 | -2.65 | 1.47 | Pass |
| 154.333 | -3.90 | 0.16 | -2.80 | 1.39 | Pass |
| 155.150 | -3.90 | 0.11 | -2.76 | 1.41 | Pass |
| 160.750 | -3.90 | -0.16 | -2.53 | 1.54 | Pass |
| 163.550 | -3.90 | -0.29 | -2.42 | 1.61 | Pass |
| 171.950 | -3.90 | -0.58 | -2.17 | 1.80 | Pass |
| - -1 |  |  |  |  |  |


| Location (ft) | Allowable <br> $\begin{array}{c}\text { Stress } \\ \text { (ksi) }\end{array}$ | Actual Stress Top of <br> $\begin{array}{c}\text { Beam } \\ \text { (ksi) }\end{array}$ | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3.90 | -0.64 | -2.12 | 1.84 | Pass |
| 180.350 | -3.90 | -0.76 | -2.02 | 1.93 | Pass |
| 188.750 | -3.90 | -0.82 | -1.98 | 1.97 | Pass |
| 197.150 | -3.90 | -0.76 | -2.02 | 1.93 | Pass |
| 202.750 | -3.90 | -0.64 | -2.12 | 1.84 | Pass |
| 205.550 | -3.90 | -0.58 | -2.17 | 1.80 | Pass |
| 213.950 | -3.90 | -0.29 | -2.42 | 1.61 | Pass |
| 216.750 | -3.90 | -0.16 | -2.53 | 1.54 | Pass |
| 222.350 | -3.90 | 0.11 | -2.76 | 1.41 | Pass |
| 223.167 | -3.90 | 0.16 | -2.80 | 1.39 | Pass |
| 225.167 | -3.90 | 0.23 | -2.65 | 1.47 | Pass |
| 226.898 | -3.90 | 0.25 | -2.39 | 1.63 | Pass |
| 227.167 | -3.90 | 0.27 | -2.37 | 1.64 | Pass |
| 229.750 | -3.90 | 0.06 | -0.33 | 11.75 | Pass |
| 231.750 | -3.90 | 0.06 | -0.33 | 11.75 | Pass |
| 234.333 | -3.90 | 0.27 | -2.37 | 1.64 | Pass |
| 234.602 | -3.90 | 0.25 | -2.39 | 1.63 | Pass |
| 236.333 | -3.90 | 0.23 | -2.65 | 1.47 | Pass |
| 238.333 | -3.90 | 0.16 | -2.80 | 1.39 | Pass |
| 239.150 | -3.90 | 0.11 | -2.76 | 1.41 | Pass |
| 244.750 | -3.90 | -0.16 | -2.53 | 1.54 | Pass |
| 247.550 | -3.90 | -0.29 | -2.42 | 1.61 | Pass |
| 255.950 | -3.90 | -0.58 | -2.17 | 1.80 | Pass |
| 258.750 | -3.90 | -0.64 | -2.12 | 1.84 | Pass |
| 264.350 | -3.90 | -0.76 | -2.02 | 1.93 | Pass |
| 272.750 | -3.90 | -0.82 | -1.98 | 1.97 | Pass |
| 281.150 | -3.90 | -0.76 | -2.02 | 1.93 | Pass |
| 286.750 | -3.90 | -0.64 | -2.12 | 1.84 | Pass |
| 289.550 | -3.90 | -0.58 | -2.17 | 1.80 | Pass |
| 297.950 | -3.90 | -0.29 | -2.42 | 1.61 | Pass |
| 300.750 | -3.90 | -0.16 | -2.53 | 1.54 | Pass |
| 306.350 | -3.90 | 0.11 | -2.76 | 1.41 | Pass |
| 307.167 | -3.90 | 0.16 | -2.80 | 1.39 | Pass |
| 309.167 | -3.90 | 0.23 | -2.65 | 1.47 | Pass |
| 310.898 | -3.90 | 0.25 | -2.39 | 1.63 | Pass |
| 311.167 | -3.90 | 0.27 | -2.37 | 1.64 | Pass |
| 313.750 | -3.90 | 0.06 | -0.33 | 11.75 | Pass |
| $\ldots$ |  |  |  |  |  |


| Location (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3.90 | 0.04 | -0.23 | 16.78 | Pass |
| 318.333 | -3.90 | 0.16 | -1.62 | 2.41 | Pass |
| 318.609 | -3.90 | 0.15 | -1.63 | 2.40 | Pass |
| 320.333 | -3.90 | 0.14 | -1.81 | 2.15 | Pass |
| 321.025 | -3.90 | 0.12 | -1.87 | 2.08 | Pass |
| 322.333 | -3.90 | 0.10 | -1.99 | 1.96 | Pass |
| 325.210 | -3.90 | -0.01 | -1.90 | 2.05 | Pass |
| 327.300 | -3.90 | -0.08 | -1.84 | 2.12 | Pass |
| 333.575 | -3.90 | -0.25 | -1.70 | 2.30 | Pass |
| 335.670 | -3.90 | -0.28 | -1.67 | 2.34 | Pass |
| 339.850 | -3.90 | -0.35 | -1.61 | 2.42 | Pass |
| 346.125 | -3.90 | -0.39 | -1.58 | 2.47 | Pass |
| 346.625 | -3.90 | -0.39 | -1.58 | 2.47 | Pass |
| 352.400 | -3.90 | -0.36 | -1.60 | 2.43 | Pass |
| 356.580 | -3.90 | -0.30 | -1.65 | 2.36 | Pass |
| 358.675 | -3.90 | -0.27 | -1.68 | 2.32 | Pass |
| 364.950 | -3.90 | -0.11 | -1.81 | 2.15 | Pass |
| 367.040 | -3.90 | -0.04 | -1.88 | 2.08 | Pass |
| 370.917 | -3.90 | 0.10 | -1.99 | 1.96 | Pass |
| 371.225 | -3.90 | 0.10 | -1.96 | 1.99 | Pass |
| 372.917 | -3.90 | 0.14 | -1.81 | 2.15 | Pass |
| 374.650 | -3.90 | 0.15 | -1.63 | 2.40 | Pass |
| 374.917 | -3.90 | 0.16 | -1.62 | 2.41 | Pass |
| 377.500 | -3.90 | 0.04 | -0.23 | 16.78 | Pass |

NR = Spec check not required at this location

## Initial Tension Stress At Transfer of Prestress

| Location <br> $\mathbf{( f t )}$ | Allowable <br> Stress <br> (ksi) | Actual Stress Top of <br> Beam <br> (ksi) | Actual Stress Bot of <br> Beam <br> (ksi) | Ratio | Code |
| :---: | ---: | ---: | ---: | ---: | :---: |
| 0.000 | 0.61 | 0.04 | -0.23 | 15.48 | Pass |
| 2.583 | 0.61 | 0.16 | -1.62 | 3.81 | Pass |
| 2.850 | 0.61 | 0.15 | -1.63 | 4.05 | Pass |
| 4.583 | 0.61 | 0.14 | -1.81 | 4.50 | Pass |
| 6.275 | 0.61 | 0.10 | -1.96 | 5.98 | Pass |
| 6.583 | 0.61 | 0.10 | -1.99 | 6.32 | Pass |
| 10.460 | 0.61 | -0.04 | -1.88 | 99.00 | Pass |
|  |  |  |  |  |  |


| Location (ft) | $\begin{gathered} \text { Allowable } \\ \text { Stress } \\ \text { (ksi) } \\ \hline \end{gathered}$ | Actual Stress Top of <br> Beam <br> (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12.550 | 0.61 | -0.11 | -1.81 | 99.00 | Pass |
| 18.825 | 0.61 | -0.27 | -1.68 | 99.00 | Pass |
| 20.920 | 0.61 | -0.30 | -1.65 | 99.00 | Pass |
| 25.100 | 0.61 | -0.36 | -1.60 | 99.00 | Pass |
| 30.875 | 0.61 | -0.39 | -1.58 | 99.00 | Pass |
| 31.375 | 0.61 | -0.39 | -1.58 | 99.00 | Pass |
| 37.650 | 0.61 | -0.35 | -1.61 | 99.00 | Pass |
| 41.830 | 0.61 | -0.28 | -1.67 | 99.00 | Pass |
| 43.925 | 0.61 | -0.25 | -1.70 | 99.00 | Pass |
| 50.200 | 0.61 | -0.08 | -1.84 | 99.00 | Pass |
| 52.290 | 0.61 | -0.01 | -1.90 | 99.00 | Pass |
| 55.167 | 0.61 | 0.10 | -1.99 | 6.32 | Pass |
| 56.475 | 0.61 | 0.12 | -1.87 | 5.03 | Pass |
| 57.167 | 0.61 | 0.14 | -1.81 | 4.50 | Pass |
| 58.891 | 0.61 | 0.15 | -1.63 | 4.06 | Pass |
| 59.167 | 0.61 | 0.16 | -1.62 | 3.81 | Pass |
| 61.750 | 0.61 | 0.04 | -0.23 | 15.48 | Pass |
| 63.750 | 0.61 | 0.06 | -0.33 | 10.72 | Pass |
| 66.333 | 0.61 | 0.27 | -2.37 | 2.31 | Pass |
| 66.602 | 0.61 | 0.25 | -2.39 | 2.41 | Pass |
| 68.333 | 0.61 | 0.23 | -2.65 | 2.69 | Pass |
| 70.333 | 0.61 | 0.16 | -2.80 | 3.93 | Pass |
| 71.150 | 0.61 | 0.11 | -2.76 | 5.55 | Pass |
| 76.750 | 0.61 | -0.16 | -2.53 | 99.00 | Pass |
| 79.550 | 0.61 | -0.29 | -2.42 | 99.00 | Pass |
| 87.950 | 0.61 | -0.58 | -2.17 | 99.00 | Pass |
| 90.750 | 0.61 | -0.64 | -2.12 | 99.00 | Pass |
| 96.350 | 0.61 | -0.76 | -2.02 | 99.00 | Pass |
| 104.750 | 0.61 | -0.82 | -1.98 | 99.00 | Pass |
| 113.150 | 0.61 | -0.76 | -2.02 | 99.00 | Pass |
| 118.750 | 0.61 | -0.64 | -2.12 | 99.00 | Pass |
| 121.550 | 0.61 | -0.58 | -2.17 | 99.00 | Pass |
| 129.950 | 0.61 | -0.29 | -2.42 | 99.00 | Pass |
| 132.750 | 0.61 | -0.16 | -2.53 | 99.00 | Pass |
| 138.350 | 0.61 | 0.11 | -2.76 | 5.55 | Pass |
| 139.167 | 0.61 | 0.16 | -2.80 | 3.93 | Pass |
| 141.167 | 0.61 | 0.23 | -2.65 | 2.69 | Pass |
| ...... |  |  |  |  |  |


| Location <br> (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.61 | 0.25 | -2.39 | 2.41 | Pass |
| 143.167 | 0.61 | 0.27 | -2.37 | 2.31 | Pass |
| 145.750 | 0.61 | 0.06 | -0.33 | 10.72 | Pass |
| 147.750 | 0.61 | 0.06 | -0.33 | 10.72 | Pass |
| 150.333 | 0.61 | 0.27 | -2.37 | 2.31 | Pass |
| 150.602 | 0.61 | 0.25 | -2.39 | 2.41 | Pass |
| 152.333 | 0.61 | 0.23 | -2.65 | 2.69 | Pass |
| 154.333 | 0.61 | 0.16 | -2.80 | 3.93 | Pass |
| 155.150 | 0.61 | 0.11 | -2.76 | 5.55 | Pass |
| 160.750 | 0.61 | -0.16 | -2.53 | 99.00 | Pass |
| 163.550 | 0.61 | -0.29 | -2.42 | 99.00 | Pass |
| 171.950 | 0.61 | -0.58 | -2.17 | 99.00 | Pass |
| 174.750 | 0.61 | -0.64 | -2.12 | 99.00 | Pass |
| 180.350 | 0.61 | -0.76 | -2.02 | 99.00 | Pass |
| 188.750 | 0.61 | -0.82 | -1.98 | 99.00 | Pass |
| 197.150 | 0.61 | -0.76 | -2.02 | 99.00 | Pass |
| 202.750 | 0.61 | -0.64 | -2.12 | 99.00 | Pass |
| 205.550 | 0.61 | -0.58 | -2.17 | 99.00 | Pass |
| 213.950 | 0.61 | -0.29 | -2.42 | 99.00 | Pass |
| 216.750 | 0.61 | -0.16 | -2.53 | 99.00 | Pass |
| 222.350 | 0.61 | 0.11 | -2.76 | 5.55 | Pass |
| 223.167 | 0.61 | 0.16 | -2.80 | 3.93 | Pass |
| 225.167 | 0.61 | 0.23 | -2.65 | 2.69 | Pass |
| 226.898 | 0.61 | 0.25 | -2.39 | 2.41 | Pass |
| 227.167 | 0.61 | 0.27 | -2.37 | 2.31 | Pass |
| 229.750 | 0.61 | 0.06 | -0.33 | 10.72 | Pass |
| 231.750 | 0.61 | 0.06 | -0.33 | 10.72 | Pass |
| 234.333 | 0.61 | 0.27 | -2.37 | 2.31 | Pass |
| 234.602 | 0.61 | 0.25 | -2.39 | 2.41 | Pass |
| 236.333 | 0.61 | 0.23 | -2.65 | 2.69 | Pass |
| 238.333 | 0.61 | 0.16 | -2.80 | 3.93 | Pass |
| 239.150 | 0.61 | 0.11 | -2.76 | 5.55 | Pass |
| 244.750 | 0.61 | -0.16 | -2.53 | 99.00 | Pass |
| 247.550 | 0.61 | -0.29 | -2.42 | 99.00 | Pass |
| 255.950 | 0.61 | -0.58 | -2.17 | 99.00 | Pass |
| 258.750 | 0.61 | -0.64 | -2.12 | 99.00 | Pass |
| 264.350 | 0.61 | -0.76 | -2.02 | 99.00 | Pass |
| -----. |  |  |  |  |  |


| Location (ft) | Allowable <br> $\begin{array}{c}\text { Stress } \\ \text { (ksi) }\end{array}$ | Actual Stress Top of <br> $\begin{array}{c}\text { Beam } \\ \text { (ksi) }\end{array}$ | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.61 | -0.82 | -1.98 | 99.00 | Pass |
| 281.150 | 0.61 | -0.76 | -2.02 | 99.00 | Pass |
| 286.750 | 0.61 | -0.64 | -2.12 | 99.00 | Pass |
| 289.550 | 0.61 | -0.58 | -2.17 | 99.00 | Pass |
| 297.950 | 0.61 | -0.29 | -2.42 | 99.00 | Pass |
| 300.750 | 0.61 | -0.16 | -2.53 | 99.00 | Pass |
| 306.350 | 0.61 | 0.11 | -2.76 | 5.55 | Pass |
| 307.167 | 0.61 | 0.16 | -2.80 | 3.93 | Pass |
| 309.167 | 0.61 | 0.23 | -2.65 | 2.69 | Pass |
| 310.898 | 0.61 | 0.25 | -2.39 | 2.41 | Pass |
| 311.167 | 0.61 | 0.27 | -2.37 | 2.31 | Pass |
| 313.750 | 0.61 | 0.06 | -0.33 | 10.72 | Pass |
| 315.750 | 0.61 | 0.04 | -0.23 | 15.48 | Pass |
| 318.333 | 0.61 | 0.16 | -1.62 | 3.81 | Pass |
| 318.609 | 0.61 | 0.15 | -1.63 | 4.06 | Pass |
| 320.333 | 0.61 | 0.14 | -1.81 | 4.50 | Pass |
| 321.025 | 0.61 | 0.12 | -1.87 | 5.03 | Pass |
| 322.333 | 0.61 | 0.10 | -1.99 | 6.32 | Pass |
| 325.210 | 0.61 | -0.01 | -1.90 | 99.00 | Pass |
| 327.300 | 0.61 | -0.08 | -1.84 | 99.00 | Pass |
| 333.575 | 0.61 | -0.25 | -1.70 | 99.00 | Pass |
| 335.670 | 0.61 | -0.28 | -1.67 | 99.00 | Pass |
| 339.850 | 0.61 | -0.35 | -1.61 | 99.00 | Pass |
| 346.125 | 0.61 | -0.39 | -1.58 | 99.00 | Pass |
| 346.625 | 0.61 | -0.39 | -1.58 | 99.00 | Pass |
| 352.400 | 0.61 | -0.36 | -1.60 | 99.00 | Pass |
| 356.580 | 0.61 | -0.30 | -1.65 | 99.00 | Pass |
| 358.675 | 0.61 | -0.27 | -1.68 | 99.00 | Pass |
| 364.950 | 0.61 | -0.11 | -1.81 | 99.00 | Pass |
| 367.040 | 0.61 | -0.04 | -1.88 | 99.00 | Pass |
| 370.917 | 0.61 | 0.10 | -1.99 | 6.32 | Pass |
| 371.225 | 0.61 | 0.10 | -1.96 | 5.98 | Pass |
| 372.917 | 0.61 | 0.14 | -1.81 | 4.50 | Pass |
| 374.650 | 0.61 | 0.15 | -1.63 | 4.05 | Pass |
| 374.917 | 0.61 | 0.16 | -1.62 | 3.81 | Pass |
| 377.500 | 0.61 | 0.04 | -0.23 | 15.48 | Pass |

$\mathrm{NR}=$ Spec check not required at this location

## Final Compression Stress due to Permanent and Transient Loads

| Location <br> (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | -5.10 | 0.04 | -0.21 | 24.35 | Pass |
| 2.583 | -5.10 | -0.03 | -1.41 | 3.63 | Pass |
| 4.583 | -5.10 | -0.17 | -1.54 | 3.31 | Pass |
| 6.275 | -5.10 | -0.29 | -1.65 | 3.10 | Pass |
| 6.583 | -5.10 | -0.31 | -1.67 | 3.06 | Pass |
| 10.460 | -5.10 | -0.64 | -1.52 | 3.36 | Pass |
| 12.550 | -5.10 | -0.80 | -1.44 | 3.54 | Pass |
| 18.825 | -5.10 | -1.13 | -1.29 | 3.95 | Pass |
| 20.920 | -5.10 | -1.27 | -1.28 | 3.99 | Pass |
| 25.100 | -5.10 | -1.39 | -1.24 | 3.68 | Pass |
| 30.875 | -5.10 | -1.43 | -1.28 | 3.56 | Pass |
| 31.375 | -5.10 | -1.43 | -1.29 | 3.57 | Pass |
| 37.650 | -5.10 | -1.30 | -1.43 | 3.58 | Pass |
| 41.830 | -5.10 | -1.11 | -1.58 | 3.23 | Pass |
| 43.925 | -5.10 | -0.96 | -1.64 | 3.11 | Pass |
| 50.200 | -5.10 | -0.56 | -1.97 | 2.59 | Pass |
| 52.290 | -5.10 | -0.40 | -2.11 | 2.42 | Pass |
| 55.167 | -5.10 | -0.18 | -2.28 | 2.23 | Pass |
| 56.475 | -5.10 | -0.11 | -2.28 | 2.24 | Pass |
| 57.167 | -5.10 | -0.07 | -2.27 | 2.24 | Pass |
| 59.167 | -5.10 | 0.01 | -2.26 | 2.26 | Pass |
| 61.750 | -5.10 | -0.01 | -1.22 | 4.17 | Pass |
| 63.750 | -5.10 | 0.06 | -1.38 | 3.69 | Pass |
| 66.333 | -5.10 | 0.13 | -2.89 | 1.77 | Pass |
| 68.333 | -5.10 | 0.02 | -2.95 | 1.73 | Pass |
| 70.333 | -5.10 | -0.13 | -2.91 | 1.75 | Pass |
| 71.150 | -5.10 | -0.22 | -2.81 | 1.82 | Pass |
| 76.750 | -5.10 | -0.73 | -2.33 | 2.19 | Pass |
| 79.550 | -5.10 | -1.01 | -2.07 | 2.46 | Pass |
| 87.950 | -5.10 | -1.65 | -1.58 | 3.09 | Pass |
| 90.750 | -5.10 | -1.84 | -1.48 | 2.77 | Pass |
| 96.350 | -5.10 | -2.10 | -1.27 | 2.43 | Pass |
| 104.750 | -5.10 | -2.21 | -1.17 | 2.31 | Pass |
| 113.150 | -5.10 | -2.12 | -1.34 | 2.41 | Pass |
| 118.750 | -5.10 | -1.86 | -1.57 | 2.74 | Pass |
|  |  |  |  |  |  |


| Location (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 121.550 | -5.10 | -1.67 | -1.67 | 3.05 | Pass |
| 129.950 | -5.10 | -1.04 | -2.18 | 2.34 | Pass |
| 132.750 | -5.10 | -0.77 | -2.41 | 2.11 | Pass |
| 138.350 | -5.10 | -0.25 | -2.86 | 1.78 | Pass |
| 139.167 | -5.10 | -0.17 | -2.97 | 1.72 | Pass |
| 141.167 | -5.10 | -0.01 | -3.01 | 1.70 | Pass |
| 143.167 | -5.10 | 0.11 | -2.94 | 1.74 | Pass |
| 145.750 | -5.10 | 0.04 | -1.38 | 3.70 | Pass |
| 147.750 | -5.10 | 0.04 | -1.37 | 3.72 | Pass |
| 150.333 | -5.10 | 0.12 | -2.93 | 1.74 | Pass |
| 152.333 | -5.10 | 0.00 | -3.00 | 1.70 | Pass |
| 154.333 | -5.10 | -0.17 | -2.96 | 1.72 | Pass |
| 155.150 | -5.10 | -0.25 | -2.85 | 1.79 | Pass |
| 160.750 | -5.10 | -0.77 | -2.40 | 2.13 | Pass |
| 163.550 | -5.10 | -1.05 | -2.16 | 2.36 | Pass |
| 171.950 | -5.10 | -1.68 | -1.65 | 3.03 | Pass |
| 174.750 | -5.10 | -1.88 | -1.55 | 2.72 | Pass |
| 180.350 | -5.10 | -2.13 | -1.32 | 2.39 | Pass |
| 188.750 | -5.10 | -2.23 | -1.16 | 2.29 | Pass |
| 197.150 | -5.10 | -2.13 | -1.32 | 2.39 | Pass |
| 202.750 | -5.10 | -1.88 | -1.55 | 2.72 | Pass |
| 205.550 | -5.10 | -1.68 | -1.65 | 3.03 | Pass |
| 213.950 | -5.10 | -1.05 | -2.16 | 2.36 | Pass |
| 216.750 | -5.10 | -0.77 | -2.40 | 2.13 | Pass |
| 222.350 | -5.10 | -0.25 | -2.85 | 1.79 | Pass |
| 223.167 | -5.10 | -0.17 | -2.96 | 1.72 | Pass |
| 225.167 | -5.10 | 0.00 | -3.00 | 1.70 | Pass |
| 227.167 | -5.10 | 0.12 | -2.93 | 1.74 | Pass |
| 229.750 | -5.10 | 0.04 | -1.37 | 3.72 | Pass |
| 231.750 | -5.10 | 0.04 | -1.38 | 3.70 | Pass |
| 234.333 | -5.10 | 0.11 | -2.94 | 1.74 | Pass |
| 236.333 | -5.10 | -0.01 | -3.01 | 1.70 | Pass |
| 238.333 | -5.10 | -0.17 | -2.97 | 1.72 | Pass |
| 239.150 | -5.10 | -0.25 | -2.86 | 1.78 | Pass |
| 244.750 | -5.10 | -0.77 | -2.41 | 2.11 | Pass |
| 247.550 | -5.10 | -1.04 | -2.18 | 2.34 | Pass |
| 255.950 | -5.10 | -1.67 | -1.67 | 3.05 | Pass |
|  |  |  |  |  |  |


| Location (ft) | Allowable Stress (ksi) | Actual Stress Top of <br> $\begin{array}{c}\text { Beam } \\ \text { (ksi) }\end{array}$ | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -5.10 | -1.86 | -1.57 | 2.74 | Pass |
| 264.350 | -5.10 | -2.12 | -1.34 | 2.41 | Pass |
| 272.750 | -5.10 | -2.21 | -1.17 | 2.31 | Pass |
| 281.150 | -5.10 | -2.10 | -1.27 | 2.43 | Pass |
| 286.750 | -5.10 | -1.84 | -1.48 | 2.77 | Pass |
| 289.550 | -5.10 | -1.65 | -1.58 | 3.09 | Pass |
| 297.950 | -5.10 | -1.01 | -2.07 | 2.46 | Pass |
| 300.750 | -5.10 | -0.73 | -2.33 | 2.19 | Pass |
| 306.350 | -5.10 | -0.22 | -2.81 | 1.82 | Pass |
| 307.167 | -5.10 | -0.13 | -2.91 | 1.75 | Pass |
| 309.167 | -5.10 | 0.02 | -2.95 | 1.73 | Pass |
| 311.167 | -5.10 | 0.13 | -2.89 | 1.77 | Pass |
| 313.750 | -5.10 | 0.06 | -1.38 | 3.69 | Pass |
| 315.750 | -5.10 | -0.01 | -1.22 | 4.17 | Pass |
| 318.333 | -5.10 | 0.01 | -2.26 | 2.26 | Pass |
| 320.333 | -5.10 | -0.07 | -2.27 | 2.24 | Pass |
| 321.025 | -5.10 | -0.11 | -2.28 | 2.24 | Pass |
| 322.333 | -5.10 | -0.18 | -2.28 | 2.23 | Pass |
| 325.210 | -5.10 | -0.40 | -2.11 | 2.42 | Pass |
| 327.300 | -5.10 | -0.56 | -1.97 | 2.59 | Pass |
| 333.575 | -5.10 | -0.96 | -1.64 | 3.11 | Pass |
| 335.670 | -5.10 | -1.11 | -1.58 | 3.23 | Pass |
| 339.850 | -5.10 | -1.30 | -1.43 | 3.58 | Pass |
| 346.125 | -5.10 | -1.43 | -1.29 | 3.57 | Pass |
| 346.625 | -5.10 | -1.43 | -1.28 | 3.56 | Pass |
| 352.400 | -5.10 | -1.39 | -1.24 | 3.68 | Pass |
| 356.580 | -5.10 | -1.27 | -1.28 | 3.99 | Pass |
| 358.675 | -5.10 | -1.13 | -1.29 | 3.95 | Pass |
| 364.950 | -5.10 | -0.80 | -1.44 | 3.54 | Pass |
| 367.040 | -5.10 | -0.64 | -1.52 | 3.36 | Pass |
| 370.917 | -5.10 | -0.31 | -1.67 | 3.06 | Pass |
| 371.225 | -5.10 | -0.29 | -1.65 | 3.10 | Pass |
| 372.917 | -5.10 | -0.17 | -1.54 | 3.31 | Pass |
| 374.917 | -5.10 | -0.03 | -1.41 | 3.63 | Pass |
| 377.500 | -5.10 | 0.04 | -0.21 | 24.35 | Pass |

NR = Spec check not required at this location

## Final Compression Stress due to Permanent Loads

| Location <br> (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | -3.83 | 0.04 | -0.21 | 18.26 | Pass |
| 2.583 | -3.83 | 0.06 | -1.38 | 2.78 | Pass |
| 4.583 | -3.83 | -0.02 | -1.49 | 2.57 | Pass |
| 6.275 | -3.83 | -0.10 | -1.58 | 2.42 | Pass |
| 6.583 | -3.83 | -0.12 | -1.60 | 2.40 | Pass |
| 10.460 | -3.83 | -0.34 | -1.40 | 2.72 | Pass |
| 12.550 | -3.83 | -0.45 | -1.30 | 2.95 | Pass |
| 18.825 | -3.83 | -0.70 | -1.08 | 3.55 | Pass |
| 20.920 | -3.83 | -0.75 | -1.04 | 3.69 | Pass |
| 25.100 | -3.83 | -0.85 | -0.95 | 4.03 | Pass |
| 30.875 | -3.83 | -0.89 | -0.92 | 4.16 | Pass |
| 31.375 | -3.83 | -0.89 | -0.92 | 4.16 | Pass |
| 37.650 | -3.83 | -0.82 | -0.99 | 3.88 | Pass |
| 41.830 | -3.83 | -0.71 | -1.09 | 3.50 | Pass |
| 43.925 | -3.83 | -0.65 | -1.15 | 3.33 | Pass |
| 50.200 | -3.83 | -0.37 | -1.40 | 2.73 | Pass |
| 52.290 | -3.83 | -0.25 | -1.52 | 2.52 | Pass |
| 55.167 | -3.83 | -0.08 | -1.67 | 2.29 | Pass |
| 56.475 | -3.83 | -0.02 | -1.60 | 2.39 | Pass |
| 57.167 | -3.83 | 0.01 | -1.57 | 2.44 | Pass |
| 59.167 | -3.83 | 0.10 | -1.46 | 2.62 | Pass |
| 61.750 | -3.83 | 0.08 | -0.30 | 12.65 | Pass |
| 63.750 | -3.83 | 0.15 | -0.48 | 7.95 | Pass |
| 66.333 | -3.83 | 0.21 | -2.16 | 1.77 | Pass |
| 68.333 | -3.83 | 0.09 | -2.32 | 1.65 | Pass |
| 70.333 | -3.83 | -0.06 | -2.37 | 1.61 | Pass |
| 71.150 | -3.83 | -0.13 | -2.30 | 1.66 | Pass |
| 76.750 | -3.83 | -0.57 | -1.91 | 2.01 | Pass |
| 79.550 | -3.83 | -0.78 | -1.71 | 2.24 | Pass |
| 87.950 | -3.83 | -1.25 | -1.28 | 2.99 | Pass |
| 90.750 | -3.83 | -1.35 | -1.19 | 2.84 | Pass |
| 96.350 | -3.83 | -1.54 | -1.02 | 2.49 | Pass |
| 104.750 | -3.83 | -1.63 | -0.93 | 2.34 | Pass |
| 113.150 | -3.83 | -1.54 | -1.01 | 2.48 | Pass |
| 118.750 | -3.83 | -1.36 | -1.18 | 2.82 | Pass |
|  |  |  |  |  |  |


| Location (ft) | Allowable Stress (ksi) | Actual Stress Top of <br> $\begin{array}{c}\text { Beam } \\ \text { (ksi) }\end{array}$ | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 121.550 | -3.83 | -1.26 | -1.26 | 3.03 | Pass |
| 129.950 | -3.83 | -0.80 | -1.68 | 2.27 | Pass |
| 132.750 | -3.83 | -0.58 | -1.88 | 2.03 | Pass |
| 138.350 | -3.83 | -0.15 | -2.27 | 1.68 | Pass |
| 139.167 | -3.83 | -0.08 | -2.34 | 1.64 | Pass |
| 141.167 | -3.83 | 0.07 | -2.29 | 1.67 | Pass |
| 143.167 | -3.83 | 0.19 | -2.13 | 1.80 | Pass |
| 145.750 | -3.83 | 0.12 | -0.45 | 8.59 | Pass |
| 147.750 | -3.83 | 0.12 | -0.44 | 8.64 | Pass |
| 150.333 | -3.83 | 0.19 | -2.12 | 1.80 | Pass |
| 152.333 | -3.83 | 0.07 | -2.29 | 1.67 | Pass |
| 154.333 | -3.83 | -0.08 | -2.33 | 1.64 | Pass |
| 155.150 | -3.83 | -0.15 | -2.27 | 1.69 | Pass |
| 160.750 | -3.83 | -0.59 | -1.87 | 2.04 | Pass |
| 163.550 | -3.83 | -0.80 | -1.67 | 2.28 | Pass |
| 171.950 | -3.83 | -1.27 | -1.25 | 3.01 | Pass |
| 174.750 | -3.83 | -1.37 | -1.16 | 2.80 | Pass |
| 180.350 | -3.83 | -1.56 | -0.99 | 2.46 | Pass |
| 188.750 | -3.83 | -1.65 | -0.91 | 2.32 | Pass |
| 197.150 | -3.83 | -1.56 | -0.99 | 2.46 | Pass |
| 202.750 | -3.83 | -1.37 | -1.16 | 2.80 | Pass |
| 205.550 | -3.83 | -1.27 | -1.25 | 3.01 | Pass |
| 213.950 | -3.83 | -0.80 | -1.67 | 2.28 | Pass |
| 216.750 | -3.83 | -0.59 | -1.87 | 2.04 | Pass |
| 222.350 | -3.83 | -0.15 | -2.27 | 1.69 | Pass |
| 223.167 | -3.83 | -0.08 | -2.33 | 1.64 | Pass |
| 225.167 | -3.83 | 0.07 | -2.29 | 1.67 | Pass |
| 227.167 | -3.83 | 0.19 | -2.12 | 1.80 | Pass |
| 229.750 | -3.83 | 0.12 | -0.44 | 8.64 | Pass |
| 231.750 | -3.83 | 0.12 | -0.45 | 8.59 | Pass |
| 234.333 | -3.83 | 0.19 | -2.13 | 1.80 | Pass |
| 236.333 | -3.83 | 0.07 | -2.29 | 1.67 | Pass |
| 238.333 | -3.83 | -0.08 | -2.34 | 1.64 | Pass |
| 239.150 | -3.83 | -0.15 | -2.27 | 1.68 | Pass |
| 244.750 | -3.83 | -0.58 | -1.88 | 2.03 | Pass |
| 247.550 | -3.83 | -0.80 | -1.68 | 2.27 | Pass |
| 255.950 | -3.83 | -1.26 | -1.26 | 3.03 | Pass |
| ----. |  |  |  |  |  |


| Location <br> (ft) | Allowable <br> Stress <br> (ksi) | Actual Stress Top of <br> Beam <br> (ksi) | Actual Stress Bot of <br> Beam <br> (ksi) | Ratio | Code |
| :---: | ---: | ---: | ---: | ---: | ---: |
|  | -3.83 | -1.36 | -1.18 | 2.82 | Pass |
| 264.350 | -3.83 | -1.54 | -1.01 | 2.48 | Pass |
| 272.750 | -3.83 | -1.63 | -0.93 | 2.34 | Pass |
| 281.150 | -3.83 | -1.54 | -1.02 | 2.49 | Pass |
| 286.750 | -3.83 | -1.35 | -1.19 | 2.84 | Pass |
| 289.550 | -3.83 | -1.25 | -1.28 | 2.99 | Pass |
| 297.950 | -3.83 | -0.78 | -1.71 | 2.24 | Pass |
| 300.750 | -3.83 | -0.57 | -1.91 | 2.01 | Pass |
| 306.350 | -3.83 | -0.13 | -2.30 | 1.66 | Pass |
| 307.167 | -3.83 | -0.06 | -2.37 | 1.61 | Pass |
| 309.167 | -3.83 | 0.09 | -2.32 | 1.65 | Pass |
| 311.167 | -3.83 | 0.21 | -2.16 | 1.77 | Pass |
| 313.750 | -3.83 | 0.15 | -0.48 | 7.95 | Pass |
| 315.750 | -3.83 | 0.08 | -0.30 | 12.65 | Pass |
| 318.333 | -3.83 | 0.10 | -1.46 | 2.62 | Pass |
| 320.333 | -3.83 | 0.01 | -1.57 | 2.44 | Pass |
| 321.025 | -3.83 | -0.02 | -1.60 | 2.39 | Pass |
| 322.333 | -3.83 | -1.67 | 2.29 | Pass |  |
| 325.210 | -3.83 | -0.08 | -1.52 | 2.52 | Pass |
| 327.300 | -3.83 | -0.25 | -1.40 | 2.73 | Pass |
| 333.575 | -3.83 | -0.37 | -1.15 | 3.33 | Pass |
| 335.670 | -3.83 | -0.65 | -1.09 | 3.50 | Pass |
| 339.850 | -3.83 | -0.71 | -0.99 | 3.88 | Pass |
| 346.125 | -3.83 | -0.82 | -0.92 | 4.16 | Pass |
| 346.625 | -3.83 | -0.89 | -0.92 | 4.16 | Pass |
| 352.400 | -3.83 | -0.89 | -0.95 | 4.03 | Pass |
| 356.580 | -3.83 | -0.85 | -1.04 | 3.69 | Pass |
| 358.675 | -3.83 | -0.75 | -1.08 | 3.55 | Pass |
| 364.950 | -3.83 | -0.70 | -1.30 | 2.95 | Pass |
| 367.040 | -3.83 | -0.45 | -1.40 | 2.72 | Pass |
| 370.917 | -3.83 | -0.34 | -1.60 | 2.40 | Pass |
| 371.225 | -3.83 | -0.12 | -1.58 | 2.42 | Pass |
| 372.917 | -3.83 | -0.10 | -1.49 | 2.57 | Pass |
| 374.917 | -3.83 | -0.02 | 2.78 | Pass |  |
| 377.500 | -3.83 | 0.06 | Pass |  |  |

$\mathrm{NR}=$ Spec check not required at this location

## Final Compression Stress due to $\mathbf{1 / 2}$ Permanent and Transient Loads

| Location <br> (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | -3.40 | 0.00 | 0.00 | 99.00 | Pass |
| 2.583 | -3.40 | -0.23 | 0.00 | 14.76 | Pass |
| 4.583 | -3.40 | -0.39 | 0.00 | 8.72 | Pass |
| 6.275 | -3.40 | -0.51 | 0.00 | 6.63 | Pass |
| 6.583 | -3.40 | -0.53 | 0.00 | 6.37 | Pass |
| 10.460 | -3.40 | -0.82 | 0.00 | 4.14 | Pass |
| 12.550 | -3.40 | -0.95 | 0.00 | 3.58 | Pass |
| 18.825 | -3.40 | -1.20 | 0.00 | 2.82 | Pass |
| 20.920 | -3.40 | -1.35 | 0.00 | 2.51 | Pass |
| 25.100 | -3.40 | -1.44 | 0.00 | 2.36 | Pass |
| 30.875 | -3.40 | -1.47 | 0.00 | 2.32 | Pass |
| 31.375 | -3.40 | -1.46 | 0.00 | 2.32 | Pass |
| 37.650 | -3.40 | -1.33 | 0.00 | 2.56 | Pass |
| 41.830 | -3.40 | -1.15 | 0.00 | 2.96 | Pass |
| 43.925 | -3.40 | -0.99 | 0.00 | 3.45 | Pass |
| 50.200 | -3.40 | -0.64 | 0.00 | 5.29 | Pass |
| 52.290 | -3.40 | -0.53 | 0.00 | 6.45 | Pass |
| 55.167 | -3.40 | -0.35 | 0.00 | 9.64 | Pass |
| 56.475 | -3.40 | -0.29 | 0.00 | 11.61 | Pass |
| 57.167 | -3.40 | -0.27 | 0.00 | 12.63 | Pass |
| 59.167 | -3.40 | -0.20 | 0.00 | 17.28 | Pass |
| 61.750 | -3.40 | -0.10 | 0.00 | 35.74 | Pass |
| 63.750 | -3.40 | -0.03 | 0.00 | 100.19 | Pass |
| 66.333 | -3.40 | -0.16 | 0.00 | 21.56 | Pass |
| 68.333 | -3.40 | -0.25 | 0.00 | 13.75 | Pass |
| 70.333 | -3.40 | -0.36 | 0.00 | 9.45 | Pass |
| 71.150 | -3.40 | -0.41 | 0.00 | 8.28 | Pass |
| 76.750 | -3.40 | -0.77 | 0.00 | 4.43 | Pass |
| 79.550 | -3.40 | -0.97 | 0.00 | 3.50 | Pass |
| 87.950 | -3.40 | -1.48 | 0.00 | 2.30 | Pass |
| 90.750 | -3.40 | -1.67 | 0.00 | 2.03 | Pass |
| 96.350 | -3.40 | -1.88 | 0.00 | 1.81 | Pass |
| 104.750 | -3.40 | -1.95 | 0.00 | 1.75 | Pass |
| 113.150 | -3.40 | -1.90 | 0.00 | 1.79 | Pass |
| 118.750 | -3.40 | -1.70 | 0.00 | 2.00 | Pass |
|  |  |  |  |  |  |


| Location <br> (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 121.550 | -3.40 | -1.51 | 0.00 | 2.26 | Pass |
| 129.950 | -3.40 | -1.01 | 0.00 | 3.37 | Pass |
| 132.750 | -3.40 | -0.82 | 0.00 | 4.17 | Pass |
| 138.350 | -3.40 | -0.45 | 0.00 | 7.48 | Pass |
| 139.167 | -3.40 | -0.40 | 0.00 | 8.43 | Pass |
| 141.167 | -3.40 | -0.29 | 0.00 | 11.87 | Pass |
| 143.167 | -3.40 | -0.19 | 0.00 | 18.14 | Pass |
| 145.750 | -3.40 | -0.05 | 0.00 | 66.08 | Pass |
| 147.750 | -3.40 | -0.05 | 0.00 | 70.97 | Pass |
| 150.333 | -3.40 | -0.17 | 0.00 | 19.65 | Pass |
| 152.333 | -3.40 | -0.27 | 0.00 | 12.48 | Pass |
| 154.333 | -3.40 | -0.40 | 0.00 | 8.45 | Pass |
| 155.150 | -3.40 | -0.45 | 0.00 | 7.50 | Pass |
| 160.750 | -3.40 | -0.81 | 0.00 | 4.20 | Pass |
| 163.550 | -3.40 | -1.01 | 0.00 | 3.35 | Pass |
| 171.950 | -3.40 | -1.52 | 0.00 | 2.24 | Pass |
| 174.750 | -3.40 | -1.72 | 0.00 | 1.98 | Pass |
| 180.350 | -3.40 | -1.92 | 0.00 | 1.77 | Pass |
| 188.750 | -3.40 | -1.97 | 0.00 | 1.73 | Pass |
| 197.150 | -3.40 | -1.92 | 0.00 | 1.77 | Pass |
| 202.750 | -3.40 | -1.72 | 0.00 | 1.98 | Pass |
| 205.550 | -3.40 | -1.52 | 0.00 | 2.24 | Pass |
| 213.950 | -3.40 | -1.01 | 0.00 | 3.35 | Pass |
| 216.750 | -3.40 | -0.81 | 0.00 | 4.20 | Pass |
| 222.350 | -3.40 | -0.45 | 0.00 | 7.50 | Pass |
| 223.167 | -3.40 | -0.40 | 0.00 | 8.45 | Pass |
| 225.167 | -3.40 | -0.27 | 0.00 | 12.48 | Pass |
| 227.167 | -3.40 | -0.17 | 0.00 | 19.65 | Pass |
| 229.750 | -3.40 | -0.05 | 0.00 | 70.97 | Pass |
| 231.750 | -3.40 | -0.05 | 0.00 | 66.08 | Pass |
| 234.333 | -3.40 | -0.19 | 0.00 | 18.14 | Pass |
| 236.333 | -3.40 | -0.29 | 0.00 | 11.87 | Pass |
| 238.333 | -3.40 | -0.40 | 0.00 | 8.43 | Pass |
| 239.150 | -3.40 | -0.45 | 0.00 | 7.48 | Pass |
| 244.750 | -3.40 | -0.82 | 0.00 | 4.17 | Pass |
| 247.550 | -3.40 | -1.01 | 0.00 | 3.37 | Pass |
| 255.950 | -3.40 | -1.51 | 0.00 | 2.26 | Pass |
|  |  |  |  |  |  |


| Location <br> (ft) | Allowable <br> Stress <br> (ksi) | Actual Stress Top of <br> Beam <br> (ksi) | Actual Stress Bot of <br> Beam <br> (ksi) | Ratio | Code |
| :---: | ---: | ---: | ---: | ---: | ---: |
|  | -3.40 | -1.70 | 0.00 | 2.00 | Pass |
| 264.350 | -3.40 | -1.90 | 0.00 | 1.79 | Pass |
| 272.750 | -3.40 | -1.95 | 0.00 | 1.75 | Pass |
| 281.150 | -3.40 | -1.88 | 0.00 | 1.81 | Pass |
| 286.750 | -3.40 | -1.67 | 0.00 | 2.03 | Pass |
| 289.550 | -3.40 | -1.48 | 0.00 | 2.30 | Pass |
| 297.950 | -3.40 | -0.97 | 0.00 | 3.50 | Pass |
| 300.750 | -3.40 | -0.77 | 0.00 | 4.43 | Pass |
| 306.350 | -3.40 | -0.41 | 0.00 | 8.28 | Pass |
| 307.167 | -3.40 | -0.36 | 0.00 | 9.45 | Pass |
| 309.167 | -3.40 | -0.25 | 0.00 | 13.75 | Pass |
| 311.167 | -3.40 | -0.16 | 0.00 | 21.56 | Pass |
| 313.750 | -3.40 | -0.03 | 0.00 | 100.19 | Pass |
| 315.750 | -3.40 | -0.10 | 0.00 | 35.74 | Pass |
| 318.333 | -3.40 | -0.20 | 0.00 | 17.28 | Pass |
| 320.333 | -3.40 | -0.27 | 0.00 | 12.63 | Pass |
| 321.025 | -3.40 | -0.29 | 0.00 | 11.61 | Pass |
| 322.333 | -3.40 | -0.35 | 0.00 | 9.64 | Pass |
| 325.210 | -3.40 | -0.53 | 0.00 | 6.45 | Pass |
| 327.300 | -3.40 | -0.64 | 0.00 | 5.29 | Pass |
| 333.575 | -3.40 | -0.99 | 0.00 | 3.45 | Pass |
| 335.670 | -3.40 | -1.15 | 0.00 | Pass |  |
| 339.850 | -3.40 | -1.33 | 0.00 | 2.96 | Pass |
| 346.125 | -3.40 | -1.46 | 0.00 | 2.56 | Pass |
| 346.625 | -3.40 | -1.47 | 0.00 | 2.32 | Pass |
| 352.400 | -3.40 | -1.44 | 0.00 | 2.32 | Pass |
| 356.580 | -3.40 | -1.35 | 0.00 | 2.36 | Pass |
| 358.675 | -3.40 | -1.20 | 0.00 | 2.51 | Pass |
| 364.950 | -3.40 | -0.95 | 0.00 | 2.82 | Pass |
| 367.040 | -3.40 | -0.82 | 0.00 | 3.58 | Pass |
| 370.917 | -3.40 | -0.53 | 0.00 | 4.14 | Pass |
| 371.225 | -3.40 | -0.51 | 0.00 | 6.37 | Pass |
| 372.917 | -3.40 | -0.39 | 6.63 | Pass |  |
| 374.917 | -3.40 | -0.23 | 0.00 | 8.72 | Pass |
| 377.500 | -3.40 | 0.00 | 14.76 | Pass |  |

$\mathrm{NR}=$ Spec check not required at this location

## Final Slab Compression Stress due to Permanent and Transient Loads

| Location <br> (ft) | Allowable Stress <br> (ksi) | Actual Stress Top of Beam <br> (ksi) | Ratio | Code |
| ---: | ---: | ---: | ---: | :--- |
| 0.000 | -2.03 | 0.00 | 99.00 | Pass |
| 2.583 | -2.03 | -0.13 | 16.10 | Pass |
| 4.583 | -2.03 | -0.21 | 9.59 | Pass |
| 6.275 | -2.03 | -0.28 | 7.35 | Pass |
| 6.583 | -2.03 | -0.29 | 7.07 | Pass |
| 10.460 | -2.03 | -0.42 | 4.79 | Pass |
| 12.550 | -2.03 | -0.49 | 4.16 | Pass |
| 18.825 | -2.03 | -0.60 | 3.36 | Pass |
| 20.920 | -2.03 | -0.66 | 3.07 | Pass |
| 25.100 | -2.03 | -0.69 | 2.93 | Pass |
| 30.875 | -2.03 | -0.70 | 2.90 | Pass |
| 31.375 | -2.03 | -0.69 | 2.91 | Pass |
| 37.650 | -2.03 | -0.61 | 3.33 | Pass |
| 41.830 | -2.03 | -0.47 | 3.99 | Pass |
| 43.925 | -2.03 | -0.43 | 4.73 | Pass |
| 50.200 | -2.03 | -0.24 | 8.39 | Pass |
| 52.290 | -2.03 | -0.18 | 10.69 | Pass |
| 55.167 | -2.03 | -0.12 | 17.37 | Pass |
| 56.475 | -2.03 | -0.10 | 20.59 | Pass |
| 57.167 | -2.03 | -0.10 | 20.92 | Pass |
| 59.167 | -2.03 | -03 | -0.54 | 3.73 |


| Location (ft) | Allowable Stress (ksi) | Actual Stress Top of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: |
| 129.950 | -2.03 | -0.30 | 6.66 | Pass |
| 132.750 | -2.03 | -0.21 | 9.03 | Pass |
| 138.350 | -2.03 | -0.10 | 20.17 | Pass |
| 139.167 | -2.03 | -0.08 | 24.02 | Pass |
| 141.167 | -2.03 | -0.06 | 35.46 | Pass |
| 143.167 | -2.03 | -0.05 | 39.86 | Pass |
| 145.750 | -2.03 | -0.04 | 48.41 | Pass |
| 147.750 | -2.03 | -0.04 | 52.37 | Pass |
| 150.333 | -2.03 | -0.04 | 53.82 | Pass |
| 152.333 | -2.03 | -0.04 | 45.53 | Pass |
| 154.333 | -2.03 | -0.08 | 24.20 | Pass |
| 155.150 | -2.03 | -0.10 | 20.33 | Pass |
| 160.750 | -2.03 | -0.22 | 9.17 | Pass |
| 163.550 | -2.03 | -0.31 | 6.55 | Pass |
| 171.950 | -2.03 | -0.55 | 3.65 | Pass |
| 174.750 | -2.03 | -0.64 | 3.18 | Pass |
| 180.350 | -2.03 | -0.73 | 2.77 | Pass |
| 188.750 | -2.03 | -0.74 | 2.75 | Pass |
| 197.150 | -2.03 | -0.73 | 2.77 | Pass |
| 202.750 | -2.03 | -0.60 | 3.18 | Pass |
| 205.550 | -2.03 | -0.55 | 3.65 | Pass |
| 213.950 | -2.03 | -0.31 | 6.55 | Pass |
| 216.750 | -2.03 | -0.21 | 9.17 | Pass |
| 222.350 | -2.03 | -0.10 | 20.33 | Pass |
| 223.167 | -2.03 | -0.08 | 24.20 | Pass |
| 225.167 | -2.03 | -0.04 | 45.53 | Pass |
| 227.167 | -2.03 | -0.04 | 53.82 | Pass |
| 229.750 | -2.03 | -0.04 | 52.37 | Pass |
| 231.750 | -2.03 | -0.04 | 48.41 | Pass |
| 234.333 | -2.03 | -0.05 | 39.86 | Pass |
| 236.333 | -2.03 | -0.06 | 35.46 | Pass |
| 238.333 | -2.03 | -0.08 | 24.02 | Pass |
| 239.150 | -2.03 | -0.10 | 20.17 | Pass |
| 244.750 | -2.03 | -0.22 | 9.03 | Pass |
| 247.550 | -2.03 | -0.30 | 6.66 | Pass |
| 255.950 | -2.03 | -0.54 | 3.73 | Pass |
| 258.750 | -2.03 | -0.62 | 3.25 | Pass |
| 264.350 | -2.03 | -0.71 | 2.84 | Pass |


| Location <br> (ft) | Allowable Stress <br> (ksi) | Actual Stress Top of Beam <br> (ksi) | Ratio | Code |
| :---: | ---: | ---: | ---: | :--- |
|  | -2.03 | -0.72 | 2.83 | Pass |
| 281.150 | -2.03 | -0.70 | 2.91 | Pass |
| 286.750 | -2.03 | -0.56 | 3.39 | Pass |
| 289.550 | -2.03 | -0.52 | 3.92 | Pass |
| 297.950 | -2.03 | -0.27 | 7.52 | Pass |
| 300.750 | -2.03 | -0.17 | 11.19 | Pass |
| 306.350 | -2.03 | -0.06 | 34.63 | Pass |
| 307.167 | -2.03 | -0.04 | 47.36 | Pass |
| 309.167 | -2.03 | -0.02 | 104.60 | Pass |
| 311.167 | -2.03 | -0.02 | 93.25 | Pass |
| 313.750 | -2.03 | -0.02 | 84.61 | Pass |
| 315.750 | -2.03 | -0.08 | 23.89 | Pass |
| 318.333 | -2.03 | -0.09 | 22.03 | Pass |
| 320.333 | -2.03 | -0.10 | 20.92 | Pass |
| 321.025 | -2.03 | -0.10 | 20.59 | Pass |
| 322.333 | -2.03 | -0.12 | 17.37 | Pass |
| 325.210 | -2.03 | -0.19 | 10.69 | Pass |
| 327.300 | -2.03 | -0.24 | 8.39 | Pass |
| 333.575 | -2.03 | -0.43 | 4.73 | Pass |
| 335.670 | -2.03 | -0.51 | 3.99 | Pass |
| 339.850 | -2.03 | -0.61 | 3.33 | Pass |
| 346.125 | -2.03 | -0.69 | 2.91 | Pass |
| 346.625 | -2.03 | -0.70 | 2.90 | Pass |
| 352.400 | -2.03 | -0.69 | 2.93 | Pass |
| 356.580 | -2.03 | -0.62 | 3.07 | Pass |
| 358.675 | -2.03 | -0.60 | 3.36 | Pass |
| 364.950 | -2.03 | -0.49 | 4.16 | Pass |
| 367.040 | -2.03 | -0.40 | 4.79 | Pass |
| 370.917 | -2.03 | -0.29 | 7.07 | Pass |
| 371.225 | -0.03 | 7.35 | Pass |  |
| 372.917 |  | -0.21 | 9.59 | Pass |
| 374.917 |  | -0.13 | 16.10 | Pass |
| 377.500 |  | 0.00 | 99.00 | Pass |
| $3 p$ |  |  |  |  |
|  |  |  | -1 |  |

$\mathrm{NR}=$ Spec check not required at this location

## Final Tension Stress due to Permanent and Transient Loads

| Location <br> (ft) | Allowable <br> $\begin{array}{c}\text { Stress } \\ \text { (ksi) }\end{array}$ | Actual Stress Top of <br> Beam <br> (ksi) | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | 0.55 | 0.04 | -0.21 | 99.00 | Pass |
| 2.583 | 0.55 | 0.07 | -1.24 | 7.92 | Pass |
| 4.583 | 0.55 | 0.00 | -1.26 | 99.00 | Pass |
| 6.275 | 0.55 | -0.08 | -1.28 | 99.00 | Pass |
| 6.583 | 0.55 | -0.09 | -1.28 | 99.00 | Pass |
| 10.460 | 0.55 | -0.29 | -0.97 | 99.00 | Pass |
| 12.550 | 0.55 | -0.39 | -0.78 | 99.00 | Pass |
| 18.825 | 0.55 | -0.60 | -0.44 | 99.00 | Pass |
| 20.920 | 0.55 | -0.64 | -0.38 | 99.00 | Pass |
| 25.100 | 0.55 | -0.71 | -0.24 | 99.00 | Pass |
| 30.875 | 0.55 | -0.71 | -0.19 | 99.00 | Pass |
| 31.375 | 0.55 | -0.71 | -0.20 | 99.00 | Pass |
| 37.650 | 0.55 | -0.61 | -0.35 | 99.00 | Pass |
| 41.830 | 0.55 | -0.49 | -0.58 | 99.00 | Pass |
| 43.925 | 0.55 | -0.43 | -0.68 | 99.00 | Pass |
| 50.200 | 0.55 | -0.12 | -1.13 | 99.00 | Pass |
| 52.290 | 0.55 | -0.02 | -1.30 | 99.00 | Pass |
| 55.167 | 0.55 | 0.16 | -1.51 | 3.44 | Pass |
| 56.475 | 0.55 | 0.25 | -1.46 | 2.26 | Pass |
| 57.167 | 0.55 | 0.29 | -1.42 | 1.90 | Pass |
| 59.167 | 0.55 | 0.41 | -1.31 | 1.34 | Pass |
| 61.750 | 0.55 | 0.44 | -0.14 | 99.00 | Pass |
| 63.750 | 0.55 | 0.50 | -0.35 | 99.00 | Pass |
| 66.333 | 0.55 | 0.49 | -2.05 | 1.13 | Pass |
| 68.333 | 0.55 | 0.33 | -2.22 | 1.68 | Pass |
| 70.333 | 0.55 | 0.15 | -2.26 | 3.71 | Pass |
| 71.150 | 0.55 | 0.06 | -2.17 | 8.77 | Pass |
| 76.750 | 0.55 | -0.41 | -1.67 | 99.00 | Pass |
| 79.550 | 0.55 | -0.62 | -1.38 | 99.00 | Pass |
| 87.950 | 0.55 | -1.12 | -0.70 | 99.00 | Pass |
| 90.750 | 0.55 | -1.22 | -0.57 | 99.00 | Pass |
| 96.350 | 0.55 | -1.42 | -0.27 | 99.00 | Pass |
| 104.750 | 0.55 | -1.52 | -0.17 | 99.00 | Pass |
| 113.150 | 0.55 | -1.38 | -0.25 | 99.00 | Pass |
| 118.750 | 0.55 | -1.19 | -0.53 | 99.00 | Pass |
| 121.550 | 0.55 | -1.08 | -0.66 | 99.00 | Pass |
| 129.950 | 0.55 | -0.58 | -1.33 | 99.00 | Pass |
| ...- --. |  |  |  |  |  |


| Location (ft) | Allowable Stress (ksi) | Actual Stress Top of <br> $\begin{array}{c}\text { Beam } \\ \text { (ksi) }\end{array}$ | Actual Stress Bot of Beam (ksi) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.55 | -0.38 | -1.61 | 99.00 | Pass |
| 138.350 | 0.55 | 0.08 | -2.11 | 6.77 | Pass |
| 139.167 | 0.55 | 0.17 | -2.19 | 3.29 | Pass |
| 141.167 | 0.55 | 0.35 | -2.16 | 1.58 | Pass |
| 143.167 | 0.55 | 0.51 | -2.00 | 1.09 | Pass |
| 145.750 | 0.55 | 0.49 | -0.31 | 99.00 | Pass |
| 147.750 | 0.55 | 0.49 | -0.31 | 99.00 | Pass |
| 150.333 | 0.55 | 0.50 | -2.01 | 1.10 | Pass |
| 152.333 | 0.55 | 0.35 | -2.17 | 1.60 | Pass |
| 154.333 | 0.55 | 0.16 | -2.19 | 3.37 | Pass |
| 155.150 | 0.55 | 0.08 | -2.11 | 7.15 | Pass |
| 160.750 | 0.55 | -0.39 | -1.61 | 99.00 | Pass |
| 163.550 | 0.55 | -0.59 | -1.32 | 99.00 | Pass |
| 171.950 | 0.55 | -1.09 | -0.64 | 99.00 | Pass |
| 174.750 | 0.55 | -1.20 | -0.51 | 99.00 | Pass |
| 180.350 | 0.55 | -1.40 | -0.23 | 99.00 | Pass |
| 188.750 | 0.55 | -1.52 | -0.14 | 99.00 | Pass |
| 197.150 | 0.55 | -1.40 | -0.23 | 99.00 | Pass |
| 202.750 | 0.55 | -1.20 | -0.51 | 99.00 | Pass |
| 205.550 | 0.55 | -1.09 | -0.64 | 99.00 | Pass |
| 213.950 | 0.55 | -0.59 | -1.32 | 99.00 | Pass |
| 216.750 | 0.55 | -0.39 | -1.61 | 99.00 | Pass |
| 222.350 | 0.55 | 0.08 | -2.11 | 7.15 | Pass |
| 223.167 | 0.55 | 0.16 | -2.19 | 3.37 | Pass |
| 225.167 | 0.55 | 0.35 | -2.17 | 1.60 | Pass |
| 227.167 | 0.55 | 0.50 | -2.01 | 1.10 | Pass |
| 229.750 | 0.55 | 0.49 | -0.31 | 99.00 | Pass |
| 231.750 | 0.55 | 0.49 | -0.31 | 99.00 | Pass |
| 234.333 | 0.55 | 0.51 | -2.00 | 1.09 | Pass |
| 236.333 | 0.55 | 0.35 | -2.16 | 1.58 | Pass |
| 238.333 | 0.55 | 0.17 | -2.19 | 3.29 | Pass |
| 239.150 | 0.55 | 0.08 | -2.11 | 6.77 | Pass |
| 244.750 | 0.55 | -0.38 | -1.61 | 99.00 | Pass |
| 247.550 | 0.55 | -0.58 | -1.33 | 99.00 | Pass |
| 255.950 | 0.55 | -1.08 | -0.66 | 99.00 | Pass |
| 258.750 | 0.55 | -1.19 | -0.53 | 99.00 | Pass |
| 264.350 | 0.55 | -1.38 | -0.25 | 99.00 | Pass |
| ----. |  |  |  |  |  |


| Location <br> (ft) | Allowable <br> Stress <br> (ksi) | Actual Stress Top of <br> Beam <br> (ksi) | Actual Stress Bot of <br> Beam <br> (ksi) | Ratio | Code |
| :---: | ---: | ---: | ---: | ---: | ---: |
|  | 0.55 | -1.52 | -0.17 | 99.00 | Pass |
| 281.150 | 0.55 | -1.42 | -0.27 | 99.00 | Pass |
| 286.750 | 0.55 | -1.22 | -0.57 | 99.00 | Pass |
| 289.550 | 0.55 | -1.12 | -0.70 | 99.00 | Pass |
| 297.950 | 0.55 | -0.62 | -1.38 | 99.00 | Pass |
| 300.750 | 0.55 | -0.41 | -1.67 | 99.00 | Pass |
| 306.350 | 0.55 | 0.06 | -2.17 | 8.77 | Pass |
| 307.167 | 0.55 | 0.15 | -2.26 | 3.71 | Pass |
| 309.167 | 0.55 | 0.33 | -2.22 | 1.68 | Pass |
| 311.167 | 0.55 | 0.49 | -2.05 | 1.13 | Pass |
| 313.750 | 0.55 | 0.50 | -0.35 | 99.00 | Pass |
| 315.750 | 0.55 | 0.44 | -0.14 | 99.00 | Pass |
| 318.333 | 0.55 | 0.41 | -1.31 | 1.34 | Pass |
| 320.333 | 0.55 | 0.29 | -1.42 | 1.90 | Pass |
| 321.025 | 0.55 | 0.25 | -1.46 | 2.26 | Pass |
| 322.333 | 0.55 | 0.16 | -1.51 | 3.44 | Pass |
| 325.210 | 0.55 | -1.30 | 41.15 | Pass |  |
| 327.300 | 0.55 | -0.02 | -1.13 | 99.00 | Pass |
| 333.575 | 0.55 | -0.12 | -0.68 | 99.00 | Pass |
| 335.670 | 0.55 | -0.43 | -0.58 | 99.00 | Pass |
| 339.850 | 0.55 | -0.49 | -0.35 | 99.00 | Pass |
| 346.125 | 0.55 | -0.61 | -0.20 | 99.00 | Pass |
| 346.625 | 0.55 | -0.71 | -0.19 | 99.00 | Pass |
| 352.400 | 0.55 | -0.71 | -0.24 | 99.00 | Pass |
| 356.580 | 0.55 | -0.71 | -0.38 | 99.00 | Pass |
| 358.675 | 0.55 | -0.64 | -0.44 | 99.00 | Pass |
| 364.950 | 0.55 | -0.60 | -0.78 | 99.00 | Pass |
| 367.040 | 0.55 | -0.39 | -0.97 | 99.00 | Pass |
| 370.917 | 0.55 | -0.29 | -1.28 | 99.00 | Pass |
| 371.225 | 0.55 | -0.09 | -1.28 | 99.00 | Pass |
| 372.917 | 0.55 | -0.08 | -1.26 | 99.00 | Pass |
| 374.917 | 0.55 | 0.00 | 7.92 | Pass |  |
| 377.500 | 0.55 | 0.07 | 0.21 | 99.00 | Pass |
|  | 0.04 |  |  |  |  |

$N R=$ Spec check not required at this location

## Girder Positive Flexure Analysis

| Location (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { Mu } \\ \text { (kip-ft) } \end{gathered}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | STR-I | 1 | 322.14 | 0.00 | 99.00 | Pass |
| 2.583 | STR-I | 1 | 2030.27 | 420.36 | 4.83 | Pass |
| 2.850 | STR-I | 1 | 2074.27 | 460.42 | 4.51 | Pass |
| 4.583 | STR-I | 1 | 2487.44 | 714.32 | 3.48 | Pass |
| 6.275 | STR-I | 1 | 2887.30 | 941.88 | 3.07 | Pass |
| 6.583 | STR-I | 1 | 2959.69 | 981.27 | 3.02 | Pass |
| 10.460 | STR-I | 1 | 3281.25 | 1395.10 | 2.35 | Pass |
| 12.550 | STR-I | 1 | 3328.21 | 1618.20 | 2.06 | Pass |
| 18.825 | STR-I | 1 | 3410.32 | 2038.73 | 1.67 | Pass |
| 20.920 | STR-I | 1 | 3298.97 | 2110.11 | 1.56 | Pass |
| 25.100 | STR-I | 1 | 3298.97 | 2252.52 | 1.46 | Pass |
| 30.875 | STR-I | 1 | 3298.97 | 2260.47 | 1.46 | Pass |
| 31.375 | STR-I | 1 | 3298.97 | 2256.05 | 1.46 | Pass |
| 37.650 | STR-I | 1 | 3340.15 | 2075.37 | 1.61 | Pass |
| 41.830 | STR-I | 1 | 3340.15 | 1811.24 | 1.84 | Pass |
| 43.925 | STR-I | 1 | 3453.92 | 1678.86 | 2.06 | Pass |
| 50.200 | STR-I | 1 | 3345.53 | 1096.31 | 3.05 | Pass |
| 52.290 | STR-I | 2 | 3250.09 | 878.84 | 3.70 | Pass |
| 55.167 | STR-I | 2 | 3002.36 | 590.16 | 5.09 | Pass |
| 56.475 | STR-I | 2 | 2681.67 | 454.32 | 5.90 | Pass |
| 57.167 | STR-I | 1 | 2764.73 | 404.72 | 6.83 | Pass |
| 58.891 | STR-I | 1 | 2339.70 | 292.58 | 8.00 | Pass |
| 59.167 | STR-I | 1 | 2293.49 | 274.50 | 8.36 | Pass |
| 61.750 | STR-I | 1 | 624.88 | 147.43 | 4.24 | Pass |
| 62.750 | STR-I | 1 | 318.93 | 141.30 | 2.26 | Pass |
| 63.750 | STR-I | 1 | 746.70 | 137.27 | 5.44 | Pass |
| 66.333 | STR-1 | 1 | 3111.20 | 287.95 | 10.80 | Pass |
| 66.602 | STR-I | 1 | 3185.85 | 307.94 | 10.35 | Pass |
| 68.333 | STR-I | 1 | 3797.81 | 435.20 | 8.73 | Pass |
| 70.333 | STR-I | 2 | 4384.55 | 657.41 | 6.67 | Pass |
| 71.150 | STR-I | 2 | 4282.37 | 751.31 | 5.70 | Pass |
| 76.750 | STR-I | 2 | 4660.47 | 1347.92 | 3.46 | Pass |
| 79.550 | STR-I | 1 | 4733.19 | 1662.59 | 2.85 | Pass |
| 87.950 | STR-I | 1 | 4749.81 | 2492.80 | 1.91 | Pass |
| 90.750 | STR-I | 1 | 4592.90 | 2664.62 | 1.72 | Pass |
| 96.350 | STR-I | 1 | 4495.91 | 3008.27 | 1.49 | Pass |
| 104.750 | STR-I | 1 | 4495.91 | 3177.42 | 1.41 | Pass |
| 113.150 | STR-I | 1 | 4495.91 | 3039.96 | 1.48 | Pass |

[^2]| Location (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\underset{\text { (kip-ft) }}{\mathbf{M u}}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 4592.90 | 2717.17 | 1.69 | Pass |
| 121.550 | STR-I | 1 | 4749.81 | 2555.78 | 1.86 | Pass |
| 129.950 | STR-I | 1 | 4733.19 | 1742.70 | 2.72 | Pass |
| 132.750 | STR-I | 2 | 4660.47 | 1409.92 | 3.31 | Pass |
| 138.350 | STR-I | 2 | 4282.37 | 798.91 | 5.36 | Pass |
| 139.167 | STR-I | 2 | 4384.55 | 702.54 | 6.24 | Pass |
| 141.167 | STR-I | 1 | 3797.81 | 487.55 | 7.79 | Pass |
| 142.898 | STR-I | 1 | 3185.85 | 343.95 | 9.26 | Pass |
| 143.167 | STR-I | 1 | 3111.20 | 321.44 | 9.68 | Pass |
| 145.750 | STR-I | 1 | 746.70 | 151.87 | 4.92 | Pass |
| 146.750 | STR-I | 1 | 318.93 | 147.02 | 2.17 | Pass |
| 147.750 | STR-I | 1 | 746.70 | 143.20 | 5.21 | Pass |
| 150.333 | STR-I | 1 | 3111.20 | 290.11 | 10.72 | Pass |
| 150.602 | STR-I | 1 | 3185.85 | 310.26 | 10.27 | Pass |
| 152.333 | STR-I | 2 | 3797.81 | 451.36 | 8.41 | Pass |
| 154.333 | STR-I | 2 | 4384.55 | 690.47 | 6.35 | Pass |
| 155.150 | STR-I | 2 | 4282.37 | 785.67 | 5.45 | Pass |
| 160.750 | STR-I | 2 | 4660.47 | 1389.68 | 3.35 | Pass |
| 163.550 | STR-I | 1 | 4733.19 | 1717.83 | 2.76 | Pass |
| 171.950 | STR-I | 1 | 4749.81 | 2541.39 | 1.87 | Pass |
| 174.750 | STR-I | 1 | 4592.90 | 2708.02 | 1.70 | Pass |
| 180.350 | STR-I | 1 | 4495.91 | 3041.29 | 1.48 | Pass |
| 188.750 | STR-I | 1 | 4495.91 | 3193.36 | 1.41 | Pass |
| 197.150 | STR-I | 1 | 4495.91 | 3041.29 | 1.48 | Pass |
| 202.750 | STR-I | 1 | 4592.90 | 2708.02 | 1.70 | Pass |
| 205.550 | STR-I | 1 | 4749.81 | 2541.39 | 1.87 | Pass |
| 213.950 | STR-I | 1 | 4733.19 | 1717.83 | 2.76 | Pass |
| 216.750 | STR-I | 2 | 4660.47 | 1389.68 | 3.35 | Pass |
| 222.350 | STR-I | 2 | 4282.37 | 785.67 | 5.45 | Pass |
| 223.167 | STR-I | 2 | 4384.55 | 690.47 | 6.35 | Pass |
| 225.167 | STR-I | 2 | 3797.81 | 451.36 | 8.41 | Pass |
| 226.898 | STR-I | 1 | 3185.85 | 310.26 | 10.27 | Pass |
| 227.167 | STR-I | 1 | 3111.20 | 290.11 | 10.72 | Pass |
| 229.750 | STR-I | 1 | 746.70 | 143.20 | 5.21 | Pass |
| 230.750 | STR-I | 1 | 318.93 | 147.02 | 2.17 | Pass |
| 231.750 | STR-I | 1 | 746.70 | 151.87 | 4.92 | Pass |
| 234.333 | STR-I | 1 | 3111.20 | 321.44 | 9.68 | Pass |
| 234.602 | STR-I | 1 | 3185.85 | 343.95 | 9.26 | Pass |

$233 / 508$

| Location <br> (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\underset{\text { Mu }}{\text { (kip-ft) }}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 3797.81 | 487.55 | 7.79 | Pass |
| 238.333 | STR-I | 2 | 4384.55 | 702.54 | 6.24 | Pass |
| 239.150 | STR-I | 2 | 4282.37 | 798.91 | 5.36 | Pass |
| 244.750 | STR-I | 2 | 4660.47 | 1409.92 | 3.31 | Pass |
| 247.550 | STR-I | 1 | 4733.19 | 1742.70 | 2.72 | Pass |
| 255.950 | STR-I | 1 | 4749.81 | 2555.78 | 1.86 | Pass |
| 258.750 | STR-I | 1 | 4592.90 | 2717.17 | 1.69 | Pass |
| 264.350 | STR-I | 1 | 4495.91 | 3039.96 | 1.48 | Pass |
| 272.750 | STR-I | 1 | 4495.91 | 3177.42 | 1.41 | Pass |
| 281.150 | STR-I | 1 | 4495.91 | 3008.27 | 1.49 | Pass |
| 286.750 | STR-I | 1 | 4592.90 | 2664.62 | 1.72 | Pass |
| 289.550 | STR-I | 1 | 4749.81 | 2492.80 | 1.91 | Pass |
| 297.950 | STR-I | 1 | 4733.19 | 1662.59 | 2.85 | Pass |
| 300.750 | STR-I | 2 | 4660.47 | 1347.92 | 3.46 | Pass |
| 306.350 | STR-I | 2 | 4282.37 | 751.31 | 5.70 | Pass |
| 307.167 | STR-I | 2 | 4384.55 | 657.41 | 6.67 | Pass |
| 309.167 | STR-I | 1 | 3797.81 | 435.20 | 8.73 | Pass |
| 310.898 | STR-I | 1 | 3185.85 | 307.94 | 10.35 | Pass |
| 311.167 | STR-I | 1 | 3111.20 | 287.95 | 10.80 | Pass |
| 313.750 | STR-I | 1 | 746.70 | 137.27 | 5.44 | Pass |
| 314.750 | STR-I | 1 | 318.93 | 141.30 | 2.26 | Pass |
| 315.750 | STR-I | 1 | 624.88 | 147.43 | 4.24 | Pass |
| 318.333 | STR-I | 1 | 2293.49 | 274.50 | 8.36 | Pass |
| 318.609 | STR-I | 1 | 2339.70 | 292.58 | 8.00 | Pass |
| 320.333 | STR-I | 1 | 2764.73 | 404.72 | 6.83 | Pass |
| 321.025 | STR-I | 2 | 2681.67 | 454.32 | 5.90 | Pass |
| 322.333 | STR-I | 2 | 3002.36 | 590.16 | 5.09 | Pass |
| 325.210 | STR-I | 2 | 3250.09 | 878.84 | 3.70 | Pass |
| 327.300 | STR-I | 1 | 3345.53 | 1096.31 | 3.05 | Pass |
| 333.575 | STR-I | 1 | 3453.92 | 1678.86 | 2.06 | Pass |
| 335.670 | STR-I | 1 | 3340.15 | 1811.24 | 1.84 | Pass |
| 339.850 | STR-I | 1 | 3340.15 | 2075.37 | 1.61 | Pass |
| 346.125 | STR-I | 1 | 3298.97 | 2256.05 | 1.46 | Pass |
| 346.625 | STR-I | 1 | 3298.97 | 2260.47 | 1.46 | Pass |
| 352.400 | STR-I | 1 | 3298.97 | 2252.52 | 1.46 | Pass |
| 356.580 | STR-I | 1 | 3298.97 | 2110.11 | 1.56 | Pass |
| 358.675 | STR-I | 1 | 3410.32 | 2038.73 | 1.67 | Pass |
| 364.950 | STR-I | 1 | 3328.21 | 1618.20 | 2.06 | Pass |


| Location <br> (ft) | LS | Load <br> Comb | Mr <br> (kip-ft) | Mu <br> (kip-ft) | Mr/Mu | Code |
| ---: | :---: | :---: | ---: | ---: | ---: | :---: |
|  | STR-I | 1 | 3281.25 | 1395.10 | 2.35 | Pass |
| 370.917 | STR-I | 1 | 2959.69 | 981.27 | 3.02 | Pass |
| 371.225 | STR-I | 1 | 2887.30 | 941.88 | 3.07 | Pass |
| 372.917 | STR-I | 1 | 2487.44 | 714.32 | 3.48 | Pass |
| 374.650 | STR-I | 1 | 2074.27 | 460.42 | 4.51 | Pass |
| 374.917 | STR-I | 1 | 2030.27 | 420.36 | 4.83 | Pass |
| 377.500 | STR-I | 1 | 322.14 | 0.00 | 99.00 | Pass |

NR = Spec check not required at this location

## Girder Negative Flexure Analysis

| Location (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { Mu } \\ \text { (kip-ft) } \end{gathered}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 |  |  |  |  |  | NR |
| 2.583 |  |  |  |  |  | NR |
| 2.850 |  |  |  |  |  | NR |
| 4.583 |  |  |  |  |  | NR |
| 6.275 |  |  |  |  |  | NR |
| 6.583 |  |  |  |  |  | NR |
| 10.460 |  |  |  |  |  | NR |
| 12.550 |  |  |  |  |  | NR |
| 18.825 |  |  |  |  |  | NR |
| 20.920 |  |  |  |  |  | NR |
| 25.100 |  |  |  |  |  | NR |
| 30.875 |  |  |  |  |  | NR |
| 31.375 |  |  |  |  |  | NR |
| 37.650 |  |  |  |  |  | NR |
| 41.830 | STR-I | 1 | -1713.80 | -102.43 | 16.73 | Pass |
| 43.925 | STR-I | 1 | -1763.71 | -175.79 | 10.03 | Pass |
| 50.200 | STR-I | 1 | -1763.68 | -462.69 | 3.81 | Pass |
| 52.290 | STR-I | 1 | -2637.43 | -588.43 | 4.48 | Pass |
| 55.167 | STR-I | 1 | -2716.67 | -761.48 | 3.57 | Pass |
| 56.475 | STR-I | 3 | -2718.08 | -898.81 | 3.02 | Pass |
| 57.167 | STR-I | 3 | -2723.19 | -975.34 | 2.79 | Pass |
| 58.891 | STR-I | 3 | -3022.18 | -1177.07 | 2.57 | Pass |
| 59.167 | STR-I | 3 | -3021.22 | -1209.78 | 2.50 | Pass |
| 61.750 | STR-I | 3 | -2986.37 | -1587.24 | 1.88 | Pass |
| 62.750 | STR-I | 3 | -2680.39 | -1684.59 | 1.59 | Pass |
|  |  |  |  |  |  |  |


| Location (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { Mu } \\ \text { (kip-ft) } \end{gathered}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 63.750 | STR-I | 3 | -2988.89 | -1588.75 | 1.88 | Pass |
| 66.333 | STR-I | 3 | -2723.04 | -1168.02 | 2.33 | Pass |
| 66.602 | STR-I | 3 | -2723.77 | -1131.37 | 2.41 | Pass |
| 68.333 | STR-I | 3 | -2723.81 | -900.24 | 3.03 | Pass |
| 70.333 | STR-I | 3 | -2719.93 | -647.34 | 4.20 | Pass |
| 71.150 | STR-I | 3 | -2712.02 | -548.66 | 4.94 | Pass |
| 76.750 | STR-I | 3 | -1635.99 | -12.62 | 99.00 | Pass |
| 79.550 |  |  |  |  |  | NR |
| 87.950 |  |  |  |  |  | NR |
| 90.750 |  |  |  |  |  | NR |
| 96.350 |  |  |  |  |  | NR |
| 104.750 |  |  |  |  |  | NR |
| 113.150 |  |  |  |  |  | NR |
| 118.750 |  |  |  |  |  | NR |
| 121.550 |  |  |  |  |  | NR |
| 129.950 |  |  |  |  |  | NR |
| 132.750 | STR-I | 1 | -1590.71 | -200.64 | 7.93 | Pass |
| 138.350 | STR-I | 3 | -2712.02 | -719.19 | 3.77 | Pass |
| 139.167 | STR-I | 3 | -2719.93 | -820.20 | 3.32 | Pass |
| 141.167 | STR-I | 3 | -2723.81 | -1081.03 | 2.52 | Pass |
| 142.898 | STR-I | 3 | -2723.77 | -1323.28 | 2.06 | Pass |
| 143.167 | STR-I | 3 | -2723.04 | -1361.41 | 2.00 | Pass |
| 145.750 | STR-I | 3 | -2988.89 | -1800.11 | 1.66 | Pass |
| 146.750 | STR-I | 3 | -2680.39 | -1902.10 | 1.41 | Pass |
| 147.750 | STR-I | 3 | -2988.89 | -1799.62 | 1.66 | Pass |
| 150.333 | STR-I | 3 | -2723.04 | -1359.90 | 2.00 | Pass |
| 150.602 | STR-I | 3 | -2723.77 | -1321.52 | 2.06 | Pass |
| 152.333 | STR-I | 3 | -2723.81 | -1078.30 | 2.53 | Pass |
| 154.333 | STR-I | 3 | -2719.93 | -816.00 | 3.33 | Pass |
| 155.150 | STR-I | 3 | -2712.02 | -714.32 | 3.80 | Pass |
| 160.750 | STR-I | 1 | -1590.71 | -184.75 | 8.61 | Pass |
| 163.550 |  |  |  |  |  | NR |
| 171.950 |  |  |  |  |  | NR |
| 174.750 |  |  |  |  |  | NR |
| 180.350 |  |  |  |  |  | NR |
| 188.750 |  |  |  |  |  | NR |
| 197.150 |  |  |  |  |  | NR |
| 202.750 |  |  |  |  |  | NR |


| Location (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { Mu } \\ \text { (kip-ft) } \end{gathered}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 205.550 |  |  |  |  |  | NR |
| 213.950 |  |  |  |  |  | NR |
| 216.750 | STR-I | 1 | -1590.71 | -184.75 | 8.61 | Pass |
| 222.350 | STR-I | 3 | -2712.02 | -714.32 | 3.80 | Pass |
| 223.167 | STR-I | 3 | -2719.93 | -816.00 | 3.33 | Pass |
| 225.167 | STR-I | 3 | -2723.81 | -1078.30 | 2.53 | Pass |
| 226.898 | STR-I | 3 | -2723.77 | -1321.52 | 2.06 | Pass |
| 227.167 | STR-I | 3 | -2723.04 | -1359.90 | 2.00 | Pass |
| 229.750 | STR-I | 3 | -2988.89 | -1799.62 | 1.66 | Pass |
| 230.750 | STR-I | 3 | -2680.39 | -1902.10 | 1.41 | Pass |
| 231.750 | STR-I | 3 | -2988.89 | -1800.11 | 1.66 | Pass |
| 234.333 | STR-I | 3 | -2723.04 | -1361.41 | 2.00 | Pass |
| 234.602 | STR-I | 3 | -2723.77 | -1323.28 | 2.06 | Pass |
| 236.333 | STR-I | 3 | -2723.81 | -1081.03 | 2.52 | Pass |
| 238.333 | STR-I | 3 | -2719.93 | -820.20 | 3.32 | Pass |
| 239.150 | STR-I | 3 | -2712.02 | -719.19 | 3.77 | Pass |
| 244.750 | STR-I | 1 | -1590.71 | -200.64 | 7.93 | Pass |
| 247.550 |  |  |  |  |  | NR |
| 255.950 |  |  |  |  |  | NR |
| 258.750 |  |  |  |  |  | NR |
| 264.350 |  |  |  |  |  | NR |
| 272.750 |  |  |  |  |  | NR |
| 281.150 |  |  |  |  |  | NR |
| 286.750 |  |  |  |  |  | NR |
| 289.550 |  |  |  |  |  | NR |
| 297.950 |  |  |  |  |  | NR |
| 300.750 | STR-I | 3 | -1590.71 | -12.62 | 99.00 | Pass |
| 306.350 | STR-I | 3 | -2712.02 | -548.66 | 4.94 | Pass |
| 307.167 | STR-I | 3 | -2719.93 | -647.34 | 4.20 | Pass |
| 309.167 | STR-I | 3 | -2723.81 | -900.24 | 3.03 | Pass |
| 310.898 | STR-I | 3 | -2723.77 | -1131.37 | 2.41 | Pass |
| 311.167 | STR-I | 3 | -2723.04 | -1168.02 | 2.33 | Pass |
| 313.750 | STR-I | 3 | -2988.89 | -1588.75 | 1.88 | Pass |
| 314.750 | STR-I | 3 | -2680.39 | -1684.59 | 1.59 | Pass |
| 315.750 | STR-I | 3 | -2986.37 | -1587.24 | 1.88 | Pass |
| 318.333 | STR-I | 3 | -3021.22 | -1209.78 | 2.50 | Pass |
| 318.609 | STR-I | 3 | -3022.18 | -1177.07 | 2.57 | Pass |
| 320.333 | STR-I | 3 | -2723.19 | -975.34 | 2.79 | Pass |


| Location (ft) | LS | Load Comb | $\begin{gathered} \mathbf{M r} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \mathbf{M u} \\ \text { (kip-ft) } \end{gathered}$ | $\mathbf{M r} / \mathbf{M u}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 321.025 | STR-I | 3 | -2718.08 | -898.81 | 3.02 | Pass |
| 322.333 | STR-I | 1 | -2716.67 | -761.48 | 3.57 | Pass |
| 325.210 | STR-I | 1 | -2637.43 | -588.43 | 4.48 | Pass |
| 327.300 | STR-I | 1 | -1763.68 | -462.69 | 3.81 | Pass |
| 333.575 | STR-I | 1 | -1763.71 | -175.79 | 10.03 | Pass |
| 335.670 | STR-I | 1 | -1713.80 | -102.43 | 16.73 | Pass |
| 339.850 |  |  |  |  |  | NR |
| 346.125 |  |  |  |  |  | NR |
| 346.625 |  |  |  |  |  | NR |
| 352.400 |  |  |  |  |  | NR |
| 356.580 |  |  |  |  |  | NR |
| 358.675 |  |  |  |  |  | NR |
| 364.950 |  |  |  |  |  | NR |
| 367.040 |  |  |  |  |  | NR |
| 370.917 |  |  |  |  |  | NR |
| 371.225 |  |  |  |  |  | NR |
| 372.917 |  |  |  |  |  | NR |
| 374.650 |  |  |  |  |  | NR |
| 374.917 |  |  |  |  |  | NR |
| 377.500 |  |  |  |  |  | NR |

$\mathrm{NR}=$ Spec check not required at this location

## Girder Shear Analysis

| Location <br> (ft) | LS | Load <br> Comb |  | $\left\lvert\, \begin{gathered} \text { Concrete } \\ \text { Vc } \\ \text { (kip) } \end{gathered}\right.$ | $\begin{gathered} \text { Reinf. } \\ \text { Vs } \\ \text { (kip) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Shear } \\ \text { Strength } \\ \mathbf{V r} \\ \text { (kip) } \\ \hline \end{array}$ | Factored Shear Vu (kip) | $\left\|\begin{array}{l} \text { Ratio } \\ \mathbf{V r} / \mathbf{V u} \end{array}\right\|$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.850 | STR-I | 1 | 0.800 | 159.172 | 525.172 | 615.910 | 157.610 | 3.908 | Pass |
| 4.583 | STR-I | 1 | 0.800 | 163.646 | 525.754 | 620.461 | 149.159 | 4.160 | Pass |
| 6.275 | STR-I | 1 | 0.800 | 157.862 | 520.053 | 610.123 | 141.007 | 4.327 | Pass |
| 6.583 | STR-I | 1 | 0.800 | 156.849 | 519.026 | 608.287 | 139.527 | 4.360 | Pass |
| 10.460 | STR-I | 1 | 0.533 | 142.194 | 328.082 | 423.248 | 121.174 | 3.493 | Pass |
| 12.550 | STR-I | 1 | 0.400 | 139.445 | 243.681 | 344.814 | 111.280 | 3.099 | Pass |
| 18.825 | STR-I | 1 | 0.400 | 134.766 | 239.803 | 337.112 | 82.587 | 4.082 | Pass |
| 20.920 | STR-I | 1 | 0.400 | 129.031 | 231.055 | 324.077 | 74.009 | 4.379 | Pass |
| 25.100 | STR-I | 1 | 0.400 | 127.794 | 230.073 | 322.081 | 56.895 | 5.661 | Pass |
| 30.875 | STR-I | 1 | 0.400 | 127.729 | 230.021 | 321.975 | 55.865 | 5.763 | Pass |
| 31.375 | STR-I | 1 | 0.400 | 127.688 | 229.990 | 321.910 | 58.141 | 5.537 | Pass |
|  |  |  |  |  |  |  |  |  |  |


| $\underset{\text { (ft) }}{\substack{\text { Location }}}$ | LS | Load <br> Comb |  | $\begin{array}{\|c} \text { Concrete } \\ \text { Vc } \\ \text { (kip) } \end{array}$ | Reinf. Vs (kip) | Shear <br> Strength <br> $\mathbf{V r}$ <br> (kip) | Factored Shear Vu (kip) | $\begin{gathered} \text { Ratio } \\ \mathbf{V r} / \mathbf{V u} \end{gathered}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37.650 | STR-I | 1 | 0.400 | 129.358 | 231.645 | 324.902 | 86.588 | 3.752 | Pass |
| 41.830 | STR-I | 1 | 0.400 | 132.216 | 233.878 | 329.485 | 105.376 | 3.127 | Pass |
| 43.925 | STR-I | 1 | 0.400 | 138.682 | 243.250 | 343.739 | 114.792 | 2.994 | Pass |
| 50.200 | STR-I | 1 | 0.400 | 147.259 | 248.711 | 356.373 | 142.542 | 2.500 | Pass |
| 52.290 | STR-II | 5 | 0.600 | 155.499 | 377.376 | 479.588 | 153.417 | 3.126 | Pass |
| 55.167 | STR-II | 5 | 0.800 | 166.758 | 525.181 | 622.745 | 166.245 | 3.746 | Pass |
| 56.475 | STR-II | 5 | 0.800 | 167.843 | 526.716 | 625.103 | 171.882 | 3.637 | Pass |
| 57.167 | STR-II | 5 | 0.800 | 168.790 | 527.880 | 627.004 | 174.856 | 3.586 | Pass |
| 58.891 | STR-II | 5 | 0.800 | 160.800 | 524.736 | 616.983 | 182.149 | 3.387 | Pass |
| 66.602 | STR-I | 1 | 0.800 | 186.057 | 515.716 | 631.596 | 206.174 | 3.063 | Pass |
| 68.333 | STR-I | 1 | 0.800 | 195.438 | 504.127 | 629.608 | 199.165 | 3.161 | Pass |
| 70.333 | STR-I | 1 | 0.800 | 189.885 | 506.913 | 627.119 | 191.025 | 3.283 | Pass |
| 71.150 | STR-I | 1 | 0.800 | 187.398 | 508.339 | 626.164 | 187.695 | 3.336 | Pass |
| 76.750 | STR-I | 1 | 0.400 | 163.216 | 251.601 | 373.335 | 164.550 | 2.269 | Pass |
| 79.550 | STR-I | 1 | 0.400 | 156.026 | 248.931 | 364.461 | 152.978 | 2.382 | Pass |
| 87.950 | STR-I | 1 | 0.400 | 139.628 | 242.260 | 343.700 | 117.856 | 2.916 | Pass |
| 90.750 | STR-I | 1 | 0.400 | 132.323 | 232.171 | 328.045 | 106.191 | 3.089 | Pass |
| 96.350 | STR-I | 1 | 0.400 | 126.467 | 225.915 | 317.144 | 82.859 | 3.827 | Pass |
| 104.750 | STR-I | 1 | 0.400 | 125.594 | 225.218 | 315.731 | 48.971 | 6.447 | Pass |
| 113.150 | STR-I | 1 | 0.400 | 126.055 | 225.587 | 316.478 | 82.258 | 3.847 | Pass |
| 118.750 | STR-I | 1 | 0.400 | 131.628 | 231.603 | 326.908 | 105.571 | 3.097 | Pass |
| 121.550 | STR-I | 1 | 0.400 | 138.800 | 241.573 | 342.335 | 117.227 | 2.920 | Pas |
| 129.950 | STR-I | 1 | 0.400 | 154.049 | 248.235 | 362.055 | 152.454 | 2.375 | Pass |
| 132.750 | STR-I | 1 | 0.400 | 161.577 | 251.020 | 371.337 | 164.107 | 2.263 | Pass |
| 138.350 | STR-II | 5 | 0.800 | 189.229 | 506.706 | 626.342 | 187.828 | 3.335 | Pass |
| 139.167 | STR-II | 5 | 0.800 | 191.020 | 505.908 | 627.235 | 191.104 | 3.282 | Pass |
| 141.167 | STR-II | 5 | 0.800 | 195.666 | 503.927 | 629.634 | 199.108 | 3.162 | Pas |
| 142.898 | STR-I | 1 | 0.800 | 184.921 | 516.743 | 631.498 | 206.077 | 3.064 | Pass |
| 150.602 | STR-I | 1 | 0.800 | 185.922 | 515.838 | 631.584 | 206.711 | 3.055 | Pass |
| 152.333 | STR-I | 1 | 0.800 | 195.248 | 504.293 | 629.587 | 199.659 | 3.153 | Pass |
| 154.333 | STR-I | 1 | 0.800 | 189.017 | 507.685 | 627.032 | 191.476 | 3.275 | Pass |
| 155.150 | STR-I | 1 | 0.800 | 186.497 | 509.146 | 626.079 | 188.128 | 3.328 | Pass |
| 160.750 | STR-I | 1 | 0.400 | 162.026 | 251.179 | 371.885 | 164.915 | 2.255 | Pass |
| 163.550 | STR-I | 1 | 0.400 | 154.602 | 248.430 | 362.729 | 153.308 | 2.366 | Pass |
| 171.950 | STR-I | 1 | 0.400 | 138.952 | 241.699 | 342.586 | 118.183 | 2.899 | Pass |
| 174.750 | STR-I | 1 | 0.400 | 131.711 | 231.671 | 327.043 | 106.543 | 3.070 | Pass |
|  |  |  |  |  |  |  |  |  |  |


| Location (ft) | LS | Load Comb |  | $\begin{array}{\|c} \text { Concrete } \\ \text { Vc } \\ \text { (kip) } \end{array}$ | Reinf. Vs (kip) | Shear <br> Strength <br> $\mathbf{V r}$ <br> (kip) | Factored <br> Shear <br> $\mathbf{V u}$ <br> (kip) | $\left\|\begin{array}{c} \text { Ratio } \\ \mathbf{V r} / \mathbf{V u} \end{array}\right\|$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 0.400 | 125.993 | 225.538 | 316.378 | 83.263 | 3.800 | Pass |
| 188.750 | STR-I | 1 | 0.400 | 125.369 | 225.040 | 315.368 | 49.053 | 6.429 | Pass |
| 197.150 | STR-I | 1 | 0.400 | 125.993 | 225.538 | 316.378 | 83.263 | 3.800 | Pass |
| 202.750 | STR-I | 1 | 0.400 | 131.711 | 231.671 | 327.043 | 106.543 | 3.070 | Pass |
| 205.550 | STR-I | 1 | 0.400 | 138.952 | 241.699 | 342.586 | 118.183 | 2.899 | Pass |
| 213.950 | STR-I | 1 | 0.400 | 154.602 | 248.430 | 362.729 | 153.308 | 2.366 | Pass |
| 216.750 | STR-I | 1 | 0.400 | 162.026 | 251.179 | 371.885 | 164.915 | 2.255 | Pass |
| 222.350 | STR-I | 1 | 0.800 | 186.497 | 509.146 | 626.079 | 188.128 | 3.328 | Pass |
| 223.167 | STR-I | 1 | 0.800 | 189.017 | 507.685 | 627.032 | 191.476 | 3.275 | Pass |
| 225.167 | STR-I | 1 | 0.800 | 195.248 | 504.293 | 629.587 | 199.659 | 3.153 | Pass |
| 226.898 | STR-I | 1 | 0.800 | 185.922 | 515.838 | 631.584 | 206.711 | 3.055 | Pass |
| 234.602 | STR-I | 1 | 0.800 | 184.921 | 516.743 | 631.498 | 206.077 | 3.064 | Pass |
| 236.333 | STR-II | 5 | 0.800 | 195.666 | 503.927 | 629.634 | 199.108 | 3.162 | P |
| 238.333 | STR-II | 5 | 0.800 | 191.020 | 505.908 | 627.235 | 191.104 | 3.282 | Pass |
| 239.150 | STR-II | 5 | 0.800 | 189.229 | 506.706 | 626.342 | 187.828 | 3.335 | Pa |
| 244.750 | STR-I | 1 | 0.400 | 161.577 | 251.020 | 371.337 | 164.107 | 2.263 | Pass |
| 247.550 | STR-I | 1 | 0.400 | 154.049 | 248.235 | 362.055 | 152.454 | 2.375 | Pass |
| 255.950 | STR-I | 1 | 0.400 | 138.800 | 241.573 | 342.335 | 117.227 | 2.920 | Pass |
| 258.750 | STR-I | 1 | 0.400 | 131.628 | 231.603 | 326.908 | 105.571 | 3.097 | Pass |
| 264.350 | STR-I | 1 | 0.400 | 126.055 | 225.587 | 316.478 | 82.258 | 3.847 | Pa |
| 272.750 | STR-I | 1 | 0.400 | 125.594 | 225.218 | 315.731 | 48.971 | 6.447 | Pass |
| 281.150 | STR-I | 1 | 0.400 | 126.467 | 225.915 | 317.144 | 82.859 | 3.827 | Pass |
| 286.750 | STR-I | 1 | 0.400 | 132.323 | 232.171 | 328.045 | 106.191 | 3.089 | Pass |
| 289.550 | STR-I | 1 | 0.400 | 139.628 | 242.260 | 343.700 | 117.856 | 2.916 | Pass |
| 297.950 | STR-I | 1 | 0.400 | 156.026 | 248.931 | 364.461 | 152.978 | 2.382 | Pas |
| 300.750 | STR-I | 1 | 0.400 | 163.216 | 251.601 | 373.335 | 164.550 | 2.269 | Pass |
| 306.350 | STR-I | 1 | 0.800 | 187.398 | 508.339 | 626.164 | 187.695 | 3.336 | Pass |
| 307.167 | STR-I | 1 | 0.800 | 189.885 | 506.913 | 627.119 | 191.025 | 3.283 | Pass |
| 309.167 | STR-I | 1 | 0.800 | 195.438 | 504.127 | 629.608 | 199.165 | 3.161 | Pass |
| 310.898 | STR-I | 1 | 0.800 | 186.057 | 515.716 | 631.596 | 206.174 | 3.063 | Pass |
| 318.609 | STR-II | 5 | 0.800 | 160.800 | 524.736 | 616.983 | 182.149 | 3.387 | Pass |
| 320.333 | STR-II | 5 | 0.800 | 168.790 | 527.880 | 627.004 | 174.856 | 3.586 | Pass |
| 321.025 | STR-II | 5 | 0.800 | 167.843 | 526.716 | 625.103 | 171.882 | 3.637 | Pass |
| 322.333 | STR-II | 5 | 0.800 | 166.758 | 525.181 | 622.745 | 166.245 | 3.746 | Pass |
| 325.210 | STR-II | 5 | 0.800 | 155.499 | 503.168 | 592.801 | 153.417 | 3.864 | Pass |
| 327.300 | STR-I | 1 | 0.400 | 147.259 | 248.711 | 356.373 | 142.542 | 2.500 | Pass |
|  |  |  |  |  |  |  |  |  |  |


| Location <br> (ft) | LS | Load <br> Comb | Av <br> Prov. <br> (in^2/ft) | Concrete <br> Vc <br> (kip) | Reinf. <br> Vs <br> (kip) | Shear <br> Strength <br> Vr <br> (kip) | Factored <br> Shear <br> Vu <br> (kip) | Ratio <br> Vr/Vu | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 0.400 | 138.682 | 243.250 | 343.739 | 114.792 | 2.994 | Pass |
| 335.670 | STR-I | 1 | 0.400 | 132.216 | 233.878 | 329.485 | 105.376 | 3.127 | Pass |
| 339.850 | STR-I | 1 | 0.400 | 129.358 | 231.645 | 324.902 | 86.588 | 3.752 | Pass |
| 346.125 | STR-I | 1 | 0.400 | 127.688 | 229.990 | 321.910 | 58.141 | 5.537 | Pass |
| 346.625 | STR-I | 1 | 0.400 | 127.729 | 230.021 | 321.975 | 55.865 | 5.763 | Pass |
| 352.400 | STR-I | 1 | 0.400 | 127.794 | 230.073 | 322.081 | 56.895 | 5.661 | Pass |
| 356.580 | STR-I | 1 | 0.400 | 129.031 | 231.055 | 324.077 | 74.009 | 4.379 | Pass |
| 358.675 | STR-I | 1 | 0.400 | 134.766 | 239.803 | 337.112 | 82.587 | 4.082 | Pass |
| 364.950 | STR-I | 1 | 0.400 | 139.445 | 243.681 | 344.814 | 111.280 | 3.099 | Pass |
| 367.040 | STR-I | 1 | 0.400 | 142.194 | 246.061 | 349.430 | 121.174 | 2.884 | Pass |
| 370.917 | STR-I | 1 | 0.800 | 156.849 | 519.026 | 608.287 | 139.527 | 4.360 | Pass |
| 371.225 | STR-I | 1 | 0.800 | 157.862 | 520.053 | 610.123 | 141.007 | 4.327 | Pass |
| 372.917 | STR-I | 1 | 0.800 | 163.646 | 525.754 | 620.461 | 149.159 | 4.160 | Pass |
| 374.650 | STR-I | 1 | 0.800 | 159.172 | 525.172 | 615.910 | 157.610 | 3.908 | Pass |

## Girder Minimum Transverse Reinforcement

(Article 5.8.2.5)

| Location <br> (ft) | LS | Load <br> Comb | Av Prov. <br> (in^2/ft) | Av Req. <br> (in^2/ft) | Ratio <br> Av Prov/Av Req | Code |
| ---: | :---: | :---: | ---: | ---: | ---: | :--- |
| 2.850 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 4.583 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 6.275 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 6.583 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 10.460 | STR-I | 1 | 0.533 | 0.147 | 3.618 | Pass |
| 12.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 18.825 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 20.920 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 25.100 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 30.875 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 31.375 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 37.650 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 41.830 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 43.925 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 50.200 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 52.290 | STR-I | 1 | 0.600 | 0.147 | 4.070 | Pass |
| 55.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
|  |  |  |  |  |  |  |


| Location (ft) | LS | Load Comb | Av Prov. (in^2/ft) | Av Req. <br> (in^2/ft) | $\begin{gathered} \text { Ratio } \\ \text { Av Prov/Av Req } \end{gathered}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 56.475 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 57.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 58.891 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 66.602 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 68.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 70.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 71.150 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 76.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 79.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 87.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 90.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 96.350 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 104.750 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 113.150 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 118.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 121.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 129.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 132.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 138.350 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 139.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 141.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 142.898 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 150.602 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 152.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 154.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 155.150 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 160.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 163.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 171.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 174.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 180.350 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 188.750 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 197.150 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 202.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 205.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 213.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 216.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 222.350 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |


| Location <br> (ft) | LS | Load Comb | Av Prov. $\left(\mathrm{in}^{\wedge} 2 / \mathrm{ft}\right)$ | Av Req. <br> (in^2/ft) | $\begin{gathered} \text { Ratio } \\ \text { Av Prov/Av Req } \\ \hline \end{gathered}$ | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 225.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 226.898 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 234.602 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 236.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 238.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 239.150 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 244.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 247.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 255.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 258.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 264.350 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 272.750 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 281.150 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 286.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 289.550 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 297.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 300.750 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 306.350 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 307.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 309.167 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 310.898 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 318.609 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 320.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 321.025 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 322.333 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 325.210 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 327.300 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 333.575 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 335.670 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 339.850 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 346.125 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 346.625 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 352.400 | STR-I | 1 | 0.400 | 0.000 | 99.000 | NR |
| 356.580 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 358.675 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 364.950 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |
| 367.040 | STR-I | 1 | 0.400 | 0.147 | 2.714 | Pass |

$243 / 508$

| Location <br> (ft) | LS | Load <br> Comb | Av Prov. <br> (in^2/ft) | Av Req. <br> (in^2/ft) | Ratio <br> Av Prov/Av Req | Code |
| :---: | :---: | :---: | ---: | ---: | ---: | :---: |
|  | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 371.225 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 372.917 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |
| 374.650 | STR-I | 1 | 0.800 | 0.147 | 5.427 | Pass |

Girder Maximum Spacing of Transverse Reinforcement
(Article 5.8.2.7)

| Location <br> (ft) | LS | Load <br> Comb | Spacing <br> (ft) | Code |
| ---: | :---: | :---: | ---: | :---: |
| 2.850 | STR-I | 1 | 0.667 | Pass |
| 4.583 | STR-I | 1 | 0.667 | Pass |
| 6.275 | STR-I | 1 | 0.667 | Pass |
| 6.583 | STR-I | 1 | 0.667 | Pass |
| 10.460 | STR-I | 1 | 0.667 | Pass |
| 12.550 | STR-I | 1 | 0.667 | Pass |
| 18.825 | STR-I | 1 | 0.667 | Pass |
| 20.920 | STR-I | 1 | 0.667 | Pass |
| 25.100 | STR-I | 1 | 0.667 | Pass |
| 30.875 | STR-I | 1 | 0.667 | Pass |
| 31.375 | STR-I | 1 | 0.667 | Pass |
| 37.650 | STR-I | 1 | 0.667 | Pass |
| 41.830 | STR-I | 1 | 0.667 | Pass |
| 43.925 | STR-I | 1 | 0.667 | Pass |
| 50.200 | STR-I | 1 | 0.667 | Pass |
| 52.290 | STR-I | 1 | 0.667 | Pass |
| 55.167 | STR-I | 1 | 0.667 | Pass |
| 56.475 | STR-I | 1 | 0.667 | Pass |
| 57.167 | STR-I | 1 | 0.667 | Pass |
| 58.891 | STR-I | 1 | 0.667 | Pass |
| 66.602 | STR-I | 1 | 0.667 | Pass |
| 68.333 | STR-I | 1 | 0.667 | Pass |
| 70.333 | STR-I | 1 | 0.667 | Pass |
| 71.150 | STR-I | 1 | 0.667 | Pass |
| 76.750 | STR-I | 1 | 0.667 | Pass |
| 79.550 | STR-I | 1 | 0.667 | Pass |
| 87.950 | STR-I | 1 | 0.667 | Pass |
| 90.750 | STR-I | 1 | 0.667 | Pass |
|  |  |  |  |  |
|  |  | 1 |  |  |
|  |  | 1 | 1 |  |


| Location (ft) | LS | Load Comb | Spacing (ft) | Code |
| :---: | :---: | :---: | :---: | :---: |
| 96.350 | STR-I | 1 | 0.667 | Pass |
| 104.750 | STR-I | 1 | 0.667 | Pass |
| 113.150 | STR-I | 1 | 0.667 | Pass |
| 118.750 | STR-I | 1 | 0.667 | Pass |
| 121.550 | STR-I | 1 | 0.667 | Pass |
| 129.950 | STR-I | 1 | 0.667 | Pass |
| 132.750 | STR-I | 1 | 0.667 | Pass |
| 138.350 | STR-I | 1 | 0.667 | Pass |
| 139.167 | STR-I | 1 | 0.667 | Pass |
| 141.167 | STR-I | 1 | 0.667 | Pass |
| 142.898 | STR-I | 1 | 0.667 | Pass |
| 150.602 | STR-I | 1 | 0.667 | Pass |
| 152.333 | STR-I | 1 | 0.667 | Pass |
| 154.333 | STR-I | 1 | 0.667 | Pass |
| 155.150 | STR-I | 1 | 0.667 | Pass |
| 160.750 | STR-I | 1 | 0.667 | Pass |
| 163.550 | STR-I | 1 | 0.667 | Pass |
| 171.950 | STR-I | 1 | 0.667 | Pass |
| 174.750 | STR-I | 1 | 0.667 | Pass |
| 180.350 | STR-I | 1 | 0.667 | Pass |
| 188.750 | STR-I | 1 | 0.667 | Pass |
| 197.150 | STR-I | 1 | 0.667 | Pass |
| 202.750 | STR-I | 1 | 0.667 | Pass |
| 205.550 | STR-I | 1 | 0.667 | Pass |
| 213.950 | STR-I | 1 | 0.667 | Pass |
| 216.750 | STR-I | 1 | 0.667 | Pass |
| 222.350 | STR-I | 1 | 0.667 | Pass |
| 223.167 | STR-I | 1 | 0.667 | Pass |
| 225.167 | STR-I | 1 | 0.667 | Pass |
| 226.898 | STR-I | 1 | 0.667 | Pass |
| 234.602 | STR-I | 1 | 0.667 | Pass |
| 236.333 | STR-I | 1 | 0.667 | Pass |
| 238.333 | STR-I | 1 | 0.667 | Pass |
| 239.150 | STR-I | 1 | 0.667 | Pass |
| 244.750 | STR-I | 1 | 0.667 | Pass |
| 247.550 | STR-I | 1 | 0.667 | Pass |
| 255.950 | STR-I | 1 | 0.667 | Pass |
| 258.750 | STR-I | 1 | 0.667 | Pass |


| Location (ft) | LS | Load Comb | Spacing <br> (ft) | Code |
| :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 0.667 | Pass |
| 272.750 | STR-I | 1 | 0.667 | Pass |
| 281.150 | STR-I | 1 | 0.667 | Pass |
| 286.750 | STR-I | 1 | 0.667 | Pass |
| 289.550 | STR-I | 1 | 0.667 | Pass |
| 297.950 | STR-I | 1 | 0.667 | Pass |
| 300.750 | STR-I | 1 | 0.667 | Pass |
| 306.350 | STR-I | 1 | 0.667 | Pass |
| 307.167 | STR-I | 1 | 0.667 | Pass |
| 309.167 | STR-I | 1 | 0.667 | Pass |
| 310.898 | STR-I | 1 | 0.667 | Pass |
| 318.609 | STR-I | 1 | 0.667 | Pass |
| 320.333 | STR-I | 1 | 0.667 | Pass |
| 321.025 | STR-I | 1 | 0.667 | Pass |
| 322.333 | STR-I | 1 | 0.667 | Pass |
| 325.210 | STR-I | 1 | 0.667 | Pass |
| 327.300 | STR-I | 1 | 0.667 | Pass |
| 333.575 | STR-I | 1 | 0.667 | Pass |
| 335.670 | STR-I | 1 | 0.667 | Pass |
| 339.850 | STR-I | 1 | 0.667 | Pass |
| 346.125 | STR-I | 1 | 0.667 | Pass |
| 346.625 | STR-I | 1 | 0.667 | Pass |
| 352.400 | STR-I | 1 | 0.667 | Pass |
| 356.580 | STR-I | 1 | 0.667 | Pass |
| 358.675 | STR-I | 1 | 0.667 | Pass |
| 364.950 | STR-I | 1 | 0.667 | Pass |
| 367.040 | STR-I | 1 | 0.667 | Pass |
| 370.917 | STR-I | 1 | 0.667 | Pass |
| 371.225 | STR-I | 1 | 0.667 | Pass |
| 372.917 | STR-I | 1 | 0.667 | Pass |
| 374.650 | STR-I | 1 | 0.667 | Pass |

## Girder Longitudinal Reinforcement

(Article 5.8.3.5)

| Location <br> (ft) | LS | Load <br> Comb | Left Term <br> (kip) | Right Term <br> (kip) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.850 | STR-I | 1 | 1116.167 | 415.212 | 2.688 | Pass |
|  |  |  |  |  |  |  |


| Location (ft) | LS | Load Comb | Left Term (kip) | Right Term <br> (kip) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.583 | STR-I | 1 | 1323.834 | 508.219 | 2.605 | Pass |
| 6.275 | STR-I | 1 | 1312.101 | 588.182 | 2.231 | Pass |
| 6.583 | STR-I | 1 | 1310.304 | 602.054 | 2.176 | Pass |
| 10.460 | STR-I | 1 | 1298.919 | 762.784 | 1.703 | Pass |
| 12.550 | STR-I | 1 | 1297.950 | 841.682 | 1.542 | Pass |
| 18.825 | STR-I | 1 | 1296.428 | 977.280 | 1.327 | Pass |
| 20.920 | STR-I | 1 | 1294.825 | 1023.845 | 1.265 | Pass |
| 25.100 | STR-I | 1 | 1294.825 | 1061.662 | 1.220 | Pass |
| 30.875 | STR-I | 1 | 1294.825 | 1063.677 | 1.217 | Pass |
| 31.375 | STR-I | 1 | 1294.825 | 1064.910 | 1.216 | Pass |
| 37.650 | STR-I | 1 | 1307.644 | 1023.982 | 1.277 | Pass |
| 41.830 | STR-I | 1 | 1307.644 | 936.800 | 1.396 | Pass |
| 43.925 | STR-I | 1 | 1309.634 | 870.690 | 1.504 | Pass |
| 50.200 | STR-I | 1 | 1311.661 | 668.856 | 1.961 | Pass |
| 52.290 | STR-I | 1 | 1323.104 | 585.287 | 2.261 | Pass |
| 55.167 | STR-I | 1 | 1331.852 | 463.231 | 2.875 | Pass |
| 56.475 | STR-I | 1 | 1337.735 | 433.747 | 3.084 | Pass |
| 57.167 | STR-I | 1 | 1432.265 | 420.217 | 3.408 | Pass |
| 58.891 | STR-I | 1 | 1215.886 | 381.651 | 3.186 | Pass |
| 66.602 | STR-I | 1 | 1755.573 | 425.629 | 4.125 | Pass |
| 68.333 | STR-I | 1 | 1962.830 | 462.882 | 4.240 | Pass |
| 70.333 | STR-I | 1 | 1950.316 | 529.589 | 3.683 | Pass |
| 71.150 | STR-I | 1 | 1856.272 | 559.647 | 3.317 | Pass |
| 76.750 | STR-I | 1 | 1827.644 | 818.465 | 2.233 | Pass |
| 79.550 | STR-I | 1 | 1826.359 | 936.063 | 1.951 | Pass |
| 87.950 | STR-I | 1 | 1826.079 | 1234.256 | 1.479 | Pass |
| 90.750 | STR-I | 1 | 1823.975 | 1326.926 | 1.375 | Pass |
| 96.350 | STR-I | 1 | 1808.383 | 1460.627 | 1.238 | Pass |
| 104.750 | STR-I | 1 | 1808.383 | 1488.489 | 1.215 | Pass |
| 113.150 | STR-I | 1 | 1808.383 | 1473.779 | 1.227 | Pass |
| 118.750 | STR-I | 1 | 1823.975 | 1348.866 | 1.352 | Pass |
| 121.550 | STR-I | 1 | 1826.079 | 1259.777 | 1.450 | Pass |
| 129.950 | STR-I | 1 | 1826.359 | 968.876 | 1.885 | Pass |
| 132.750 | STR-I | 1 | 1827.644 | 845.636 | 2.161 | Pass |
| 138.350 | STR-I | 1 | 1856.272 | 575.914 | 3.223 | Pass |
| 139.167 | STR-I | 1 | 1950.316 | 544.918 | 3.579 | Pass |
| 141.167 | STR-I | 1 | 1962.830 | 484.843 | 4.048 | Pass |
| 142.898 | STR-I | 1 | 1755.573 | 440.736 | 3.983 | Pass |


| Location (ft) | LS | Load Comb | Left Term (kip) | Right Term <br> (kip) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STR-I | 1 | 1755.573 | 427.427 | 4.107 | Pass |
| 152.333 | STR-I | 1 | 1962.830 | 465.436 | 4.217 | Pass |
| 154.333 | STR-I | 1 | 1950.316 | 541.307 | 3.603 | Pass |
| 155.150 | STR-I | 1 | 1856.272 | 571.827 | 3.246 | Pass |
| 160.750 | STR-I | 1 | 1827.644 | 838.191 | 2.180 | Pass |
| 163.550 | STR-I | 1 | 1826.359 | 959.687 | 1.903 | Pass |
| 171.950 | STR-I | 1 | 1826.079 | 1255.088 | 1.455 | Pass |
| 174.750 | STR-I | 1 | 1823.975 | 1346.252 | 1.355 | Pass |
| 180.350 | STR-I | 1 | 1808.383 | 1475.756 | 1.225 | Pass |
| 188.750 | STR-I | 1 | 1808.383 | 1495.672 | 1.209 | Pass |
| 197.150 | STR-I | 1 | 1808.383 | 1475.756 | 1.225 | Pass |
| 202.750 | STR-I | 1 | 1823.975 | 1346.252 | 1.355 | Pass |
| 205.550 | STR-I | 1 | 1826.079 | 1255.088 | 1.455 | Pass |
| 213.950 | STR-I | 1 | 1826.359 | 959.687 | 1.903 | Pass |
| 216.750 | STR-I | 1 | 1827.644 | 838.191 | 2.180 | Pass |
| 222.350 | STR-I | 1 | 1856.272 | 571.827 | 3.246 | Pass |
| 223.167 | STR-I | 1 | 1950.316 | 541.307 | 3.603 | Pass |
| 225.167 | STR-I | 1 | 1962.830 | 465.436 | 4.217 | Pass |
| 226.898 | STR-I | 1 | 1755.573 | 427.427 | 4.107 | Pass |
| 234.602 | STR-I | 1 | 1755.573 | 440.736 | 3.983 | Pass |
| 236.333 | STR-I | 1 | 1962.830 | 484.843 | 4.048 | Pass |
| 238.333 | STR-I | 1 | 1950.316 | 544.918 | 3.579 | Pass |
| 239.150 | STR-I | 1 | 1856.272 | 575.914 | 3.223 | Pass |
| 244.750 | STR-I | 1 | 1827.644 | 845.636 | 2.161 | Pass |
| 247.550 | STR-I | 1 | 1826.359 | 968.876 | 1.885 | Pass |
| 255.950 | STR-I | 1 | 1826.079 | 1259.777 | 1.450 | Pass |
| 258.750 | STR-I | 1 | 1823.975 | 1348.866 | 1.352 | Pass |
| 264.350 | STR-I | 1 | 1808.383 | 1473.779 | 1.227 | Pass |
| 272.750 | STR-I | 1 | 1808.383 | 1488.489 | 1.215 | Pass |
| 281.150 | STR-I | 1 | 1808.383 | 1460.627 | 1.238 | Pass |
| 286.750 | STR-I | 1 | 1823.975 | 1326.926 | 1.375 | Pass |
| 289.550 | STR-I | 1 | 1826.079 | 1234.256 | 1.479 | Pass |
| 297.950 | STR-I | 1 | 1826.359 | 936.063 | 1.951 | Pass |
| 300.750 | STR-I | 1 | 1827.644 | 818.465 | 2.233 | Pass |
| 306.350 | STR-I | 1 | 1856.272 | 559.647 | 3.317 | Pass |
| 307.167 | STR-I | 1 | 1950.316 | 529.589 | 3.683 | Pass |
| 309.167 | STR-I | 1 | 1962.830 | 462.882 | 4.240 | Pass |
| 310.898 | STR-I | 1 | 1755.573 | 425.629 | 4.125 | Pass |


| Location <br> (ft) | LS | Load <br> Comb | Left Term <br> (kip) | Right Term <br> (kip) | Ratio | Code |
| :---: | :---: | :---: | ---: | ---: | ---: | :--- |
|  | STR-I | 1 | 1215.886 | 381.651 | 3.186 | Pass |
| 320.333 | STR-I | 1 | 1432.265 | 420.217 | 3.408 | Pass |
| 321.025 | STR-I | 1 | 1337.735 | 433.747 | 3.084 | Pass |
| 322.333 | STR-I | 1 | 1331.852 | 463.231 | 2.875 | Pass |
| 325.210 | STR-I | 1 | 1323.104 | 585.287 | 2.261 | Pass |
| 327.300 | STR-I | 1 | 1311.661 | 668.856 | 1.961 | Pass |
| 333.575 | STR-I | 1 | 1309.634 | 870.690 | 1.504 | Pass |
| 335.670 | STR-I | 1 | 1307.644 | 936.800 | 1.396 | Pass |
| 339.850 | STR-I | 1 | 1307.644 | 1023.982 | 1.277 | Pass |
| 346.125 | STR-I | 1 | 1294.825 | 1064.910 | 1.216 | Pass |
| 346.625 | STR-I | 1 | 1294.825 | 1063.677 | 1.217 | Pass |
| 352.400 | STR-I | 1 | 1294.825 | 1061.662 | 1.220 | Pass |
| 356.580 | STR-I | 1 | 1294.825 | 1023.845 | 1.265 | Pass |
| 358.675 | STR-I | 1 | 1296.428 | 977.280 | 1.327 | Pass |
| 364.950 | STR-I | 1 | 1297.950 | 841.682 | 1.542 | Pass |
| 367.040 | STR-I | 1 | 1298.919 | 762.784 | 1.703 | Pass |
| 370.917 | STR-I | 1 | 1310.304 | 602.054 | 2.176 | Pass |
| 371.225 | STR-I | 1 | 1312.101 | 588.182 | 2.231 | Pass |
| 372.917 | STR-I | 1 | 1323.834 | 508.219 | 2.605 | Pass |
| 374.650 | STR-I | 1 | 1116.167 | 415.212 | 2.688 | Pass |

## Deflection

(Article 2.5.2.6.2)

| Location <br> (ft) | Vehicle | Vehicular <br> Load <br> Combination | Span <br> Length <br> (ft) | Deflection <br> (in) | Deflection <br> Limit <br> (in) | Ratio | Code |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 |  | 62.750 | 0.000000 | 0.000000 | 99.000 | Pass |  |
| 2.583 | HL-93 (US) | Design Truck | 62.750 | -0.010976 | 0.941250 | 85.755 | Pass |
| 4.583 | HL-93 (US) | Design Truck | 62.750 | -0.019350 | 0.941250 | 48.644 | Pass |
| 6.275 | HL-93 (US) | Design Truck | 62.750 | -0.026274 | 0.941250 | 35.824 | Pass |
| 6.583 | HL-93 (US) | Design Truck | 62.750 | -0.027516 | 0.941250 | 34.208 | Pass |
| 10.460 | HL-93 (US) | Design Truck | 62.750 | -0.042022 | 0.941250 | 22.399 | Pass |
| 12.550 | HL-93 (US) | Design Truck | 62.750 | -0.049842 | 0.941250 | 18.885 | Pass |
| 18.825 | HL-93 (US) | Design Truck | 62.750 | -0.066983 | 0.941250 | 14.052 | Pass |
| 20.920 | HL-93 (US) | Design Truck | 62.750 | -0.070698 | 0.941250 | 13.314 | Pass |
| 25.100 | HL-93 (US) | Design Truck | 62.750 | -0.078110 | 0.941250 | 12.050 | Pass |
| 30.875 | HL-93 (US) | Design Truck | 62.750 | -0.080213 | 0.941250 | 11.734 | Pass |
| 31.375 | HL-93 (US) | Design Truck | 62.750 | -0.080065 | 0.941250 | 11.756 | Pass |


| Location <br> (ft) | Vehicle | $\begin{array}{\|c\|} \hline \text { Vehicular } \\ \text { Load } \\ \text { Combination } \\ \hline \end{array}$ | Span Length (ft) | $\left\lvert\, \begin{gathered} \text { Deflection } \\ \text { (in) } \end{gathered}\right.$ | Deflection Limit (in) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37.650 | HL-93 (US) | Design Truck | 62.750 | -0.073640 | 0.941250 | 12.782 | Pass |
| 41.830 | HL-93 (US) | Design Truck | 62.750 | -0.064534 | 0.941250 | 14.585 | Pass |
| 43.925 | HL-93 (US) | Design Truck | 62.750 | -0.059970 | 0.941250 | 15.695 | Pass |
| 50.200 | HL-93 (US) | Design Truck | 62.750 | -0.040882 | 0.941250 | 23.023 | Pass |
| 52.290 | HL-93 (US) | Design Truck | 62.750 | -0.033886 | 0.941250 | 27.777 | Pass |
| 55.167 | HL-93 (US) | Design Truck | 62.750 | -0.024255 | 0.941250 | 38.806 | Pass |
| 56.475 | HL-93 (US) | Design Truck | 62.750 | -0.019863 | 0.941250 | 47.386 | Pass |
| 57.167 | HL-93 (US) | Design Truck | 62.750 | -0.017559 | 0.941250 | 53.606 | Pa |
| 59.167 | HL-93 (US) | Design Truck | 62.750 | 0.011761 | 0.941250 | 80.031 | Pass |
| 61.750 |  |  | 62.750 | 0.000000 | 0.000000 | 99.000 | Pass |
| 62.750 |  |  | 62.750 | 0.000000 | 0.000000 | 99.000 | Pass |
| 63.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pa |
| 66.333 | HL-93 (US) | Design Truck | 84.000 | -0.013752 | 1.260000 | 91.620 | Pa |
| 68.333 | HL-93 (US) | Design Truck | 84.000 | -0.022114 | 1.260000 | 56.978 | Pass |
| 70.333 | HL-93 (US) | Design Truck | 84.000 | -0.030827 | 1.260000 | 40.873 | Ss |
| 71.150 | HL-93 (US) | Design Truck | 84.000 | -0.034461 | 1.260000 | 36.563 | Pass |
| 76.750 | HL-93 (US) | Design Truck | 84.000 | -0.059748 | 1.260000 | 21.089 | Pa |
| 79.550 | HL-93 (US) | Design Truck | 84.000 | -0.072391 | 1.260000 | 17.405 | Pass |
| 87.950 | HL-93 (US) | Design Truck | 84.000 | -0.105608 | 1.260000 | 11.931 | Pass |
| 90.750 | HL-93 (US) | Design Truck | 84.000 | -0.113329 | 1.260000 | 11.118 | Pass |
| 96.350 | HL-93 (US) | Design Truck | 84.000 | -0.128771 | 1.260000 | 9.785 | Pass |
| 104.750 | HL-93 (US) | Design Truck | 84.000 | -0.137647 | 1.260000 | 9.154 | Pass |
| 113.150 | HL-93 (US) | Design Truck | 84.000 | -0.129711 | 1.260000 | 9.714 | Pass |
| 118.750 | HL-93 (US) | Design Truck | 84.000 | -0.114677 | 1.260000 | 10.987 | Pass |
| 121.550 | HL-93 (US) | Design Truck | 84.000 | -0.107160 | 1.260000 | 11.758 | Pass |
| 129.950 | HL-93 (US) | Design Truck | 84.000 | -0.074233 | 1.260000 | 16.974 | Pass |
| 132.750 | HL-93 (US) | Design Truck | 84.000 | -0.061408 | 1.260000 | 20.519 | Pa |
| 138.350 | HL-93 (US) | Design Truck | 84.000 | -0.035758 | 1.260000 | 35.237 | Pass |
| 139.167 | HL-93 (US) | Design Truck | 84.000 | -0.032034 | 1.260000 | 39.333 | Pass |
| 141.167 | HL-93 (US) | Design Truck | 84.000 | -0.023068 | 1.260000 | 54.620 | Pass |
| 143.167 | HL-93 (US) | Design Truck | 84.000 | -0.014409 | 1.260000 | 87.445 | Pass |
| 145.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pass |
| 146.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pass |
| 147.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pass |
| 150.333 | HL-93 (US) | Design Truck | 84.000 | -0.014563 | 1.260000 | 86.521 | Pass |
| 152.333 | HL-93 (US) | Design Truck | 84.000 | -0.023323 | 1.260000 | 54.024 | Pass |
| 154.333 | HL-93 (US) | Design Truck | 84.000 | -0.032398 | 1.260000 | 38.892 | Pass |
|  |  |  |  |  |  |  |  |


| Location <br> (ft) | Vehicle | $\begin{array}{\|c\|} \hline \text { Vehicular } \\ \text { Load } \\ \text { Combination } \end{array}$ | Span Length (ft) | $\left\lvert\, \begin{gathered} \text { Deflection } \\ \text { (in) } \end{gathered}\right.$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Deflection } \\ \text { Limit } \\ \text { (in) } \end{array} \\ \hline \end{array}$ | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 155.150 | HL-93 (US) | Design Truck | 84.000 | -0.036169 | 1.260000 | 34.837 | Pass |
| 160.750 | HL-93 (US) | Design Truck | 84.000 | -0.062181 | 1.260000 | 20.263 | Pass |
| 163.550 | HL-93 (US) | Design Truck | 84.000 | -0.075187 | 1.260000 | 16.758 | Pass |
| 171.950 | HL-93 (US) | Design Truck | 84.000 | -0.108868 | 1.260000 | 11.574 | Pas |
| 174.750 | HL-93 (US) | Design Truck | 84.000 | -0.116601 | 1.260000 | 10.806 | Pass |
| 180.350 | HL-93 (US) | Design Truck | 84.000 | -0.132068 | 1.260000 | 9.541 | Pass |
| 188.750 | HL-93 (US) | Design Truck | 84.000 | -0.140635 | 1.260000 | 8.959 | Pass |
| 197.150 | HL-93 (US) | Design Truck | 84.000 | -0.132068 | 1.260000 | 9.541 | Pass |
| 202.750 | HL-93 (US) | Design Truck | 84.000 | -0.116601 | 1.260000 | 10.806 | Pas |
| 205.550 | HL-93 (US) | Design Truck | 84.000 | -0.108868 | 1.260000 | 11.574 |  |
| 213.950 | HL-93 (US) | Design Truck | 84.000 | -0.075187 | 1.260000 | 16.758 | Pa |
| 216.750 | HL-93 (US) | Design Truck | 84.000 | -0.062181 | 1.260000 | 20.263 | Pa |
| 222.350 | HL-93 (US) | Design Truck | 84.000 | -0.036169 | 1.260000 | 34.837 | Pass |
| 223.167 | HL-93 (US) | Design Truck | 84.000 | -0.032398 | 1.260000 | 38.892 | Pa |
| 225.167 | HL-93 (US) | Design Truck | 84.00 | -0.023323 | 1.260000 | 54.024 |  |
| 227.167 | HL-93 ( | Design Truck | 84.000 | -0.014563 | 1.260000 | 86.521 | Pa |
| 229.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pa |
| 230.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pas |
| 231.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pa |
| 234.333 | HL-93 (US) | Design | 84.000 | -0.0144 | 1.260000 | 87.445 |  |
| 236.333 | HL-93 (US) | Design Truck | 84.000 | -0.023068 | 1.260000 | 54.620 | Pass |
| 238.333 | HL-93 (US) | Design Truck | 84.000 | -0.032034 | 1.260000 | 39.333 | Pa |
| 239.150 | HL-93 (US) | Design Truck | 84.000 | -0.035758 | 1.260000 | 35.237 | Pas |
| 244.750 | HL-93 (US) | Design Truck | 84.000 | -0.061408 | 1.260000 | 20.519 | Pa |
| 247.550 | HL-93 (US) | Design Truck | 84.000 | -0.074233 | 1.260000 | 16.974 |  |
| 255.950 | HL-93 (US) | Design Truck | 84.000 | -0.107160 | 1.260000 | 11.758 | Pas |
| 258.750 | HL-93 (US) | Design Truck | 84.000 | -0.114677 | 1.260000 | 10.987 | Pass |
| 264.350 | HL-93 (US) | Design Truck | 84.000 | -0.129711 | 1.260000 | 9.714 | Pas |
| 272.750 | HL-93 (US) | Design Truck | 84.000 | -0.137647 | 1.260000 | 9.154 | Pas |
| 281.150 | HL-93 (US) | Design Truck | 84.000 | -0.128771 | 1.260000 | 9.785 | Pass |
| 286.750 | HL-93 (US) | Design Truck | 84.000 | -0.113329 | 1.260000 | 11.118 | Pas |
| 289.550 | HL-93 (US) | Design Truck | 84.000 | -0.105608 | 1.260000 | 11.931 | Pass |
| 297.950 | HL-93 (US) | Design Truck | 84.000 | -0.072391 | 1.260000 | 17.405 | Pass |
| 300.750 | HL-93 (US) | Design Truck | 84.000 | -0.059748 | 1.260000 | 21.089 | Pass |
| 306.350 | HL-93 (US) | Design Truck | 84.000 | -0.034461 | 1.260000 | 36.563 | Pass |
| 307.167 | HL-93 (US) | Design Truck | 84.000 | -0.030827 | 1.260000 | 40.873 | Pass |
| 309.167 | HL-93 (US) | Design Truck | 84.000 | -0.022114 | 1.260000 | 56.978 | Pass |
|  |  |  |  |  |  |  |  |


| Location (ft) | Vehicle | $\left\lvert\, \begin{gathered} \text { Vehicular } \\ \text { Load } \\ \text { Combination } \end{gathered}\right.$ | Span Length (ft) | Deflection <br> (in) | Deflection Limit (in) | Ratio | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 311.167 | HL-93 (US) | Design Truck | 84.000 | -0.013752 | 1.260000 | 91.620 | Pass |
| 313.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pa |
| 314.750 |  |  | 84.000 | 0.000000 | 0.000000 | 99.000 | Pass |
| 315.750 |  |  | 62.750 | 0.000000 | 0.000000 | 99.000 | Pass |
| 318.333 | HL-93 (US) | Design Truck | 62.750 | 0.011761 | 0.941250 | 80.031 | Pass |
| 320.333 | HL-93 (US) | Design Truck | 62.750 | -0.017559 | 0.941250 | 53.606 | Pass |
| 321.025 | HL-93 (US) | Design Truck | 62.750 | -0.019863 | 0.941250 | 47.386 | Pass |
| 322.333 | HL-93 (US) | Design Truck | 62.750 | -0.024255 | 0.941250 | 38.806 | Pass |
| 325.210 | HL-93 (US) | Design Truck | 62.750 | -0.033886 | 0.941250 | 27.777 | Pas |
| 327.300 | HL-93 (US) | Design Truck | 62.750 | -0.040882 | 0.941250 | 23.023 | Pa |
| 333.575 | HL-93 (US) | Design Truck | 62.750 | -0.059970 | 0.941250 | 15.695 | Pas |
| 335.670 | HL-93 (US) | Design Truck | 62.750 | -0.06453 | 0.941250 | 14.585 | Pass |
| 339.850 | HL-93 (US) | Design Truck | 62.750 | -0.073640 | 0.941250 | 12.782 | Pa |
| 346.125 | HL-93 (US) | Design Truck | 62.750 | -0.080065 | 0.941250 | 11.756 | Pa |
| 346.625 | HL-93 (US) | Design Truck | 62.750 | -0.080213 | 0.941250 | 11.734 | Pas |
| 352.400 | HL-93 (US) | Design Truck | 62.750 | -0.078110 | 0.941250 | 12.050 | Pas |
| 356.580 | HL-93 (US) | Design Truck | 62.750 | -0.070698 | 0.941250 | 13.314 | Pass |
| 358.675 | HL-93 (US) | Design Truck | 62.750 | -0.066983 | 0.941250 | 14.052 | Pass |
| 364.950 | HL-93 (US) | Design Truck | 62.750 | -0.049842 | 0.941250 | 18.885 | Pas |
| 367.040 | HL-93 (US) | Design Truck | 62.750 | -0.042022 | 0.941250 | 22.399 | Pass |
| 370.917 | HL-93 (US) | Design Truck | 62.750 | -0.027516 | 0.941250 | 34.208 | Pass |
| 371.225 | HL-93 (US) | Design Truck | 62.750 | -0.026274 | 0.941250 | 35.824 | Pass |
| 372.917 | HL-93 (US) | Design Truck | 62.750 | -0.019350 | 0.941250 | 48.644 | Pass |
| 374.917 | HL-93 (US) | Design Truck | 62.750 | -0.010976 | 0.941250 | 85.755 | Pass |
| 377.500 |  |  | 62.750 | 0.000000 | 0.000000 | 99.000 | Pass |

598


LONEITMDINAL DIRECTION (9.7.3.2)
percentage of Congidinal reinforcement

$$
\begin{aligned}
& \frac{200}{\sqrt{S}} \leqslant 67 \%, S=6.167 \% \\
& \frac{200}{\sqrt{6.167}}=80.5 \%>67 \% \text { use } 67 \%
\end{aligned}
$$

Transverse Reinforcing $=67^{\circ}$ of $\neq 5 @ 7^{\prime \prime}\left(0.531 \mathrm{~m}^{2} / \mathrm{ft}^{\prime}\right)$

$$
\Rightarrow 0.67(0.531)=0.356 \mathrm{~m}^{2} \text { per ft }
$$

$$
\text { use \#4@6" }\left(0.4 \mathrm{in}^{2}\right. \text { per fo) }
$$

Negative moment reinforcing, is designed by Conspan \& Apis Use \#10 bundle with \#4 @ 6" over cark pier. A design check for negative moment reinforcing at porter 3 or 4 is shown in pg $255.1 \& 255.2$

| By: $\#$ B Date $7 / 13$ | Project no. FBR $0142-055$ | Project code (SAA): $/ 8085$ |
| :---: | :--- | :---: | :---: |
| Chk'd:JE Date $8 / 13$ | Structure no. $B-16-E V$ | Sheet 254 of 508 |
| CDOT Form \#1034 | $3 / 02$ |  |




ff $\rightarrow$ \&: $50 Z$

$$
\text { Girder } a,
$$

$$
\begin{aligned}
& \text { Span3 } \\
& \text { Strength I Negative Momant@ P3RP4 } \\
& 2605.13 \text { K.ft }>2059.3 \text { k.ft OK }
\end{aligned}
$$



## Description:

HL-93 lane load on elastic approach slab foundation Assume Kv = 30 tons/ft^3

Units: English

```
Properties - X = feet, E = ksi, I = in^4
    X = 0; E = 4067; I = 207360;
            /Approach Slab 12' wide, 1' thick
    X = 20; E = 4067; I = 207360;
```

Moment Releases - $\mathrm{X}=$ feet
Supports $-\mathrm{X}=$ feet, Displacement $=$ inches, Rotation $=$ radians
$\mathrm{X}=0$; Disp $=0$;
Springs $-\mathrm{X}=$ feet, $V$ Spring $=$ kip/inch, $\mathrm{RSpring}=\mathrm{kip} \mathrm{in} / \mathrm{rad}$
$X=2.5 ;$ VSpring $=3000$;
$\mathrm{X}=7.5$; VSpring $=3000$;
X = 12.5; VSpring = 3000;
$\mathrm{X}=17.5$; VSpring $=3000$;
Point Loads $-\mathrm{X}=\mathrm{feet}, \mathrm{PLoad}=\mathrm{kips}, \mathrm{Moment}=\mathrm{kip} \mathrm{ft}$
Uniform Loads - XStart \& XEnd $=$ feet, UStart \& UEnd $=$ kip/ft
¡Start $=0$; XEnd $=20$; UStart $=-0.64$; UEnd $=-0.64$;
/HL-93 Lane Load

Project:
$y$ :
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft


Shear - kips


Moment - kip ft
5.785933

Rotation - radians 0.000011
$\qquad$

Deflection - inches
0.000000
$-0.001328^{\prime} \quad 258 / 508$
WinBeam 3.0 - Registered to Shareware - Please Register
untitled

| Live Load Envelopes (Per Lane) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Span | Point | Min Shear (lbs) | Max Shear (lbs)min | Moment(ft-7bs) Max | Moment(ft-lbs) |
|  | 0 | $-15.398 \mathrm{e}+03$ | $98.551 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 1 | 1 | -15.644e+03 | $83.261 e+03$ | -96.624e+03 | $533.512 \mathrm{e}+03$ |
| 1 | 2 | -18.861e+03 | $68.795 \mathrm{e}+03$ | -193.248e+03 | $901.381 \mathrm{e}+03$ |
| 1 | 3 | -27.944e+03 | $55.275 \mathrm{e}+03$ | -289.872e+03 | $1.112 \mathrm{e}+06$ |
| 1 | 4 | -38.189e+03 | $42.838 \mathrm{e}+03$ | -386.496e+03 | $1.212 \mathrm{e}+06$ |
| 1 | 5 | -50.870e+03 | $31.547 \mathrm{e}+03$ | -483.120e+03 | $1.198 \mathrm{e}+06$ |
| 1 | 6 | -64.137e+03 | $21.913 \mathrm{e}+03$ | -579.744e+03 | $1.097 \mathrm{e}+06$ |
| 1 | 7 | -77.187e+03 | $14.876 \mathrm{e}+03$ | -676.368e+03 | $877.592 \mathrm{e}+03$ |
| 1 | 8 | -89.851e+03 | $8.892 e+03$ | -772.992e+03 | $562.061 \mathrm{e}+03$ |
| 1 | 9 | -101.948e+03 | $4.205 \mathrm{e}+03$ | -938.852e+03 | $261.695 \mathrm{e}+03$ |
| 1 | 10 | -113.309e+03 | $4.084 \mathrm{e}+03$ | -1.373e+06 | $256.857 \mathrm{e}+03$ |
| 2 | 0 | -13.736e+03 | $116.273 \mathrm{e}+03$ | -1.373e+06 | $256.857 \mathrm{e}+03$ |
| 2 | 1 | -13.923e+03 | $104.864 \mathrm{e}+03$ | -793.870e+03 | $281.660 \mathrm{e}+03$ |
| 2 | 2 | -14.533e+03 | $90.278 \mathrm{e}+03$ | -477.324e+03 | $631.252 \mathrm{e}+03$ |
| 2 | 3 | -21.313e+03 | $75.303 \mathrm{e}+03$ | -417.924e+03 | $1.039 \mathrm{e}+06$ |
| 2 | 4 | -32.404e+03 | $60.449 \mathrm{e}+03$ | -369.151e+03 | $1.300 \mathrm{e}+06$ |
| 2 | 5 | -45.307e+03 | $46.210 \mathrm{e}+03$ | -372.714e+03 | 1. $384 \mathrm{e}+06$ |
| 2 | 6 | -59.402e+03 | $33.021 \mathrm{e}+03$ | -469.864e+03 | 1. $333 \mathrm{e}+06$ |
| 2 | 7 | -74.226e+03 | $21.581 \mathrm{e}+03$ | $-567.014 e+03$ | $1.105 \mathrm{e}+06$ |
| 2 | 8 | -89.304e+03 | $13.589 \mathrm{e}+03$ | -666.536e+03 | $718.167 \mathrm{e}+03$ |
| 2 | 9 | -104.136e+03 | $10.736 \mathrm{e}+03$ | -937.988e+03 | $339.297 \mathrm{e}+03$ |
| 2 | 10 | -118.164e+03 | $10.535 \mathrm{e}+03$ | -1.557e+06 | $272.267 \mathrm{e}+03$ |
| 3 | 0 | -13.697e+03 | $116.228 \mathrm{e}+03$ | -1.557e+06 | $272.267 \mathrm{e}+03$ |
| 3 | 1 | -13.894e+03 | $105.024 \mathrm{e}+03$ | -932.381e+03 | $328.627 \mathrm{e}+03$ |
| 3 | 2 | -14.531e+03 | $90.322 \mathrm{e}+03$ | -648.591e+03 | $698.462 \mathrm{e}+03$ |
| 3 | 3 | -22.177e+03 | $75.344 \mathrm{e}+03$ | -563.171e+03 | $1.098 \mathrm{e}+06$ |
| 3 | 4 | -33.429e+03 | $60.566 \mathrm{e}+03$ | -482.289e+03 | 1. $342 \mathrm{e}+06$ |
| 3 | 5 | -46.461e+03 | $46.461 \mathrm{e}+03$ | -401.408e+03 | $1.409 \mathrm{e}+06$ |
| 3 | 6 | -60.566e+03 | $33.429 \mathrm{e}+03$ | -482.289e+03 | 1. $342 \mathrm{e}+06$ |
| 3 | 7 | -75.344e+03 | $22.177 \mathrm{e}+03$ | -563.171e+03 | $1.098 \mathrm{e}+06$ |
| 3 | 8 | -90.322e+03 | $14.531 \mathrm{e}+03$ | -648.591e+03 | $698.462 \mathrm{e}+03$ |
| 3 | 9 | -105.024e+03 | $13.894 \mathrm{e}+03$ | -932.381e+03 | $328.627 \mathrm{e}+03$ |
| 3 | 10 | -118.895e+03 | $13.697 \mathrm{e}+03$ | -1.557e+06 | $272.267 \mathrm{e}+03$ |
| 4 | 0 | -10.535e+03 | $115.446 \mathrm{e}+03$ | -1.557e+06 | $272.267 \mathrm{e}+03$ |
| 4 | 1 | -10.736e+03 | $104.136 \mathrm{e}+03$ | -937.988e+03 | $339.297 \mathrm{e}+03$ |
| 4 | 2 | $-13.589 \mathrm{e}+03$ | $89.304 \mathrm{e}+03$ | -666.536e+03 | $718.167 \mathrm{e}+03$ |
| 4 | 3 | -21.581e+03 | $74.226 \mathrm{e}+03$ | -567.014e+03 | $1.105 \mathrm{e}+06$ |
| 4 | 4 | -33.021e+03 | $59.402 \mathrm{e}+03$ | -469.864e+03 | $1.333 \mathrm{e}+06$ |
| 4 | 5 | -46.210e+03 | $45.307 \mathrm{e}+03$ | -372.714e+03 | $1.384 \mathrm{e}+06$ |
| 4 | 6 | -60.449e+03 | $32.404 \mathrm{e}+03$ | -369.151e+03 | $1.300 \mathrm{e}+06$ |
| 4 | 7 | -75.303e+03 | $21.313 \mathrm{e}+03$ | -417.924e+03 | $1.039 \mathrm{e}+06$ |
| 4 | 8 | -90.278e+03 | $14.533 \mathrm{e}+03$ | -477.324e+03 | $631.252 \mathrm{e}+03$ |
| 4 | 9 | -104.864e+03 | $13.923 \mathrm{e}+03$ | -793.870e+03 | $281.660 \mathrm{e}+03$ |
| 4 | 10 | -118.534e+03 | $13.736 \mathrm{e}+03$ | -1.373e+06 | $256.857 \mathrm{e}+03$ |
| 5 | 0 | -4.084e+03 | 109.641e+03 | -1.373e+06 | $256.857 \mathrm{e}+03$ |
| 5 | 1 | -4.205e+03 | $101.948 \mathrm{e}+03$ | -938.852e+03 | $261.695 \mathrm{e}+03$ |
| 5 | 2 | -8.892e+03 | $89.851 \mathrm{e}+03$ | -772.992e+03 | $562.061 \mathrm{e}+03$ |
| 5 | 3 | -14.876e+03 | $77.187 \mathrm{e}+03$ | $-676.368 \mathrm{e}+03$ | $877.592 \mathrm{e}+03$ |
| 5 | 4 | -21.913e+03 | $64.137 e+03$ | -579.744e+03 | $1.097 \mathrm{e}+06$ |
| 5 | 5 | -31.547e+03 | $50.870 \mathrm{e}+03$ | -483.120e+03 | $1.198 \mathrm{e}+06$ |
| 5 | 6 | -42.838e+03 | $38.189 \mathrm{e}+03$ | -386.496e+03 | $1.212 \mathrm{e}+06$ |
| 5 | 7 | -55.275e+03 | $27.944 \mathrm{e}+03$ | -289.872e+03 | $1.112 \mathrm{e}+06$ |
| 5 | 8 | -68.795e+03 | $18.861 e+03$ | -193.248e+03 | $901.381 \mathrm{e}+03$ |
| 5 | 9 | -83.261e+03 | $15.644 \mathrm{e}+03$ | -96.624e+03 | $533.512 \mathrm{e}+03$ |
| 5 | 10 | -98.551e+03 | $15.398 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |


| Live L | Envelopes | Lane) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pier | FxMin(1bs) | FxMax (1bs) | Fymin(1bs) | FyMax (lbs) | MzMin(ft-lbs) | MzMax (ft-1bs) |
|  | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $-15.398 \mathrm{e}+03$ | $98.551 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 2 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | -17.829e+03 | $156.819 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 3 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | -19.447e+03 | $166.922 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 4 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $-19.447 \mathrm{e}+03$ | $166.922 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 5 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | -17.829e+03 | $156.819 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
| 6 | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ | $-15.398 \mathrm{e}+03$ | $98.551 \mathrm{e}+03$ | $0.000 \mathrm{e}+00$ | $0.000 \mathrm{e}+00$ |
|  |  |  |  | $98.551$ | $+2.257$ | 100.81 K |
|  |  |  |  | (incluar approa | Lane slab) | load on |

Page 1

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)


* Contineroris Spar DL (Composite Dead Loads)

Bridge rails: $0.59+0.6$

$$
=1.19 \mathrm{k} / \mathrm{ft}^{t}
$$

Sidewalk $\{[0.75+8(0.04)]+0.75\} \frac{1}{2}(8)(0.15)=1.012 \mathrm{kft}$
Asphalt $0.036(38.83)$

$$
=1.398 \mathrm{k} / \mathrm{ft}
$$

$$
w_{3}=1.19+1092+1.398
$$

$$
=3.68 \mathrm{k} / \mathrm{ft}
$$

* Abutment Dead Load

Abwiment $\operatorname{Cap} \frac{87 \times 36}{144}(54.5)(0.15)$

$$
\begin{aligned}
& =177.8 \mathrm{k} \\
& =70.25 \mathrm{k}
\end{aligned}
$$

0

| By: HB Date $7-13$ | Project no. FBR 0/42-055 | Project code (SAlt): 18085 |
| :---: | :--- | :--- | :--- |
| Chk'd:KLP Date $8-13$ | Structure no. $\quad B-16-E V$ | Sheet 259 of 508 |

Project:
:
Date:
Checked:
Date:
Page:
Reactions - kips, kip ft
Simple Span DL

$\begin{array}{lr}418.734 & 379.747 \\ \text { Abut } & \text { Pier }\end{array}$
Shear - kips


Moment - kip ft
5625.746133

Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register

Project:

7:
Date:
Checked:
Date:
Page:
Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

Total unfactured Load on Abutment

$$
418.734+90.086+328.342
$$

$$
=837.163 \mathrm{~K} / \text { Abut }
$$

Total factored DLoad on abutment bearing

$$
\begin{array}{r}
W_{1}=418.734(1.25)+90.086 \frac{3.68-1.398}{3.68}(1.25)+90.086 \frac{1.398}{3.68}(1.5)+70.25(1.25) \\
=732.393 / 48.18
\end{array}
$$

$$
w_{w_{2}}=\frac{179.8}{54.5}(1.25)=4.08 \mathrm{k} / \mathrm{ft}
$$



Total Nnfactoned $D L$ on abutment bearing

$$
\begin{aligned}
& w_{1}=(418.734+90.86+70.25) / 48.58=11.92 \mathrm{k} / \mathrm{ft} \\
& w_{2}=\frac{177.8}{54.5}=3.26 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

| By: $\#$ D Date $7-13$ | Project no. FBR 0142-055 | Project code (SA\#): 18085 |
| :---: | :--- | :---: | :---: |
| Chk'd:KLP Date $8-13$ | Structure no. $\quad B-16-E V$ | Sheet 262 of 508 |
| CDOT Form \#1034 | 3/02 |  |

Project:
$\%$
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft
Factored $D L$


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


Project:
$1:$
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft Factored $D L$


Moment - kip ft


Rotation - radians


Deflection - inches


## WinBeam

Project:

Date:
Checked:
Date:
Page:
Reactions - kips, kip ft Unfactored $D \angle$


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches

WinBeam 3.0-Registered to Shareware - Please Register

Project:
1:
Date:

Checked:
Date:
Page:

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


```
Deflection - inches
```



 DESIGN COMPUTATIONS (Grid)

DEAD LOAD ANALYSIS

Dead Loads

* Simple Spar $D \angle$ (precast Girders + plastic Concrete)

Concrete box Girders. $\frac{978}{144}(20)(0.15)=20.375 \mathrm{k} / \mathrm{f}$
End block Girders: $\frac{72 \times 30}{144}(20)(0.15)=45 \quad k<f$

| Deck $: \frac{5}{12}(124)(0.15)$ | $=7.75 \mathrm{klf}$ |
| ---: | :--- |
| Hatberch $\quad: \frac{1}{12}(124)(0.15)$ | $=1.55 \mathrm{kLf}$ |

$w_{1}=20.375+7.75+1.55=29.675$ Elf
$W_{2}=45+7.75+1.55=54.3 \quad k L f$

* Continuous Span DL (Composite dead Loads)

Pedestrian Rails + Bridge Rails:0.68(2) $=1.36 \mathrm{~K} 1 \mathrm{f}$ Rail at Neclian $=0.05 k 6 f$ (Assumed)

Ladscoping Loads (see sheet $x \times$ )
sidewalks $\{[0.75+8(0.04)]+0.75\}\left(\frac{1}{2}\right)(8)(0.15)(2)=2.184 \times 4 f$


* Abutment Dead Loads

Abutment Cgi: $\frac{87 \times 3.6}{144}(127)(0.15)=414.3 \mathrm{~A}$

Approach Slab $20(1)(124)(0.15) \frac{1}{2}=186 \mathrm{~K}$

| By:HB Date $7 / 2013$ | Project no. FBR $0142-055$ | Project code (SAH): 18085 |
| :---: | :---: | :--- | :---: | :---: |
| Chk'd:KLP Date $8-13$ | Structure no. $\quad B-16-E V$ | Sheet 269 of 508 |
| CDOT Form \#1034 3/02 |  |  |

(1) Date: Checked: Page: Date: $\quad$ Presser

Reactions - kips, kip ft


Shear - kips


Moment - kip ft
14133.375242


Rotation - radians


Deflection - inches

$276 / 508$
WinBeam 3.0 - Registered to Shareware - Please Register

## Project:

$1:$
Date:

Checked:
Date:
Page:

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register

## DESIGN COMPUTATIONS (Grid)




Project:


Moment - kip ft


Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register


## Project:



Page:
Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches







范荡苞

ㅎ

言 密。资。 ABUTMENT CAISSON DESIG
SH 14 OVER POUDRE RIVER




COLORADO DEPARTMENT OF TRANSPORTATION

## DESIGN COMPUTATIONS (Grid)



Project:
v:
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register

## Project:

## Date:

Checked:
Date:
Page:
Reactions - kips, kip ft


Moment - kip ft


Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register


## STEEL REINFORCED RECTANGULAR ELASTOMERIC BEARING DESIGN <br> METHOD A

CONSTRUCTION PHASE 1, WHEN G ( 0.10 KSI ) HAS A RANGE $+15 \%=0.115 \mathrm{KSI}$

1. COMPRESSIVE STRESS:

$$
\mathrm{S}:=\frac{(\mathrm{L} \cdot \mathrm{~W})}{2 \cdot \mathrm{~h}_{\mathrm{r}^{\prime}}(\mathrm{L}+\mathrm{W})} \quad \mathrm{S}=8.25 \quad \text { Shape factor of a layer }
$$

$$
\sigma_{\mathrm{s}}:=\frac{\mathrm{V}_{\text {Total }}}{\mathrm{L} \cdot \mathrm{~W}} \quad \sigma_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{LL}}}{\mathrm{~L} \cdot \mathrm{~W}} \quad \frac{\mathrm{~S}^{2}}{\mathrm{n}}=8.508 \quad \mathrm{OK}
$$

$$
\sigma_{\mathrm{s}}=0.798 \cdot \mathrm{ksi} \quad \sigma_{\mathrm{L}}=0.249 \cdot \mathrm{ksi}
$$

$$
\text { Compressive_Stress1:=|} \begin{aligned}
& \text { "Good" } \quad \text { if } \sigma_{\mathrm{s}} \leq 1.25 \cdot \mathrm{ksi} \wedge \sigma_{\mathrm{s}} \leq 1.25 \cdot \mathrm{G} \cdot \mathrm{~S} \quad 14.7 \cdot 6 \cdot 3.2-6 \& 7 \\
& \text { "No Good" otherwise } 7
\end{aligned}
$$

Compressive_Stress1 = "Good"
2. ROTATION OF STEEL REINFORCED ELASTOMERIC BEARING
$\theta_{\mathrm{LL}}:=0.005 \cdot \mathrm{rad} \quad$ Rotation due to total load on traffic direction
$\theta_{\text {TCS }}:=0.000 \cdot \mathrm{rad} \quad$ Rotation from temp. + creep + shrinkage on traffic direction
$\theta_{\text {unk }}:=0.005 \cdot \mathrm{rad} \quad$ Fabrication and construction tolerances on traffic direction
$\theta_{\mathrm{sx}}:=\theta_{\mathrm{LL}}+\theta_{\mathrm{TCS}}+\theta_{\mathrm{unk}} \quad \theta_{\mathrm{sx}}=0.01 \cdot \mathrm{rad}$
Satisfy := $\left\lvert\, \begin{array}{ll}\text { "Good" if } \sigma_{s} \geq 0.5 \cdot G \cdot S \cdot\left(\frac{L}{h_{\text {ri }}}\right)^{2} \cdot \frac{\theta_{\text {sx }}}{\mathrm{n}} \\ \text { "No Good" otherwise }\end{array}\right.$
14.7.6.3.5d-1

Satisfy = "Good"

$$
0.5 \cdot \mathrm{G} \cdot \mathrm{~S} \cdot\left(\frac{\mathrm{~L}}{\mathrm{~h}_{\mathrm{ri}}}\right)^{2} \cdot \frac{\theta_{\mathrm{SX}}}{\mathrm{n}}=0.646 \cdot \mathrm{ksi}
$$

$$
\begin{aligned}
& \text { ksi }:=1000 \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}} \quad \text { kip }:=1000 \cdot \mathrm{lb} \\
& \mathrm{~V}_{\mathrm{LL}}:=67.76 \text { kip } \quad \text { Service limit state (live load) } \\
& \mathrm{V}_{\text {Total }}:=217.36 \mathrm{kip} \text { Service limit state (total loads) } \\
& \text { 众: }=0.115 \cdot \mathrm{ksi} \quad \text { 14.7.6.2 (first paragraph) } \\
& \mathrm{L}_{\mathrm{N}}=16.5 \cdot \mathrm{in} \quad \text { Length of bearing (longitudinal) } \\
& W_{W}=16.5 \cdot \mathrm{in} \quad \text { Width of bearing (transverse) } \\
& \mathrm{h}_{\mathrm{ri}}:=.5 \text { in } \quad \text { Thickness of } \mathrm{ith}^{\mathrm{it}} \text { elastomeric layer } \\
& \mathrm{n}:=8 \quad \text { Number of elastomeric layers }
\end{aligned}
$$

## 3. SHEAR

a. Temperature, Crexp \& Shrinkage:

$$
\begin{array}{ll}
\alpha:=\frac{0.000006}{\operatorname{deg}} & \Delta \mathrm{~T}:=60 \cdot \mathrm{deg} \quad \text { Max. dropped temperature } \\
\varepsilon_{\text {Temp }}:=\alpha \cdot \Delta \mathrm{T} & \varepsilon_{\text {Temp }}=3.6 \times 10^{-4} \\
\varepsilon_{\text {Creep }}:=0.0002705 & \\
\varepsilon_{\text {Shrinkage }}:=0.0001176 & \\
\text { Movement Factor (Service 1) } \quad \gamma_{\mathrm{TU}}:=1.2 \quad \gamma_{\mathrm{CR}}:=1.0 \quad \gamma_{\mathrm{SH}}:=1.0 \\
\text { Length }:=2265 \cdot \mathrm{in} & \begin{array}{l}
\Delta_{\mathrm{s}}:=\text { Length } \cdot\left(\varepsilon_{\mathrm{Temp}} \cdot \gamma_{\mathrm{TU}}+\varepsilon_{\mathrm{Creep}} \cdot \gamma_{\mathrm{CR}}+\varepsilon_{\text {Shrinkage }} \cdot \gamma_{\mathrm{SH}}\right)
\end{array} \\
& \Delta_{\mathrm{s}}=1.858 \cdot \mathrm{in}
\end{array}
$$

Satisfy $1:=\left\lvert\, \begin{array}{lll}\text { Good" } & \text { if } n \cdot h_{r i} \geq 2 \cdot \Delta_{s} \\ \text { "No Good" } & \text { otherwise }\end{array}\right.$
Satisfy $1=$ "Good"

$$
\mathrm{n} \cdot \mathrm{~h}_{\mathrm{ri}}=4 \cdot \mathrm{in}
$$

For sliding check, we can check with temperature movement

$$
\begin{aligned}
& \Delta_{\mathrm{T}}:=\text { Length } \cdot \varepsilon_{\text {Temp }} \cdot \gamma_{\mathrm{TU}} \quad \Delta_{\mathrm{T}}=0.978 \cdot \mathrm{in} \\
& \mu:=0.075 \quad \mathrm{~V}_{\text {min }}:=108.6 \cdot \mathrm{kip} \quad \text { Consider No LiveLoad } \quad \text { A: }:=\mathrm{L} \cdot \mathrm{~W} \\
& \text { Satisfy2: }=\left\lvert\, \begin{array}{ll}
\text { "No Sliding" if } \frac{\left(\mu \cdot V_{\text {min }} \cdot n \cdot h_{\text {ri }}\right)}{A \cdot G} \geq \Delta_{T} \\
\text { "No Good" otherwise }
\end{array} \quad A=1.891 \mathrm{ft}^{2}\right. \\
& \text { Satisfy2 = "No Sliding" } \\
& \mathrm{SF}:=\frac{\left(\mu \cdot \mathrm{V}_{\text {min }} \cdot n \cdot h_{\mathrm{r}}\right)}{\mathrm{A} \cdot \mathrm{G} \cdot \Delta_{\mathrm{T}}} \quad \mathrm{SF}=1.063 \quad \text { Use retainer (recess seat) }
\end{aligned}
$$

## 4. REINFORCEMENT

$$
\begin{array}{lrr}
\mathrm{F}_{\mathrm{y}}:=36 \cdot \mathrm{ksi} & \\
\Delta \mathrm{~F}_{\mathrm{TH}}:=24 \cdot \mathrm{ksi} & & \text { Table 6.6.1.2.5-3 } \\
\mathrm{h}_{\mathrm{s}}:=0.125 \cdot \mathrm{in} & \mathrm{~h}_{\mathrm{max}}:=\mathrm{h}_{\mathrm{ri}} & \mathrm{~h}_{\max }=0.5 \cdot \mathrm{in}
\end{array}
$$

$$
\text { Satisfy } 3:=\left\lvert\, \begin{aligned}
& \text { "Good" if } h_{s} \geq\left(\frac{3 \cdot h_{\mathrm{ri}} \cdot \sigma_{\mathrm{s}}}{\mathrm{~F}_{\mathrm{y}}}\right) \wedge \mathrm{h}_{\mathrm{s}} \geq\left(\frac{2 \cdot \mathrm{~h}_{\mathrm{ri}} \cdot \sigma_{\mathrm{L}}}{\Delta \mathrm{~F}_{\mathrm{TH}}}\right) \quad \text { 14.7.5.3.5-1 \& } 2 \\
& \text { "No Good" otherwise }
\end{aligned}\right.
$$

Satisfy $=$ "Good"

## 5. BEARING THICKNESS

Exterior_Thickness : $=0.125$-in
Bearing_Thickness $:=2 \cdot$ Exterior_Thickness $+\mathrm{n} \cdot \mathrm{h}_{\mathrm{ri}}+(\mathrm{n}+1) \cdot \mathrm{h}_{\mathrm{s}}$
Bearing_Thickness $=5.375 \cdot \mathrm{in}$
6. STABILITY 14.7.6.3.6

Satisfy $4:=\left\lvert\, \begin{aligned} & \text { "Good" if Bearing_Thickness } \leq\left(\frac{L}{3}\right) \wedge \text { Bearing_Thickness } \leq\left(\frac{W}{3}\right) \\ & " N o \text { Good" otherwise }\end{aligned}\right.$
Satisfy4 = "Good"

## 7. COMPRESSIVE DEFLECTION

From figure C14.7.6.3.3-1 Stress-Strain Curves for 50 durometer

$$
\begin{aligned}
& \varepsilon_{\mathrm{i}}:=0.048 \\
& \text { Satisfy } 5:=\left\lvert\, \begin{array}{ll}
\text { "Good" } & \text { if } \varepsilon_{\mathrm{i}} \leq 0.07 \\
\text { "No Good" } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Satisfy $5=$ "Good"

## STEEL REINFORCED RECTANGULAR ELASTOMERIC BEARING DESIGN METHOD A

CONSTRUCTION PHASE 1, WHEN G ( 0.10 KSI ) HAS A RANGE $-15 \%=0.085 \mathrm{KSI}$

1. COMPRESSIVE STRESS:

$$
\begin{array}{cl}
\mathrm{ksin}_{\mathrm{L}}:=1000 \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}} & \mathrm{k} \mathrm{kin}_{\mathrm{N}}:=1000 \cdot \mathrm{lb} \\
\mathrm{~V}_{\mathrm{LL}}:=67.76 \cdot \mathrm{kip} & \text { Service limit state (live load) } \\
\mathrm{V}_{\text {Total }}:=217.36 \mathrm{kip} & \text { Service limit state (total loads) } \\
\mathrm{G}_{\mathrm{M}}:=0.085 \cdot \mathrm{ksi} & \text { 14.7.6.2 (first paragraph) } \\
\mathrm{L}_{\mathrm{N}}=16.5 \cdot \mathrm{in} & \text { Length of bearing (longitudinal) } \\
W_{W}=16.5 \cdot \mathrm{in} & \text { Width of bearing (transverse) } \\
\mathrm{h}_{\mathrm{ri}}:=.5 \cdot \mathrm{in} & \text { Thickness of ith elastomeric layer } \\
\mathrm{n}:=8 & \text { Number of elastomeric layers }
\end{array}
$$

$S:=\frac{(\mathrm{L} \cdot \mathrm{W})}{2 \cdot \mathrm{~h}_{\mathrm{r}} \cdot(\mathrm{L}+\mathrm{W})} \quad \mathrm{S}=8.25 \quad$ Shape factor of a layer
$\sigma_{\mathrm{S}}:=\frac{\mathrm{V}_{\text {Total }}}{\mathrm{L} \cdot \mathrm{W}} \quad \sigma_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{LL}}}{\mathrm{L} \cdot \mathrm{W}} \quad \frac{\mathrm{S}^{2}}{\mathrm{n}}=8.508 \quad \mathrm{OK}$
$\sigma_{\mathrm{s}}=0.798 \cdot \mathrm{ksi} \quad \sigma_{\mathrm{L}}=0.249 \cdot \mathrm{ksi}$
Compressive_Stress1 := $\left\lvert\, \begin{aligned} & \text { "Good" if } \sigma_{s} \leq 1.25 \cdot k s i \wedge \sigma_{s} \leq 1.25 \cdot \mathrm{G} \cdot \mathrm{S} \\ & \text { "No Good" otherwise }\end{aligned}\right.$
14.7.6.3.2-6 \& 7

Compressive_Stress1 = "Good"
2. ROTATION OF STEEL REINFORCED ELASTOMERIC BEARING
$\theta_{\mathrm{LL}}:=0.005 \cdot \mathrm{rad} \quad$ Rotation due to total load on traffic direction
$\theta_{\text {TCS }}:=0.000 \cdot \mathrm{rad} \quad$ Rotation from temp. + creep + shrinkage on traffic direction
$\theta_{\text {unk }}:=0.005 \cdot \mathrm{rad} \quad$ Fabrication and construction tolerances on traffic direction
$\theta_{\mathrm{sx}}:=\theta_{\mathrm{LL}}+\theta_{\mathrm{TCS}}+\theta_{\mathrm{unk}} \quad \theta_{\mathrm{sx}}=0.01 \cdot \mathrm{rad}$
Satisfy: $=\left\lvert\, \begin{aligned} & \text { "Good" if } \sigma_{\mathrm{s}} \geq 0.5 \cdot \mathrm{G} \cdot \mathrm{S} \cdot\left(\frac{\mathrm{L}}{\mathrm{h}_{\mathrm{ri}}}\right)^{2} \cdot \frac{\theta_{\mathrm{sX}}}{\mathrm{n}} \\ & \text { "No Good" otherwise }\end{aligned}\right.$
14.7.6.3.5d-1

Satisfy = "Good"

$$
0.5 \cdot \mathrm{G} \cdot \mathrm{~S} \cdot\left(\frac{\mathrm{~L}}{\mathrm{~h}_{\mathrm{ri}}}\right)^{2} \cdot \frac{\theta_{\mathrm{sx}}}{\mathrm{n}}=0.477 \cdot \mathrm{ksi}
$$

3. SHEAR creep
a. Temperature, \& Shrinkage:
$\alpha:=\frac{0.000006}{\operatorname{deg}} \quad \Delta T:=60 \cdot \mathrm{deg} \quad$ Max. dropped temperature
$\varepsilon_{\text {Temp }}:=\alpha \cdot \Delta \mathrm{T} \quad \varepsilon_{\text {Temp }}=3.6 \times 10^{-4}$
$\varepsilon_{\text {Creep }}:=0.0002705$
$\varepsilon_{\text {Shrinkage }}:=0.0001176$

$$
\text { Movement Factor (Service 1) } \quad \gamma_{\mathrm{TU}}:=1.2 \quad \gamma_{\mathrm{CR}}:=1.0 \quad \gamma_{\mathrm{SH}}:=1.0
$$

Length $:=2265 \cdot$ in $\quad \Delta_{\mathrm{S}}:=$ Length $\cdot\left(\varepsilon_{\text {Temp }} \cdot \gamma_{\mathrm{TU}}+\varepsilon_{\text {Creep }} \cdot \gamma_{\mathrm{CR}}+\varepsilon_{\text {Shrinkage }} \cdot \gamma_{\mathrm{SH}}\right)$
$\Delta_{\mathrm{s}}=1.858 \cdot \mathrm{in}$
Satisfy $1:=\left\lvert\, \begin{array}{lcc}\text { "Good" } & \text { if } n \cdot h_{r i} \geq 2 \cdot \Delta_{s} \\ \text { "No Good" } & \text { otherwise }\end{array}\right.$
14.7.6.3.4-1

Satisfy $1=$ "Good"

$$
\mathrm{n} \cdot \mathrm{~h}_{\mathrm{ri}}=4 \cdot \mathrm{in}
$$

For sliding check, we can check with temperature movement
$\Delta_{\mathrm{T}}:=$ Length $\cdot \varepsilon_{\text {Temp }} \cdot \gamma_{\mathrm{TU}} \quad \Delta_{\mathrm{T}}=0.978 \cdot \mathrm{in}$
$\mu:=0.075 \quad \mathrm{~V}_{\text {min }}:=108.6 \cdot \mathrm{kip} \quad$ Consider No LiveLoad $\quad$ A $:=\mathrm{L} \cdot \mathrm{W}$
Satisfy2:= $\left\lvert\, \begin{aligned} & \text { "No Sliding" if } \frac{\left(\mu \cdot V_{\text {min }} \cdot n \cdot h_{r i}\right)}{A \cdot G} \geq \Delta_{T} \\ & \text { "No Good" otherwise }\end{aligned} \quad A=1.891 \mathrm{ft}^{2}\right.$
Satisfy2 $=$ "No Sliding"

$$
\mathrm{SF}:=\frac{\left(\mu \cdot V_{\min } \cdot n \cdot h_{\mathrm{r}}\right)}{\mathrm{A} \cdot \mathrm{G} \cdot \Delta_{\mathrm{T}}} \quad \mathrm{SF}=1.439 \quad \text { Use retainer (recess seat) }
$$

## 4. REINFORCEMENT

$$
\mathrm{F}_{\mathrm{y}}:=36 \cdot \mathrm{ksi}
$$

$\Delta \mathrm{F}_{\mathrm{TH}}:=24 \cdot \mathrm{ksi}$
Table 6.6.1.2.5-3
$h_{s}:=0.125 \cdot \mathrm{in}$
$h_{\text {max }}:=h_{\text {ri }}$
$\mathrm{h}_{\text {max }}=0.5 \cdot \mathrm{in}$

Satisfy 3:= $\left.\left\lvert\, \begin{array}{ll}\text { "Good" if } h_{s} \geq\left(\frac{3 \cdot h_{\mathrm{ri}} \cdot \sigma_{\mathrm{s}}}{\mathrm{F}_{\mathrm{y}}}\right)\end{array}\right.\right) \wedge \mathrm{h}_{\mathrm{s}} \geq\left(\frac{2 \cdot \mathrm{~h}_{\mathrm{ri}} \sigma_{\mathrm{L}}}{\Delta \mathrm{F}_{\mathrm{TH}}}\right) \quad$ 14.7.5.3.5-1 \& 2
Satisfy $3=$ "Good"

## 5. BEARING THICKNESS

Exterior_Thickness $:=0.125 \cdot \mathrm{in}$
Bearing_Thickness :=2•Exterior_Thickness $+\mathrm{n} \cdot \mathrm{h}_{\mathrm{ri}}+(\mathrm{n}+1) \cdot \mathrm{h}_{\mathrm{s}}$
Bearing_Thickness $=5.375 \cdot \mathrm{in}$
6. STABILITY 14.7.6.3.6

Satisfy4:= $\begin{aligned} & \text { "Good" if Bearing_Thickness } \leq\left(\frac{L}{3}\right) \wedge \text { Bearing_Thickness } \leq\left(\frac{W}{3}\right) \\ & \text { "No Good" otherwise }\end{aligned}$
Satisfy4 $=$ "Good"

## 7. COMPRESSIVE DEFLECTION

From figure C14.7.6.3.3-1 Stress-Strain Curves for 50 durometer

$$
\begin{aligned}
& \varepsilon_{\mathrm{i}}:=0.048 \\
& \text { Satisfy } 5:=\left\lvert\, \begin{array}{ll}
\text { "Good" } & \text { if } \varepsilon_{\mathrm{i}} \leq 0.07 \\
\text { "No Good" } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Satisfy5 = "Good"

BEARING THE I, CONSTRUCTION PHASE 2

Service $\Delta L$

Simple Span $=1051.6 \mathrm{~K} /$ Abut
Composite Continuous span $=229.4 \mathrm{~K} / \mathrm{Abut}$

$$
\text { Abutmant Cap }=\frac{87 \times 36}{144}(127)(0.15)=414.34 \mathrm{~N} / \text { Abut }
$$

Approach Slab $=186 \mathrm{k}$

$$
w_{1}=414.34 / 127=3.26 \mathrm{k} / \mathrm{ft}
$$

$W_{2}$ (Min who approach $\left.\operatorname{sla} b\right)=\frac{1051.6+229.4}{121.583}=10.54 \mathrm{k} / \mathrm{ft}$

$$
W_{2} \text { (Max. with approach slab) }=\frac{1051.6+229.4+186}{121.583}=12.07 \mathrm{k} / \mathrm{dt}
$$


WinBeam

| Project: |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| By: | Date: | Checked: | Date: | Page: |
| Reactions - kips, kip ft |  |  |  |  |


Moment - kip ft




## STEEL REINFORCED RECTANGULAR ELASTOMERIC BEARING DESIGN METHOD A

CONSTRUCTION PHASE 2, WHEN G ( 0.10 KSI ) HAS A RANGE $+15 \%=0.115 \mathrm{KSI}$

1. COMPRESSIVE STRESS:

$$
\begin{aligned}
& \text { ksi }:=1000 \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}} \quad \text { kip }:=1000 \cdot \mathrm{lb} \\
& \mathrm{~V}_{\mathrm{LL}}:=56.17 \cdot \mathrm{kip} \quad \text { Service limit state (live load) } \\
& \mathrm{V}_{\text {Total }}:=195.37 \mathrm{kip} \quad \text { Service limit state (total loads) } \\
& \mathrm{G}:=0.115 \cdot \mathrm{ksi} \quad \text { 14.7.6.2 (first paragraph) } \\
& L_{\mathrm{N}}=16.5 \cdot \mathrm{in} \quad \text { Length of bearing (longitudinal) } \\
& W_{N}=16.5 \cdot \mathrm{in} \quad \text { Width of bearing (transverse) } \\
& \mathrm{h}_{\mathrm{ri}}:=.5 \text {-in } \quad \text { Thickness of } \mathrm{in}^{\text {ith }} \text { elastomeric layer } \\
& \mathrm{n}:=8 \quad \text { Number of elastomeric layers } \\
& S:=\frac{(\mathrm{L} \cdot \mathrm{~W})}{2 \cdot \mathrm{~h}_{\mathrm{ri}}(\mathrm{~L}+\mathrm{W})} \quad \mathrm{S}=8.25 \quad \text { Shape factor of a layer } \\
& \text { 14.7.5.1-1 } \\
& \sigma_{\mathrm{s}}:=\frac{\mathrm{V}_{\text {Total }}}{\mathrm{L} \cdot \mathrm{~W}} \quad \sigma_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{LL}}}{\mathrm{~L} \cdot \mathrm{~W}} \quad \frac{\mathrm{~S}^{2}}{\mathrm{n}}=8.508 \quad \mathrm{OK} \\
& \sigma_{\mathrm{s}}=0.718 \cdot \mathrm{ksi} \quad \sigma_{\mathrm{L}}=0.206 \cdot \mathrm{ksi} \\
& \text { Compressive_Stress1:= } \left\lvert\, \begin{array}{ll}
\text { "Good" } & \text { if } \sigma_{s} \leq 1.25 \cdot \mathrm{ksi} \wedge \sigma_{\mathrm{s}} \leq 1.25 \cdot \mathrm{G} \cdot \mathrm{~S} \quad \text { 14.7.6.3.2-6 \& } 7 \\
\text { "No Good" otherwise }
\end{array}\right. \\
& \text { Compressive_Stress1 = "Good" }
\end{aligned}
$$

2. ROTATION OF STEEL REINFORCED ELASTOMERIC BEARING

$$
\begin{array}{ll}
\theta_{\mathrm{LL}}:=0.005 \cdot \mathrm{rad} & \text { Rotation due to total load on traffic direction } \\
\theta_{\mathrm{TCS}}:=0.000 \cdot \mathrm{rad} & \text { Rotation from temp. + creep + shrinkage on traffic direction } \\
\theta_{\mathrm{unk}}:=0.005 \cdot \mathrm{rad} & \text { Fabrication and construction tolerances on traffic direction } \\
\theta_{\mathrm{sx}}:=\theta_{\mathrm{LL}}+\theta_{\mathrm{TCS}}+\theta_{\mathrm{unk}} & \theta_{\mathrm{sx}}=0.01 \cdot \mathrm{rad} \\
\text { Satisfy }:= & \text { "Good" if } \sigma_{\mathrm{s}} \geq 0.5 \cdot \mathrm{G} \cdot \mathrm{~S} \cdot\left(\frac{\mathrm{~L}}{\mathrm{~h}_{\mathrm{ri}}}\right)^{2} \cdot \frac{\theta_{\mathrm{sx}}}{\mathrm{n}} \\
\text { "No Good" } & \text { otherwise } \\
\text { Satisfy }=\text { "Good" } & 14.7 .6 .3 .5 \mathrm{~d}-1
\end{array}
$$

3. SHEAR
a. Temperature, creep \& Shrinkage:
$\alpha:=\frac{0.000006}{\operatorname{deg}} \quad \Delta T:=60 \cdot \mathrm{deg} \quad$ Max. dropped temperature
$\varepsilon_{\text {Temp }}:=\alpha \cdot \Delta \mathrm{T} \quad \varepsilon_{\text {Temp }}=3.6 \times 10^{-4}$
$\varepsilon_{\text {Creep }}:=0.0002705$
$\varepsilon_{\text {Shrinkage }}:=0.0001176$
Movement Factor (Service 1) $\quad \gamma_{\mathrm{TU}}:=1.2 \quad \gamma_{\mathrm{CR}}:=1.0 \quad \gamma_{\mathrm{SH}}:=1.0$

$$
\begin{array}{ll}
\text { Length }:=2265 \cdot \text { in } & \Delta_{\mathrm{s}}:=\text { Length } \cdot\left(\varepsilon_{\text {Temp }} \cdot \gamma_{\text {TU }}+\varepsilon_{\text {Creep }} \cdot \gamma_{\mathrm{CR}}+\varepsilon_{\text {Shrinkage }} \cdot \gamma_{\mathrm{SH}}\right) \\
& \Delta_{\mathrm{s}}=1.858 \cdot \mathrm{in}
\end{array}
$$

Satisfy $1:=\left\lvert\, \begin{array}{lll}\text { "Good" } & \text { if } n \cdot h_{\mathrm{ri}} \geq 2 \cdot \Delta_{\mathrm{s}} \\ \text { "No Good" } & \text { otherwise }\end{array}\right.$
Satisfyl = "Good"

$$
\mathrm{n} \cdot \mathrm{~h}_{\mathrm{ri}}=4 \cdot \mathrm{in}
$$

For sliding check, we can check with temperature movement

$$
\begin{aligned}
& \Delta_{\mathrm{T}}:=\text { Length } \cdot \varepsilon_{\text {Temp }} \cdot \gamma_{\mathrm{TU}} \\
& \mu:=0.075 \quad \Delta_{\mathrm{T}}=0.978 \cdot \mathrm{in} \\
& \mathrm{~V}_{\min }:=108.6 \cdot \mathrm{kip} \quad \text { Consider No LiveLoad }
\end{aligned} \quad \mathrm{A}:=\mathrm{L} \cdot \mathrm{~W} \mathrm{~W} .
$$

Satisfy2 $=$ "No Sliding"

$$
\mathrm{SF}:=\frac{\left(\mu \cdot \mathrm{V}_{\min } \cdot \mathrm{n} \cdot \mathrm{~h}_{\mathrm{r}}\right)}{\mathrm{A} \cdot \mathrm{G} \cdot \Delta_{\mathrm{T}}} \quad \mathrm{SF}=1.063 \quad \text { Use retainer (recess seat) }
$$

## 4. REINFORCEMENT

$$
F_{y}:=36 \cdot \mathrm{ksi}
$$

$\Delta \mathrm{F}_{\mathrm{TH}}:=24 \cdot \mathrm{ksi}$
Table 6.6.1.2.5-3

$$
h_{s}:=0.125 \cdot \mathrm{in} \quad h_{\max }:=h_{\mathrm{ri}} \quad h_{\max }=0.5 \cdot \mathrm{in}
$$

$$
\text { Satisfy } 3:=\left\lvert\, \begin{aligned}
& \text { "Good" if } h_{s} \geq\left(\frac{3 \cdot h_{\mathrm{ri}} \cdot \sigma_{\mathrm{s}}}{\mathrm{~F}_{\mathrm{y}}}\right) \wedge \mathrm{h}_{\mathrm{s}} \geq\left(\frac{2 \cdot \mathrm{~h}_{\mathrm{ri}} \cdot \sigma_{\mathrm{L}}}{\Delta \mathrm{~F}_{\mathrm{TH}}}\right) \quad \text { 14.7.5.3.5-1 \& } 2 \\
& \text { "No Good" otherwise }
\end{aligned}\right.
$$

$$
\text { Satisfy } 3 \text { = "Good" }
$$

## 5. BEARING THICKNESS

Exterior_Thickness : $=0.125$.in
Bearing_Thickness := $2 \cdot$ Exterior_Thickness $+n \cdot h_{r i}+(n+1) \cdot h_{s}$
Bearing_Thickness $=5.375$-in
6. STABILITY 14.7.6.3.6

Satisfy4:= $\left\lvert\, \begin{aligned} & \text { "Good" if Bearing_Thickness } \leq\left(\frac{L}{3}\right) \wedge \text { Bearing_Thickness } \leq\left(\frac{W}{3}\right) \\ & \text { "No Good" otherwise }\end{aligned}\right.$
Satisfy $4=$ "Good"
7. COMPRESSIVE DEFLECTION

From figure C14.7.6.3.3-1 Stress-Strain Curves for 50 durometer

$$
\begin{aligned}
& \varepsilon_{\mathrm{i}}:=0.048 \\
& \text { Satisfy } 5:=\left\lvert\, \begin{array}{ll}
\text { "Good" } & \text { if } \varepsilon_{\mathrm{i}} \leq 0.07 \\
\text { "No Good" } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Satisfy $5=$ "Good"

## STEEL REINFORCED RECTANGULAR ELASTOMERIC BEARING DESIGN METHOD A

CONSTRUCTION PHASE 2, WHEN G (0.10 KSI) HAS A RANGE $-15 \%=0.085 \mathrm{KSI}$

1. COMPRESSIVE STRESS:

$$
\begin{align*}
& \text { ksi }:=1000 \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}} \quad \text { kin }:=1000.1 \mathrm{~b} \\
& \mathrm{~V}_{\mathrm{LL}}:=56.17 \text {-kip } \quad \text { Service limit state (live load) } \\
& \mathrm{V}_{\text {Total }}:=195.37 \mathrm{kip} \quad \text { Service limit state (total loads) } \\
& \mathrm{G}:=0.085 \cdot \mathrm{ksi} \quad \text { 14.7.6.2 (first paragraph) } \\
& \mathrm{L}_{\mathrm{W}}=16.5 \cdot \mathrm{in} \quad \text { Length of bearing (longitudinal) } \\
& W_{W}=16.5 \cdot \mathrm{in} \quad \text { Width of bearing (transverse) } \\
& \mathrm{h}_{\mathrm{r}}:=.5 \cdot \mathrm{in} \quad \text { Thickness of } \mathrm{ith}^{\text {th }} \text { elastomeric layer } \\
& \mathrm{n}:=8 \quad \text { Number of elastomeric layers } \\
& \text { S:= } \frac{(\mathrm{L} \cdot \mathrm{~W})}{2 \cdot \mathrm{~h}_{\mathrm{ri}}(\mathrm{~L}+\mathrm{W})} \quad \mathrm{S}=8.25 \quad \text { Shape factor of a layer } \\
& \sigma_{\mathrm{s}}:=\frac{\mathrm{V}_{\text {Total }}}{\mathrm{L} \cdot \mathrm{~W}} \\
& \sigma_{L}:=\frac{V_{L L}}{L \cdot W} \quad \frac{S^{2}}{n}=8.508 \quad O K \\
& \sigma_{\mathrm{s}}=0.718 \cdot \mathrm{ksi} \\
& \sigma_{\mathrm{L}}=0.206 \cdot \mathrm{ksi}
\end{align*}
$$

Compressive_Stress1:=| $\begin{aligned} & \text { "Good" if } \sigma_{s} \leq 1.25 \cdot \mathrm{ksi} \wedge \sigma_{s} \leq 1.25 \cdot \mathrm{G} \cdot \mathrm{S} \\ & \text { "No Good" otherwise }\end{aligned}$
14.7.6.3.2-6 \& 7

Compressive_Stress1 = "Good"
2. ROTATION OF STEEL REINFORCED ELASTOMERIC BEARING
$\theta_{\mathrm{LL}}:=0.005 \cdot \mathrm{rad} \quad$ Rotation due to total load on traffic direction
$\theta_{\text {TCS }}:=0.000 \cdot \mathrm{rad} \quad$ Rotation from temp. + creep + shrinkage on traffic direction
$\theta_{\text {unk }}:=0.005 \cdot \mathrm{rad} \quad$ Fabrication and construction tolerances on traffic direction
$\theta_{\mathrm{SX}}:=\theta_{\mathrm{LL}}+\theta_{\mathrm{TCS}}+\theta_{\mathrm{unk}} \quad \theta_{\mathrm{sX}}=0.01 \cdot \mathrm{rad}$
Satisfy := $\left\lvert\, \begin{aligned} & \text { "Good" if } \sigma_{\mathrm{s}} \geq 0.5 \cdot \mathrm{G} \cdot \mathrm{S} \cdot\left(\frac{\mathrm{L}}{\mathrm{h}_{\mathrm{ri}}}\right)^{2} \cdot \frac{\theta_{\mathrm{sX}}}{\mathrm{n}} \\ & \text { "No Good" otherwise }\end{aligned}\right.$
14.7.6.3.5d-1

Satisfy = "Good"

$$
0.5 \cdot \mathrm{G} \cdot \mathrm{~S} \cdot\left(\frac{\mathrm{~L}}{\mathrm{~h}_{\mathrm{ri}}}\right)^{2} \cdot \frac{\theta_{\mathrm{sx}}}{\mathrm{n}}=0.477 \cdot \mathrm{ksi}
$$

3. SHEAR
a. Temperature, \& Shrinkage:
$\alpha:=\frac{0.000006}{\operatorname{deg}} \quad \Delta \mathrm{~T}:=60 \cdot \mathrm{deg} \quad$ Max. dropped temperature
$\varepsilon_{\text {Temp }}:=\alpha \cdot \Delta T \quad \varepsilon_{\text {Temp }}=3.6 \times 10^{-4}$
$\varepsilon_{\text {Creep }}:=0.0002705$
$\varepsilon_{\text {Shrinkage }}:=0.0001176$
Movement Factor (Service 1) $\quad \gamma_{\mathrm{TU}}:=1.2 \quad \gamma_{\mathrm{CR}}:=1.0 \quad \gamma_{\mathrm{SH}}:=1.0$

Length $:=2265 \cdot$ in $\quad \Delta_{\mathrm{S}}:=$ Length $\cdot\left(\varepsilon_{\text {Temp }} \cdot \gamma_{\mathrm{TU}}+\varepsilon_{\text {Creep }} \cdot \gamma_{\mathrm{CR}}+\varepsilon_{\text {Shrinkage }} \cdot \gamma_{\mathrm{SH}}\right)$ $\Delta_{\mathrm{s}}=1.858 \cdot \mathrm{in}$
Satisfy $1:=\left\lvert\, \begin{array}{ll}\text { "Good" } & \text { if } n \cdot h_{\mathrm{ri}} \geq 2 \cdot \Delta_{\mathrm{s}} \\ \text { "No Good" } & \text { otherwise }\end{array}\right.$ 14.7.6.3.4-1

Satisfyl = "Good"

$$
\mathrm{n} \cdot \mathrm{~h}_{\mathrm{ri}}=4 \cdot \mathrm{in}
$$

For sliding check, we can check with temperature movement

$$
\Delta_{\mathrm{T}}:=\text { Length } \cdot \varepsilon_{\mathrm{Temp}} \cdot \gamma_{\mathrm{TU}} \quad \Delta_{\mathrm{T}}=0.978 \cdot \mathrm{in}
$$

$$
\mu:=0.075 \quad V_{\min }:=108.6 \cdot \mathrm{kip} \quad \text { Consider No LiveLoad } \quad A:=L \cdot W
$$

$$
\text { Satisfy2:= } \begin{array}{ll}
\text { "No Sliding" if } \frac{\left(\mu \cdot V_{\min } \cdot n \cdot h_{\mathrm{ri}}\right)}{\mathrm{A} \cdot \mathrm{G}} \geq \Delta_{\mathrm{T}} \\
\text { "No Good" otherwise }
\end{array} \quad \mathrm{A}=1.891 \mathrm{ft}^{2}
$$

Satisfy2 = "No Sliding"

$$
\mathrm{SF}:=\frac{\left(\mu \cdot \mathrm{V}_{\min } \cdot \mathrm{n} \cdot \mathrm{~h}_{\mathrm{ri}}\right)}{\mathrm{A} \cdot \mathrm{G} \cdot \Delta_{\mathrm{T}}} \quad \mathrm{SF}=1.439 \quad \text { Use retainer (recess seat) }
$$

## 4. REINFORCEMENT

$$
\begin{array}{lrl}
\mathrm{F}_{\mathrm{y}}:=36 \cdot \mathrm{ksi} & \\
\Delta \mathrm{~F}_{\mathrm{TH}}:=24 \cdot \mathrm{ksi} & & \text { Table 6.6.1.2.5-3 } \\
\mathrm{h}_{\mathrm{s}}:=0.125 \cdot \mathrm{in} & \mathrm{~h}_{\max }:=\mathrm{h}_{\mathrm{ri}} & \mathrm{~h}_{\max }=0.5 \cdot \mathrm{in}
\end{array}
$$

Satisfy $3:=\left\{\begin{array}{l}\text { "Good" if } h_{s} \geq\left(\frac{3 \cdot h_{r i} \cdot \sigma_{s}}{\mathrm{~F}_{\mathrm{y}}}\right) \wedge \mathrm{h}_{\mathrm{s}} \geq\left(\frac{2 \cdot \mathrm{~h}_{\mathrm{ri}} \cdot \sigma_{\mathrm{L}}}{\Delta \mathrm{F}_{\mathrm{TH}}}\right) \quad \text { 14.7.5.3.5-1 \& } 2 \\ \text { "No Good" otherwise }\end{array}\right.$
Satisfy $3=$ "Good"

## 5. BEARING THICKNESS

Exterior_Thickness : $=0.125 \cdot \mathrm{in}$
Bearing_Thickness $:=2 \cdot$ Exterior_Thickness $+n \cdot h_{r i}+(n+1) \cdot h_{s}$
Bearing_Thickness $=5.375 \cdot \mathrm{in}$
6. STABILITY 14.7.6.3.6

Satisfy $4:=\left\{\begin{array}{l}\text { "Good" if Bearing_Thickness } \leq\left(\frac{L}{3}\right) \wedge \text { Bearing_Thickness } \leq\left(\frac{W}{3}\right) \\ \text { "No Good" otherwise }\end{array}\right.$
Satisfy4 = "Good"
7. COMPRESSIVE DEFLECTION

From figure C14.7.6.3.3-1 Stress-Strain Curves for 50 durometer

$$
\begin{aligned}
& \varepsilon_{\mathrm{i}}:=0.048 \\
& \text { Satisfy } 5:=\left\lvert\, \begin{array}{llc}
\text { "Good" } & \text { if } & \varepsilon_{\mathrm{i}} \leq 0.07 \\
\text { "No Good" } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Satisfy $5=$ "Good"


COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

Dead Leads:

* Simple Spar $\Delta L$ (s precast Girders \& plastic Concrete)

$$
\left.w_{1}=11.812 \mathrm{~N} / \mathrm{f}^{+}\right)
$$

$$
\left.W_{2}=21.662 \mathrm{k} / \mathrm{ft}^{+}\right\} \text {From Wimbean, Max pier Reaction }=52 \% .5(2)=1043.1 \mathrm{k}
$$

* Contruous Spar DL (Composite Dead Loads)
$W_{-3}=3.68 \mathrm{k} / f f \quad$ Max. Pier Reaction $=311.4 \mathrm{~K}$
* Pier dead Load

$$
4(4+5.06) 0.5(53)(0.15) \quad=\quad 144.05 \mathrm{k}
$$

Total Unfaciored $D \angle$ on pier

$$
1043.1+311.4+144.05=1498.55 \mathrm{k}, \quad 1498.55 / 48.5717=30.85 \mathrm{k} / \mathrm{ft}
$$

Total factored $D \angle$ on Pier

$$
\begin{array}{r}
1043.1(1.25)+311.4\left(\frac{1.398}{368}\right)(1.5)+311.4\left(\frac{3.68-1.398}{3.68}\right)(1.25)+144.05(1.25)=1902.8 \mathrm{~N} \\
1902.8 / 48.5717=39.18 \mathrm{k} / \mathrm{ft}
\end{array}
$$

| By: $H$ D Date $7-13$ | Project no. | FBR 0142-055 | Project code (SAA): |
| :---: | :--- | :---: | :---: |
| Chk'd: KCPDate $8-13$ | Structure no. | $B-16-E V$ | Sheet 298 of 508 |

## WinBeam

## Project:




Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


Project:

## Date:

Checked:
Date:
Page:

Reactions - kips, kip ft
Factored $D L$


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


Project:
$1:$
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft
Unfactored $D<$


Shear - kips


Moment - kip ft
1120.553980

Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register


COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

Dead Loads.

* Simple Span DL (2 0precast Girders \& plastic Concrete)

* Continuous Span DL (Composite dead Loads)
$W_{3}=9.327 \mathrm{k} / \mathrm{st}$ (see Abutment phase 2)
Max. Pier Reaction $=870.6 \mathrm{~K}$ (see Abutment phase 2)
* Pier cap DL
pier cap $[4(4+5.36) 0.5(68)+4(5.36+4.24) 0.5(56)](0.15)=352.2 \mathrm{k}$

Total unfactored $D L$ on pier

$$
2620+8706+352.2=3842.8 \mathrm{~K}
$$

Total factored DL on pier

$$
\begin{aligned}
2620(1.25)+870.6\left(\frac{2.808}{9.327}\right)(1.5)+\left(\frac{9.327-2.808}{9.327}\right) 870.6(1.25) & +352.2(1.25) \\
& =4869.0
\end{aligned}
$$



Project:
(Date: Checked: Page: Date:
Reactions - kips, kip ft
Simple Spar DL


Shear - kips


Moment - kip ft
26255.497610
$-0.000000$

Rotation - radians


Deflection - inches

$305 / 508$
WinBeam 3.0 - Registered to Shareware - Please Register


Project:
$1:$
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft Factored $D<$


Shear - kips


Moment - kip ft


Rotation - radians

$-0.000022$

Deflection - inches


Project:
/:
Date:
Checked:
Date:
Page:
Reactions - kips, kip ft

$$
\text { Unfactored } D L
$$



Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


WinBeam 3.0 - Registered to Shareware - Please Register



COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

| Shear area in $y$ direction (2) |  |
| ---: | :--- |
| beck | $=\frac{5}{6}(406.94) 5$ | |  | $=1695.58 \mathrm{~m}^{2}$ |
| ---: | :--- |
| Box Girders | $=2(30)(6)(8)$ |

Shear area in $x$ direction (3)

| Deck | $=5 / 6(406.94) 5=1695.58 \mathrm{in}^{2}$ |
| ---: | :--- |
| Box Girders | $=8(72 \times 6+72 \times 4)=5760 \mathrm{in}^{2}$ |
| $7455.58 \mathrm{in}^{2}$ |  |

plastic NLoctitiss about $x$ axis (3)
Deck $(406.94) 5(35-17.651-5 / 2)=30,213.26 \mathrm{in}^{3}$
Box Girders:


$$
\text { Total }=30,213.26+84,339.6=114,552.9 \mathrm{in}^{3}
$$

plastic Mockulis about $y$ axis (2)

$$
\begin{aligned}
& \text { Deck: } 2 \frac{406.94}{2}(5) \frac{406.94}{4}=207,000.2 \mathrm{in}^{3} \\
& (978)[33.793+106.793+179.793+252.793+39.207+112.207+185.207+257.207] \\
& \text { Girders }=1,141,326 \mathrm{in}^{3} \\
& \text { Total }=207,000.2+1,141,326=1,348,326.2 \mathrm{in}^{3} \\
& J=\frac{4 A_{0}^{2}}{\sum \frac{s}{t}}, \quad A_{0}=(2(291.5)-6)(35-5 / 2-6 / 2)=17021.5 \mathrm{~m}^{2} \\
& \Sigma \frac{s}{t}=\frac{586}{5}+\left(\frac{72}{4}+\frac{72}{6}+\frac{20}{6}+\frac{20}{6}\right) 8=410.53 \\
& J=\frac{4(17021.5)^{2}}{410.53}=2,822,976.2 \mathrm{in}^{4}
\end{aligned}
$$

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

$$
\begin{aligned}
& X_{\text {bottom }}=\frac{(586)(3.47)(58612+11.625)+8(978)(291.5)}{586(3.47)+8(978)}=294.207 \mathrm{in} \quad(\text { From } 0-0) \\
& X_{Y 4}=294.207-291.5=2.707 \mathrm{in} \\
& X_{Y D}=(406.94 / 2)+89.53+11.625-294.207=10.418 \mathrm{in} \\
& I_{Y}=58,177,109.5+(586)(3.47)(10.410)^{2}+8(588,267)+(978)\left[33.793^{2}+106.293^{2}+\right. \\
& \left.178.793^{2}+251.293^{2}+39.207^{2}+111.707^{2}+184.207^{2}+256.707^{2}\right] \\
& S_{Y}=\frac{279,634,729.3 \mathrm{in}^{4}}{2944.729 .3}= \\
& 294.207
\end{aligned}
$$

B- ABUTMENT

$$
\begin{aligned}
& I_{X}=\frac{36(654)^{3}}{12}=839,178,792 \mathrm{in}^{4} \\
& I_{Y}=\frac{654(36)^{3}}{12}=2,542,752 \mathrm{in}^{4} \\
& S_{X}=\frac{839,178,792}{(654 / 2)}=2,566,296 \mathrm{in}^{3} \\
& S_{Y}=\frac{2542752}{18}=141,264 \mathrm{in}^{3}
\end{aligned}
$$



COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

PHASE II CONSTRUCTION (FINISHED Constriction)
A. SUPER STRUCTURE

Girder properties

$$
E_{C, G}=5871.12 \mathrm{ksi}
$$

$$
\text { Area }=978 \mathrm{in}^{2} / \text { each }
$$

$$
I_{x x}=120,856 \text { in } 4 / \text { each }
$$

$$
I_{Y Y}=588,267 \mathrm{in} 4 / \mathrm{each}
$$

$$
C y=13.71
$$

$$
\begin{aligned}
& n=\frac{5871.12}{4066.84}=1.44 ; \quad A=5166.5+978(20)=24,726.5 \mathrm{in}^{2} \\
& w=\frac{1488}{1.44}=1033.3^{\prime \prime} \\
& T=\frac{5}{1.44}=3.47^{\prime \prime}
\end{aligned}
$$

Deck:

$$
\begin{aligned}
& I_{x}=\frac{1033.3(5)^{3}}{12}=10,763.5 \mathrm{is}^{4} \\
& I_{y}=\frac{(1488)^{3}(3.47)}{12}=952,701880.3 \mathrm{in}^{4}
\end{aligned}
$$

Composite Superstructure
Deck properties

$$
\begin{aligned}
& E_{C, D}=1066.84 * 5 \\
& \text { Area }=1033.3(5)=5166.5 \mathrm{in}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{\text {bottom }}=\frac{20(978)(13.79)+(1033.3)(5)(30+5 / 2)}{20(978)+1033.3(5)}=17.7 \text { in } \\
& d Y_{a}=17.7-13.79=3.91^{\prime 1} \\
& d Y_{D}=30+5 / 2-17.7=14.8^{\prime \prime} \\
& \begin{array}{l}
I_{x}=10,763.5+(1033.3) 5(14.8)^{2}+20\left[120,856+978(3,91)^{2}\right]=3,858,588.9 \text { in }^{4} \\
S_{x}=\frac{3,858,588.9}{17.7}=217,999.4 \mathrm{in}^{3} \\
\begin{array}{lll|l|} 
\\
\text { By:HB Date } 12 / 12 & \text { Project no. FBR - 0142-055 } & \\
\hline \text { Chk'd:JE Date } 8-13 & \text { Structure no. } & \text { B-16-EV } & \\
\hline
\end{array}
\end{array} \\
& \begin{array}{l}
I_{x}=10,763.5+(1033.3) 5(14.8)^{2}+20\left[120,856+978(3,91)^{2}\right]=3,858,588.9 \text { in }^{4} \\
S_{x}=\frac{3,858,588.9}{17.7}=217,999.4 \mathrm{in}^{3} \\
\begin{array}{lll|l|} 
\\
\text { By:HB Date } 12 / 12 & \text { Project no. FBR - 0142-055 } & \\
\hline \text { Chk'd:JE Date } 8-13 & \text { Structure no. } & \text { B-16-EV } & \\
\hline
\end{array}
\end{array}
\end{aligned}
$$



$$
X_{\text {bottom }}=\frac{1488}{2}=744^{\prime \prime}
$$

$$
I_{x}=952,701,880.3+20(588,267)+978(2)\left[36.5^{2}+109.5^{2}+182.5^{2}+255.5^{2}\right.
$$

$$
\left.+328.5^{2}+401.5^{2}+474.5^{2}+547.5^{2}+620.5^{2}+693.5^{2}\right]
$$

$$
=4,430,288,950 \mathrm{in}^{4}
$$

$$
S_{Y}=\frac{4,430,288,950}{744}=5,954,689 \cdot 4 \mathrm{in}^{3}
$$

B - ABUTMENT



## DESIGN COMPUTATIONS (Grid)




MEMBER PROPERTITIES FOR SAP2000's INPUT Unit $=K i p$, in, $F$

|  | PHASEICONSTRUCTION |  |  |  | PHASE II COMPLETED CONSTRUCTION |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Superstructure | Abutment Cap | Pier Cap | Pier Column | Superstructure | Abutment Cap | Pier Cap | Pier Column |
| Cross-section (axial) area | 9,858.7 | Computed by Sap2000 | Computed by Sap2000 | Computed by Sap2000 | 24,726.5 | Computed by Sap2000 | Computed by Sap2000 | Computed by Sap2000 |
| Torsional constant | 2,822,976.2 |  |  |  | 7,126,154.0 |  |  |  |
| Moment of Inertia about 3 axis | 1,536,034.2 |  |  |  | 3,858,588.9 |  |  |  |
| Moment of Inertia about 2 axis | 279,634,729.3 |  |  |  | 4,430,288,950.0 |  |  |  |
| Shear area in 2 direction | 4,575.6 |  |  |  | 11,505.4 |  |  |  |
| Shear area in 3 direction | 7,455.6 |  |  |  | 18,705.4 |  |  |  |
| Section modulus about 3 axis | 87,022.5 |  |  |  | 217,999.4 |  |  |  |
| Section modulus about 2 axis | 950,469.3 |  |  |  | 5,954,689.4 |  |  |  |
| Plastic modulus about 3 axis | 114,552.9 |  |  |  | 287,493.8 |  |  |  |
| Plastic modulus about 2 axis | 1,348,326.2 |  |  |  | 8,474,036.1 |  |  |  |
| Radius of Gyration about 3 axis | 12.482 |  |  |  | 12.492 |  |  |  |
| Radius of Gyration about 2 axis | 168.417 |  |  |  | 423.287 |  |  |  |

SOIL STIFFNESSES PER CAISSON USING LPILE

| Location <br> (in) | Lateral Load at the Pile Head <br> (lb.) | Pile Head Delection <br> (in.) | $\mathrm{K}_{\mathrm{H}}$ (lb/in) | Rotation @ pile head (rad.) | Moment @ pile head (Ibs.in) | $\mathrm{K}_{\phi}$ ( $\mathrm{lb} . \mathrm{in} / \mathrm{rad}$ ) | Caisson depth (in) | $\begin{gathered} \text { Cross } \\ \text { section area } \\ \left(\text { in }^{\wedge} 2\right) \end{gathered}$ | $E$ $($ psi) | $\begin{gathered} \mathrm{K}_{v} \\ (\mathrm{ib} / \mathrm{in}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abutment 1 10, |  |  |  |  |  |  |  |  |  |  |
| 51.6 | 10,000 | 0.1630 | 61,350 | 0.0026 | 588,000 | 225,400,511 | 293 | 706.86 | 3,834,253 | 9,250,081 |
| 52.75 | 9,980 | 0.1600 | 62,375 |  | 601,000 | 230,383,856 |  |  |  |  |
|  |  |  | 61,862 |  |  | 227,892,184 |  |  |  | 9,250,081 |
| Pier 2 |  |  |  |  |  |  |  |  |  |  |
| 164.23 | 42,300 | 0.302 | 140,066 | 0.0040 | 8,250,000 | 2,062,511,000 | 264 | 1,809.56 | 3,834,253 | 26,281,442 |
| 165.73 | 42,300 | 0.296 | 142,905 |  | 8,320,000 | 2.080,011,093 |  |  |  |  |
|  |  |  | 141,486 |  |  | 2,071,261,047 |  |  |  | 26,281,442 |
|  |  |  |  |  |  |  |  |  |  |  |
| 152.19 | 18,100 | 0.102 | 177,451 | 0.0015 | 3,180,000 | 2,110,365,234 | 264 | 1,809.56 | 3,834,253 | 26,281,442 |
| 153.65 | 18,000 | 0.0998 | 180,361 |  | 3,210,000 | 2,130,274,340 |  |  |  |  |
|  |  |  | 178,906 |  |  | 2,120,319,787 |  |  |  | 26,281,442 |
| Pier 4 |  |  |  |  |  |  |  |  |  |  |
| 139.72 | 15,400 | 0.135 | 114,074 | 0.0012 | 2,540,000 | 2,108,201,020 | 336 | 1,809.56 | 3,834,253 | 20,649,705 |
| 141.38 | 15,400 | 0.133 | 115,789 |  | 2,570,000 | 2,133,101,032 |  |  |  |  |
|  |  |  | 114,932 |  |  | 2,120,651,026 |  |  |  | 20,649,705 |
| Pier 5 |  |  |  |  |  |  |  |  |  |  |
| 126.96 | 57,100 | 0.424 | 134,670 | 0.0043 | 8,360,000 | 1,922,812,116 | 264 | 1,809.56 | 3,834,253 | 26,281,442 |
| 128.34 | 57,100 | 0.418 | 136,603 |  | 8,450,000 | 1,943,512,246 |  |  |  |  |
|  |  |  | 135,636 |  |  | 1,933,162,181 |  |  |  | 26,281,442 |
| Abutment 6 ( ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |
| 51.3 | 10,000 | 0.0811 | 123,305 | 0.0014 | 559,000 | 408,500,255 | 234 | 706.86 | 3,834,253 | 11,582,366 |
| 52.25 | 10,000 | 0.0798 | 125,313 |  | 569,000 | 415,807,952 |  |  |  |  |
|  |  |  | 124,309 |  |  | 412,154,103 |  |  |  | 11,582,366 |
| SOIL STIFFNESSES PHASE 1 |  |  |  |  |  | SOIL STIFFNESSES PHASE 2 |  |  |  |  |
| BENT | $\mathrm{K}_{\mathrm{H}}$ (k/in) | $\mathrm{K}_{\phi}$ ( K .in/ inad ) | K ${ }_{\text {V }}$ (k/in) |  |  | BENT | $\mathrm{K}_{\mathrm{H}}$ (K/in) | $\mathrm{K}_{\phi}$ ( $\mathrm{K} . \mathrm{in} / \mathrm{rad}$ ) | $\mathrm{K}_{\mathrm{V}}$ (k/in) |  |
| Abut. 1 | 247.45 | 911,568.73 | 37,000.32 |  |  | Abut. 1 | 494.90 | 1,823,137.47 | 74,000.65 |  |
| Pier 2 | 424.46 | 6,213,783.14 | 78,844.33 |  |  | Pier 2 | 848.91 | 12,427,566.28 | 157,688.65 |  |
| Pier 3 | 536.72 | 6,360,959.36 | 78,844.33 |  |  | Pier 3 | 1073.44 | 12,721,918.72 | 157,688.65 |  |
| Pier 4 | 344.80 | 6,361,953.08 | 61,949.11 |  |  | Pier 4 | 689.59 | 12,723,906.16 | 123,898.23 |  |
| Pier 5 | 406.91 | 5,799,486.54 | 78,844.33 |  |  | Pier 5 | 813.82 | 11,598,973.09 | 157,688.65 |  |
| Abut. 6 | 497.24 | 1,236,462.31 | 46,329.47 |  |  | Abut. 6 | 994.47 | 2,472,924.62 | 92,658.93 |  |

## COLORADO DEPARTMENT OF TRANSPORTATION

 DESIGN COMPUTATIONS (Grid)


## DESIGN COMPUTATIONS (Grid)



$$
\mathrm{ksi}:=1000 \cdot \frac{\mathrm{lb}}{\mathrm{in}^{2}} \quad \mathrm{kgh}:=1000 \cdot \mathrm{lb}
$$

a. Temperature: Per SSR, The bridge will be built in two phased and each phase must be built in the winter months. However, I assume that the girders will be set at hot day.
$\alpha:=\frac{0.000006}{\operatorname{deg}} \quad \Delta T:=60 \cdot \mathrm{deg} \quad$ Dropped temperature
$\varepsilon_{\text {Temp }}:=\alpha \cdot \Delta T \quad \varepsilon_{\text {Temp }}=3.6 \times 10^{-4}$
b. Creep:
$\mathrm{t}_{\mathrm{i}}:=90 \quad$ Use predicted camber for precast girder alone at 90 days prior to deck pouring as shown in the Prestressed Concrete Box Girder sheet.
$\phi:=2.35 \cdot \cdot_{\mathbf{i}}{ }^{-0.118} \quad \phi=1.382 \quad \mathrm{P}_{\mathrm{ji}}:=1494.05 \cdot \mathrm{kip} \quad \mathrm{P}_{\mathrm{jf}}:=1244.89 \cdot \mathrm{kip}$
$\mathrm{E}_{\mathrm{ci}}:=33000 \cdot .15^{1.5} \cdot \sqrt{8.5} \cdot \mathrm{ksi} \quad \mathrm{E}_{\mathrm{ci}}=5.589 \times 10^{3} \cdot \mathrm{ksi} \quad \mathrm{A}_{\mathrm{g}}:=978 \cdot \mathrm{in}^{2}$
$\mathrm{E}_{\mathrm{ciD}}:=33000 \cdot 0.15^{1.5} \cdot \sqrt{4.5} \cdot \mathrm{ksi} \quad \mathrm{E}_{\text {ciD }}=4.067 \times 10^{3} \mathrm{ksi}$
$\mathrm{E}_{\mathrm{ce}}:=\frac{\mathrm{E}_{\mathrm{ci}}}{1+\phi} \quad \mathrm{E}_{\mathrm{ce}}=2.347 \times 10^{3} \cdot \mathrm{ksi} \quad \mathrm{A}_{\mathrm{cd}}:=250 \cdot \mathrm{in}^{2}$
$\sigma_{\mathrm{i}}:=\frac{\mathrm{P}_{\mathrm{ji}}}{\mathrm{A}_{\mathrm{g}}} \quad \sigma_{\mathrm{i}}=1.528 . \mathrm{ksi}$
$\sigma_{f}:=\frac{P_{j f}}{\left[A_{g}+A_{c d}\left(\frac{E_{c i D}}{E_{c i}}\right)\right]} \quad \sigma_{f}=1.073 \cdot \mathrm{ksi}$
$\varepsilon_{\mathrm{c}}:=\left(\frac{\sigma_{\mathrm{f}}}{\mathrm{E}_{\mathrm{ce}}}\right)-\left(\frac{\sigma_{\mathrm{i}}}{\mathrm{E}_{\mathrm{ci}}}\right) \quad \varepsilon_{\mathrm{c}}=1.841 \times 10^{-4}$
c. Shrinkage:
$\varepsilon_{\mathrm{sf}}:=0.00042 \quad \varepsilon_{\mathrm{si}}:=\left(\frac{\mathrm{t}_{\mathrm{i}}}{35+\mathrm{t}_{\mathrm{i}}}\right) \cdot \varepsilon_{\mathrm{sf}} \quad \varepsilon_{\mathrm{si}}=3.024 \times 10^{-4}$
$\varepsilon_{\mathrm{s}}:=\varepsilon_{\mathrm{sf}}-\varepsilon_{\mathrm{si}} \quad \varepsilon_{\mathrm{s}}=1.176 \times 10^{-4}$
$\varepsilon_{\text {Total }}:=\varepsilon_{\text {Temp }}+\varepsilon_{\mathrm{c}}+\varepsilon_{\mathrm{s}} \quad \varepsilon_{\text {Total }}=6.617 \times 10^{-4}$
Equivalent to dropped temperature $\quad \Delta \mathrm{T}_{\mathrm{eq}}:=\frac{\varepsilon_{\text {Total }}}{\alpha} \quad \Delta \mathrm{T}_{\mathrm{eq}}=110.276 \mathrm{deg}$
Bridge movement
At Abutments $1 \& 6 \quad \Delta_{1}:=\varepsilon_{\text {Total }} \cdot 188.75 \cdot 12 \cdot$ in $\quad \Delta_{I}=1.499 \cdot$ in
At Piers $2 \& 5 \quad \Delta_{2}:=\varepsilon_{\text {Total }} \cdot 126 \cdot 12 \cdot \mathrm{in} \quad \Delta_{2}=1 \cdot \mathrm{in}$
At Piers 3 \& 4

$$
\Delta_{3}:=\varepsilon_{\text {Total }} \cdot 42 \cdot 12 \cdot \text { in } \quad \Delta_{3}=0.333 \cdot \text { in }
$$

## Dune Series <br> Landscape Containers

Tapered round precast concrete planter with shaped top surface.

TO SPECIFY:

- Select the Dune Series and the product code.

Choose Drainage hole size:

- Standard diameter approximately 1-1/4" .
- Custom Size to function with irrigation \& drainage (note size of plumbing fixture to be used).
- No drainage hole.


## Select Concrete Color:

- Natural Gray concrete.
- Choose integral pigment color from Davis Colors (www.daviscolors.com), call/email us for a color selector brochure.
- Custom color mixing available (please contact us).


## Note: matching Dune Trash Receptacles



## Optional

- Bituminous Sealer applied to interior of planter (suggested for interior applications).
- Sandblast finish.

See website to download CSI specifications
In 2004 ${ }^{\text {² }}$, Larry Kornegay designed the Dune Series exclusively for Kornegay Design, LLC

877.252.6323 toll free 602.252.6323 local 602.252.6322 fax 212 South 18th Street, Phoenix, AZ 85034 Kornegay Design is dedicated to exceptional design \& craftsmanship of site furnishings
www.kornegaydesign.com info@kornegaydesign.com

CONTRACTION BY TEMPERATURE

$$
\begin{gathered}
T U_{c}=\text { Dropped Tenperahure }+ \text { Creep }+ \text { Shrinkage } \\
\varepsilon_{\text {Total }}=7.481 \times 10^{-4} \\
\Delta T=\frac{0.0007481}{0.000006}=124.68{ }^{\circ} \mathrm{F}
\end{gathered}
$$

EXPANSION BY TEMPERATURE

$$
T U_{E}=40^{\circ} F
$$

DEAD LOADS PHASE I
DC: Dead load components

$$
\text { Rails + Barrier + Haunch }+ \text { Sidewalk }
$$

$$
0.358+0.5+1(586 / 144)(0.15)+0.83(10)(0.15)=2.71 \mathrm{k} / \mathrm{ft}
$$

DW: Dead Load wearing

$$
38.832\left(\frac{3}{12}\right)(0.144)=1.40 \mathrm{k} / \mathrm{ft}
$$

BR Breaking Force (factored)

$$
2 \text { Lanes: } B R=72(0.25)(1.75)(1.0)(2)=63 \mathrm{~K} @ 6^{\prime} \text { above roadway }
$$

$$
M=6(63)=378 \mathrm{~K} \cdot \mathrm{ft}
$$

$D E A D$ LOAD PWASEIII
DC : Rails + Sidewalks + Median + Haunch

$$
2(0.358)+2(0.83)(10)(0.15)+(0.5)(16)(0.15)+(1)(1458.75 / 144)(.15)=5.93 \mathrm{k} / \mathrm{st}
$$

DW: Dead Load Wearing

$$
78\left(\frac{3}{12}\right)(0.144)=2.808 \mathrm{k} / \mathrm{ft}
$$

BR Breaking Force (factored)
5 lanes: $B R=72(0.25)(1.75)(0.65)(5)=102.375 @ 6^{\prime}$ above roadway

$$
M=6(102.375)=614.25 \mathrm{~K} . \mathrm{ff}^{\prime}
$$

| By: $A B$ Date $1 / 13$ | Project no. | FBR-0142-055 | Project code (SAA): 18085 |
| :---: | :--- | :--- | :--- |
| Chk'd:JE Date $8 / 13$ | Structure no. | $B-16-E V$ | Sheet 328 of 508 |



DESIGN SOI2 PRESSHOES ON AN INTEGRAB $\frac{\text { AFNTMSNT WHH MSK BAKKFIL W/O A GAP }}{\text { RLO }}$

SQMIVALENT MSEE FLHA PRESGURISS
0

$$
\begin{aligned}
& \text { RLO } \begin{array}{c}
1-14-03 \\
\\
\\
15-24-19-10
\end{array} \\
& \text { Bi (ATJuMgD Max R156 W/O A FAEINA) } \\
& 4 S+\frac{\phi}{2}=70^{\circ} \text { R BASK FAEF } \\
& \therefore \phi=(70-45) 2=50^{\circ} \\
& k_{0} \gamma=125(1-\sin 50)=29 \text { \#/CFON } \\
& \text { RIGID SHPJDRTS }
\end{aligned}
$$

BECANSE SOIL RENF DOESN'T WNORR IN comprassion, $K_{P}$ MUST
BE COMPNTED W/O CONSIDEQNG Solk REINF: $K_{p} \gamma=125 \frac{1+\operatorname{Sin} 34}{1-\sin 34}=442 \# / C F$

$$
\begin{aligned}
K_{a} \gamma=125 \times \frac{1-\operatorname{Sin} 50}{1+\operatorname{Sin} 5 D}= & 17 \text { \#/CF ON } \\
& \text { FLEXIBLE } \\
& \text { SAPPORTS }
\end{aligned}
$$

Landscaping Loads.

* 6'ф pot.

Top diameter:
Bottom diameter: $29.75^{\prime \prime}=2.479^{\prime}$
Height $=29^{\prime \prime}=2.417^{\prime}$

$$
W=\left(6^{2} \frac{\pi}{4}+2.479^{2} \frac{\pi}{4}\right) \frac{1}{2}(2.417)(0.13)=5.2 \mathrm{k} / \mathrm{ea}
$$

$$
* 5^{\prime} \phi \text { pot }
$$

Top-diameter: $5^{\prime}$
Potform diameter: $28^{\prime \prime}=2.333^{\prime}$

$$
\begin{aligned}
& \text { Height } \quad 40^{\prime \prime}=3.333^{\prime} \\
& w=\left(5^{2} \frac{\pi}{4}+2.333^{2} \frac{\pi}{4}\right) \frac{1}{2}(3.333)(0.13)=5.2 \mathrm{Klea.}
\end{aligned}
$$

* Raised print $\left(35^{\prime} \times 12^{\prime} \times 1^{\prime}\right)$

$$
w(p(f)=12 \times 1 \times 0.15=1.8 \mathrm{t} / \mathrm{ft}
$$

Component Loads

* Curb + Bride rail + Ped Rail

$$
W(P L f)=3.877(0.15)+0.05+0.05=0.68 \mathrm{k} / \mathrm{ft}
$$

* Side walk

$$
w(p \text { Cf })=(7.2524+1.1184)(0.15)=0.92 \mathrm{k} / \mathrm{ft}
$$



* Raised Median ( $9^{\prime \prime} \times 26^{\prime}$ )

Area load $=0.75(1)(0.15)^{-}=0.1125 \mathrm{k} / \mathrm{ft}^{2}$

$$
\begin{aligned}
& \text { * } 3^{\prime} \phi \text { pot } \\
& \text { Top Bia. }=3^{\prime} \quad \text { Bottom Bia }=1.33^{\prime} \quad \text { Height }=1.92^{\prime} \\
& W=\left(3^{2} \frac{\pi}{4}+1.33^{2} \frac{\pi}{4}\right) \frac{1}{2}(1.92)(0.13)=1.06 \mathrm{~K}
\end{aligned}
$$

| By: $A B$ Date $1 / 13$ | Project no. $F B R-0 / 42-055$ | Project code (SAA): 18085 |  |
| :---: | :---: | :--- | :---: | :---: |
| Chk'd:JE Date $8 / 13$ | Structure no. | $B-16-E V$ | Sheet 331 of 588 |

# CSIBPIDRE 

2D-MODEL

## CSIBridge Analysis Report

Prepared by Colorado DOT

## Model Name: BridgeModelPhase2_V15.bdb

27 March 2013 Contents

## Contents

| 1. Model geometry. |  |  |
| :---: | :---: | :---: |
| 1.2. Element connectivity |  |  |
|  |  |  |
| 2. Material Properties |  |  |
|  |  |  |
| 3. Section properties |  |  |
| 3.2. Areas |  |  |
| 4. Load pattems |  |  |
| 5. 4.1. Definitions |  |  |
|  |  |  |
| 5. Load cases ${ }^{51}$ Definions |  |  |
|  |  |  |
| 5.3. Response spectrum case load assionments |  |  |
| 6. Load combinations. |  |  |
| 7. Structure results ..... |  |  |
|  |  |  |
| , 7.2. Mass summar |  |  |
| 9. Frame results...... |  |  |
|  |  |  |
| 10. Material take-off...... |  |  |
| 11. Design preferences |  |  |
| 11.2. Concrele desian |  |  |
|  |  |  |
| 12. 11.4 Cold formed desian |  |  |
|  |  |  |

## List of Figures



## List of Tables



1. Model geometry

This section provides model geometry information, including items such as joint coordinates, joint restraints, and element connectivity.


Figure 1: Finite element model
1.1. Joint coordinates

Table 1: Joint Coordinates

| Joint | CoordSys | CoordType | GlobalX <br> fi | Globaly | Globalz |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GLOBAL | Cartesian | 10.0000 | 0.0000 | 19.2083 |
| 2 | GLOBAL | Cartesian | 72.7500 | 0.0000 | 19.2083 |
| 3 | GLOBAL | Cartesian | 10.0000 | 0.0000 | 7.1667 |
| 4 | GLobal | Cartesian | 72.7500 | 0.0000 | 13.7500 |
| 5 | GLOBAL | Cartesian | 72.7500 | 0.0000 | 0.0000 |
| 6 | global | Cartesian | 10.0000 | 0.0000 | 11.8646 |
| 7 | GLOBAL | Cartesian | 10.0000 | 0.0000 | 11.4167 |
| 8 | GLOBAL | Cartesian | 156.7500 | 0.0000 | 19.2083 |
| 9 | global | Cartesian | 156.7500 | 0.0000 | 13.7500 |
| 10 | global | Cartesian | 156.7500 | 0.0000 | 1.0833 |
| 11 | GLOBAL | Cartesian | 240.7500 | 0.0000 | 19.2083 |
| 12 | Global | Cartesian | 240.7500 | 0.0000 | 13.7500 |
| 13 | GLOBAL | Cartesian | 240.7500 | 0.0000 | 2.1667 |
| 14 | global | Cartesian | 324.7500 | 0.0000 | 19.2083 |
| 15 | GLOBAL | Cartesian | 324.7500 | 0.0000 | 13.7500 |
| 16 | GLOBAL | Cartesian | 324.7500 | 0.0000 | 3.2500 |
| 17 | GLOBAL | Cartesian | 387.5000 | 0.0000 | 19.2083 |
| 18 | global | Cartesian | 387.5000 | 0.0000 | 7.1667 |
| 19 | GLOBAL | Cartesian | 387.5000 | 0.0000 | 11.8646 |
| 20 | GLOBAL | Cartesian | 387.5000 | 0.0000 | 11.4167 |

1.2. Element connectivity

Table 2: Connectivity - Frame

\left.| Table 2: |  |  |  |
| :---: | :---: | :---: | ---: |
| Frame | Jointi | JointJ | Length |
| ft |  |  |  |$\right]$


| Table 2: |  |  |  |
| :---: | :---: | :---: | ---: |
| Frame | Jointl | JointJ | Length <br> f |
|  |  |  | 84.0000 |
| 6 | 2 | 8 | 5.4583 |
| 7 | 8 | 9 | 12.6667 |
| 8 | 9 | 10 | 84.0000 |
| 9 | 8 | 11 | 5.4583 |
| 10 | 11 | 12 | 11.5833 |
| 11 | 12 | 13 | 84.0000 |
| 12 | 11 | 14 | 5.4583 |
| 13 | 14 | 15 | 10.5000 |
| 14 | 15 | 16 | 62.7500 |
| 15 | 14 | 17 | 0.4479 |
| 18 | 6 | 7 | 4.2500 |
| 19 | 7 | 3 | 7.3438 |
| 20 | 17 | 19 | 0.4479 |
| 22 | 19 | 20 | 4.2500 |
| 23 | 20 | 18 |  |

Table 3: Frame Section Assignments

| Table 3: Frame Section Assignments |  |  |  |
| :---: | :---: | :---: | :---: |
| Frame | AnalSect | DesignSect | MatProp |
|  |  |  |  |
| 1 | SUPERSTRUCTURE | N.A. | Default |
| 3 | PIER CAP | PIER CAP | Default |
| 4 | PIER COLUMN | N.A. | Default |
| 5 | ABUTMENT CAP | ABUTMENT CAP | Default |
| 6 | SUPERSTRUCTURE | N.A. | Default |
| 7 | PIER CAP | PIER CAP | Default |
| 8 | PIER COLUMN | N.A. | Default |
| 9 | SUPERSTRUCTURE | N.A. | Default |
| 10 | PIER CAP | PIER CAP | Default |
| 11 | PIER COLUMN | N.A. | Default |
| 12 | SUPERSTRUCTURE | N.A. | Default |
| 13 | PIER CAP | PIER CAP | Default |
| 14 | PIER COLUMN | N.A. | Default |
| 15 | SUPERSTRUCTURE | N.A. | Default |
| 18 | BEARING | N.A. | Default |
| 19 | ABUTMENT CAP | ABUTMENT CAP | Default |
| 20 | ABUTMENT CAP | ABUTMENT CAP | Default |
| 22 | BEARING | N.A. | Default |
| 23 | ABUTMENT CAP | ABUTMENT CAP | Default |

Table 4: Frame Release Assignments 1 - General, Part 1 of 2

| Table 4: |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame Release Assignments 1-General, Part 1 of 2 |  |  |  |  |  |  |  |
|  | PI | V21 | V3i | TI | M21 | M3I |  |
| 3 | No | No | No | No | No | Yes |  |
| 7 | No | No | No | No | No | Yes |  |
| 10 | No | No | No | No | No | Yes |  |
| 13 | No | No | No | No | No | Yes |  |
| 18 | No | No | No | No | Yes | Yes |  |
| 22 | No | No | No | No | Yes | Yes |  |

Table 4: Frame Release Assignments 1 - General, Part 2 of 2

| Table 4: |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame Release Assignments $\mathbf{1 - G e n e r a l , ~ P a r t ~ 2 ~ o f ~ 2 ~}$ |  |  |  |  |  |  |  |
|  | PJ | V2J | V3J | TJ | M2J | M3J |  |
| 3 | No | No | No | No | No | No |  |
| 7 | No | No | No | No | No | No |  |
| 10 | No | No | No | No | No | No |  |
| 13 | No | No | No | No | No | No |  |
| 18 | No | No | No | No | No | No |  |
| 22 | No | No | No | No | No | No |  |

2. Material properties

This section provides material property information for materials used in the model.
Table 5: Material Properties 02 - Basic Mechanical Properties
Table 5: Material Properties 02 - Basic Mechanical Properties

| Material | UnitWeight | UnitMass | E1 | G12 | 412 | A1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kip/f3 | Kip-s2ff 4 | Kipfl2 | Kip/ft2 |  | 1/F |
| 4000Psi | 1.5000E-01 | 4.6621E-03 | 519119.50 | 216299.79 | 0.200000 | 5.5000E-06 |
| A615Gr60 | 4.9000E-01 | 1.5230E-02 | 4176000.00 |  |  | 6.5000E-06 |
| A992Fy50 | $4.9000 \mathrm{E}-01$ | $1.5230 \mathrm{E}-02$ | 4176000.00 | 1606153.85 | 0.300000 | $6.5000 \mathrm{E}-06$ |
| BEARING | 7.0000E-02 | 2.1757E-03 | 4704.48 | 1960.20 | 0.200000 | $1.0000 \mathrm{E}-05$ |
| Concrete 4.5 ksi | $1.5000 \mathrm{E}-01$ | 4.6621E-03 | 585624.96 | 244010.40 | 0.200000 | 6.0000E-06 |
| Concrete 8.5 ksi | 1.0000E-08 | 3.1081E-10 | 845441.28 | 352267.20 | 0.200000 | 6.0000E-06 |

Table 6: Material Properties 03a - Steel Data

|  | Table 6: | Material Properties 03a - Steel Data |  |
| :---: | ---: | ---: | ---: | ---: |
| Material | Fy <br> Kipft2 | Fu <br> Kip/t2 | FinalSlope |
|  | 7200,00 | 9360.00 | -0.100000 |

Table 7: Material Properties 03b - Concrete Data

| Table 7: | Material Properties 03b - Concrete Data |  |
| :---: | ---: | :--- |
| Material | Fc | FinalSlope |
|  | Kip/t2 |  |
| 4000Psi | 576.00 | -0.100000 |
| Concrete 4.5 ksi | 648,00 | -0.100000 |
| Concrete 8.5 ksi | 1224.00 | -0.100000 |

Table 8: Material Properties 03e - Rebar Data
Table 8: Material Properties 03e - Rebar Data

|  | Table 8: | Material Properties 03e-Rebar Data |  |
| :---: | ---: | ---: | ---: |
|  | Fy <br> Kipft2 | Fu <br> Kip/f2 | FinalSiope |
| A615Gr60 | 8640.00 | 12960.00 | -0.100000 |

3. Section properties

This section provides section property information for objects used in the model
3.1. Frames

Table 9: Frame Section Properties 01 -General, Part 1 of 4

| SectionName | Material | Shape | 13 | 12 | Area | TorsConst | 133 | 122 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $f$ | ft | ft2 | ft 4 | ft | ft 4 |
| ABUTMENT CAP | Concrete 4.5 ksi | Rectangular | 3.00000 | 127.00000 | 381.0000 | 1125.990000 | 285.750000 | 512095.750 |
| BEARING | BEARING | SD Section |  |  | 2920.7148 | 788.842375 | 460.164699 | 3774804.14 |
| PIER CAP | Concrete 4.5 ksi | Rectangular | 4.00000 | 124.00000 | 496.0000 | 2591.573338 | 661.333333 | 635541.333 |
| PIER COLUMN | Concrete 4.5 ksi | SD Section |  |  | 57.3566 | 87.264699 | 43.632350 | 84734.1701 |
| SUPERSTRUCTURE | Concrete 8.5 ksi | General | 2.91670 | 124.00000 | 171.7118 | 343.661000 | 186.081600 | 213652.0500 |

Table 9: Frame Section Properties 01 - General, Part 2 of 4
Table 9: Frame Section Properties 01 -General, Part 2

|  | of 4 |  |
| :---: | ---: | ---: |
| SectionName | AS2 | AS3 |
|  | $\mathrm{ft2}$ | $\mathrm{ft2}$ |
| ABUTMENT CAP | 317.5000 | 317.5000 |
| BEARING | 24461586 | 2920.7148 |
| PIER CAP | 413.3333 | 413.3333 |
| PIER COLUMN | 51.7795 | 57.3566 |
| SUPERSTRUCTURE | 79.8986 | 129.8986 |

Table 9: Frame Section Properties 01 - General, Part 3 of 4

| SectionName | S33 | S22 | Z33 | 222 | R33 | R22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f 3$ | f3 | $\mathrm{fl}^{3}$ | f3 | f | A |
| ABUTMENT CAP | 190.500000 | 8064.500000 | 285.750000 | 12096.75000 | 0.86603 | 36.66174 |
| BEARING | 669.330471 | 64125.2940 | 9.098633 | 825.730469 | 0.39693 | 35.95031 |
| PIER CAP | 330.666667 | 10250.68667 | 496.000000 | 15376.00000 | 1.15470 | 35.79572 |
| PIER COLUMN | 24.932771 | 1460.933967 | 42.463084 | 1935.783720 | 0.87219 | 38.43596 |
| SUPERSTRUCTURE | 126.157100 | 3446.000800 | 166.373700 | 4903.956100 | 1.04100 | 35.27390 |

Table 9: Frame Section Properties 01 -General, Part 4 of 4

| SectionName | AMod | A2Mod | A3Mod | JMod | 12Mod | 13 Mod | MMod | WMod |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABUTMENT CAP | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| BEARING | 1.000000 | 0.007140 | 0.007350 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| PIER CAP | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| PIER COLUMN | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| SUPERSTRUCTURE | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |

Table 10: Frame Section Properties 02 - Concrete Column, Part 1 of 2

| SectionName | RebarMatL | RebarMatc | ReinfConfig | LatReinf | Cover | NumBars3Dir | NumBars2Dir |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $f$ |  |  |
| ABUTMENT CAP | A615Gr60 | A615Gr60 | Rectangular | Tias | 0.12500 | 3 | 3 |
| PIER CAP | A615Gr60 | A615Gr60 | Rectangular | Ties | 0.12500 | 3 | 3 |

Table 10: Frame Section Properties 02 - Concrete Column, Part 2 of 2
Table 10: Frame Section Properties 02 -Concrete Column, Part 2 of 2

| SectionName | BarSizeL | BarSizaC | SpacingC | NumCBars2 | NumCBars3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $f$ |  |  |
| ABUTMENT CAP | \#9 | \#4 | 0.50000 | 3 | 3 |
| PIER CAP | \#9 | \#4 | 0.50000 | 3 | 3 |

Table 11: Frame Property Modifiers

| Frame | AMod | AS2Mod | AS3Mod 11: | Frame Property Modifiers | JMod | 122Mod | 133Mod | MassMod |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 |  |  |  |  |  | WeightMod |  |  |
| 22 | 1.000000 | 0.006800 | 0.006800 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |

3.2. Areas

Table 12: Area Section Properties, Part 1 of 2
Table 12: Area Section Properties, Part 1 of 2

| Section | Material | AreaType | Type | Thickness | BendThick <br> ft | F11Mod | F22Mad |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DECK \& GIRDERS | Concrete 8.5 ksi | Plane | Plane-Stress | $1.000 \mathrm{E}-05$ | 1.000000 | 1.000000 |  |

Table 12: Area Section Properties, Part 2 of 2

| Section | F12Mod | M11Mod | M22Mod | M12Mod | V13Mod | V23Mod | MMod | WMod |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DECK \& GIRDERS | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |

4. Load patterns

This section provides loading information as applied to the model
4.1. Definitions

Table 13: Load Pattern Definitions

| Table 13: Load Pattern Definitions |  |  |  |
| :---: | :---: | :---: | :---: |
| LoadPat | DesignType | SelfwtMult | AutoLoad |
| DEAD |  |  |  |
| LIVELOAD | DEAD | 1.000000 |  |
| DL COMPOSITE 1 | DEAD LIVE | 0.000000 |  |
| TUe | TEMPERATURE | 0.000000 | 0.000000 |
| TUe | TEMPERATURE | 0.000000 |  |
| WATER PRESSURE | OTHER | 0.000000 |  |
| EH ATREST | HOR EARTH PR | 0.000000 |  |
| WATER PRESSURE | OTHER | 0.000000 |  |
| 500YR |  |  |  |
| EH ACTIVE | HOR EARTH PR | 0.000000 |  |
| DL COMPOSITE 2 | DEAD | 0.000000 |  |
| TUc,lemp | TEMPERATURE | 0.000000 |  |
| BR-in | BRAKING | 0.000000 |  |
| BR-out | BRAKING | 0.000000 |  |
|  |  |  |  |

5. Load cases

This section provides load case information.
5.1. Definitions

Table 14: Load Case Definitions

| Case |  | Table 14: Load Case Definitions |  |
| :---: | :---: | :---: | :---: |
| DEAD | Type | InitialCond | ModalCase |
| MODAL | LinStatic | Zero | BaseCase |

5.2. Static case load assignments

Table 15: Case - Static 1 - Load Assignments

| Case | LoadType | LoadName | LoadSF |
| :---: | :---: | :---: | :---: |
| DEAD | Load pattern | DEAD | 1.000000 |
| DL COMPOSITE 1 | Load pattern | DL COMPOSITE 1 | 1.000000 |
| TUe | Load pattern | TUe | 1.000000 |
| TUc | Load pattern | TUc | 1.000000 |
| WATER PRESSURE | Load pattern | WATER PRESSURE | 1.000000 |
| EH ATREST | Load pattern | EH ATREST | 1.000000 |
| WATER PRESSURE 500YR | Load pattern | WATER PRESSURE 500YR | 1.000000 |
| EH ACtive | Load pattern | EH ACTIVE | 1.000000 |
| DL COMPOSITE 2 | Load pattern | DL COMPOSITE 2 | 1.000000 |
| TUc, temp | Load pattern | TUc,temp | 1.000000 |


| Table 15: Case-Static 1- Load Assignments |  |  |  |
| :---: | :---: | :---: | :---: |
| Case | LoadType | LoadName | LoadSF |
|  |  |  |  |
| BR-in | Load pattern | BR-in | 1.000000 |
| BR-out | Load pattern | BR-out | 1.000000 |

5.3. Response spectrum caso load assignments

Table 16: Function - Response Spectrum - User
Table 16: Function - Response Spectrum - User

| Table 16: |  |  |  |  | Function - Response Spectrum - User |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Period <br> Sec | Accel | FuncDamp |  |  |  |
| UNIFRS | 0.000000 | 1.000000 | 0.050000 |  |  |  |
| UNIFRS | 1.000000 | 1.000000 |  |  |  |  |

6. Load combinations

This section provides load combination information
Table 17: Combination Definitions

| ComboName | Combotype | CaseName | ScaleFactor |
| :---: | :---: | :---: | :---: |
| COMB1 | Linear Add | DEAD | 1.000000 |
| COMB1 |  | VEhicle | 1.000000 |
| Stri (Cont) | Linear Add | DEAD | 1.250000 |
| Str1 (Cont) |  | WATER PRESSURE | 1.000000 |
| Str 1 (Cont) |  | TUe | 1.200000 |
| Str ${ }^{\text {(Cont) }}$ |  | Vehicle | 1.750000 |
| Str1 (Cont) |  | EH ACTIVE | 1.500000 |
| Str 1 (Cont) |  | DL COMPOSITE 1 | 1.250000 |
| Stry (Conl) |  | DL COMPOSITE 2 | 1.500000 |
| Str 1 (Cont) |  | BR-in | 1.750000 |
| Str1 (Expn) | Linear Add | DEAD | 1.250000 |
| Str1 (Expn) |  | WATER PRESSURE | 1.000000 |
| Str1 (Expn) |  | TUe | 1.200000 |
| Stri (Expn) |  | Vehicle | 1.750000 |
| Str1 (Expn) |  | EH ATREST | 1.350000 |
| Str1 (Expn) |  | DL COMPOSITE 1 | 1.250000 |
| Str1 (Expn) |  | DL COMPOSITE 2 | 1.500000 |
| Str1 (Expn) |  | BR-out | 1.750000 |
| Strength 1 (Active Earth, Temp) | Linear Add | DEAD | 1.250000 |
| Strength 1 (Active Earth, Temp) |  | DL COMPOSITE 1 | 1.250000 |
| Strength 1 (Active Earth, Temp) |  | DL COMPOSITE 2 | 1.500000 |
| Strength 1 (Active Earth, Temp) |  | eh active | 1.500000 |
| Strength 1 (Active Earth, Temp) |  | TUc, temp | 1.200000 |
| Strength 1 (Active Earth, Temp) |  | WATER PRESSURE | 1.000000 |
| Strength 1 (Active Earth, Temp) |  | vehicle | 1.750000 |
| Strength 1 (Active Earth, Temp) |  | WATER PRESSURE 500YR | 1.000000 |
| Strenglh 1 (Active Earth, Temp) |  | BR-in | 1.750000 |
| Ext Event I | Linear Add | DEAD | 1.250000 |
| Ext Event I |  | Vehicle | 0.500000 |
| Ext Event I |  | eh active | 1.500000 |
| Ext Event I |  | DL COMPOSITE 1 | 1.250000 |
| Ext Event I |  | DL COMPOSITE 2 | 1.500000 |
| Ext Event I |  | BR-in | 0.500000 |

7. Structure results

This section provides structure results, including items such as structural periods and base reactions,


Figure 2: Deformed shape
7.1. Mass summary

Table 18: Assembled Joint Masses

| Joint | U1 | U2 | U3 | $R 1$ | R2 | R3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kip-s2/f | Kip-s2/f | Kip-s2/t | Kip-f-s2 | Kip-fl-s2 | Kip-fi-s2 |
| 1 | 6.52 | 6.52 | 6.52 | 0.0000 | 0.0000 | 0.0000 |
| 2 | 6.31 | 6.31 | 6.31 | 0.0000 | 0.0000 | 0.0000 |
| 3 | 3.77 | 3.77 | 3.77 | 0.0000 | 0.0000 | 0.0000 |
| 4 | 8.15 | 8.15 | 8.15 | 0.0000 | 0.0000 | 0.0000 |
| 5 | 1.84 | 1.84 | 1.84 | 0.0000 | 0.0000 | 0.0000 |
| 6 | 6.55 | 6.55 | 6.55 | 0.0000 | 0.0000 | 0.0000 |
| 7 | 3.80 | 3.80 | 3.80 | 0.0000 | 0.0000 | 0.0000 |
| 8 | 6.31 | 6.31 | 6.31 | 0.0000 | 0.0000 | 0.0000 |
| 9 | 8.00 | 8.00 | 8.00 | 0.0000 | 0.0000 | 0.0000 |
| 10 | 1.69 | 1.69 | 1.69 | 0.0000 | 0.0000 | 0.0000 |
| 11 | 6.31 | 6.31 | 6.31 | 0.0000 | 0.0000 | 0.0000 |
| 12 | 7.86 | 7.86 | 7.86 | 0.0000 | 0.0000 | 0.0000 |
| 13 | 1.55 | 1.55 | 1.55 | 0.0000 | 0.0000 | 0.0000 |
| 14 | 6.31 | 6.31 | 6.31 | 0.0000 | 0.0000 | 0.0000 |
| 15 | 7.71 | 7.71 | 7.71 | 0.0000 | 0.0000 | 0.0000 |
| 16 | 1.40 | 1.40 | 1.40 | 0.0000 | 0.0000 | 0.0000 |
| 17 | 6.52 | 6.52 | 6.52 | 0.0000 | 0.0000 | 0.0000 |
| 18 | 3.77 | 3.77 | 3.77 | 0.0000 | 0.0000 | 0.0000 |
| 19 | 6.55 | 6.55 | 6.55 | 0.0000 | 0.0000 | 0.0000 |
| 20 | 3.80 | 3.80 | 3.80 | 0.0000 | 0.0000 | 0.0000 |

7.2. Base reactions
8. Joint results

This section provides joint results, including items such as displacements and reactions.
9. Frame results

This section provides frame force results

Table 19: Element Forces - Frames, Part 1 of 2
Table 19: Element Forces - Frames, Part 1 of 2

| Frame | Station | OutputCase | StepType | P | V2 | V3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f$ |  |  | Kip | Kip | Kip |
| 1 | 0.0000 | Stri (Cont) | Max | 29.453 | -1064.957 | 53.576 |
| 1 | 0.0083 | Strt (Cont) | Max | 29.453 | -1064.288 | 53.576 |
| 1 | 0.0083 | Stri (Cont) | Max | 29.453 | -1064.288 | 53.576 |
| 1 | 1.8007 | Str1 (Cont) | Max | 29.453 | -920.475 | 53.576 |
| 1 | 3.5931 | Stri (Cont) | Max | 29.453 | -807.754 | 53.576 |
| 1 | 5.3855 | Stri (Cont) | Max | 29.453 | -719.113 | 53.576 |
| 1 | 7.1779 | Stri (Cont) | Max | 29.453 | -630.472 | 53.576 |
| 1 | 8.9702 | Stri (Cont) | Max | 29.453 | -541.830 | 53.576 |
| 1 | 8.9702 | Str1 (Cont) | Max | 29.453 | -541.830 | 53.576 |
| 1 | 10.7626 | Stri (Cont) | Max | 29.453 | -438.431 | 53.576 |
| 1 | 12.5550 | Str1 (Cont) | Max | 29.453 | -335.032 | 53.576 |
| 1 | 14.3474 | Stri (Cont) | Max | 29.453 | -231.633 | 53.576 |
| 1 | 16.1398 | Stri (Cont) | Max | 29.453 | -128.233 | 53.576 |
| 1 | 17.9321 | Str1 (Cont) | Max | 29.453 | -24.834 | 53.576 |
| 1 | 17.9321 | Str1 (Cont) | Max | 29.453 | -24.834 | 53.576 |
| 1 | 19.7245 | Str1 (Cont) | Max | 29.453 | 93.747 | 53.576 |
| 1 | 21.5169 | Stri (Cont) | Max | 29.453 | 212.327 | 53.576 |
| 1 | 23.3093 | Stri (Cont) | Max | 29.453 | 330.908 | 53.576 |
| 1 | 25.1017 | Str1 (Cont) | Max | 29.453 | 449.489 | 53.576 |
| 1 | 26.8940 | Str1 (Cont) | Max | 29.453 | 568.070 | 53.576 |
| 1 | 26.8940 | Str1 (Cont) | Max | 29.453 | 568.070 | 53.576 |
| 1 | 28.6864 | Str1 (Cont) | Max | 29.453 | 691.653 | 53.576 |
| 1 | 30.4788 | Str1 (Cont) | Max | 29.453 | 815.237 | 53.576 |
| 1 | 32.2712 | Str1 (Cont) | Max | 29.453 | 938.820 | 53.576 |
| 1 | 34.0636 | Str1 (Cont) | Max | 29.453 | 1062.403 | 53.576 |
| 1 | 35.8560 | Str1 (Cont) | Max | 29.453 | 1185.987 | 53.576 |
| 1 | 35.8560 | Str1 (Cont) | Max | 29.453 | 1185.987 | 53.576 |
| 1 | 37.6483 | Str1 (Cont) | Max | 29.453 | 1307.559 | 53.576 |
| 1 | 39.4407 | Str1 (Cont) | Max | 29.453 | 1429.132 | 53.576 |
| 1 | 41.2331 | Stri (Cont) | Max | 29.453 | 1550.705 | 53.576 |
| 1 | 43.0255 | Str1 (Cont) | Max | 29.453 | 1672.278 | 53.576 |
| 1 | 44.8179 | Str1 (Cont) | Max | 29.453 | 1793.851 | 53.576 |
| 1 | 44.8179 | Str1 (Cont) | Max | 29.453 | 1793.851 | 53.576 |
| 1 | 46.1589 | Str1 (Cont) | Max | 29.453 | 1884.347 | 53.576 |
| 1 | 47.5000 | Str1 (Cont) | Max | 29.453 | 1975.814 | 53.576 |
| 1 | 47.5000 | Str1 (Cont) | Max | 29.453 | 1977.139 | 53.576 |
| 1 | 48.9167 | Str1 (Cont) | Max | 29.453 | 2073.763 | 53.576 |
| 1 | 50.3333 | Str1 (Cont) | Max | 29.453 | 2170.387 | 53.576 |
| 1 | 51.7500 | Str 1 (Cont) | Max | 29.453 | 2267.011 | 53.576 |
| 1 | 51.7500 | Str1 (Cont) | Max | 29.453 | 2268.336 | 53.576 |
| 1 | 53.7798 | Stri (Cont) | Max | 29.453 | 2406.776 | 53.576 |
| 1 | 53.7798 | Str1 (Cont) | Max | 29.453 | 2406.776 | 53.576 |
| 1 | 55.2649 | Str1 (Cont) | Max | 29.453 | 2504.552 | 53.576 |
| 1 | 56.7500 | Str1 (Cont) | Max | 29.453 | 2602.328 | 53.576 |
| 1 | 56.7500 | Str1 (Cont) | Max | 29.453 | 2608.828 | 53.576 |
| 1 | 58.7472 | Stri (Cont) | Max | 29.453 | 2740.319 | 53.576 |
| 1 | 60.7444 | Str1 (Cont) | Max | 29.453 | 2889.585 | 53.576 |
| 1 | 62.7417 | Stri (Cont) | Max | 29.453 | 3082.553 | 53.576 |
| 1 | 62.7417 | Stri (Cont) | Max | 29.453 | 3082.553 | 53.576 |
| 1 | 62.7500 | Str1 (Cont) | Max | 29.453 | 3083.241 | 53.576 |
| 1 | 0.0000 | Str1 (Cont) | Min | 23.540 | -2065.999 | -54.546 |
| 1 | 0.0083 | Str1 (Cont) | Min | 23.540 | -2065.331 | -54.546 |
| 1 | 0.0083 | Str1 (Cont) | Min | 23.540 | -2065.331 | -54.546 |
| 1 | 1.8007 | Str1 (Cont) | Min | 23.540 | -1884.945 | -54.546 |
| 1 | 3.5931 | Stri (Cont) | Min | 23.540 | -1735.652 | -54.546 |
| 1 | 5.3855 | Str1 (Cont) | Min | 23.540 | -1610.438 | -54.546 |
| 1 | 7.1779 | Str1 (Cont) | Min | 23.540 | -1485.225 | -54.546 |
| 1 | 8.9702 | Str 1 (Cont) | Min | 23.540 | -1360.011 | -54.546 |
| 1 | 8.9702 | Str1 (Cont) | Min | 23.540 | -1360.011 | -54.546 |
| 1 | 10.7626 | Str 1 (Cont) | Min | 23.540 | -1236.661 | -54.546 |
| 1 | 12.5550 | Str 1 (Cont) | Min | 23.540 | -1113.312 | -54.546 |
| 1 | 14.3474 | Str1 (Cont) | Min | 23.540 | -989.962 | -54.546 |
| 1 | 16.1398 | Str1 (Cont) | Min | 23.540 | -886.612 | -54.546 |
| 1 | 17.9321 | Stri (Cont) | Min | 23.540 | -743.262 | -54.546 |
| 1 | 17.9321 | Str1 (Cont) | Min | 23.540 | -743.262 | -54,546 |
| 1 | 19.7245 | Str1 (Cont) | Min | 23.540 | -622.664 | -54.546 |
| 1 | 21.5169 | Str1 (Cont) | Min | 23.540 | -502.066 | -54.546 |
| 1 | 23.3093 | Str1 (Cont) | Min | 23.540 | -381.468 | -54.546 |

Table 19: Element Forces - Frames, Part 1 of 2

|  | Frame |  | Outputcase | StepType | PKjp | $\begin{aligned} & \text { V2 } \\ & \text { Kip } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { V3 } \\ & \text { Kip } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Station |  |  |  |  |  |
|  |  | $f$ |  |  |  |  |  |
|  | 1 | 25.1017 | Str1 (Cont) | Min | 23.540 | -260.870 | -54.546 |
|  | 1 | 26.8940 | Str1 (Cont) | Min | 23.540 | -140.272 | -54.546 |
|  | 1 | 26.8940 | Str1 (Cont) | Min | 23.540 | -140.272 | -54.546 |
|  | 1 | 28.6864 | Str1 (Cont) | Min | 23.540 | -23.481 | -54.546 |
|  | 1 | 30.4788 | Str1 (Cont) | Min | 23.540 | 93.310 | -54.546 |
|  | 1 | 32.2712 | Str1 (Cont) | Min | 23.540 | 210.101 | -54.546 |
|  | 1 | 34.0636 | Str1 (Cont) | Min | 23.540 | 326.892 | -54.546 |
|  | 1 | 35.8560 | Str1 (Cont) | Min | 23.540 | 443.684 | -54.546 |
|  | 1 | 35.8560 | Str1 (Cont) | Min | 23.540 | 443.684 | -54.546 |
|  | 1 | 37.6483 | Stri (Cont) | Min | 23.540 | 553.073 | -54,546 |
|  | 1 | 39.4407 | Str1 (Cont) | Min | 23.540 | 662.463 | -54.546 |
|  | 1 | 41.2331 | Str1 (Cont) | Min | 23.540 | 771.853 | -54.546 |
|  | 1 | 43.0255 | Stri (Cont) | Min | 23.540 | 881.243 | -54.546 |
|  | 1 | 44.8179 | Str1 (Cont) | Min | 23.540 | 990.632 | -54.546 |
|  | 1 | 44.8179 | Str1 (Cont) | Min | 23.540 | 990.632 | -54.546 |
|  | 1 | 46.1589 | Str1 (Cont) | Min | 23.540 | 1069.514 | -54.546 |
|  | 1 | 47.5000 | Str1 (Cont) | Min | 23.540 | 1149.367 | -54.546 |
|  | 1 | 47.5000 | Str1 (Cont) | Min | 23.540 | 1150.692 | -54.546 |
|  | 1 | 48.9167 | Str1 (Cont) | Min | 23.540 | 1235.047 | -54.546 |
|  | 1 | 50.3333 | Str1 (Cont) | Min | 23.540 | 1319.402 | -54.546 |
|  | 1 | 51.7500 | Str1 (Cont) | Min | 23.540 | 1403.756 | -54.546 |
|  | 1 | 51.7500 | Str1 (Cont) | Min | 23.540 | 1405.081 | -54.546 |
|  | 1 | 53.7798 | Stri (Cont) | Min | 23.540 | 1525.943 | -54.546 |
|  | 1 | 53.7798 | Stri (Cont) | Min | 23.540 | 1525.943 | -54.546 |
|  | 1 | 55.2649 | Str1 (Cont) | Min | 23.540 | 1605.039 | -54.546 |
|  | 1 | 56.7500 | Str1 (Cont) | Min | 23,540 | 1684.136 | -54.546 |
|  | 1 | 56.7500 | Str1 (Cont) | Min | 23.540 | 1690.636 | -54.546 |
|  | 1 | 58.7472 | Str1 (Cont) | Min | 23.540 | 1797.007 | -54.546 |
|  | 1 | 60.7444 | Str1 (Cont) | Min | 23.540 | 1921.152 | -54.546 |
|  | 1 | 62.7417 | Str1 (Cont) | Min | 23.540 | 2089.000 | -54.546 |
|  | 1 | 62.7417 | Str1 (Cont) | Min | 23.540 | 2089.000 | -54.546 |
|  | 1 | 62.7500 | Str1 (Cont) | Min | 23.540 | 2089.687 | -54.546 |
|  | 1 | 0.0000 | Str1 (Expn) | Max | -106.278 | -1101.790 | 53.576 |
|  | 1 | 0.0083 | Str1 (Expn) | Max | -106.278 | -1101.121 | 53.576 |
|  | 1 | 0.0083 | Str1 (Expn) | Max | -106.278 | -1101.121 | 53.576 |
|  | 1 | 1.8007 | Str1 (Expn) | Max | -106.278 | -957.308 | 53.576 |
|  | 1 | 3.5931 | Str1 (Expn) | Max | -106.278 | -844.587 | 53.576 |
|  | 1 | 5.3855 | Str1 (Expn) | Max | -106.278 | -755.946 | 53.576 |
|  | 1 | 7.1779 | Str1 (Expn) | Max | -106.278 | -667.304 | 53.576 |
|  | 1 | 8.9702 | Str1 (Expn) | Max | -106.278 | -578.663 | 53.576 |
|  | 1 | 8.9702 | Str1 (Expn) | Max | -106.278 | -578.663 | 53.576 |
|  | 1 | 10.7626 | Str1 (Expn) | Max | -106.278 | -475.264 | 53.576 |
|  | 1 | 12.5550 | Str1 (Expn) | Max | -106.278 | -371.864 | 53.576 |
|  | 1 | 14.3474 | Str1 (Expn) | Max | -106.278 | -268.465 | 53.576 |
|  | 1 | 16.1398 | Str1 (Expn) | Max | -106.278 | -165.066 | 53.576 |
|  | 1 | 17.9321 | Str1 (Expn) | Max | -106.278 | -61.667 | 53.576 |
|  | 1 | 17.9321 | Str1 (Expn) | Max | -106.278 | -61.667 | 53.576 |
|  | 1 | 19.7245 | Str1 (Expn) | Max | -106.278 | 56.914 | 53.576 |
|  | 1 | 21.5169 | Str1 (Expn) | Max | -106.278 | 175.495 | 53.576 |
|  | 1 | 23.3093 | Str1 (Expn) | Max | -106.278 | 294.076 | 53.576 |
|  | 1 | 25.1017 | Str1 (Expn) | Max | -106.278 | 412.656 | 53.576 |
|  | 1 | 26.8940 | Str1 (Expn) | Max | -106.278 | 531.237 | 53.576 |
|  | 1 | 26.8940 | Str1 (Expn) | Max | -106.278 | 531.237 | 53.576 |
|  | 1 | 28.6864 | Str1 (Expn) | Max | -106.278 | 654.820 | 53.576 |
|  | 1 | 30.4788 | Str1 (Expn) | Max | -106.278 | 778.404 | 53.576 |
|  | 1 | 32.2712 | Str1 (Expn) | Max | -106.278 | 901.987 | 53.576 |
|  | 1 | 34.0636 | Str1 (Expn) | Max | -106.278 | 1025.571 | 53.576 |
|  | 1 | 35.8560 | Str1 (Expn) | Max | -106.278 | 1149.154 | 53.576 |
|  | 1 | 35.8560 | Str1 (Expn) | Max | -106.278 | 1149.154 | 53.576 |
|  | 1 | 37.6483 | Str1 (Expn) | Max | -106.278 | 1270.727 | 53.576 |
|  | 1 | 39.4407 | Str1 (Expn) | Max | -106.278 | 1392.300 | 53.576 |
|  | 1 | 41.2331 | Str1 (Expn) | Max | -106.278 | 1513.873 | 53.576 |
|  | 1 | 43.0255 | Str1 (Expn) | Max | -106.278 | 1635.445 | 53.576 |
|  | 1 | 44.8179 | Str1 (Expn) | Max | -106.278 | 1757.018 | 53.576 |
|  | 1 | 44.8179 | Str1 (Expn) | Max | -106.278 | 1757.018 | 53.576 |
|  | 1 | 46.1589 | Str 1 (Expn) | Max | -106.278 | 1847.514 | 53.576 |
|  | 1 | 47.5000 | Str 1 (Expn) | Max | -106.278 | 1938.982 | 53.576 |
|  | 1 | 47.5000 | Stri (Expn) | Max | -106.278 | 1940.307 | 53.576 |
| $\square$ | 1 | 48.9167 | Str1 (Expn) | Max | -106.278 | 2036.931 | 53.576 |




Table 19: Element Forces - Frames, Part 1 of 2




Table 19: Element Forces - Frames, Part 1 of 2


Page 17 of 67

Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2

|  | Frame | Station | OutputCase | StepType | P | V2 | V3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ft |  |  | Kip | Kip | Kip |
|  | 13 | 5.4583 | Str1 (Expn) | Min | -5907.250 | -163.751 | -221.797 |
|  | 13 | 0.0000 | Ext Event I | Max | -4245.420 | -13.489 | 63.490 |
|  | 13 | 2.7292 | Ext Event I | Max | -4499.232 | -13.489 | 63.490 |
|  | 13 | 5.4583 | Ext Event 1 | Max | -4753.045 | -13.489 | 63.490 |
|  | 13 | 0.0000 | Ext Event 1 | Min | -4606.398 | -14.156 | -63.490 |
|  | 13 | 2.7292 | Ext EventI | Min | -4860.210 | -14.156 | -63.490 |
|  | 13 | 5.4583 | Ext Event I | Min | -5114.023 | -14.156 | -63.490 |
|  | 14 | 0.0000 | Str1 (Cont) | Max | -4663. 102 | 466.468 | 222.632 |
|  | 14 | 5.2500 | Str1 (Cont) | Max | -4719.562 | 466.468 | 224.889 |
|  | 14 | 10.5000 | Str1 (Cont) | Max | -4776.022 / | 466.468 | 227.130 |
|  | 14 | 0.0000 | Str1 (Cont) | Min | -5926.524 | 464.134 | -221.797 |
|  | 14 | 5.2500 | Str1 (Cont) | Min | -5982.984 | 464.134 | -219.539 |
|  | 14 | 10.5000 | Str1 (Cont) | Min | -6039.445 V | 464.134 | -217.299 |
|  | 14 | 0.0000 | Stri (Expn) | Max | -4643.828 | -161.416 | 222.632 |
|  | 14 | 5.2500 | Str1 (Expn) | Max | -4700.289 | -161.416 | 224,889 |
|  | 14 | 10.5000 | Str1 (Expn) | Max | -4756.749 | -161.416 | 227.130 |
|  | 14 | 0.0000 | Str1 (Expn) | Min | -5907.250 | -163.751 | -221.797 |
|  | 14 | 5.2500 | Str1 (Expn) | Min | -5963.711 | -163.751 | -219.539 |
|  | 14 | 10.5000 | Str1 (Expn) | Min | -6020.171 | -163.751 | -217.299 |
|  | 14 | 0.0000 | Ext Event I | Max | -4753.045 | -13.489 | 63.490 |
|  | 14 | 5.2500 | Ext Event 1 | Max | -4809.505 | -13.489 | 63.490 |
|  | 14 | 10.5000 | Ext Event I | Max | -4865.966 | -13.489 | 63.490 |
|  | 14 | 0.0000 | Ext Event I | Min | -5114.023 | -14.156 | -63.490 |
|  | 14 | 5.2500 | Ext Event I | Min | -5170.483 | -14.156 | -63.490 |
|  | 14 | 10.5000 | Ext Event I | Min | -5226.943 | -14.156 | -63.490 |
|  | 15 | 0.0000 | Str1 (Cont) | Max | 21.284 | -2080.752 | 52.585 |
|  | 15 | 0.0083 | Str1 (Cont) | Max | 21.284 | -2080.064 | 52.585 |
|  | 15 | 0.0083 | Str1 (Cont) | Max | 21.284 | -2080.064 | 52.585 |
|  | 15 | 2.0056 | Str 1 (Cont) | Max | 21.284 | -1912.218 | 52.585 |
|  | 15 | 4.0028 | Str 1 (Cont) | Max | 21.284 | -1788.074 | 52.585 |
|  | 15 | 6.0000 | Str 1 (Cont) | Max | 21.284 | -1681.705 | 52.585 |
|  | 15 | 6.0000 | Str1 (Cont) | Max | 21.284 | -1675.205 | 52.585 |
|  | 15 | 7.4851 | Str 1 (Cont) | Max | 21.284 | -1596.110 | 52.585 |
|  | 15 | 8.9702 | Str 1 (Cont) | Max | 21.284 | -1517.014 | 52.585 |
|  | 15 | 8.9702 | Stri (Cont) | Max | 21.284 | -1517.014 | 52.585 |
|  | 15 | 11.0000 | Stri (Cont) | Max | 21.284 | -1396.146 | 52.585 |
|  | 15 | 11.0000 | Str1 (Cont) | Max | 21.284 | -1394.821 | 52.585 |
|  | 15 | 12.4167 | Str1 (Cont) | Max | 21.284 | -1310.462 | 52.585 |
|  | 15 | 13.8333 | Str1 (Cont) | Max | 21.284 | -1226.102 | 52.585 |
|  | 15 | 15.2500 | Str1 (Cont) | Max | 21.284 | -1141.743 | 52.585 |
|  | 15 | 15.2500 | Str 1 (Cont) | Max | 21.284 | -1140.418 | 52.585 |
|  | 15 | 16.5911 | Str1 (Cont) | Max | 21.284 | -1060.560 | 52.585 |
|  | 15 | 17.9321 | Str1 (Cont) | Max | 21.284 | -981.674 | 52.585 |
|  | 15 | 17.9321 | Str1 (Cont) | Max | 21.284 | -981.674 | 52.585 |
|  | 15 | 19.7245 | Str1 (Cont) | Max | 21.284 | -872.290 | 52.585 |
|  | 15 | 21.5169 | Str1 (Cont) | Max | 21.284 | -762.906 | 52.585 |
|  | 15 | 23.3093 | Str1 (Cont) | Max | 21.284 | -653.522 | 52.585 |
|  | 15 | 25.1017 | Stri (Cont) | Max | 21.284 | -544.138 | 52.585 |
|  | 15 | 26.8940 | Str1 (Cont) | Max | 21.284 | -434.754 | 52.585 |
|  | 15 | 26.8940 | Stry (Cont) | Max | 21.284 | -434.754 | 52.585 |
|  | 15 | 28.6864 | Stry (Cont) | Max | 21.284 | -317.952 | 52.585 |
|  | 15 | 30.4788 | Str1 (Cont) | Max | 21.284 | -201.150 | 52.585 |
|  | 15 | 32.2712 | Str1 (Cont) | Max | 21.284 | -84.347 | 52.585 |
|  | 15 | 34.0636 | Str1 (Cont) | Max | 21.284 | 32.455 | 52.585 |
|  | 15 | 35.8560 | Str1 (Cont) | Max | 21.284 | 149.257 | 52.585 |
|  | 15 | 35.8560 | Str1 (Cont) | Max | 21.284 | 149.257 | 52.585 |
|  | 15 | 37.6483 | Str1 (Cont) | Max | 21.284 | 269.867 | 52.585 |
|  | 15 | 39.4407 | Str1 (Cont) | Max | 21.284 | 390.478 | 52.585 |
|  | 15 | 41.2331 | Str1 (Cont) | Max | 21.284 | 511.088 | 52.585 |
|  | 15 | 43.0255 | Str1 (Cont) | Max | 21.284 | 631.699 | 52.585 |
|  | 15 | 44.8179 | Stri (Cont) | Max | 21,284 | 752.309 | 52.585 |
|  | 15 | 44.8179 | Stri (Cont) | Max | 21.284 | 752.309 | 52.585 |
|  | 15 | 46.6102 | Stry (Cont) | Max | 21.284 | 875.674 | 52.585 |
|  | 15 | 48.4026 | Str1 (Cont) | Max | 21.284 | 999.033 | 52.585 |
|  | 15 | 50.1950 | Stry (Cont) | Max | 21.284 | 1122.396 | 52.585 |
|  | 15 | 51.9874 | Str1 (Cont) | Max | 21.284 | 1245.758 | 52.585 |
|  | 15 | 53.7798 | Stri (Cont) | Max | 21.284 | 1369.120 | 52.585 |
|  | 15 | 53.7798 | Str1 (Cont) | Max | 21.284 | 1369.120 | 52.585 |
|  | 15 | 55.5721 | Str1 (Cont) | Max | 21.284 | 1494.346 | 52.585 |

Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2

| Frame | Station | OutputCase | StepType | P | V2 | V3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ft |  |  | Kip | Kip | Kip |
| 15 | 13.8333 | Str1 (Expn) | Max | -93.619 | -1210.344 | 52.585 |
| 15 | 15.2500 | Str1 (Expn) | Max | -93.619 | -1125.985 | 52.585 |
| 15 | 15.2500 | Str1 (Expn) | Max | -93.619 | -1124.660 | 52.585 |
| 15 | 16.5911 | Str1 (Expn) | Max | -93.619 | -1044.802 | 52.585 |
| 15 | 17.9321 | Str1 (Expri) | Max | -93.619 | -965.916 | 52.585 |
| 15 | 17.9321 | Stry (Expr) | Max | -93.619 | -965.916 | 52.585 |
| 15 | 19.7245 | Str1 (Expn) | Max | -93.619 | -856.532 | 52.585 |
| 15 | 21.5169 | Str1 (Expn) | Max | -93.619 | -747.148 | 52.585 |
| 15 | 23.3093 | Str1 (Expn) | Max | -93.619 | -637.764 | 52.585 |
| 15 | 25.1017 | Str1 (Expn) | Max | -93.619 | -528.380 | 52.585 |
| 15 | 26.8940 | Str1 (Expn) | Max | -93.619 | -418.996 | 52.585 |
| 15 | 26.8940 | Str 1 (Expn) | Max | -93.619 | -418.996 | 52.585 |
| 15 | 28.6864 | Str1 (Expn) | Max | -93.619 | -302.194 | 52.585 |
| 15 | 30.4788 | Str 1 (Exprn) | Max | -93.619 | -185.392 | 52.585 |
| 15 | 32.2712 | Str1 (Expn) | Max | -93.619 | -68.589 | 52.585 |
| 15 | 34.0636 | Str1 (Expn) | Max | -93.619 | 48.213 | 52.585 |
| 15 | 35.8560 | Str1 (Expn) | Max | -93.619 | 165.015 | 52.585 |
| 15 | 35.8560 | Str 1 (Expn) | Max | -93.619 | 165.015 | 52.585 |
| 15 | 37.6483 | Str1 (Expn) | Max | -93.619 | 285.625 | 52.585 |
| 15 | 39.4407 | Str1 (Expn) | Max | -93.619 | 406.236 | 52,585 |
| 15 | 41.2331 | Str1 (Expn) | Max | -93.619 | 526.846 | 52.585 |
| 15 | 43.0255 | Str1 (Expn) | Max | -93.619 | 647.456 | 52.585 |
| 15 | 44.8179 | Stri (Expn) | Max | -93.619 | 768.067 | 52.585 |
| 15 | 44.8179 | Str 1 (Expn) | Max | -93.619 | 768.067 | 52.585 |
| 15 | 46.6102 | Str1 (Expn) | Max | -93.619 | 891.429 | 52.585 |
| 15 | 48.4026 | Stri (Expn) | Max | -93.619 | 1014.791 | 52.585 |
| 15 | 50.1950 | Str1 (Expn) | Max | -93.619 | 1138.154 | 52.585 |
| 15 | 51.9874 | Str1 (Expn) | Max | -93.619 | 1261.516 | 52.585 |
| 15 | 53.7798 | Str1 (Expn) | Max | -93.619 | 1384.878 | 52.585 |
| 15 | 53.7798 | Str1 (Expn) | Max | -93.619 | 1384.878 | 52.585 |
| 15 | 55.5721 | Str1 (Expn) | Max | -93.619 | 1510.103 | 52.585 |
| 15 | 57.3645 | Str1 (Expn) | Max | -93.619 | 1635.329 | 52.585 |
| 15 | 59.1569 | Str1 (Expn) | Max | -93.619 | 1760.554 | 52.585 |
| 15 | 60.9493 | Str 1 (Expn) | Max | -93.619 | 1909.859 | 52.585 |
| 15 | 62.7417 | Str 1 (Expn) | Max | -93.619 | 2090.257 | 52.585 |
| 15 | 62.7417 | Str1 (Expn) | Max | -93.619 | 2090.257 | 52.585 |
| 15 | 62.7500 | Str1 (Expn) | Max | -93.619 | 2090.925 | 52.585 |
| 15 | 0.0000 | Str 1 (Expn) | Min | -99.787 | -3058.592 | -51.770 |
| 15 | 0.0083 | Str1 (Expm) | Min | -99.787 | -3057.904 | -51.770 |
| 15 | 0.0083 | Str1 (Expn) | Min | -99.787 | -3057.904 | -51.770 |
| 15 | 2.0056 | Str 1 (Expn) | Min | -99.787 | -2864.924 | -51.770 |
| 15 | 4.0028 | Str 1 (Expn) | Min | -99.787 | -2715.646 | -51.770 |
| 15 | 6.0000 | Str 1 (Expn) | Min | -99.787 | -2584.143 | -51.770 |
| 15 | 6.0000 | Str 1 (Expn) | Min | -99.787 | -2577.643 | -51.770 |
| 15 | 7.4851 | Str1 (Expn) | Min | -99,787 | -2479.859 | -51.770 |
| 15 | 8.9702 | Str1 (Expn) | Min | -99.787 | -2382.074 | -51.770 |
| 15 | 8.9702 | Str1 (Expn) | Min | -99.787 | -2382.074 | -51.770 |
| 15 | 11.0000 | Str1 (Expn) | Min | -99.787 | -2243.620 | -51.770 |
| 15 | 11.0000 | Str1 (Expn) | Min | -99.787 | -2242.295 | -51.770 |
| 15 | 12.4167 | Str1 (Expn) | Min | -99.787 | -2145.662 | -51.770 |
| 15 | 13.8333 | Str1 (Expn) | Min | -99.787 | -2049.029 | -51.770 |
| 15 | 15.2500 | Str1 (Expn) | Min | -99.787 | -1952.396 | -51.770 |
| 15 | 15.2500 | Str1 (Expn) | Min | -99.787 | -1951.071 | -51.770 |
| 15 | 16.5911 | Str1 (Expn) | Min | -99.787 | -1859.594 | -51.770 |
| 15 | 17.9321 | Str1 (Expn) | Min | -99.787 | -1769.090 | -51.770 |
| 15 | 17.9321 | Str1 (Expn) | Min | -99.787 | -1769.090 | -51.770 |
| 15 | 19.7245 | Str1 (Expn) | Min | -99.787 | -1647.504 | -51.770 |
| 15 | 21.5169 | Str1 (Expn) | Min | -99.787 | -1525.919 | -51.770 |
| 15 | 23.3093 | Str1 (Expn) | Min | -99.787 | -1404.333 | -51.770 |
| 15 | 25.1017 | Str1 (Expn) | Min | -99.787 | -1282.748 | -51.770 |
| 15 | 26.8940 | Str1 (Expn) | Min | -99.787 | -1161.163 | -51.770 |
| 15 | 26.8940 | Str1 (Expn) | Min | -99.787 | -1161.163 | -51.770 |
| 15 | 28.6864 | Str1 (Expn) | Min | -99.787 | -1037.572 | -51.770 |
| 15 | 30.4788 | Str1 (Expn) | Min | -99.787 | -913.981 | -51.770 |
| 15 | 32.2712 | Str 1 (Expn) | Min | -99.787 | -790.389 | -51.770 |
| 15 | 34.0636 | Str1 (Expn) | Min | -99.787 | -666.798 | -51.770 |
| 15 | 35.8560 | Stri (Expn) | Min | -99.787 | -543.207 | -51.770 |
| 15 | 35.8560 | Str1 (Expn) | Min | -99.787 | -543.207 | -51.770 |
| 15 | 37.6483 | Str1 (Expn) | Min | -99.787 | -424.630 | -51.770 |

Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2


Table 19: Element Forces - Frames, Part 1 of 2

| Frame | Station | OutputCase | StepType | P | V2 | V3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f$ |  |  | Kip | Kip | Kip |
| 23 | 4.2500 | Ext Event I | Min | -2288.898 | 50.443 | -14.908 |

Table 19: Element Forces - Frames, Part 2 of 2
Table 19: Element Forces - Frames, Part 2 of 2

| Frame | Station ft | OutputCase | StepType | $\begin{gathered} \mathrm{T} \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip-At } \end{gathered}$ | $\begin{aligned} & \text { M3 } \\ & \text { Kip-ft } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0000 | Str1 (Cont) | Max | 400.5758 | 1809.8960 | 308.0346 |
| 1 | 0.0083 | Str1 (Cont) | Max | 5959.8348 | 1810.2204 | 316.9064 |
| 1 | 0.0083 | Str1 (Cont) | Max | 5959.8348 | 1810.2204 | 316.9064 |
| 1 | 1.8007 | Str1 (Cont) | Max | 6685.4492 | 1893.7016 | 3555.2436 |
| 1 | 3.5931 | Str1 (Cont) | Max | 7411.0635 | 1977.1828 | 6551.5159 |
| 1 | 5.3855 | Stri (Cont) | Max | 8136.6779 | 2060.6640 | 9379,4906 |
| 1 | 7.1779 | Str 1 (Cont) | Max | 8862.2923 | 2144.1453 | 12048.5864 |
| 1 | 8.9702 | Str (Cont) | Max | 9587.9066 | 2227.6265 | 14558.8031 |
| 1 | 8.9702 | Str 1 (Cont) | Max | 9587,9066 | 2227.6265 | 14558.8031 |
| 1 | 10.7626 | Str 1 (Cont) | Max | 10401.6913 | 2319.8304 | 16314.6282 |
| 1 | 12.5550 | Strt (Cont) | Max | 11215.4760 | 2412.0343 | 17911.5743 |
| 1 | 14.3474 | Strt (Cont) | Max | 12029.2607 | 2504.2381 | 19349.6414 |
| 1 | 16.1398 | Str1 (Cont) | Max | 12843.0453 | 2596.4420 | 20628.8295 |
| 1 | 17.9321 | Str1 (Cont) | Max | 13656.8300 | 2688.6459 | 21749.1386 |
| 1 | 17.9321 | Str1 (Cont) | Max | 13656.8300 | 2688.6459 | 21749.1386 |
| 1 | 19.7245 | Str1 (Cont) | Max | 13867.4304 | 2780.8498 | 22316.7086 |
| 1 | 21.5169 | Str1 (Cont) | Max | 14078.0308 | 2873.0537 | 22725.3995 |
| 1 | 23.3093 | Str1 (Cont) | Max | 14288.6312 | 2965.2576 | 22975.2114 |
| 1 | 25.1017 | Str1 (Cont) | Max | 14499.2316 | 3057.4615 | 23066.1444 |
| 1 | 26.8940 | Str1 (Cont) | Max | 14709.8320 | 3149.6654 | 22998.1983 |
| 1 | 26.8940 | Str 1 (Cont) | Max | 14709.8320 | 3149.6654 | 22998.1983 |
| 1 | 28.6864 | Str1 (Cont) | Max | 15199.7378 | 3246.5967 | 22368.7596 |
| 1 | 30.4788 | Str1 (Cont) | Max | 15689.6435 | 3343.5280 | 21580.4419 |
| 1 | 32.2712 | Str1 (Cont) | Max | 16179.5492 | 3440.4593 | 20633.2452 |
| 1 | 34.0636 | Str 1 (Cont) | Max | 16669.4549 | 3537.3906 | 19527.1695 |
| 1 | 35.8560 | Stri (Cont) | Max | 17159.3606 | 3634.3219 | 18262.2148 |
| 1 | 35.8560 | Stri (Cont) | Max | 17159.3606 | 3634.3219 | 18262.2148 |
| 1 | 37.6483 | Str1 (Cont) | Max | 17369.5555 | 3731.6514 | 16432.8577 |
| 1 | 39.4407 | Str1 (Cont) | Max | 17579.7503 | 3828.9809 | 14444.6217 |
| 1 | 41.2331 | Str 1 (Cont) | Max | 17789.9452 | 3926.3104 | 12297.5066 |
| 1 | 43.0255 | Str1 (Cont) | Max | 18000.1400 | 4023.6399 | 9991.5126 |
| 1 | 44.8179 | Str1 (Cont) | Max | 18210.3348 | 4120.9693 | 7526.6395 |
| 1 | 44.8179 | Str 1 (Cont) | Max | 18210.3348 | 4120.9693 | 7526.6395 |
| 1 | 46.1589 | Str (Cont) | Max | 18218.5662 | 4193.7919 | 53656830 |
| 1 | 47.5000 | Str1 (Cont) | Max | 18226.7976 | 4266.6145 | 3111.9475 |
| 1 | 47.5000 | Str 1 (Cont) | Max | 18226.7976 | 4266.6145 | 3111.9475 |
| 1 | 48.9167 | Stri (Cont) | Max | 18235.4930 | 4343.5420 | 628.2939 |
| 1 | 50.3333 | Stri (Cont) | Max | 18244.1884 | 4420.4695 | -1959.1277 |
| 1 | 51.7500 | Stri (Cont) | Max | 18252.8838 | 4497.3970 | -4650.3174 |
| 1 | 51.7500 | Sut (Cont) | Max | 18252.8838 | 4497.3970 | -4650.3174 |
| 1 | 53.7798 | Stry (Cont) | Max | 18265.3423 | 4607.6167 | -8689.7186 |
| 1 | 53.7798 | Str 1 (Cont) | Max | 18265.3423 | 4607.6167 | -8689.7186 |
| 1 | 55.2649 | Stri (Cont) | Max | 18270.8703 | 4688.2613 | -11220.9119 |
| 1 | 56.7500 | Str 1 (Cont) | Max | 18276.3983 | 4768.9060 | -13866.1435 |
| 1 | 56.7500 | Str 1 (Cont) | Max | 18276.3983 | 4768.9060 | -13866.1435 |
| 1 | 58.7472 | Str 1 (Cont) | Max | 18283.8324 | 4877.3587 | -17616.2964 |
| 1 | 60.7444 | Str1 (Cont) | Max | 18291.2666 | 4985.8114 | -21577.8251 |
| 1 | 62.7417 | Str 1 (Cont) | Max | 18298.7008 | 5094.2641 | -25837.3570 |
| 1 | 62.7417 | Str 1 (Conl) | Max | 18298.7008 | 5094.2641 | -25837.3570 |
| 1 | 62.7500 | Str 1 (Cont) | Max | 18298.7008 | 5094.7166 | -25854.7682 |
| 1 | 0.0000 | Str 1 (Cont) | Min | -393.4468 | -1807.4671 | 264.6057 |
| 1 | 0.0083 | Str 1 (Conl) | Min | -5952.7057 | -1807.7834 | 278.8495 |
| 1 | 0.0083 | Str 1 (Conl) | Min | -5952.7057 | -1807.7834 | 278.8495 |
| 1 | 1.8007 | Stri (Cont) | Min | -6678.3201 | -1889.5246 | 2065.1870 |
| 1 | 3.5931 | Stri (Cont) | Min | .7403.9344 | -1971.2658 | 3609.4596 |
| 1 | 5.3855 | Str1 (Cont) | Min | -8129.5488 | -2053.0071 | 4985.4347 |
| 1 | 7.1779 | Stri (Cont) | Min | -8855.1632 | -2134.7483 | 6202.5307 |
| 1 | 8.9702 | Str1 (Cont) | Min | -9580.7776 | -2216.4895 | 7260.7477 |
| 1 | 8.9702 | Str1 (Cont) | Min | -9580.7776 | -2216.4895 | 7260.7477 |
| 1 | 10.7626 | Stri (Cont) | Min | -10394.5622 | -2306.9534 | 8152.4744 |
| 1 | 12.5550 | Str1 (Cont) | Min | -11208.3469 | -2397.4173 | 8885.3221 |
| 1 | 14.3474 | Stri (Cont) | Min | -12022.1316 | -2487.8812 | 9459.2908 |

Table 19: Element Forces - Frames, Part 2 of 2



Table 19: Element Forces - Frames, Part 2 of 2

|  | Frame | Station ft | OutputCase | StepType | $\begin{gathered} T \\ \text { Kip-ft } \end{gathered}$ | ${\underset{M 2}{M 2}}_{\text {Kip-ft }}$ | $\begin{gathered} \text { M3 } \\ \text { Kip-ft } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 0.0000 | Ext Event I | Max | 113.4318 | 516.7662 | -261.8220 |
|  | 1 | 0.0083 | Ext Event I | Max | 1701.7915 | 516.8577 | -252.0668 |
|  | 1 | 0.0083 | Ext Event I | Max | 1701.7915 | 516.8577 | -252.0668 |
|  | 1 | 1.8007 | Ext Event I | Max | 1909.1099 | 540.4609 | 2133.6797 |
|  | 1 | 3.5931 | Ext Event I | Max | 2116.4283 | 564.0641 | 4277.3614 |
|  | 1 | 5.3855 | Ext Event I | Max | 2323.7467 | 587.6673 | 6252.7456 |
|  | 1 | 7.1779 | Ext Event 1 | Max | 2531.0651 | 611.2705 | 8069.2507 |
|  | 1 | 8.9702 | Ext Event I | Max | 2738.3835 | 634.8737 | 9726.8769 |
|  | 1 | 8.9702 | Ext Event I | Max | 2738.3835 | 634.8737 | 9726.8769 |
|  | 1 | 10.7626 | Ext Event I | Max | 2970.8934 | 660.9691 | 11055.4776 |
|  | 1 | 12.5550 | Ext EventI | Max | 3203.4033 | 687.0645 | 12225.1992 |
|  | 1 | 14.3474 | Ext EventI | Max | 3435.9132 | 713.1599 | 13236.0419 |
|  | 1 | 16.1398 | Ext Event I | Max | 3668.4231 | 739.2553 | 14088.0057 |
|  | 1 | 17.9321 | Ext Event I | Max | 3900.9330 | 765.3507 | 14781.0904 |
|  | 1 | 47.9321 | Ext Event I | Max | 3900.9330 | 765.3507 | 14781.0904 |
|  | 1 | 19.7245 | Ext Event I | Max | 3961.1045 | 791.4461 | 15202.7646 |
|  | 1 | 21.5169 | Ext Event I | Max | 4021.2761 | 817.5415 | 15465.5598 |
|  | 1 | 23.3093 | Ext Event I | Max | 4081.4476 | 843.6369 | 15569.4761 |
|  | 1 | 25.1017 | Ext Event I | Max | 4141.6192 | 869.7323 | 15514.5134 |
|  | 1 | 26.8940 | Ext Event I | Max | 4201.7907 | 895.8277 | 15300.6716 |
|  | 1 | 26.8940 | Ext Event I | Max | 4201.7907 | 895.8277 | 15300.6716 |
|  | 1 | 28.6864 | Ext EventI | Max | 4341.7638 | 923.2738 | 14812.9184 |
|  | 1 | 30.4788 | Ext Event 1 | Max | 4481.7368 | 950.7199 | 14166.2862 |
|  | 1 | 32.2712 | Ext Event I | Max | 4621.7099 | 978.1660 | 13360.7751 |
|  | 1 | 34.0636 | Ext Event I | Max | 4761.6830 | 1005.6121 | 12396.3849 |
|  | 1 | 35.8560 | Ext Event I | Max | 4901.6560 | 1033.0582 | 11273.1157 |
|  | 1 | 35.8560 | Ext Event I | Max | 4901.6560 | 1033.0582 | 11273.1457 |
|  | 1 | 37.6483 | Ext Event I | Max | 4961.7117 | 1060.6180 | 9875.1037 |
|  | 1 | 39.4407 | Ext Event I | Max | 5021.7674 | 1088.1779 | 8318.2128 |
|  | 1 | 41.2331 | Ext Event I | Max | 5081.8230 | 1115.7377 | 6602.4428 |
|  | 1 | 43.0255 | Ext Event I | Max | 5141.8787 | 1143.2976 | 4727.7938 |
|  | 1 | 44.8179 | Ext Event I | Max | 5201.9344 | 1170.8574 | 2694.2659 |
|  | 1 | 44.8179 | Ext Event I | Max | 5201.9344 | 1170.8574 | 2694.2659 |
|  | 1 | 46.1589 | Ext EventI | Max | 5204.2862 | 1191.4779 | 1007.3904 |
|  | 1 | 47.5000 | Ext Event I | Max | 5206.6380 | 1212.0984 | -772.2640 |
|  | 1 | 47.5000 | Ext Event 1 | Max | 5206.6380 | 1212.0984 | -772.2640 |
|  | 1 | 48.9167 | Ext Event I | Max | 5209.1224 | 1233.8812 | -2755.1129 |
|  | 1 | 50.3333 | Ext Event I | Max | 5211.6068 | 1255.6640 | -4841.7298 |
|  | 1 | 51.7500 | Ext Event I | Max | 5214.0912 | 1277.4468 | -7032.1147 |
|  | 1 | 51.7500 | Ext Event I | Max | 5214.0912 | 1277.4468 | -7032.1147 |
|  | 1 | 53.7798 | Ext Event I | Max | 5217.6508 | 1308.6567 | -10353.9765 |
|  | 1 | 53.7798 | Ext Event 1 | Max | 5217.6508 | 1308.6567 | -10353.9765 |
|  | 1 | 55.2649 | Ext Event I | Max | 5219.2302 | 1331.4921 | -12759.6457 |
|  | 1 | 56.7500 | Ext Event I | Max | 5220.8096 | 1354.3274 | -15279.3533 |
|  | 1 | 56.7500 | Ext Event 1 | Max | 5220.8096 | 1354.3274 | -15279.3533 |
|  | 1 | 58.7472 | Ext Event 1 | Max | 5222.9337 | 1385.0369 | -18860.6985 |
|  | 1 | 60.7444 | Ext Event! | Max | 5225.0577 | 1415.7464 | -22653.4196 |
|  | 1 | 62.7417 | Ext Event 1 | Max | 5227.1818 | 1446.4560 | -26744.1438 |
|  | 1 | 62.7417 | Ext Event 1 | Max | 5227.1818 | 1446.4560 | -26744.1438 |
|  | 1 | 62.7500 | Ext Evenl 1 | Max | 5227.1818 | 1446.5841 | -26761.6013 |
|  | 1 | 0.0000 | Ext Event I | Min | -113.4318 | -516.7662 | -274.2303 |
|  | 1 | 0.0083 | Ext Event I | Min | -1701.7915 | -516.8577 | -262.9402 |
|  | 1 | 0.0083 | Ext Event I | Min | -1701.7915 | -516.8577 | -262.9402 |
|  | 1 | 1.8007 | Ext Event I | Min | -1909.1099 | -540.4609 | 1707.9493 |
|  | 1 | 3.5931 | Ext Event I | Min | -2116.4283 | -564.0641 | 3436.7739 |
|  | 1 | 5.3855 | Ext Event I | Min | -2323.7467 | -587.6673 | 4997.3010 |
|  | 1 | 7.1779 | Ext Event I | Min | -2531.0651 | -611.2705 | 6398.9491 |
|  | 1 | 8.9702 | Ext Event I | Min | -2738.3835 | -634.8737 | 7641.7182 |
|  | 1 | 8.9702 | Ext Event I | Min | -2738.3835 | -634.8737 | 7641.7182 |
|  | 1 | 10.7626 | Ext Event 1 | Min | -2970.8934 | -660.9691 | 8723.4336 |
|  | 1 | 12.5550 | Ext Event I | Min | -3203.4033 | -687.0645 | 9646.2700 |
|  | 1 | 14.3474 | Ext Event I | Min | -3435.9132 | -713.1599 | 10410.2275 |
|  | 1 | 16.1398 | Ext Event 1 | Min | -3668.4231 | -739.2553 | 11015.3059 |
|  | 1 | 17.9321 | Ext Event I | Min | -3900.9330 | -765.3507 | 11461.5054 |
|  | 1 | 17.9321 | Ext Event I | Min | -3900.9330 | -765.3507 | 11461.5054 |
|  | 1 | 19.7245 | Ext Event I | Min | -3961.1045 | -791.4461 | 11748.8259 |
|  | 1 | 21.5169 | Ext EventI | Min | -4021.2761 | -817.5415 | 11877.2673 |
|  | 1 | 23.3093 | Ext Event I | Min | -4081.4476 | -843.6369 | 11846.8298 |
| ( | 1 | 25.1017 | Ext Event I | Min | -4141.6192 | -869.7323 | 11657.5133 |

Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces. Frames, Part 2 of 2

|  | Frame | Station ft | OutputCase | StepType | $\begin{gathered} T \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M3 } \\ \text { Kip-ft } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 4.0000 | Str 1 (Expn) | Max | 12450.3308 | 6199.1474 | -17268.4930 |
|  | 6 | 6.0000 | Str 1 (Expn) | Max | 12329.5633 | 6258.3112 | -13481.2475 |
|  | 6 | 6.0000 | Str 1 (Expn) | Max | 12329.5633 | 6258.3112 | -13481.2475 |
|  | 6 | 7.6699 | Str1 (Expr) | Max | 12228.7280 | 6307.7102 | -10488.3603 |
|  | 6 | 9.3398 | Stri (Expn) | Max | 12127.8928 | 6357.1092 | -7639.6558 |
|  | 6 | 9.3398 | Str 1 (Expm) | Max | 12127.8928 | 6357.1092 | -7639.6558 |
|  | 6 | 10.9199 | Str1 (Expn) | Max | 12047.3027 | 6597.2464 | -4462.7032 |
|  | 6 | 12.5000 | Str1 (Expn) | Max | 11966.7126 | 6837.3836 | -1414.8408 |
|  | 6 | 12.5000 | Str 1 (Expn) | Max | 11966.7126 | 6837.3836 | -1414.8408 |
|  | 6 | 14.0428 | Str 1 (Expn) | Max | 11888.0233 | 7071.8568 | 1426.5464 |
|  | 6 | 15.5856 | Str1 (Expn) | Max | 11809.3341 | 7306.3301 | 4144.8611 |
|  | 6 | 17.1285 | Str1 (Expm) | Max | 11730.6448 | 7540.8034 | 6740.1033 |
|  | 6 | 18.6713 | Str1 (Expn) | Max | 11651.9555 | 7775.2766 | 9213.8163 |
|  | 6 | 18.6713 | Str1 (Expn) | Max | 11651.9555 | 7775.2766 | 9213.8163 |
|  | 6 | 20.5376 | Str1 (Expn) | Max | 11569.4199 | 8093.8532 | 11899.1157 |
|  | 6 | 22.4039 | Str1 (Expn) | Max | 11486.8842 | 8412.4298 | 14412.1619 |
|  | 6 | 24.2702 | Str1 (Expn) | Max | 11404.3486 | 8731.0064 | 16752.9550 |
|  | 6 | 26.1365 | Str1 (Expm) | Max | 11321.8129 | 9049.5830 | 18921.4951 |
|  | 6 | 28.0028 | Str 1 (Expn) | Max | 11239.2773 | 9368.1596 | 20917.7820 |
|  | 6 | 28.0028 | Str1 (Expn) | Max | 11239.2773 | 9368.1596 | 20917.7820 |
|  | 6 | 29.8691 | Str1 (Expn) | Max | 11239.2074 | 9697.4341 | 22413.8394 |
|  | 6 | 31.7354 | Str1 (Expn) | Max | 11239.1375 | 10026.7086 | 23737.6437 |
|  | 6 | 33.6017 | Str1 (Expn) | Max | 11239.0676 | 10355.9830 | 24889.1950 |
|  | 6 | 35.4680 | Str 1 (Expn) | Max | 11238.9978 | 10685.2575 | 25868.4931 |
|  | 6 | 37.3343 | Str1 (Expn) | Max | 11238.9279 | 11014.5320 | 26675.5381 |
|  | 6 | 37.3343 | Stri (Expn) | Max | 11238.9279 | 11014.5320 | 26675.5381 |
|  | 6 | 39.2006 | Str1 (Expn) | Max | 11238.9624 | 11343.8065 | 26981.5330 |
|  | 6 | 41.0669 | Stri (Expn) | Max | 11238.9968 | 11673.0810 | 27115.2747 |
|  | 6 | 42.9331 | Str1 (Expn) | Max | 11239.0313 | 12002.3555 | 27076.7634 |
|  | 6 | 44.7994 | Str1 (Expr) | Max | 11239.0658 | 12331.6300 | 26865.9989 |
|  | 6 | 46.6657 | Str1 (Expn) | Max | 11239.1003 | 12660.9045 | 26482.9814 |
|  | 6 | 46.6657 | Str1 (Expn) | Max | 11239.1003 | 12660.9045 | 26482.9814 |
|  | 6 | 48.5320 | Str1 (Expn) | Max | 11239.1594 | 12990.1790 | 25601.9504 |
|  | 6 | 50.3983 | Str1 (Expr) | Max | 11239.2185 | 13319.4534 | 24548.6663 |
|  | 6 | 52.2646 | Str1 (Expn) | Max | 11239.2776 | 13648.7279 | 23323.1291 |
|  | 6 | 54.1309 | Str1 (Expn) | Max | 11239.3366 | 13978.0024 | 21925.3388 |
|  | 6 | 55.9972 | Str1 (Expn) | Max | 11239.3957 | 14307.2769 | 20355.2955 |
|  | 6 | 55.9972 | Str1 (Expr) | Max | 11239.3957 | 14307.2769 | 20355.2955 |
|  | 6 | 57.8635 | Str1 (Expr) | Max | 11278.1889 | 14674.6718 | 18270.6395 |
|  | 6 | 59.7298 | Stri (Expn) | Max | 11316.9821 | 15042.0667 | 16013.7304 |
|  | 6 | 61.5961 | Str1 (Expn) | Max | 11355.7753 | 15409.4616 | 13584.5682 |
|  | 6 | 63.4624 | Stri (Expn) | Max | 11394.5686 | 15776.8565 | 10983.1529 |
|  | 6 | 65.3287 | Str1 (Expn) | Max | 11433.3618 | 16144.2515 | 8209.4846 |
|  | 6 | 65.3287 | Str1 (Expr) | Max | 11433.3618 | 16144.2515 | 8209.4846 |
|  | 6 | 66.8715 | Str1 (Expr) | Max | 11578.9141 | 16545.6019 | 5622.7415 |
|  | 6 | 68.4144 | Str1 (Expn) | Max | 11724.4665 | 16946.9523 | 2914.4693 |
|  | 6 | 69.9572 | Str1 (Expn) | Max | 11870.0189 | 17348.3027 | 83.1246 |
|  | 6 | 71.5000 | Str1 (Expn) | Max | 12015.5713 | 17749.6532 | -2871.2927 |
|  | 6 | 71.5000 | Stri (Expn) | Max | 12015.5713 | 17749.6532 | -2871.2927 |
|  | 6 | 73.0801 | Str1 (Expn) | Max | 12164.6396 | 18160.6986 | -6034.9154 |
|  | 6 | 74.6602 | Str1 (Expn) | Max | 12313.7080 | 18571.7441 | -9327.6284 |
|  | 6 | 74.6602 | Str 1 (Expn) | Max | 12313.7080 | 18571.7441 | -9327.6284 |
|  | 6 | 76.5801 | Str1 (Expn) | Max | 12554.5042 | 19071.1890 | -12795.3089 |
|  | 6 | 78.5000 | Str1 (Expn) | Max | 12795.3005 | 19570.6340 | -16453.5744 |
|  | 6 | 78.5000 | Str1 (Expn) | Max | 12795.3005 | 19570.6340 | -16453.5744 |
|  | 6 | 80.3333 | Str1 (Expn) | Max | 13025.2386 | 20047.5575 | -20136.6828 |
|  | 6 | 82.1667 | Str1 (Expon) | Max | 13255.1767 | 20524.4810 | -24002.2254 |
|  | 6 | 84.0000 | Stry (Expr) | Max | 13485.1148 | 21001.4046 | -28126.9380 |
|  | 6 | 0.0000 | Str1 (Expon) | Min | -12694.9939 | -6016.0432 | -35349.8114 |
|  | 6 | 2.0000 | Stri (Expn) | Min | -12574.2264 | -6075.7438 | -30484.3575 |
|  | 6 | 4.0000 | Str1 (Expn) | Min | -12453.4589 | -6135.4445 | -25917.9439 |
|  | 6 | 6.0000 | Str1 (Expn) | Min | -12332.6914 | -6195.1452 | -21563.5793 |
|  | 6 | 6.0000 | Str 1 (Expn) | Min | -12332.6914 | -6195.1452 | -21563.5793 |
|  | 6 | 7.6699 | Str1 (Expr) | Min | -12231.8561 | -6244.9925 | -18097.1740 |
|  | 6 | 9.3398 | Str1 (Expr) | Min | -12131.0209 | -6294.8398 | -14774.9514 |
|  | 6 | 9.3398 | Str 1 (Expon) | Min | -12131.0209 | -6294.8398 | -14774.9514 |
|  | 6 | 10.9199 | Str 1 (Expn) | Min | -12050.4308 | -6535.4012 | -12165.5089 |
|  | 6 | 12.5000 | Str 1 (Expm) | Min | -11969.8407 | -6775.9626 | -9685.1567 |
|  | 6 | 12.5000 | Str1 (Expon) | Min | -11969.8407 | -6775.9626 | -9685.1567 |

Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


|  | Frame | Station f | OutputCase | StepType | $\begin{gathered} \top \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M3 } \\ \text { Kip-ft } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 41.0669 | Ext Event I | Min | -3211.5888 | -3327.4872 | 14849.0134 |
|  | 6 | 42.9331 | Ext Event I | Min | -3211.5987 | -3421.6372 | 14736.3205 |
|  | 6 | 44.7994 | Ext Event I | Min | -3211.6085 | -3515.7872 | 14451.3744 |
|  | 6 | 46.6657 | Ext Event I | Min | -3211.6184 | -3609.9372 | 13994.1753 |
|  | 6 | 46.6657 | Ext Event I | Min | -3211.6184 | -3609.9372 | 13994.1753 |
|  | 6 | 48.5320 | Ext Event I | Min | -3211.6353 | -3704.0872 | 13349.4631 |
|  | 6 | 50.3983 | Ext EventI | Min | -3211.6521 | -3798.2372 | 12532.4978 |
|  | 6 | 52.2646 | Ext Event 1 | Min | -3211.6690 | -3892.3872 | 11543.2794 |
|  | 6 | 54.1309 | Ext Event I | Min | -3211.6859 | -3986.5372 | 10381.8080 |
|  | 6 | 55.9972 | Ext Event I | Min | -3211.7028 | -4080.6872 | 9048.0834 |
|  | 6 | 55.9972 | Ext Event I | Min | -3211.7028 | -4080.6872 | 9048.0834 |
|  | 6 | 57.8635 | Ext Event 1 | Min | -3222.7866 | -4185.7287 | 7542.1058 |
|  | 6 | 59.7298 | Ext Event I | Min | -3233.8703 | -4290.7703 | 5863.8751 |
|  | 6 | 61.5961 | Ext EventI | Min | -3244.9541 | -4395.8118 | 4013.3912 |
|  | 6 | 63.4624 | Ext Event I | Min | -3256.0379 | -4500.8534 | 1990.6543 |
|  | 6 | 65.3287 | Ext Event I | Min | -3267.1217 | -4605.8949 | -204.3357 |
|  | 6 | 65.3287 | Ext Event 1 | Min | -3267.1217 | -4605.8949 | -204.3357 |
|  | 6 | 66.8715 | Ext Event I | Min | -3308.7081 | -4720.6256 | -2149.0958 |
|  | 6 | 68.4144 | Ext Event I | Min | -3350,2944 | -4835.3563 | -4215.3850 |
|  | 6 | 69.9572 | Ext Event I | Min | -3391.8808 | -4950.0871 | -6404.7468 |
|  | 6 | 71.5000 | Ext EventI | Min | -3433.4672 | -5064.8178 | -8717.1811 |
|  | 6 | 71.5000 | Ext Event I | Min | -3433.4672 | -5064.8178 | -8717.1811 |
|  | 6 | 73.0801 | Ext Event I | Min | -3476.0582 | -5182.3200 | -11223.3132 |
|  | 6 | 74.6602 | Ext Event I | Min | -3518.6491 | -5299.8221 | -13858.5355 |
|  | 6 | 74.6602 | Ext Event I | Min | -3518.6491 | -5299.8221 | -13858.5355 |
|  | 6 | 76.5801 | Ext Event I | Min | -3587.4481 | -5442.5943 | -17234.2076 |
|  | 6 | 78.5000 | Ext Event I | Min | -3656.2470 | -5585.3665 | -20800.4648 |
|  | 6 | 78.5000 | Ext Event 1 | Min | -3656.2470 | -5585.3665 | -20800.4648 |
|  | 6 | 80.3333 | Ext Event I | Min | -3721.9436 | -5721.7007 | -24395.7138 |
|  | 6 | 82.1667 | Ext Event I | Min | -3787.6402 | -5858.0348 | -28173.3970 |
|  | 6 | 84.0000 | Ext Event I | Min | -3853.3368 | -5994.3690 | -32210.2502 |
|  | 7 | 0.0000 | Str1 (Cont) | Max | 1131.4383 | 10577.6050 | 0.0000 |
|  | 7 | 2.7292 | Stri (Cont) | Max | 1131.4383 | 9883.9414 | 661.8540 |
|  | 7 | 5.4583 | Str1 (Cont) | Max | 1131.4383 | 9190.2388 | 1323.7080 |
|  | 7 | 0.0000 | Stri (Cont) | Min | -1133.0055 | -10559.3480 | 0.0000 |
|  | 7 | 2.7292 | Str1 (Cont) | Min | -1133.0055 | -9868.3799 | 655.7923 |
|  | 7 | 5.4583 | Str 1 (Cont) | Min | -1133.0055 | -9177.4510 | 1311.5846 |
|  | 7 | 0.0000 | Str1 (Expn) | Max | 1131.4383 | 10577.6050 | 0.0000 |
|  | 7 | 2.7292 | Str1 (Expn) | Max | 1131.4383 | 9883.9414 | -335.8503 |
|  | 7 | 5.4583 | Str1 (Expn) | Max | 1131.4383 | 9190.2388 | -671.7006 |
|  | 7 | 0.0000 | Str1 (Expn) | Min | -1133.0055 | -10559.3480 | 0.0000 |
|  | 7 | 2.7292 | Str1 (Expn) | Min | -1133.0055 | -9868.3799 | -341.9120 |
|  | 7 | 5.4583 | Str1 (Expn) | Min | -1133.0055 | -9177.4510 | -683.8240 |
|  | 7 | 0.0000 | Ext Event I | Max | 323.4920 | 3019.5647 | 0.0000 |
|  | 7 | 2.7292 | Ext Event 1 | Max | 323.4920 | 2821.7602 | 37.9850 |
|  | 7 | 5.4583 | Ext Event I | Max | 323.4920 | 2623.9557 | 75,9700 |
|  | 7 | 0.0000 | Ext Event 1 | Min | -323.4920 | -3019.5647 | 0.0000 |
|  | 7 | 2.7292 | Ext Event I | Min | -323.4920 | -2821.7602 | 36.2531 |
|  | 7 | 5.4583 | Ext Event I | Min | -323.4920 | -2623.9557 | 72.5062 |
|  | 8 | 0.0000 | Str1 (Cont) | Max | 1131.4383 | 9190.2388 | 1323.7080 |
|  | 8 | 6.3333 | Str1 (Cont) | Max | 1131.4383 | 7652.6466 | 2859.6134 |
|  | 8 | 126667 | Str 1 (Cont) | Max | 1131.4383 | 6097.8068 | 4395.5188 |
|  | 8 | 0.0000 | Str1 (Cont) | Min | -1133.0055 | -9177.4510 | 1311,5846 |
|  | 8 | 6.3333 | Str 1 (Cont) | Min | -1133.0055 | -7664.7953 | 2833.4232 |
|  | 8 | 126667 | Str 1 (Cont) | Min | -1133.0055 | -6169.3874 | 4355.2617 |
|  | 8 | 0.0000 | Str1 (Expn) | Max | 1131.4383 | 9190.2388 | -671.7006 |
|  | 8 | 6.3333 | Str1 (Expn) | Max | 1131.4383 | 7652.6466 | -1451.0785 |
|  | 8 | 12.6667 | Str1 (Expn) | Max | 1131.4383 | 6097.8068 | -2230,4563 |
|  | 8 | 0.0000 | Str1 (Expn) | Min | -1133.0055 | -9177.4510 | -683.8240 |
|  | 8 | 6.3333 | Str1 (Expr) | Min | -1133.0055 | -7664.7953 | -1477.2687 |
|  | 8 | 12.6867 | Str1 (Expn) | Min | -1133.0055 | -6169.3874 | -2270.7134 |
|  | 8 | 0.0000 | Ext Event I | Max | 323.4920 | 2623.9557 | 759700 |
|  | 8 | 6.3333 | Ext Event I | Max | 323.4920 | 2188.2060 | 164.1185 |
|  | 8 | 12.6667 | Ext Event I | Max | 323.4920 | 1752.4563 | 252.2669 |
|  | 8 | 0.0000 | Ext Event I | Min | -323.4920 | -2623.9557 | 72.5062 |
|  | 8 | 6.3333 | Ext Event I | Min | -323.4920 | -2188.2060 | 156.6356 |
|  | 8 | 12.6667 | Ext Event I | Min | -323.4920 | -1752.4563 | 240.7649 |
|  | 9 | 0.0000 | Str1 (Cont) | Max | 12653.5579 | 20592.5993 | -28346 7996 |
|  | 9 | 1.8333 | Str 1 (Cont) | Max | 12546.3496 | 20456.9520 | -24272.4760 |

Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Frame | Station ft | OutputCase | StepType | $\begin{gathered} \mathrm{T} \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip- } \end{gathered}$ | $\begin{gathered} \text { M3 } \\ \text { Kip-ft } \end{gathered}$ |
|  | 9 | 14.0428 | Str1 (Cont) | Min | -11841.9818 | -19499.6854 | -10935.8131 |
|  | 9 | 15.5856 | Str1 (Cont) | Min | -11759.8772 | -19384.4231 | -8681.9686 |
|  | 9 | 17.1285 | Str1 (Cont) | Min | -11677.7726 | -19269.1607 | -6551.1967 |
|  | 9 | 18.6713 | Str 1 (Cont) | Min | -11595.6679 | -19153.8984 | -4541.9540 |
|  | 9 | 18.6713 | Str1 (Cont) | Min | -11595.6679 | -19153.8984 | -4541.9540 |
|  | 9 | 20.5376 | Stri (Cont) | Min | -11546.7731 | -19029.7040 | -2268.9617 |
|  | 9 | 22.4039 | Str1 (Cont) | Min | -11497,8782 | -18905.5095 | -168.2226 |
|  | 9 | 24.2702 | Str1 (Cont) | Min | -11448.9834 | -18781.3151 | 1760.2635 |
|  | 9 | 26.1365 | Str1 (Cont) | Min | -11400.0885 | -18657.1207 | 3516.4965 |
|  | 9 | 28.0028 | Stri (Cont) | Min | -11351.1936 | -18532.9263 | 5100.4764 |
|  | 9 | 28.0028 | Str1 (Cont) | Min | -11351.1936 | -18532.9263 | 5100.4764 |
|  | 9 | 29.8691 | Str1 (Cont) | Min | -11351.1378 | -18422.1833 | 6512.2032 |
|  | 9 | 31.7354 | Str1 (Cont) | Min | -11351.0819 | -18311.4403 | 7751.6769 |
|  | 9 | 33.6017 | Str1 (Cont) | Min | -11351.0261 | -18200.6973 | 8818.8975 |
|  | 9 | 35.4680 | Str1 (Cont) | Min | -11350,9702 | -18089.9543 | 9713.8650 |
|  | 9 | 37.3343 | Str1 (Cont) | Min | -11350.9144 | -17979.2113 | 10436.5794 |
|  | 9 | 37.3343 | Stri (Cont) | Min | -11350.9144 | -17979.2113 | 10436.5794 |
|  | 9 | 39.2006 | Str1 (Cont) | Min | -11350.8861 | -17873.7002 | 10788.1917 |
|  | 9 | 41.0669 | Str1 (Cont) | Min | -11350.8577 | -17768.1890 | 10967.5510 |
|  | 9 | 42.9331 | Str1 (Cont) | Min | -11350.8294 | -17662.6779 | 10974.6571 |
|  | 9 | 44.7994 | Str1 (Cont) | Min | -11350.8011 | -17557.1667 | 10809.5101 |
|  | 9 | 46.6657 | Str1 (Cont) | Min | -11350.7727 | -17451.6555 | 10472.1101 |
|  | 9 | 46.6657 | Str1 (Cont) | Min | -11350.7727 | -17451.6555 | 10472.1101 |
|  | 9 | 48.5320 | Str1 (Cont) | Min | -11350.8301 | -17550.0541 | 9762.3498 |
|  | 9 | 50.3983 | Str1 (Cont) | Min | -11350.8876 | -17648.4526 | 8880.3365 |
|  | 9 | 52.2646 | Str1 (Cont) | Min | -11350.9450 | -17746.8512 | 7826.0701 |
|  | 9 | 54.1309 | Str1 (Cont) | Min | -11351.0024 | -17845.2497 | 6599.5506 |
|  | 9 | 55.9972 | Stri (Cont) | Min | -11351.0598 | -17943.6483 | 5200.7779 |
|  | 9 | 55.9972 | Str 1 (Cont) | Min | -11351.0598 | -17943.6483 | 5200.7779 |
|  | 9 | 57.8635 | Str1 (Cont) | Min | -11396.6480 | -18042.0804 | 3629.7523 |
|  | 9 | 59.7298 | Str1 (Cont) | Min | -11442.2361 | -18140.5125 | 1886.4735 |
|  | 9 | 61.5961 | Stri (Cont) | Min | -11487.8243 | -18238.9446 | -29.0584 |
|  | 9 | 63.4624 | Stri (Cont) | Min | -11533.4125 | -18337.3767 | -2116.8434 |
|  | 9 | 65.3287 | Str1 (Cont) | Min | -11579.0006 | -18435.8087 | -4376.8814 |
|  | 9 | 65.3287 | Str1 (Cont) | Min | -11579.0006 | -18435.8087 | -4376.8814 |
|  | 9 | 66.8715 | Str1 (Cont) | Min | -11653.5387 | -18541.0220 | -6375.4153 |
|  | 9 | 68.4144 | Str1 (Cont) | Min | -11728.0768 | -18646.2353 | -8495.4782 |
|  | 9 | 69.9572 | Str1 (Cont) | Min | -11802.6148 | -18751.4485 | -10738.6137 |
|  | 9 | 71.5000 | Str 1 (Cont) | Min | -11877.1529 | -18856.6618 | -13104.8218 |
|  | 9 | 71.5000 | Str1 (Cont) | Min | -11877.1529 | -18856.6618 | -13104.8218 |
|  | 9 | 73.0801 | Str1 (Cont) | Min | -11953.4915 | -18964.4166 | -15666.0265 |
|  | 9 | 74.6602 | Str1 (Cont) | Min | -12029.8301 | -19072.1714 | -18356.3215 |
|  | 9 | 74.6602 | Str1 (Cont) | Min | -12029.8301 | -19072.1714 | -18356.3215 |
|  | 9 | 76.5801 | Str 1 (Cont) | Min | -12136.2645 | -19204.4734 | -21827.8321 |
|  | 9 | 78.5000 | Stri (Cont) | Min | -12242.6989 | -19336.7755 | -25489.9279 |
|  | 9 | 78.5000 | Str1 (Cont) | Min | -12242.6989 | -19336.7755 | -25489.9279 |
|  | 9 | 80.3333 | Str1 (Cont) | Min | -12344.3338 | -19463.1117 | -29176.6938 |
|  | 9 | 82.1667 | Stry (Cont) | Min | -12445.9688 | -19589.4479 | -33045.8939 |
|  | 9 | 84.0000 | Str1 (Cont) | Min | -12547.6038 | -19715.7840 | -37174.2640 |
|  | 9 | 0.0000 | Str1 (Expn) | Max | 12653.5579 | 20592.5993 | -28126.9380 |
|  | 9 | 1.8333 | Str1 (Expr) | Max | 12546.3496 | 20456.9520 | -24059.6218 |
|  | 9 | 3.6667 | Str1 (Expn) | Max | 12439.1413 | 20321.3047 | -20251.4757 |
|  | 9 | 5.5000 | Str1 (Expn) | Max | 12331.9330 | 20185.6574 | -16625.7637 |
|  | 9 | 5.5000 | Str1 (Expn) | Max | 12331.9330 | 20185.6574 | -16625.7637 |
|  | 9 | 7.4199 | Str1 (Expn) | Max | 12219.6621 | 20043.6045 | -13027.6050 |
|  | 9 | 9.3398 | Str 1 (Expn) | Max | 12107.3912 | 19901.5517 | -9620.0313 |
|  | 9 | 9.3398 | Str 1 (Expn) | Max | 12107.3912 | 19901.5517 | -9620.0313 |
|  | 9 | 10.9199 | Str1 (Expn) | Max | 12023.3032 | 19784.6415 | -6372.5521 |
|  | 9 | 12.5000 | Str1 (Expn) | Max | 11939.2153 | 19667.7313 | -3254.1632 |
|  | 9 | 12.5000 | Str1 (Expn) | Max | 11939.2153 | 19667.7313 | -3254.1632 |
|  | 9 | 14.0428 | Str1 (Expn) | Max | 11857.1107 | 19553.5786 | -343.9128 |
|  | 9 | 15.5856 | Stri (Expn) | Max | 11775.0061 | 19439.4260 | 2443.2650 |
|  | 9 | 17.1285 | Stri (Expn) | Max | 11692.9015 | 19325.2733 | 5107.3702 |
|  | 9 | 18.6713 | Str1 (Expr) | Max | 11610.7969 | 19211.1206 | 7649.9464 |
|  | 9 | 18.6713 | Stri (Expn) | Max | 11610.7969 | 19211.1206 | 7649.9464 |
|  | 9 | 20.5376 | Str1 (Expn) | Max | 11561.9020 | 19088.2684 | 10381.1487 |
|  | 9 | 22.4039 | Str1 (Expn) | Max | 11513.0072 | 18965.4163 | 12940.0979 |
|  | 9 | 24.2702 | Str1 (Expn) | Max | 11464.1123 | 18842.5642 | 15326.7940 |
| $\square$ | 9 | 26.1365 | Str1 (Expn) | Max | 11415.2174 | 18719.7120 | 17541.2370 |

Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2

|  | Frame | Station ft | OutputCase | StepType | $\begin{gathered} \mathrm{T} \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip- } \mathrm{ft} \end{gathered}$ | $\begin{gathered} \text { M3 } \\ \text { Kip- } \mathrm{f} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 | 41.0669 | Str 1 (Cont) | Min | -11597.7804 | -11799.7251 | 12659.6349 |
|  | 12 | 42.9331 | Str 1 (Cont) | Min | -11593,8942 | -11473.8526 | 12868.4623 |
|  | 12 | 44.7994 | Str 1 (Cont) | Min | -11590.0080 | -11147.9801 | 12905.0366 |
|  | 12 | 46.6657 | Str 1 (Cont) | Min | -11586. 1219 | -10822.1076 | 12769.3578 |
|  | 12 | 46.6657 | Str 1 (Cont) | Min | -11586. 1219 | -10822.1076 | 12769.3578 |
|  | 12 | 48.5320 | Str 1 (Cont) | Min | -11606.7283 | -10496.2322 | 12158.4069 |
|  | 12 | 50.3983 | Str 1 (Cont) | Min | -11627.3347 | -10170.3569 | 11375.2029 |
|  | 12 | 52.2646 | Str 1 (Cont) | Min | -11647.9412 | -9844.4816 | 10419.7458 |
|  | 12 | 54.1309 | Str 1 (Cont) | Min | -11668.5476 | -9518.6063 | 9292.0357 |
|  | 12 | 55.9972 | Stri (Cont) | Min | -11689.1540 | -9192.7310 | 7992.0724 |
|  | 12 | 55.9972 | Str 1 (Cont) | Min | -11689.1540 | -9192.7310 | 7992.0724 |
|  | 12 | 57.8635 | Stri (Cont) | Min | -11760.6437 | -8895.3154 | 6519.8560 |
|  | 12 | 59.7298 | Str 1 (Cont) | Min | -11832.1333 | -8597.8998 | 4875.3866 |
|  | 12 | 61.5961 | Str 1 (Cont) | Min | -119036230 | -8300.4842 | 3058.6640 |
|  | 12 | 63.4624 | Str 1 (Cont) | Min | -11975.1126 | -8003.0685 | 1069.6884 |
|  | 12 | 65.3287 | Stri (Cont) | Min | -12046.6022 | -7705.6529 | -1091.5403 |
|  | 12 | 65.3287 | Str 1 (Cont) | Min | -12046.6022 | -7705.6529 | -1091.5403 |
|  | 12 | 66.8715 | Str 1 (Cont) | Min | -12113.7788 | -7475.4430 | -3008.3908 |
|  | 12 | 68.4144 | Str1 (Cont) | Min | -12180.9555 | -7245.2331 | -5046.7703 |
|  | 12 | 69.9572 | Str 1 (Cont) | Min | -12248.1321 | -7015.0231 | -7208.2224 |
|  | 12 | 71.5000 | Str1 (Cont) | Min | -123153087 | -6784.8132 | -9492.7471 |
|  | 12 | 71.5000 | Str1 (Cont) | Min | -12315.3087 | -6784.8132 | -9492.7471 |
|  | 12 | 73.0801 | Str1 (Cont) | Min | -12384.1080 | -6549.0423 | -11970.2953 |
|  | 12 | 74.6602 | Str 1 (Cont) | Min | -12452.9074 | -6313.2714 | -14576.9337 |
|  | 12 | 74.6602 | Str1 (Cont) | Min | -12452.9074 | -6313.2714 | -14576.9337 |
|  | 12 | 76.3301 | Str 1 (Cont) | Min | -12550.5085 | -6283.4230 | -17898.3390 |
|  | 12 | 78.0000 | Str 1 (Cont) | Min | -12648.1097 | -6253.5746 | -21363.9271 |
|  | 12 | 78.0000 | Str1 (Cont) | Min | -12648.1097 | -6253.5746 | -21363.9271 |
|  | 12 | 80.0000 | Str1 (Cont) | Min | -12765.0037 | -6217.8261 | -25717.3127 |
|  | 12 | 82.0000 | Str1 (Cont) | Min | -12881.8978 | -6182.0775 | -30282.7475 |
|  | 12 | 84.0000 | Str 1 (Cont) | Min | -12998.7919 | -6146.3289 | -35147.2227 |
|  | 12 | 0.0000 | Str1 (Expn) | Max | 13451.7029 | 19076.5119 | -28159.6247 |
|  | 12 | 1.8333 | Str1 (Expn) | Max | 13256.1572 | 18755.0822 | -24025.0720 |
|  | 12 | 3.6667 | Stri (Expn) | Max | 13060.6116 | 18433.6526 | -20149.6893 |
| ( | 12 | 5.5000 | Str1 (Expr) | Max | 12865.0659 | 18112.2230 | -16456.7408 |
|  | 12 | 5.5000 | Str1 (Expn) | Max | 12865.0659 | 18112.2230 | -16456.7408 |
|  | 12 | 7.4199 | Stri (Expn) | Max | 12660.2862 | 17775.6148 | -12788.1705 |
|  | 12 | 9.3398 | Str1 (Expn) | Max | 12455.5064 | 17439.0066 | -9310.1853 |
|  | 12 | 9.3398 | Str1 (Expn) | Max | 12455.5064 | 17439.0066 | -9310.1853 |
|  | 12 | 10.9199 | Str1 (Expn) | Max | 12352.6180 | 17161.9765 | -6008.8622 |
|  | 12 | 12.5000 | Str1 (Expn) | Max | 12249.7295 | 16884.9464 | -2836.6294 |
|  | 12 | 12.5000 | Str1 (Expn) | Max | 12249.7295 | 16884.9464 | -2836.6294 |
|  | 12 | 14.0428 | Str 1 (Expn) | Max | 12149.2678 | 16614.4504 | 126.1948 |
|  | 12 | 15.5856 | Str1 (Expn) | Max | 12048.8060 | 16343.9544 | 2965.9465 |
|  | 12 | 17.1285 | Str1 (Expn) | Max | 11948.3443 | 16073.4584 | 5682,6257 |
|  | 12 | 18.6713 | Str1 (Expr) | Max | 11847.8826 | 15802.9624 | 8277.7757 |
|  | 12 | 18.6713 | Str1 (Expn) | Max | 11847.8826 | 15802.9624 | 8277.7757 |
|  | 12 | 20.5376 | Str1 (Expn) | Max | 11815.0328 | 15475.7623 | 11060.7897 |
|  | 12 | 22.4039 | Str1 (Expn) | Max | 11782.1829 | 15148.5623 | 13671.5506 |
|  | 12 | 24.2702 | Str1 (Expr) | Max | 11749.3331 | 14821.3622 | 16110.0584 |
|  | 12 | 26.1365 | Str1 (Expn) | Max | 11716.4833 | 14494.1622 | 18376.3131 |
|  | 12 | 28.0028 | Str1 (Expn) | Max | 11683.6334 | 14166.9621 | 20470.3147 |
|  | 12 | 28.0028 | Str1 (Expn) | Max | 11683.6334 | 14166.9621 | 20470.3147 |
|  | 12 | 29.8691 | Str1 (Expn) | Max | 11667.0822 | 13839.7664 | 22049.6749 |
|  | 12 | 31.7354 | Str1 (Expn) | Max | 11650.5311 | 13512.5707 | 23456.7819 |
|  | 12 | 33.6017 | Str1 (Expn) | Max | 11633.9799 | 13185.3750 | 24691.6359 |
|  | 12 | 35.4680 | Str1 (Expr) | Max | 11617.4287 | 12858.1793 | 25754.2368 |
|  | 12 | 37.3343 | Str1 (Expn) | Max | 11600.8775 | 12530.9836 | 26644.5845 |
|  | 12 | 37.3343 | Str 1 (Expn) | Max | 11600.8775 | 12530.9836 | 26644.5845 |
|  | 12 | 39.2006 | Str1 (Expr) | Max | 11596.9913 | 12203.7898 | 27037.0139 |
|  | 12 | 41.0669 | Str1 (Expn) | Max | 11593.1052 | 11876.5960 | 27257.1902 |
|  | 12 | 42.9331 | Str1 (Expn) | Max | 11589.2190 | 11549.4021 | 27305.1134 |
|  | 12 | 44.7994 | Str1 (Expn) | Max | 11585.3328 | 11222.2083 | 27180.7835 |
|  | 12 | 46.6657 | Str1 (Expn) | Max | 11581.4467 | 10895.0145 | 26884.2005 |
|  | 12 | 46.6657 | Str1 (Expn) | Max | 11581.4467 | 10895.0145 | 26884.2005 |
|  | 12 | 48.5320 | Str1 (Expn) | Max | 11602.0531 | 10567.8179 | 26086.4925 |
|  | 12 | 50.3983 | Str1 (Expr) | Max | 11622.6596 | 10240.6212 | 25116.5315 |
|  | 12 | 52.2646 | Str1 (Expr) | Max | 11643.2660 | 9913.4246 | 23974.3174 |
| $\bigcirc$ | 12 | 54.1309 | Str1 (Expn) | Max | 11663.8724 | 9586.2280 | 22659.8502 |



Table 19: Element Forces. Frames, Part 2 of 2


Table 19: Element Forces - Frames, Part 2 of 2

|  | Frame | Station | OutputCase | StepType | $\begin{gathered} \mathrm{T} \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M3 } \\ \text { Kip-ft } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 | 78.0000 | Ext Event! | Max | 3613.0777 | 1793.9817 | -14833.8009 |
|  | 12 | 80.0000 | Ext Event I | Max | 3646.4760 | 1783.5656 | -18540.2047 |
|  | 12 | 82.0000 | Ext Event I | Max | 3679.8743 | 1773.1494 | -22458.6576 |
|  | 12 | 84.0000 | Ext Event I | Max | 3713.2726 | 1762.7333 | -26676.1508 |
|  | 12 | 0.0000 | Ext Event I | Min | -3844.0116 | -5435.2969 | -32038.5067 |
|  | 12 | 1.8333 | Ext Event I | Min | -3788.1414 | -5343.6453 | -28010.2400 |
|  | 12 | 3.6667 | Ext Event I | Min | -3732.2712 | -5251.9937 | -24241.1434 |
|  | 12 | 5.5000 | Ext Event I | Min | -3676.4010 | -5160.3421 | -20654.4808 |
|  | 12 | 5.5000 | Ext Event I | Min | -3676.4010 | -5160.3421 | -20654.4808 |
|  | 12 | 7.4199 | Ext Event I | Min | -3617.8925 | -5064.3625 | -17097.2156 |
|  | 12 | 9.3398 | Ext Event I | Min | -3559.3840 | -4968.3829 | -13730.5355 |
|  | 12 | 9.3398 | Ext Event I | Min | -3559.3840 | -4968.3829 | -13730.5355 |
|  | 12 | 10.9199 | Ext Event I | Min | -3529.9873 | -4889.3912 | -11102.7136 |
|  | 12 | 12.5000 | Ext Event I | Min | -3500.5906 | -4810.3996 | -8603.9820 |
|  | 12 | 12.5000 | Ext Event I | Min | -3500.5906 | -4810.3996 | -8603.9820 |
|  | 12 | 14.0428 | Ext Event I | Min | -3471.8872 | -4733.2711 | -6298.7736 |
|  | 12 | 15.5856 | Ext Event I | Min | -3443.1839 | -4656.1425 | -4116.6377 |
|  | 12 | 17.1285 | Ext Event 1 | Min | -3414.4805 | -4579.0140 | -2057.5744 |
|  | 12 | 18.6713 | Ext Event 1 | Min | -3385.7772 | -4501.8855 | -120.0401 |
|  | 12 | 18.6713 | Ext Event I | Min | -3385.7772 | -4501.8855 | -120.0401 |
|  | 12 | 20.5376 | Ext Even! I | Min | -3376.3915 | -4408.5885 | 2066.2090 |
|  | 12 | 22.4039 | Ext EventI | Min | -3367.0059 | -4315.2915 | 4080.2050 |
|  | 12 | 24.2702 | Ext Event I | Min | -3357.6202 | -4221.9946 | 5921.9479 |
|  | 12 | 26.1365 | Ext EventI | Min | -3348.2345 | -4128.6976 | 7591.4378 |
|  | 12 | 28.0028 | Ext Even! ! | Min | -3338.8489 | -4035.4006 | 9088.6745 |
|  | 12 | 28.0028 | Ext Event I | Min | -3338.8489 | -4035.4006 | 9088.6745 |
|  | 12 | 29.8691 | Ext EventI | Min | -3334.1200 | -3942.1049 | 10413.6582 |
|  | 12 | 31.7354 | Ext Event I | Min | -3329.3910 | -3848.8092 | 11566.3888 |
|  | 12 | 33.6017 | Ext Event 1 | Min | -3324.6621 | -3755.5134 | 12546.8663 |
|  | 12 | 35.4680 | Ext Event I | Min | -3319.9332 | -3662.2177 | 13355.0906 |
|  | 12 | 37.3343 | Ext Event I | Min | -3315.2043 | -3568.9220 | 13991.0619 |
|  | 12 | 37.3343 | Ext Event I | Min | -3315.2043 | -3568.9220 | 13991.0619 |
|  | 12 | 39.2006 | Ext Event I | Min | -3314.0940 | -3475.6268 | 14439.3949 |
|  | 12 | 41.0669 | Ext Event I | Min | -3312.9836 | -3382.3316 | 14715.4748 |
|  | 12 | 42.9331 | Ext Event I | Min | -3311.8733 | -3289.0364 | 14819.3015 |
|  | 12 | 44.7994 | Ext Event I | Min | -3310.7630 | -3195.7412 | 14750.8752 |
|  | 12 | 46.6657 | Ext Event I | Min | -3309.6527 | -3102.4460 | 14510.1958 |
|  | 12 | 46.6657 | Ext Event I | Min | -3309.6527 | -3102.4460 | 14510.1958 |
|  | 12 | 48.5320 | Ext Event I | Min | -3315.5402 | -3009.1500 | 14010.6865 |
|  | 12 | 50.3983 | Ext Event I | Min | -3321.4278 | -2915.8540 | 13338.9240 |
|  | 12 | 52.2646 | Ext Event I | Min | -3327,3153 | -2822.5580 | 12494.9084 |
|  | 12 | 54.1309 | Ext Event I | Min | -3333.2029 | -2729.2620 | 11478.6398 |
|  | 12 | 55.9972 | Ext Event I | Min | -3339,0904 | -2635.9661 | 10290.1181 |
|  | 12 | 55.9972 | Ext Event I | Min | -3339,0904 | -2635.9661 | 10290.1181 |
|  | 12 | 57.8635 | Ext EventI | Min | -3359.5160 | -2550.8014 | 8929.3433 |
|  | 12 | 59.7298 | Ext Event I | Min | -3379.9416 | -2465.6368 | 7396.3153 |
|  | 12 | 61.5961 | Ext Event I | Min | -3400,3672 | -2380.4721 | 5691.0343 |
|  | 12 | 63.4624 | Ext Event 1 | Min | -3420.7929 | -2295.3075 | 3813.5002 |
|  | 12 | 65.3287 | Ext Event I | Min | -3441.2185 | -2210.1428 | 1763.7131 |
|  | 12 | 65.3287 | Ext Event I | Min | -3441,2185 | -2210.1428 | 1763.7131 |
|  | 12 | 66.8715 | Ext Event 1 | Min | -3460.4118 | -2144.2125 | -61.0112 |
|  | 12 | 68.4144 | Ext Event 1 | Min | -3479.6051 | -2078.2822 | -2007.2646 |
|  | 12 | 69.9572 | Ext Event I | Min | -3498.7984 | -2012.3519 | -4076.5906 |
|  | 12 | 71.5000 | Ext Event I | Min | -3517.9917 | -1946.4216 | -6268.9891 |
|  | 12 | 71.5000 | Ext Event 1 | Min | -3517.9917 | -1946.4216 | -6268.9891 |
|  | 12 | 73.0801 | Ext Event 1 | Min | -3537.6487 | -1878.8987 | -8652.1857 |
|  | 12 | 74.6602 | Ext Event I | Min | -3557.3057 | -1811.3757 | -11164.4726 |
|  | 12 | 74.6602 | Ext Event I | Min | -3557.3057 | -1811.3757 | -11964.4726 |
|  | 12 | 76.3304 | Ext Event I | Min | -3585. 1917 | -1802.6787 | -14081.6659 |
|  | 12 | 78.0000 | Ext Event 1 | Min | -3613.0777 | -1793.9817 | -17143.0419 |
|  | 12 | 780000 | Ext Event 1 | Min | -3613.0777 | -1793.9817 | -17143.0419 |
|  | 12 | 80.0000 | Ext Event 1 | Min | -3646.4760 | -1783.5656 | -21012.3144 |
|  | 12 | 82.0000 | Ext Event I | Min | -3679.8743 | -1773.1494 | -25093.6361 |
|  | 12 | 84,0000 | Ext Event I | Min | -3713.2726 | -1762.7333 | -29473.9981 |
|  | 13 | 0.0000 | Str 1 (Cont) | Max | 1312.2500 | 11649.0004 | 0.0000 |
|  | 13 | 2.7292 | Str1 (Cont) | Max | 13122500 | 11197.5774 | -1266.6990 |
|  | 13 | 5.4583 | Str1 (Cont) | Max | 13122500 | 10745.4823 | -2533.3979 |
|  | 13 | 0.0000 | Str 1 (Cont) | Min | -1314. 1861 | -11650.3046 | 0.0000 |
| ( | 13 | 2.7292 | Str1 (Cont) | Min | -1314.1861 | -11198.5950 | -1273.0696 |






|  | Frame | Station <br> ft | OutputCase | StepType | $\begin{gathered} \mathrm{T} \\ \text { Kip-ft } \end{gathered}$ | $\begin{gathered} \text { M2 } \\ \text { Kip-fit } \end{gathered}$ | $\begin{gathered} \text { M3 } \\ \text { Kip-ft } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 | 59.1569 | Ext Event I | Max | 2101.9925 | 560.9909 | 4279.3949 |
|  | 15 | 60.9493 | Ext Event I | Max | 1893.1223 | 538.3446 | 2133.1949 |
|  | 15 | 62.7417 | Ext Event I | Max | 1684.2521 | 515.6983 | -255.0699 |
|  | 15 | 62.7417 | Ext Event I | Max | 1684.2521 | 515.6983 | -255.0699 |
|  | 15 | 62.7500 | Ext Event I | Max | 109.4784 | 515.6132 | -264.8365 |
|  | 15 | 0.0000 | Ext Event I | Min | -5211.5337 | -1414.2321 | -29473.9981 |
|  | 15 | 0.0083 | Ext Event 1 | Min | -5211.5337 | -1414.1079 | -29456.1803 |
|  | 15 | 0.0083 | Ext EventI | Min | -521t.5337 | -1414.1079 | -29456.1803 |
|  | 15 | 2.0056 | Ext Event I | Min | -5209.2513 | -1384.3342 | -25351.0344 |
|  | 15 | 4.0028 | Ext Event I | Min | -5206.9688 | -1354.5606 | -21543.8916 |
|  | 15 | 6.0000 | Ext Event I | Min | -5204.6864 | -1324.7870 | -17948.1247 |
|  | 15 | 6.0000 | Ext Event I | Min | -5204.6864 | -1324.7870 | -17948.1247 |
|  | 15 | 7.4851 | Ext Event I | Min | -5202.9892 | -1302.6475 | -15417.6933 |
|  | 15 | 8.9702 | Ext Event 1 | Min | -5201.2920 | -1280.5081 | -13001.3002 |
|  | 15 | 8.9702 | Ext Event I | Min | -5201.2920 | -1280.5081 | -13001.3002 |
|  | 15 | 11.0000 | Ext Event I | Min | -5197.5780 | -1250.2494 | -9883.1745 |
|  | 15 | 11.0000 | Ext Event I | Min | -5197.5780 | -1250.2494 | -9883.1745 |
|  | 15 | 12.4167 | Ext Event 1 | Min | -5194.9859 | -1229.1304 | -7834.9865 |
|  | 15 | 13.8333 | Ext EventI | Min | -5192,3937 | -1208.0114 | -5890.5665 |
|  | 15 | 15.2500 | Ext Event 1 | Min | -5189.8016 | -1186.8924 | -4049.9146 |
|  | 15 | 15.2500 | Ext Event I | Min | -5189.8016 | -1186.8924 | -4049.9146 |
|  | 15 | 16.5911 | Ext Event I | Min | -5187.3477 | -1166.9004 | -2404.8693 |
|  | 15 | 17.9321 | Ext Event 1 | Min | -5184.8939 | -1146.9084 | -852.6030 |
|  | 15 | 17.9321 | Ext Event 1 | Min | -5184.8939 | -1146.9084 | -852.6030 |
|  | 15 | 19.7245 | Ext Event 1 | Min | -5124.9739 | -1120.1884 | 1081.9271 |
|  | 15 | 21.5169 | Ext Event 1 | Min | -5065.0538 | -1093.4685 | 2857.5783 |
|  | 15 | 23.3093 | Ext Event I | Min | -5005.1338 | -1066.7485 | 4474.3504 |
|  | 15 | 25.1017 | Ext Event I | Min | -4945.2137 | -1040.0286 | 5932.2436 |
|  | 15 | 26.8940 | Ext Event I | Min | -4885.2937 | -1013.3086 | 7231.2578 |
|  | 15 | 26.8940 | Ext Event I | Min | -4885. 2937 | -1013.3086 | 7231.2578 |
|  | 15 | 28.6864 | Ext Event I | Min | -4745.1275 | -986.7895 | 8371.3930 |
|  | 15 | 30.4788 | Ext Event I | Min | -4604.9613 | -960.2704 | 9352.6491 |
|  | 15 | 32.2712 | Ext Event I | Min | -4464.7951 | -933.7513 | 10175.0264 |
|  | 15 | 34.0636 | Ext Event 1 | Min | -4324.6289 | -907.2322 | 10838.5246 |
|  | 15 | 35.8560 | Ext Event 1 | Min | -4184.4627 | -880.7130 | 11343.1438 |
|  | 15 | 35.8560 | Ext Event1 | Min | -4184.4627 | -880.7130 | 11343.1438 |
|  | 15 | 37.6483 | Ext EventI | Min | -4124.4182 | -855.5347 | 11688.8840 |
|  | 15 | 39.4407 | Ext Event I | Min | -4064.3736 | -830.3564 | 11875.7453 |
|  | 15 | 41.2331 | Ext Event I | Min | -4004.3291 | -805.1781 | 11903.7275 |
|  | 15 | 43.0255 | Ext Event 1 | Min | -3944.2845 | -779.9998 | 11772.8308 |
|  | 15 | 44.8179 | Ext Event I | Min | -3884.2399 | -754.8215 | 11483.0550 |
|  | 15 | 44.8179 | Ext Event 1 | Min | -3884.2399 | -754.8215 | 11483.0550 |
|  | 15 | 46.6102 | Ext EventI | Min | -3653.1125 | -729.6432 | 11034.4003 |
|  | 15 | 48.4026 | Ext Event I | Min | -3421.9852 | -704.4648 | 10426.8666 |
|  | 15 | 50.1950 | Ext Event I | Min | -3190.8578 | -679.2865 | 9660.4539 |
|  | 15 | 51.9874 | Ext Event 1 | Min | -2959.7304 | -654.1082 | 8735.1622 |
|  | 15 | 53.7798 | Ext Event 1 | Min | -2728.6030 | -628.9299 | 7650.9915 |
|  | 15 | 53.7798 | Ext Event 1 | Min | -2728.6030 | -628.9299 | 7650.9915 |
|  | 15 | 55.5721 | Ext Event I | Min | -2519.7328 | -606.2836 | 6405.6605 |
|  | 15 | 57.3645 | Ext Event I | Min | -2310.8626 | -583.6373 | 5001.4505 |
|  | 15 | 59.1569 | Ext Event I | Min | -2101.9925 | -560.9909 | 3438.3616 |
|  | 15 | 60.9493 | Ext Event 1 | Min | -1893.1223 | -538.3446 | 1706.9750 |
|  | 15 | 62.7417 | Ext Event I | Min | -1684.2521 | -515.6983 | -266.4764 |
|  | 15 | 62.7417 | Ext Event I | Min | -1684.2521 | -515.6983 | -266.4764 |
|  | 15 | 62.7500 | Ext Event I | Min | -109.4784 | -515.6132 | -277.7784 |
|  | 18 | 0.0000 | Stri (Cont) | Max | 1807.4671 | 0.0000 | 0.0000 |
|  | 18 | 0.2240 | Str1 (Cont) | Max | 1807.4674 | 11.9987 | 15.2461 |
|  | 18 | 0.4479 | Str1 (Cont) | Max | 1807.4671 | 23.9975 | 31.0198 |
|  | 18 | 0.0000 | Str1 (Cont) | Min | -1809.8960 | 0.0000 | 0.0000 |
|  | 18 | 0.2240 | Str1 (Cont) | Min | -1809.8960 | -12.2161 | 13.9233 |
|  | 18 | 0.4479 | Str1 (Cont) | Min | -1809.8960 | -24.4323 | 28.3742 |
|  | 18 | 0.0000 | Str1 (Expn) | Max | 1807.4671 | 0.0000 | 0.0000 |
|  | 18 | 0.2240 | Str1 (Expn) | Max | 1807.4671 | 11.9987 | -10.5207 |
|  | 18 | 0.4479 | Str1 (Expn) | Max | 1807.4671 | 23.9975 | -20.2315 |
|  | 18 | 0.0000 | Str1 (Expn) | Min | -1809.8960 | 0.0000 | 0.0000 |
|  | 18 | 0.2240 | Str1 (Expn) | Min | -1809.8960 | -12.2161 | -11.8435 |
|  | 18 | 0.4479 | Str1 (Expr) | Min | -1809.8960 | -24.4323 | -22.8771 |
|  | 18 | 0.0000 | Ext Event I | Max | 516.7662 | 0.0000 | 0.0000 |
|  | 18 | 0.2240 | Ext Event I | Max | 516.7662 | 3.4593 | -2.1313 |



| Frame | Station | OutputCase | StapType | T | M2 | M3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f$ |  |  | Kip-ft | Kip-ft | Kip-f |
| 23 | 4.2500 | Str1 (Expn) | Min | -1805.9870 | -247.0349 | -40.2743 |
| 23 | 0.0000 | Ext Event 1 | Max | 515.6132 | 6.6773 | 4.7074 |
| 23 | 2.1250 | Ext Event 1 | Max | 515.6132 | 38.3561 | -4.6861 |
| 23 | 4.2500 | Ext Even! 1 | Max | 515.6132 | 70.0350 | .76.3139 |
| 23 | 0.0000 | Ext Event! | Min | -515.6132 | -6.6773 | 3.9181 |
| 23 | 2.1250 | Ext Event I | Min | -515.6132 | -38.3561 | -9.2203 |
| 23 | 4.2500 | Ext Event 1 | Min | -515.6132 | -70.0350 | -84.5931 |

10. Material take-off

This section provides a material take-off.
Table 20: Material List 2-By Section Property

| Table 20: Material List 2-By Section Property |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: |
| Section | ObjectType | NumPieces | TotalLength | TotalWeight |
|  |  |  | ft | Kip |
| SUPERSTRUCTURE | Frame | 5 | 377.5000 | $6.482 E-04$ |
| ABUTMENT CAP | Frame | 4 | 23.1875 | 1325.166 |
| PIER COLUMN | Frame | 4 | 48.5000 | 417.269 |
| PIER CAP | Frame | 4 | 21.8333 | 1624.400 |
| BEARING | Frame | 2 | 0.8958 | 183.153 |

## 11. Design preferences

This section provides the design preferences for each type of design, which typically include material reduction factors, framing type, stress ratio limit, deflection limits, and other code specific items.
11.1. Steel design

Table 21: Preferences - Steel Design - AISC360-05-IBC2006, Part 1 of 3

| Frame Type | PatLLF | SRatioLimit | SDC | ImpFactor | SystemRho | SystemSds | SystemR | SystamCd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMF | 0.750000 | 0.950000 | D | 1.000000 | 1.000000 | 0.500000 | 8.000000 | 5.500000 |

Table 21: Preferences - Steel Design - AISC360-05-IBC2006, Part 2 of 3

| Omegao | NLCoeff | Phis | Phic | Phity | PhitF | Phiv | PhiVRolledl | Phivt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.000000 | 0.002000 | 0.900000 | 0.850000 | 0.900000 | 0.750000 | 0.900000 | 1.000000 | 0.900000 |

Table 21: Preferences - Steel Design - AISC360-05-IBC2006, Part 3 of 3
Table 21: Preferences - Steel Design - AISC360-05-IBC2006, Part 3 of 3

| PlugWeld | HSSWelding | HSSReduceT | DLRat | SDLAndLLRat | LLRat | TotalRat | NetRat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yes | ERW | No | 120.000000 | 120.000000 | 360.000000 | 240.000000 | 240.000000 |

11.2. Concrete design

Table 22: Preferences - Concrete Design - ACI 318-05nEC2003, Part 1 of 2

| MinEccen | PatLLF | UFLimit | Selscat |
| :---: | :---: | :---: | :---: |
| Yes | 0.750000 | 0.950000 | D |

Table 22: Preferences - Concrete Design - ACl 318-05/BC2003, Part 2 of 2
Table 22: Preferences - Concrete Design - ACI 318-05ABC2003, Part 2 of 2

| Table 22: Preferences |  |  |  |  |  |  | Phit | PhiCTied | PhicSpiral | PhiV | PhiVSeismic | PhiVJoint |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.900000 | 0.650000 | 0.700000 | 0.750000 | 0.600000 | 0.850000 |  |  |  |  |  |  |  |

11.3. Aluminum design

Table 23: Preferences - Aluminum Design - AA-ASD 2000

| Table 23: |  | Preferences - Aluminum Design - AA-ASD 2000 |  |
| :---: | :---: | :---: | :---: |
| FrameType | SRatloLimit | LatFact | UseLatFact |
|  |  |  |  |
| Moment Frame | 1.000000 | 1.333333 | No |

### 11.4. Cold formed design

Table 24: Preferences - Cold Formed Design - AISI-ASD96
Table 24: Preferences - Cold Formed Design - AISI-ASD96

| FrameType | SRatioLimit | OmegaBS | OmegaBUS | OmegaBLTB | OmegaVS | OmegaVNS | Omegat | Omegal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Braced Frame | 1.000000 | 1.670000 | 1.67000 | 1.670000 | 1.670000 | 1.500000 | 1.670000 | 1.800000 |  |

12. Design overwrites

This section provides the design overwrites for each type of design, which are assigned to individual members of the structure.
12.1. Concrete design

Table 25: Overwrites - Concrete Design - ACl 318-05月BC2003, Part 1 of 2

| Frame | DesignSect | FrameType | RLLF | XLMajor | XLMinor | XKMajor | XKMinor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 7 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 10 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 13 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 5 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 19 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 19 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 20 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 23 | Program Determined | Program Determined | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |

Table 25: Overwrites - Concrete Design - ACl 318-05лBC2003, Part 2 of 2
Table 25: Overwrites - Concrete Design - ACl 318-05/BBC2003, Part 2 of 2

| Frame | CmMajor | CmMinor | DnsMajor | DnsMinor | DsMajor | DsMinor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 3 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 7 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 10 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 13 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 5 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 19 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 |
| 19 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 |
| 20 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 |
| 23 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |

SUMMARY OF LOADS FROM CSI LINE (2d) MODEL OUTPUT PHASE 2 CONSTRUCTION EXTREME EVENT I STRENGTH I (TEMP. + CREEP + SHRINKAGE FOR CONTRACTION)

| MEMBER | DESCRIPTION | AXIAL LOAD | V2 | V3 | M2 | M3 | CONTROLED FOR ABUT. DIAPH. DESIGN AT FF CONTROLED FOR ABUT. CAISSON DESIGN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | ABUT. 1 UPPER CAP (TOP) | 2066.00 | 29.45 | 53.58 | 393.45 | 308.03 |  |
| 19 | ABUT. 1 LOWER CAP (BOTTOM) | 2896.45 | 130.21 | 53.58 | 251.69 | 451.07 |  |
| 20 | ABUT. 6 UPPER CAP (TOP) | 2075.17 | 15.12 | 51.77 | 386.16 | 248.04 |  |
| 23 | ABUT. 6 LOWER CAP (BOTTOM) | 2921.38 | 54.91 | 51.77 | 247.03 | 412.69 |  |
| 3 | PIER 2 CAP (TOP) | 5417.35 | 485.01 | 286.23 | 12870.57 | 0.00 |  |
| 4 | PIER 2 COLUMN (TOP) | 5924.97 | 485.01 | 268.23 | 11709.75 | 2647.35 | CONTROLED FOR PIER CAISSON DESIGN |
| 4 | PIER 2 COLUMN (BOTTOM) | 6072.85 | 485.01 | 262.50 | 8802.72 | 9316.25 |  |
| 7 | PIER 3 CAP (TOP) | 5602.20 | 242.51 | 334.14 | 10577.61 | 0.00 |  |
| 8 | PIER 3 COLUMN (TOP) | 6109.82 | 242.51 | 334.03 | 9190.24 | 1323.71 |  |
| 8 | PIER 3 COLUMN (BOTTOM) | 6246.04 | 242.51 | 328.59 | 6097.81 | 4395.52 |  |
| 10 | PIER 4 CAP (TOP) | 5584.78 | 88.39 | 252.00 | 9928.88 | 0.00 |  |
| 11 | PIER 4 COLUMN (TOP) | 6092.41 | 88.39 | 251.71 | 8810.88 | 493.16 |  |
| 11 | PIER 4 COLUMN (BOTTOM) | 6216.98 | 88.39 | 246.74 | 6469.92 | 1539.72 |  |
| 13 | PIER 5 CAP (TOP) | 5418.90 | 464.13 | 222.27 | 11650.30 | 0.00 |  |
| 14 | PIER 5 COLUMN (TOP) | 5926.52 | 464.13 | 221.80 | 10747.56 | 2546.14 |  |
| 14 | PIER 5 COLUMN (BOTTOM) | 6039.45 | 464.13 | 217.30 | 9108.83 | 7444.06 |  |
| STRENGTH | 1 (TEMP. FOR EXPANSION) |  |  |  |  |  |  |
| MEMBER | DESCRIPTION | AXIAL LOAD | V2 | V3 | M2 | M3 |  |
| 5 | ABUT. 1 UPPER CAP (TOP) | 2102.83 | 106.28 | 53.58 | 400.58 | 683.06 | CONTROLED FOR ABUT. DIAPH. DESIGN AT BF |
| 19 | ABUT. 1 LOWER CAP (BOTTOM) | 2933.28 | 48.42 | 53.58 | 256.25 | 46.98 |  |
| 20 | ABUT. 6 UPPER CAP (TOP) | 2090.93 | 99.79 | 51.77 | 380.18 | 591.97 |  |
| 23 | ABUT. 6 LOWER CAP (BOTTOM) | 2921.38 | 54.91 | 51.77 | 247.03 | 40.27 |  |
| 3 | PIER 2 CAP (TOP) | 5392.49 | 217.81 | 268.23 | 12891.84 | 0.00 |  |
| 4 | PIER 2 COLUMN (TOP) | 5900.12 | 217.81 | 268.23 | 11713.25 | 1198.92 |  |
| 4 | PIER 2 COLUMN (BOTTOM) | 6047.99 | 217.81 | 262.50 | 8870.40 | 4219.12 |  |
| 7 | PIER 3 CAP (TOP) | 5586.40 | 123.06 | 334.14 | 10577.61 | 0.00 |  |
| 8 | PIER 3 COLUMN (TOP) | 6094.02 | 123.06 | 334.03 | 9177.45 | 683.82 |  |



Calculate Period of Burdige ( $4.7 .4 .3 .24-3$ )

$$
T_{m}=2 \pi \sqrt{\frac{w}{g k}} \quad w=15721.7 \mathrm{k}
$$

* Longitudinal Direction

$$
\begin{array}{ll}
P=1000 K \\
\Delta= & 0.1148^{\prime} \\
K_{L}=\frac{1000}{0.1148}=8710.8 \mathrm{k} /, \\
T_{m, L}=2 \pi \sqrt{\frac{15721.7}{32(8710.8)}}=1.49 \mathrm{sec}
\end{array}
$$

* Transverse Direction

$$
\begin{aligned}
& \Sigma P=3000 K \\
& \Delta_{\text {Avg }}\left.=\frac{0.1276+0.119+0.1106+0.1094+0.1128+0.1183}{6}=0.1163,\right\} \text { from CSI } \\
& K_{T}=\frac{3000}{0.1163}=25,795.4 \mathrm{~K} / \\
& T_{m, T}=2 \pi \sqrt{\frac{15721.7}{32(25795.4)}=}=0.87 \mathrm{sec}
\end{aligned}
$$

Use graph data on Design Spectral Acceleration vs Time (Geology Paport)) eriterpolates to find Spectral acceleration

$$
\begin{aligned}
& T_{m, L}=1.19 \mathrm{sec} \rightarrow S_{a}=0.05 \\
& T_{m, T}=0.87 \mathrm{sec} \rightarrow S_{a}=\frac{0.1-0.0 .8}{0.8-1}(0.87-0.8)+0.1=0.093
\end{aligned}
$$

| By: $H$ B Date $7-13$ | Project no. FBR | $0142-055$ | Project code (SAM): |
| :---: | :--- | :---: | :---: |
| Chk'd:JE Date $8-13$ | Structure no. | $B-16-$ IV | Sheet 400 of 508 |

## Abutment Longitudinal Response SDC D

## - Case 2: Earthquake Resisting System (ERS) with

 Abutment Contribution.- Presumptive Passive Pressures
- Computed passive pressure higher than presumptive and controlled by more stringent specifications.


AMimsen
CH2M HILL In-house Training
Module 4-22


## Presumptive Passive Pressures

- Soil in the "passive pressure zone" should be compacted to a dry density greater than $95 \%$ of the maximum per ASTM Standard Method D1557 or equivalent
- For cohesion less, non-plastic backfill (fines content less than 30\%), the passive pressure may be assumed equal to $2 \mathrm{H} / 3 \mathrm{ksf}$ (HiNFEDT)
- For cohesive backfill (clay fraction >
 $15 \%$ ), the passive pressure may be assumed equal to 5 ksf provided the estimated unconfined compressive
 Module 4-23

Seismic Analysis:
vertical Load from the Extreme Event I state (Sag Rum)

$$
\begin{array}{cc}
\text { Gravity Load (A) } & \text { Gravity Load (B) } \\
1.25 D C+1.5 D W+0.5 L C) \\
1981.6
\end{array} \quad(1.00 C+1.00 \mathrm{~W}+0<2)
$$

Abut. 1
pier 2

$$
5110.7
$$

$$
3384.8
$$

pier 3
5299.6
3526.1
pier 4
5290.9
3521.9
pier 5
5144.0
3387.2

Abut 6
1983.1
950.4

Earth Pressure
passive pressure (Assuming $K_{p}=4 / 3$ )

$$
\begin{aligned}
& P=\frac{1}{2} \gamma k_{p} t^{2} \\
& P=\frac{1}{2}(.125)(4 / 3)(5.906)^{2}=2.907 \mathrm{~K} \text { per ft } \\
& P=2.907(73 / 12)=17.68 \mathrm{~K} \text { per Girder }
\end{aligned}
$$

$M=17.68(5.906)\left(1 \frac{2}{3}\right)=69.6$ K.ft per girder @G Girder
Active pressure $\left(\gamma k_{a}=0.035 \mathrm{k} / \mathrm{ft}^{3}\right)$

$$
\begin{aligned}
& P=\frac{1}{2} \gamma k_{a} H^{2} \\
& P=\frac{1}{2}(0.035)(5.906)^{2}=0.61 \text { Aperft } \\
& P=0.296(73 / 12)=3.71 \mathrm{k} \text { per Girder } \\
& M=3.71(5.906)(2 / 3)=14.62 \mathrm{k} . \mathrm{ft} \text { per girder @ \& girder }
\end{aligned}
$$


SUMMARY OF COLUMN LOADS FROM CSI 3D MODEL OUTPUT




 $M(K . F T)$
 467.6
721.6
688.5 462.5
720.6
682.6

| 6 | 0 | $n$ |
| :--- | :--- | :--- |
| 0 | 0 |  |
| 0 | 0 |  |
|  | $\underset{1}{1}$ | 0 |



促


| By: $H$ B Date $7 / 13$ | Project no. | FBR 0142-055 | Project code (SAAF): $/ 8085$ |
| :---: | :--- | :---: | :---: |
| Chk'd:KLP Date $8 / 13$ | Structure no. | $B-16-E V$ | Sheet 405 of 508 |



## DESIGN COMPUTATIONS (Grid)



$$
M_{C R}=\quad 147.03 \mathrm{K.n}
$$

$$
\begin{aligned}
& \text { 气 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 둧 }
\end{aligned}
$$

| By:HB Date $7 / 13$ | Project no. FBR 0142-055 | Project code (SA\#): 18085 |
| :---: | :---: | :--- | :--- |
| Chk'd:KLP Date $8 / 13$ | Structure no. $\quad B-16-E V$ | Sheet 409 of 508 |



COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

PiERS 2-5
Column Dia. $=42^{\prime \prime}, A_{g}=\frac{\pi(42)^{2}}{4}=1,385.4 \mathrm{in}^{2}$

$$
I_{e}=0.43 I_{g}=0.51 \frac{\pi(42)^{4}}{64}=77,900 \mathrm{in}^{4}
$$

$$
E=4,066,840 \mathrm{psi}
$$

Caisson Dian $=48^{\prime \prime}, A_{g}=\frac{\pi(48)^{2}}{4}=1,809.6 \mathrm{in}^{2}$

$$
\begin{aligned}
& I_{e}=0.43 I_{g}=0.51 \frac{\pi(48) 4}{64}=132,894 \mathrm{in}^{4} \\
& E=3,834,253 \mathrm{p}^{s}
\end{aligned}
$$

Sand\& Gravel below water table

$$
\begin{aligned}
& \phi=33^{\circ} \\
& c=0 \\
& K_{h}=60 \# / \mathrm{ch}^{3} \\
& \varepsilon_{50}=\mathrm{N} / \mathrm{A} \\
& \gamma=0.0694^{\#} / \mathrm{ln}^{3}
\end{aligned}
$$



Bedrock

$$
\phi=0
$$

$$
c=69.44 \mathrm{lb} / \mathrm{in}^{2}
$$

$$
K_{h}=2000 \# / \ln ^{3}
$$

$$
\varepsilon_{50}=0.004 \mathrm{in} / \mathrm{in}
$$

$$
r=0.081 \mathrm{\#} / \mathrm{co}^{3}
$$



Comparison of Moment Curvature ( $\mathrm{I}_{\text {crack }}=0.32 \mathrm{I}$ or $1.13 \mathrm{ft}^{4}$ ) to Article 5.6

a) Circular Sections

CH2M HILL In-house Training
Module 6-46

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

ABUTMENT CAISSON DESIGN (CONTROLED AT ABUT. 1)
Strength I (Temp.+Cnespt Shrinkage for contraction)
Conssoin Deflection at Top (cs)

$$
\begin{aligned}
u_{2}= & 0.0092^{\prime} \\
u_{3}= & 0.0033^{\prime} \\
& u_{\text {Tot }}=\sqrt{0.0092^{2}+0.0033^{2}}=0.0098^{\prime}=0.12^{\prime \prime}
\end{aligned}
$$

Caisson Moment at Top (CST)

$$
M_{3}=\frac{451.07}{8}=56.38 \mathrm{k}, \mathrm{ft}^{\prime}=676,560 \mathrm{lb} . \mathrm{in}
$$

Caisson axial Load at Top (Hand's Calculation)

$$
P_{\text {Tot }}=605.21 \mathrm{Kips}=605,210 \mathrm{lb}
$$

## ABUT



PROGRAM LPILE1
(C) COPYRIGHT 1985 ENSOFT, INC.

ALL RIGHTS RESERVED

ABUTMENT CAISSON DESIGN

UNITS--ENGLISH UNITS

INPUTINFORMATION


THE LOADING IS STATIC

PILE GEOMETRY AND PROPERTIES

| PILE LENGTH <br> 2 POINTS |  | $=$ | 293.00 IN |
| :---: | :---: | :---: | :---: |
| X | DIAMETER | MOMENT OF | AREA |

SOILS INFORMATION
$X$ AT THE GROUND SURFACE $=1.00 \mathrm{IN}$
2 LAYER(S) OF SOIL
LAYER 1
THE SOIL IS A SAND
$X$ AT THE TOP OF THE LAYER $=1.00 \mathrm{IN}$
Page 1


BOUNDARY AND LOADING CONDITIONS

LOADING NUMBER 1
BOUNDARY CONDITION CODE
$=$
$=$
$=$
$=$
$=$

MOMENT AT THE PILE HEAD
AXIAL LOAD AT THE PILE HEAD
$=.120 \mathrm{D}+00 \mathrm{IN}$
$=.605 \mathrm{D}+06 \mathrm{LBS}$

FINITE-DIFFERENCE PARAMETERS
NUMBER OF PILE INCREMENTS $=\quad 300$
DEFLECTION TOLERANCE ON DETERMINATION OF CLOSURE $=.100 \mathrm{D}-05 \mathrm{IN}$
MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR PILE ANALYSIS $=100$
MAXIMUM ALLOWABLE DEFLECTION $=30 \mathrm{IN}+03 \mathrm{IN}$


| ABUT |  |
| :---: | :---: |
| .167 | .000 |
| .208 | .000 |
| .250 | .000 |
| .292 | .000 |
| .333 | .000 |
| .375 | .000 |
| .417 | .000 |
| .458 | .000 |
| .500 | .000 |
| 1.125 | .000 |
| 31.125 | .000 |
| 61.125 | .000 |


| $\begin{gathered} \text { DEPTH } \\ \text { IN } \\ 29.00 \end{gathered}$ | $\begin{gathered} \text { DIAM } \\ \text { IN } \\ 30.00 \end{gathered}$ | $\begin{aligned} & \text { PHI } \\ & 33.0 \end{aligned}$ | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS/IN**3 } \\ & .694 D-01 \end{aligned}$ | A 2.13 | B 1.56 | $\begin{gathered} \text { PCT } \\ .332 \mathrm{D}+03 \end{gathered}$ | $\begin{gathered} P C D \\ .252 D+04 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $Y$ |  | P |  |  |
|  |  |  | IN |  | LBS/IN |  |  |
|  |  |  | . 000 |  | . 000 |  |  |
|  |  |  | . 042 |  | 72.500 |  |  |
|  |  |  | . 083 |  | 145.000 |  |  |
|  |  |  | . 125 |  | 217.500 |  |  |
|  |  |  | . 167 |  | 290.000 |  |  |
|  |  |  | . 208 |  | 362.500 |  |  |
|  |  |  | . 250 |  | 422.443 |  |  |
|  |  |  | . 292 |  | 442.108 |  |  |
|  |  |  | . 333 |  | 459.881 |  |  |
|  |  |  | . 375 |  | 476.151 |  |  |
|  |  |  | . 417 |  | 491.191 |  |  |
|  |  |  | . 458 |  | 505.206 |  |  |
|  |  |  | . 500 |  | 518.349 |  |  |
|  |  |  | 1.125 |  | 709.600 |  |  |
|  |  |  | 31.125 |  | 709.600 |  |  |
|  |  |  | 61.125 |  | 709.600 |  |  |
|  |  |  | 91.125 |  | 709.600 |  |  |


| $\begin{gathered} \text { DEPTH } \\ \text { IN } \\ 59.00 \end{gathered}$ | $\begin{gathered} \text { DIAM } \\ \text { IN } \\ 30.00 \end{gathered}$ | $\begin{aligned} & \text { PHI } \\ & 33.0 \end{aligned}$ | $\begin{gathered} \text { GAMMA } \\ \text { LBS } / \text { IN**3 } \\ .694 D-01 \end{gathered}$ | A 1.50 | B 1.06 | PCT $.982 \mathrm{D}+03$ | $\begin{gathered} \text { PCD } \\ .513 D+04 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $Y$ |  | P |  |  |
|  |  |  | IN |  | LBS/IN |  |  |
|  |  |  | . 000 |  | . 000 |  |  |
|  |  |  | . 042 |  | 147.500 |  |  |
|  |  |  | . 083 |  | 295.000 |  |  |
|  |  |  | . 125 |  | 442.500 |  |  |
|  |  |  | . 167 |  | 590.000 |  |  |
|  |  |  | . 208 |  | 737.500 |  |  |
|  |  |  | . 250 |  | 834.257 |  |  |
|  |  |  | . 292 |  | 877.268 |  |  |
|  |  |  | . 333 |  | 916.313 |  |  |
|  |  |  | . 375 |  | 952.194 |  |  |
|  |  |  | . 417 |  | 985.479 |  |  |
|  |  |  | . 458 |  | 1016.591 |  |  |
|  |  |  | . 500 |  | 1045.850 |  |  |
|  |  |  | 1.125 |  | 1472.180 |  |  |
|  |  |  | 31.125 |  | 1472.180 |  |  |
|  |  |  | 61.125 |  | 1472.180 |  |  |
|  |  |  | 91.125 |  | 1472.180 |  |  |
|  |  |  | Pag |  |  |  |  |

## ABUT

| $\begin{aligned} & \text { DEPTH } \\ & \text { IN } \\ & 89.00 \end{aligned}$ | $\begin{gathered} \text { DIAM } \\ \text { IN } \\ 30.00 \end{gathered}$ | PHI 33.0 | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS/IN**3 } \\ & .694 D-01 \end{aligned}$ | $\begin{gathered} \mathrm{A} \\ 1.07 \end{gathered}$ | B .72 | $\begin{gathered} \text { PCT } \\ 194 D+04 \end{gathered}$ | $\begin{gathered} \text { PCD } \\ .773 D+04 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Y |  | P |  |  |
|  |  |  | IN |  | LBS/IN |  |  |
|  |  |  | . 000 |  | . 000 |  |  |
|  |  |  | . 042 |  | 222.500 |  |  |
|  |  |  | . 083 |  | 445.000 |  |  |
|  |  |  | . 125 |  | 667.500 |  |  |
|  |  |  | . 167 |  | 890.000 |  |  |
|  |  |  | . 208 |  | 994.221 |  |  |
|  |  |  | . 250 |  | 1067.562 |  |  |
|  |  |  | . 292 |  | 1133.776 |  |  |
|  |  |  | . 333 |  | 1194.443 |  |  |
|  |  |  | . 375 |  | 1250.645 |  |  |
|  |  |  | . 417 |  | 1303.156 |  |  |
|  |  |  | . 458 |  | 1352.554 |  |  |
|  |  |  | . 500 |  | 1399.285 |  |  |
|  |  |  | 1.125 |  | 2082.085 |  |  |
|  |  |  | 31.125 |  | 2082.085 |  |  |
|  |  |  | 61.125 |  | 2082.085 |  |  |
|  |  |  | 91.125 |  | 2082.085 |  |  |

$\left.\begin{array}{cccccccc}\begin{array}{c}\text { DEPTH } \\ \text { IN }\end{array} & \begin{array}{c}\text { DIAM } \\ \text { IN }\end{array} & \text { PHI } & \begin{array}{c}\text { GAMMA } \\ \text { LBS/IN**3 }\end{array} & \text { A } & \text { B } & \text { PCT } & \text { PCD } \\ 119.00 & 30.00 & 33.0 & .694 D-01\end{array}\right)$

| $\begin{aligned} & \text { DEPTH } \\ & \text { IN } \\ & 149.00 \end{aligned}$ | $\begin{aligned} & \text { DIAM } \\ & \text { IN } \\ & 30.000 \end{aligned}$ | $\begin{gathered} \mathrm{C} \\ \text { LBS } / \text { IN**2 } \\ .69 \mathrm{D}+02 \end{gathered}$ | $\begin{gathered} \text { CAVG } \\ \text { LBS/IN**2 } \\ .69 D+02 \end{gathered}$ | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS/IN**3 } \\ & .71 \mathrm{D}-01 \end{aligned}$ | $\begin{gathered} E 50 \\ .400 \mathrm{D}-02 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AS $=.60$ | $A C=.30$ | $\begin{array}{rr} \text { Y, IN } \\ .000 \\ .036 \\ .072 \\ .108 \\ & .144 \\ & 180 \\ & \text { Pa } \end{array}$ | $\text { e } 4$ | P,LBS/IN .000 6271.971 8869.906 10333.772 11284.332 11933.572 |  |



| ABUT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AS $=.60$ | $A C=.30$ | $0 \mathrm{Y}, \mathrm{IN}$ |  | P, LBS/IN |  |
|  |  | . 000 |  | . 000 |  |
|  |  | . 036 |  | 6271.971 |  |
|  |  | . 072 |  | 8869.906 |  |
|  |  | . 108 |  | 10333.772 |  |
|  |  | . 144 |  | 11284.332 |  |
|  |  | . 180 |  | 11933.572 |  |
|  |  | . 216 |  | 12367.254 |  |
|  |  | . 252 |  | 12634.386 |  |
|  |  | . 288 |  | 12766.593 |  |
|  |  | . 324 |  | 12785.860 |  |
|  |  | . 360 |  | 12708.284 |  |
|  |  | . 396 |  | 12546.116 |  |
|  |  | . 432 |  | 12308.964 |  |
|  |  | . 720 |  | 8878.723 |  |
|  |  | 1.008 |  | 5443.423 |  |
|  |  | 1.296 |  | 2008.123 |  |
|  |  | 14.400 |  | 2008.123 |  |
|  |  | $\frac{\mathrm{C}}{\mathrm{LBS} / \mathrm{IN}^{*} * 2}$ |  | GAMMA <br> LBS/IN**3 | E50 |
| $\begin{gathered} \text { IN } \\ 292.00 \end{gathered}$ | $\begin{aligned} & \text { IN } \\ & 30.000 \end{aligned}$ | $\begin{array}{r} \text { LBS } / I N^{*} * 2 \\ .69 \mathrm{D}+02 \end{array}$ | $\begin{gathered} \text { LBS/IN**2 } \\ .69 \mathrm{D}+02 \end{gathered}$ | $\begin{aligned} & \text { LBS/IN**3 } \\ & .76 \mathrm{D}-01 \end{aligned}$ | $.400 \mathrm{D}-02$ |
| AS $=.60$ | $A C=.30$ | 0 Y,IN |  | P,LBS/IN |  |
|  |  | . 000 |  | $.000$ |  |
|  |  | . 036 |  | $6271.971$ |  |
|  |  | . 072 |  | 8869.906 |  |
|  |  | . 108 |  | 10333.772 |  |
|  |  | . 144 |  | 11284.332 |  |
|  |  | . 180 |  | 11933.572 |  |
|  |  | . 216 |  | 12367.254 |  |
|  |  | . 252 |  | 12634.386 |  |
|  |  | . 288 |  | 12766.593 |  |
|  |  | . 324 |  | 12785.860 |  |
|  |  | . 360 |  | 12708.284 |  |
|  |  | . 396 |  | 12546.116 |  |
|  |  | . 432 |  | 12308.964 |  |
|  |  | . 720 |  | 8878.723 |  |
|  |  | 1.008 |  | 5443.423 |  |
|  |  | 1.296 |  | 2008.123 |  |
|  |  | 14.400 |  | 2008.123 |  |

OUT T P U T I I N F OR R M A T I O O N

LOADING NUMBER 1

BOUNDARY CONDITION CODE
DEFLECTION AT THE PILE HEAD
moment at the pile head
AXIAL LOAD AT THE PILE HEAD
$=\quad 4$
$=\quad .120 \mathrm{D}+00 \mathrm{IN}$
$=\quad .677 \mathrm{D}+06 \mathrm{IN}$-LBS
$=\quad .605 \mathrm{D}+06 \mathrm{LBS}$


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 58.60 | .398D-01 | .835D+06 | -. 190D+04 | -.138D+03 | .164D+04 | . $609 \mathrm{D}+11$ |
| 59.58 | .389D-01 | .834D+06 | -.203D+04 | -.137D+03 | .164D+04 | . $609 \mathrm{D}+11$ |
| 60.55 | .379D-01 | .832D+06 | -. 217D+04 | -. 136D+03 | .164D+04 | . $609 \mathrm{D}+11$ |
| 61.53 | .370D-01 | .830D+06 | -. $230 \mathrm{D}+04$ | -.134D+03 | .164D+04 | . $609 \mathrm{D}+11$ |
| 62.51 | . 361D-01 | .829D+06 | -. $243 \mathrm{D}+04$ | -. $133 \mathrm{D}+03$ | .164D+04 | . $609 \mathrm{D}+11$ |
| 63.48 | . 352D-01 | .827D+06 | -. 256D+04 | -.132D+03 | .164D+04 | . $609 \mathrm{D}+11$ |
| 64.46 | .343D-01 | .825D+06 | -. $269 \mathrm{D}+04$ | -.131D+03 | .163D+04 | . $609 \mathrm{D}+11$ |
| 65.44 | . 335D-01 | . $823 \mathrm{D}+06$ | -.281D+04 | -.129D+03 | .163D+04 | . $609 \mathrm{D}+11$ |
| 66.41 | . 326D-01 | . $820 \mathrm{D}+06$ | -. 294D+04 | -. $128 \mathrm{D}+03$ | . $163 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 67.39 | . 318D-01 | . $818 \mathrm{D}+06$ | -. 306D+04 | -. $127 \mathrm{D}+03$ | .163D+04 | . $609 \mathrm{D}+11$ |
| 68.37 | . $309 \mathrm{D}-01$ | . $815 \mathrm{D}+06$ | -. 319D+04 | -. $125 \mathrm{D}+03$ | . $162 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 69.34 | . 301D-01 | . 813D+06 | -. 331D+04 | -.123D+03 | .162D+04 | . $609 \mathrm{D}+11$ |
| 70.32 | . 293D-01 | . $810 \mathrm{D}+06$ | -. $343 \mathrm{D}+04$ | -. $122 \mathrm{D}+03$ | . $162 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 71.30 | .285D-01 | . $807 \mathrm{D}+06$ | -. $355 \mathrm{D}+04$ | -. $120 \mathrm{D}+03$ | .162D+04 | . $609 \mathrm{D}+11$ |
| 72.27 | .277D-01 | . 804D+06 | -.366D+04 | -.119D+03 | .161D+04 | . $609 \mathrm{D}+11$ |
| 73.25 | .270D-01 | .801D+06 | -. $378 \mathrm{D}+04$ | -.117D+03 | .161D+04 | . $609 \mathrm{D}+11$ |
| 74.23 | .262D-01 | .797D+06 | -. 389D+04 | -.115D+03 | .161D+04 | .609D+11 |
| 75.20 | .255D-01 | . $794 \mathrm{D}+06$ | -. $400 \mathrm{D}+04$ | -.113D+03 | .160D+04 | . $609 \mathrm{D}+11$ |
| 76.18 | .248D-01 | .790D+06 | -.411D+04 | -.112D+03 | .160D+04 | .609D+11 |
| 77.16 | .240D-01 | .787D+06 | -. 422D+04 | -. 110D+03 | .160D+04 | . $609 \mathrm{D}+11$ |
| 78.13 | .233D-01 | . $783 \mathrm{D}+06$ | -. $433 \mathrm{D}+04$ | -.108D+03 | .159D+04 | . $609 \mathrm{D}+11$ |
| 79.11 | .226D-01 | . $779 \mathrm{D}+06$ | -. $443 \mathrm{D}+04$ | -.106D+03 | .159D+04 | . $609 \mathrm{D}+11$ |
| 80.09 | .220D-01 | . $775 \mathrm{D}+06$ | -. $453 \mathrm{D}+04$ | -. 104D+03 | .159D+04 | . $609 \mathrm{D}+11$ |
| 81.06 | . 213D-01 | . $771 \mathrm{D}+06$ | -. $464 \mathrm{D}+04$ | -. $102 \mathrm{D}+03$ | . $158 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 82.04 | . 206D-01 | . $767 \mathrm{D}+06$ | -. $473 \mathrm{D}+04$ | -. $100 \mathrm{D}+03$ | . 158D+04 | . $609 \mathrm{D}+11$ |
| 83.02 | .200D-01 | . $763 \mathrm{D}+06$ | -. $483 \mathrm{D}+04$ | -.984D+02 | .158D+04 | . $609 \mathrm{D}+11$ |
| 83.99 | .194D-01 | . $758 \mathrm{D}+06$ | -. $493 \mathrm{D}+04$ | -.965D+02 | .157D+04 | .609D+11 |
| 84.97 | .188D-01 | . $754 \mathrm{D}+06$ | -. $502 \mathrm{D}+04$ | -. $945 \mathrm{D}+02$ | . 157D+04 | . $609 \mathrm{D}+11$ |
| 85.95 | .181D-01 | . $749 \mathrm{D}+06$ | -. 511D+04 | -. $925 \mathrm{D}+02$ | .156D+04 | . $609 \mathrm{D}+11$ |
| 86.92 | .176D-01 | .745D+06 | -. $520 \mathrm{D}+04$ | -.905D+02 | .156D+04 | . $609 \mathrm{D}+11$ |
| 87.90 | .170D-01 | . $740 \mathrm{D}+06$ | -. $529 \mathrm{D}+04$ | -. $885 \mathrm{D}+02$ | . 155D+04 | . $609 \mathrm{D}+11$ |
| 88.88 | .164D-01 | .735D+06 | -. $537 \mathrm{D}+04$ | -.865D+02 | .155D+04 | . $609 \mathrm{D}+11$ |
| 89.85 | .158D-01 | . $730 \mathrm{D}+06$ | -. $546 \mathrm{D}+04$ | -.844D+02 | . $154 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 90.83 | .153D-01 | . $725 \mathrm{D}+06$ | -. $554 \mathrm{D}+04$ | -. $824 \mathrm{D}+02$ | . $154 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 91.81 | .147D-01 | . $720 \mathrm{D}+06$ | -. $562 \mathrm{D}+04$ | -. $804 \mathrm{D}+02$ | . $153 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 92.78 | . $142 \mathrm{D}-01$ | . $715 \mathrm{D}+06$ | -. $570 \mathrm{D}+04$ | -. $783 \mathrm{D}+02$ | . $153 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 93.76 | .137D-01 | . $709 \mathrm{D}+06$ | -. 577D+04 | -. $763 \mathrm{D}+02$ | . $152 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 94.74 | .132D-01 | . $704 \mathrm{D}+06$ | -. $584 \mathrm{D}+04$ | -.743D+02 | .152D+04 | . $609 \mathrm{D}+11$ |
| 95.71 | .127D-01 | . $6999 \mathrm{D}+06$ | -. $592 \mathrm{D}+04$ | -.722D+02 | . $151 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 96.69 | .122D-01 | . $693 \mathrm{D}+06$ | -. 599D+04 | -.702D+02 | .151D+04 | .609D+11 |
| 97.67 | .118D-01 | . $687 \mathrm{D}+06$ | -. $605 \mathrm{D}+04$ | -.682D+02 | .150D+04 | . $609 \mathrm{D}+11$ |
| 98.64 | .113D-01 | . $682 \mathrm{D}+06$ | -. 612D+04 | -.662D+02 | .150D+04 | .609D+11 |
| 99.62 | .108D-01 | . $676 \mathrm{D}+06$ | -. 618D+04 | -. $642 \mathrm{D}+02$ | .149D+04 | . $609 \mathrm{D}+11$ |
| 100.60 | .104D-01 | . $670 \mathrm{D}+06$ | -. 624D+04 | -.622D+02 | .149D+04 | . $609 \mathrm{D}+11$ |
| 101.57 | .998D-02 | . $664 \mathrm{D}+06$ | -. $630 \mathrm{D}+04$ | -. $602 \mathrm{D}+02$ | . $148 \mathrm{D}+04$ | .609D+11 |
| 102.55 | .956D-02 | . $658 \mathrm{D}+06$ | -. $636 \mathrm{D}+04$ | -. 582D+02 | .148D+04 | . $609 \mathrm{D}+11$ |
| 103.53 | .915D-02 | . $652 \mathrm{D}+06$ | -. $642 \mathrm{D}+04$ | -. 563D+02 | . 147D+04 | . $609 \mathrm{D}+11$ |
| 104.50 | .875D-02 | . $646 \mathrm{D}+06$ | -. $647 \mathrm{D}+04$ | -. 544D+02 | . $147 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 105.48 | .837D-02 | . $640 \mathrm{D}+06$ | -. $652 \mathrm{D}+04$ | -. $524 \mathrm{D}+02$ | . $146 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 106.46 | .799D-02 | . $634 \mathrm{D}+06$ | -. 657D+04 | -. $505 \mathrm{D}+02$ | . $145 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 107.43 | . $762 \mathrm{D}-02$ | . $628 \mathrm{D}+06$ | -. 662D+04 | -.487D+02 | . $145 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 108.41 | .726D-02 | . $6222 \mathrm{D}+06$ | -. $667 \mathrm{D}+04$ | -. $468 \mathrm{D}+02$ | . $144 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 109.39 | .691D-02 | .615D+06 | -. 671D+04 | -. $450 \mathrm{D}+02$ | . 144D+04 | . $609 \mathrm{D}+11$ |
| 110.36 | .657D-02 | .609D+06 | -. 676D+04 | -.431D+02 | . $143 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 111.34 | . 625D-02 | . $602 \mathrm{D}+06$ | -. 680D+04 | -.413D+02 | . $142 \mathrm{D}+04$ | . 609D+11 |
| 112.32 | . 593D-02 | . $596 \mathrm{D}+06$ | -. $684 \mathrm{D}+04$ | -.396D+02 | . $142 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 113.29 | . 562D-02 | . $589 \mathrm{D}+06$ | -. $688 \mathrm{D}+04$ | -.378D+02 | .141D+04 | . 609D+11 |
| 114.27 | . 531D-02 | . $583 \mathrm{D}+06$ | -. 691D+04 | -.361D+02 | .141D+04 | . $609 \mathrm{D}+11$ |
| 115.25 | . $502 \mathrm{D}-02$ | . $576 \mathrm{D}+06$ | -. 695D+04 | -.344D+02 | . $140 \mathrm{D}+04$ | . $609 \mathrm{D}+11$ |
| 116.22 | .474D-02 | . $570 \mathrm{D}+06$ | -. 698D+04 | -. $328 \mathrm{D}+02$ | .139D+04 | . $609 \mathrm{D}+11$ |
| 117.20 | .447D-02 | . $563 \mathrm{D}+06$ | -.701D+04 | -.311D+02 | .139D+04 | . $609 \mathrm{D}+11$ |
| 118.18 | .420D-02 | . $556 \mathrm{D}+06$ | -. $704 \mathrm{D}+04$ | -. $295 \mathrm{D}+02$ | 138D+04 | $609 \mathrm{D}+11$ |
|  |  |  | Page |  |  |  |



|  |  |  | Abut |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180.68 181.66 | $\begin{aligned} & -.521 \mathrm{D}-03 \\ & -.506 \mathrm{D}-03 \end{aligned}$ | $\begin{aligned} & .206 \mathrm{D}+05 \\ & .169 \mathrm{D}+05 \end{aligned}$ | $\begin{aligned} & -.393 \mathrm{D}+04 \\ & -.371 \mathrm{D}+04 \end{aligned}$ | $\begin{aligned} & .224 D+03 \\ & .219 D+03 \end{aligned}$ | $\begin{aligned} & .875 \mathrm{D}+03 \\ & .872 \mathrm{D}+03 \end{aligned}$ | $\begin{aligned} & .609 \mathrm{D}+11 \\ & .609 \mathrm{D}+11 \end{aligned}$ |
| 182.64 | -. $491 \mathrm{D}-03$ | . $134 \mathrm{D}+05$ | -. $350 \mathrm{D}+04$ | . $214 \mathrm{D}+03$ | . $868 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 183.61 | -.476D-03 | . $100 \mathrm{D}+05$ | -. 329D+04 | . $208 \mathrm{D}+03$ | . $865 \mathrm{D}+03$ | 609D+11 |
| 184.59 | -.461D-03 | . 690D+04 | -. 309D+04 | . 202D+03 | . 862D+03 | 609D+11 |
| 185.57 | -. $446 \mathrm{D}-03$ | . 397D+04 | -. 290D+04 | .196D+03 | . $859 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 186.54 | -.430D-03 | . $123 \mathrm{D}+04$ | -.271D+04 | .190D+03 | .857D+03 | 609D+11 |
| 187.52 | -. $415 \mathrm{D}-03$ | -. $134 \mathrm{D}+04$ | -. 253D+04 | . 184D+03 | . 857D+03 | . $609 \mathrm{D}+11$ |
| 188.50 | -.399D-03 | -. 373D+04 | -. $235 \mathrm{D}+04$ | .178D+03 | .859D+03 | . $609 \mathrm{D}+11$ |
| 189.47 | -. 384D-03 | -. 594D+04 | -.218D+04 | .172D+03 | .861D+03 | . $609 \mathrm{D}+11$ |
| 190.45 | -. 369D-03 | -. 800D+04 | -. 201D+04 | .166D+03 | .863D+03 | . $609 \mathrm{D}+11$ |
| 191.43 | -. $354 \mathrm{D}-03$ | -. 989D+04 | -.185D+04 | .160D+03 | .865D+03 | . $609 \mathrm{D}+11$ |
| 192.40 | -. 339D-03 | -. 116D+05 | -. 170D+04 | . 154D+03 | .867D+03 | . $609 \mathrm{D}+11$ |
| 193.38 | -. $324 \mathrm{D}-03$ | -. 132D+05 | -. 155D+04 | . 148D+03 | . $868 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 194.36 | -. 309D-03 | -. 147D+05 | -.141D+04 | . $142 \mathrm{D}+03$ | . $870 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 195.33 | -. 295D-03 | -. $160 \mathrm{D}+05$ | -. 127D+04 | . $136 \mathrm{D}+03$ | . $8710+03$ | . $609 \mathrm{D}+11$ |
| 196.31 | -. 281D-03 | -. $172 \mathrm{D}+05$ | -. $114 \mathrm{D}+04$ | . $130 \mathrm{D}+03$ | . $872 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 197.29 | -. 267D-03 | -. 183D+05 | -. 102D+04 | . $124 \mathrm{D}+03$ | . $873 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 198.26 | -. 253D-03 | -. 192D+05 | -. $903 \mathrm{D}+03$ | $118 \mathrm{D}+03$ | . $874 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 199.24 | -. $240 \mathrm{D}-03$ | -. $200 \mathrm{D}+05$ | -. $790 \mathrm{D}+03$ | . $112 \mathrm{D}+03$ | . $875 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 200.22 | -.227D-03 | -. 208D+05 | -. 683D+03 | . 107D+03 | .875D+03 | . $609 \mathrm{D}+11$ |
| 201.19 | -. $215 \mathrm{D}-03$ | -. $214 \mathrm{D}+05$ | -. $581 \mathrm{D}+03$ | . $101 \mathrm{D}+03$ | . $876 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 202.17 | -. 202D-03 | -. 219D+05 | -. $485 \mathrm{D}+03$ | . 959D+02 | . $876 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 203.15 | -.190D-03 | -.223D+05 | -. 394D+03 | . 906D+02 | .877D+03 | . $609 \mathrm{D}+11$ |
| 204.12 | -. 179D-03 | -.227D+05 | -. $308 \mathrm{D}+03$ | . 855D+02 | .877D+03 | . $609 \mathrm{D}+11$ |
| 205.10 | -.168D-03 | -. $230 \mathrm{D}+05$ | -. $227 \mathrm{D}+03$ | . $804 \mathrm{D}+02$ | .877D+03 | . $609 \mathrm{D}+11$ |
| 206.08 | -. $157 \mathrm{D}-03$ | -.231D+05 | -. $151 \mathrm{D}+03$ | . $755 \mathrm{D}+02$ | . $878 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 207.05 | -.146D-03 | -. $233 \mathrm{D}+05$ | -. $793 \mathrm{D}+02$ | . $708 \mathrm{D}+02$ | . $878 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 208.03 | -.136D-03 | -. $233 \mathrm{D}+05$ | -. $125 \mathrm{D}+02$ | . 661D+02 | . $878 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 209.01 | -.126D-03 | -. $233 \mathrm{D}+05$ | . $499 \mathrm{D}+02$ | . 616D+02 | . $878 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 209.98 | -. 117D-03 | -. $232 \mathrm{D}+05$ | . $108 \mathrm{D}+03$ | . $573 \mathrm{D}+02$ | . $878 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 210.96 | -. $108 \mathrm{D}-03$ | -. $231 \mathrm{D}+05$ | . $162 \mathrm{D}+03$ | . $530 \mathrm{D}+02$ | . $878 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 211.94 | -.992D-04 | -. $229 \mathrm{D}+05$ | . $212 \mathrm{D}+03$ | . $490 \mathrm{D}+02$ | . $877 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 212.91 | -.909D-04 | -. $227 \mathrm{D}+05$ | . $258 \mathrm{D}+03$ | . $450 \mathrm{D}+02$ | . 877D+03 | . $609 \mathrm{D}+11$ |
| 213.89 | -.829D-04 | -. $224 \mathrm{D}+05$ | . $300 \mathrm{D}+03$ | . $412 \mathrm{D}+02$ | . $877 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 214.87 | -.753D-04 | -.221D+05 | . $338 \mathrm{D}+03$ | . $376 \mathrm{D}+02$ | . 877D+03 | . $609 \mathrm{D}+11$ |
| 215.84 | -. 680D-04 | -. $218 \mathrm{D}+05$ | . 373D+03 | . $341 \mathrm{D}+02$ | . $876 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 216.82 | -.611D-04 | -.214D+05 | . $405 \mathrm{D}+03$ | . 307D+02 | .876D+03 | . $609 \mathrm{D}+11$ |
| 217.80 | -. 545D-04 | -. $210 \mathrm{D}+05$ | . $433 \mathrm{D}+03$ | . $275 \mathrm{D}+02$ | . $876 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 218.77 | -.482D-04 | -. 206D+05 | . $459 \mathrm{D}+03$ | . $245 \mathrm{D}+02$ | . $875 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 219.75 | -. $423 \mathrm{D}-04$ | -.201D+05 | . $481 \mathrm{D}+03$ | . $215 \mathrm{D}+02$ | . 875D+03 | . $609 \mathrm{D}+11$ |
| 220.73 | -. $367 \mathrm{D}-04$ | -. 196D+05 | . $501 \mathrm{D}+03$ | . $187 \mathrm{D}+02$ | . $874 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 221.70 | -. 313D-04 | -. 191D+05 | . $518 \mathrm{D}+03$ | . $161 \mathrm{D}+02$ | . $874 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 222.68 | -. $263 \mathrm{D}-04$ | -. 186D+05 | . $532 \mathrm{D}+03$ | . $136 \mathrm{D}+02$ | . $873 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 223.66 | -. $216 \mathrm{D}-04$ | -. 181D+05 | . $544 \mathrm{D}+03$ | . $112 \mathrm{D}+02$ | . $873 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 224.63 | -. 171D-04 | -. 176D+05 | . $554 \mathrm{D}+03$ | . $889 \mathrm{D}+01$ | . $872 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 225.61 | -. $130 \mathrm{D}-04$ | -. $170 \mathrm{D}+05$ | . $562 \mathrm{D}+03$ | . $675 \mathrm{D}+01$ | . $872 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 226.59 | -. $906 \mathrm{D}-05$ | -. 165D+05 | . $567 \mathrm{D}+03$ | . $473 \mathrm{D}+01$ | . $871 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 227.56 | -. 541D-05 | -.159D+05 | . $571 \mathrm{D}+03$ | . 284D+01 | . 871D+03 | . $609 \mathrm{D}+11$ |
| 228.54 | -. $201 \mathrm{D}-05$ | -. $154 \mathrm{D}+05$ | . $573 \mathrm{D}+03$ | . $106 \mathrm{D}+01$ | . $870 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 229.52 | .115D-05 | -. 148D+05 | . $573 \mathrm{D}+03$ | -. $606 \mathrm{D}+00$ | . $870 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 230.49 | . $407 \mathrm{D}-05$ | -. $142 \mathrm{D}+05$ | . $572 \mathrm{D}+03$ | -. $216 \mathrm{D}+01$ | .869D+03 | . $609 \mathrm{D}+11$ |
| 231.47 | . 677D-05 | -. 137D+05 | . $569 \mathrm{D}+03$ | -. 361D+01 | . $869 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 232.45 | .926D-05 | -. 131D+05 | . $565 \mathrm{D}+03$ | -. $495 \mathrm{D}+01$ | . 868D+03 | . $609 \mathrm{D}+11$ |
| 233.42 | .115D-04 | -. 126D+05 | . $559 \mathrm{D}+03$ | -. 619D+01 | . 868D+03 | . $609 \mathrm{D}+11$ |
| 234.40 | .136D-04 | -.121D+05 | . $553 \mathrm{D}+03$ | -. $734 \mathrm{D}+01$ | . 867D+03 | . $609 \mathrm{D}+11$ |
| 235.38 | . 155D-04 | -. 115D+05 | . $545 \mathrm{D}+03$ | -.839D+01 | . 867D+03 | . $609 \mathrm{D}+11$ |
| 236.35 | .172D-04 | -. $110 \mathrm{D}+05$ | . $537 \mathrm{D}+03$ | -. $935 \mathrm{D}+01$ | . $866 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 237.33 | .188D-04 | -. $105 \mathrm{D}+05$ | . $527 \mathrm{D}+03$ | -. $102 \mathrm{D}+02$ | . $866 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 238.31 | . 202D-04 | -. $996 \mathrm{D}+04$ | . $517 \mathrm{D}+03$ | -. $110 \mathrm{D}+02$ | . $865 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 239.28 | . $214 \mathrm{D}-04$ | -. $946 \mathrm{D}+04$ | . $505 \mathrm{D}+03$ | -. $117 \mathrm{D}+02$ | . $865 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 240.26 | . $225 \mathrm{D}-04$ | -. $897 \mathrm{D}+04$ | . $494 \mathrm{D}+03$ | -. $1124 \mathrm{D}+02$ | . $864 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 241.24 | .234D-04 | -. $850 \mathrm{D}+04$ | . $481 \mathrm{D}+03$ | -. $129 \mathrm{D}+02$ | . $864 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
|  |  |  | Page |  |  |  |


| 242.21 | . 242D-04 | -. 804D+04 | $\begin{array}{r} \text { ABUT } \\ .469 D+03 \end{array}$ | $-.134 \mathrm{D}+02$ | . 863D+03 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 243.19 | . 249D-04 | -. $758 \mathrm{D}+04$ | . $455 \mathrm{D}+03$ | -. $138 \mathrm{D}+02$ | .863D+03 | $.609 \mathrm{D}+11$ |
| 44.17 | .254D-04 | -. 715D+04 | . $442 \mathrm{D}+03$ | -. 142D+02 | . 862D+03 | $.609 \mathrm{D}+11$ |
| 45.14 | . 259D-04 | -.672D+04 | . $428 \mathrm{D}+03$ | -. $145 \mathrm{D}+02$ | . $862 \mathrm{D}+03$ | .609D+11 |
| 246.12 | . 262D-04 | -. $631 \mathrm{D}+04$ | . $413 \mathrm{D}+03$ | -. $147 \mathrm{D}+02$ | . 862D+03 | 609D+11 |
| 247.10 | .265D-04 | -. $592 \mathrm{D}+04$ | . $399 \mathrm{D}+03$ | -. $149 \mathrm{D}+02$ | .861D+03 | $609 \mathrm{D}+11$ |
| 248.07 | . 266D-04 | -. $553 \mathrm{D}+04$ | . $384 \mathrm{D}+03$ | -. 151D+02 | .861D+03 | . $609 \mathrm{D}+11$ |
| 249.05 | . 267D-04 | -. 517D+04 | . $369 \mathrm{D}+03$ | -. 151D+02 | . 861D+03 | . 609D+11 |
| 250.03 | .266D-04 | -.481D+04 | . $355 \mathrm{D}+03$ | $-.152 \mathrm{D}+02$ | $.860 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 251.00 | . 266D-04 | -.447D+04 | . $340 \mathrm{D}+03$ | -. 152D+02 | . 860D+03 | . $609 \mathrm{D}+11$ |
| 251.98 | . 264D-04 | -. $415 \mathrm{D}+04$ | . $325 \mathrm{D}+03$ | -. 151D+02 | . 860D+03 | .609D+11 |
| 252.96 | . 262D-04 | -. $384 \mathrm{D}+04$ | . $310 \mathrm{D}+03$ | -. 151D+02 | . 859D+03 | . $609 \mathrm{D}+11$ |
| 253.93 | . 259D-04 | -.354D+04 | . $296 \mathrm{D}+03$ | -. 149D+02 | . 859D+03 | .609D+11 |
| 254.91 | . 255D-04 | -. 326D+04 | .281D+03 | -. 148D+02 | $.859 \mathrm{D}+03$ | .609D+11 |
| 255.89 | . 251D-04 | -. 299D+04 | .267D+03 | -. 146D+02 | . 859D+03 | . $609 \mathrm{D}+11$ |
| 256.86 | .247D-04 | -. $274 \mathrm{D}+04$ | . $253 \mathrm{D}+03$ | $-.144 \mathrm{D}+02$ | . $858 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 257.84 | . 242D-04 | -. $250 \mathrm{D}+04$ | . 239D+03 | -. 142D+02 | . 858D+03 | . 609D+11 |
| 258.82 | . 237D-04 | -.227D+04 | . $225 \mathrm{D}+03$ | -.139D+02 | . 858D+03 | .609D+11 |
| 259.79 | . 231D-04 | -. $206 \mathrm{D}+04$ | .211D+03 | -. $136 \mathrm{D}+02$ | . 858D+03 | . $609 \mathrm{D}+11$ |
| 260.77 | . 225D-04 | -. 186D+04 | . $198 \mathrm{D}+03$ | -. 133D+02 | .857D+03 | . $609 \mathrm{D}+11$ |
| 261.75 | . 219D-04 | -. 167D+04 | . $185 \mathrm{D}+03$ | -. 130D+02 | .857D+03 | . $609 \mathrm{D}+11$ |
| 262.72 | . 212D-04 | -. $150 \mathrm{D}+04$ | . $173 \mathrm{D}+03$ | -. 126D+02 | . 857D+03 | . $609 \mathrm{D}+11$ |
| 263.70 | . 206D-04 | -. $133 \mathrm{D}+04$ | . $161 \mathrm{D}+03$ | -. $123 \mathrm{D}+02$ | . $857 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 64.68 | . 199D-04 | -. 118D+04 | . 149D+03 | -. 119D+02 | .857D+03 | . $609 \mathrm{D}+11$ |
| 265.65 | . 192D-04 | -. 104D+04 | . $138 \mathrm{D}+03$ | -. 115D+02 | . 857D+03 | . $609 \mathrm{D}+11$ |
| 266.63 | .184D-04 | -.911D+03 | . $126 \mathrm{D}+03$ | -.111D+02 | .857D+03 | . $609 \mathrm{D}+11$ |
| 267.61 | . 177D-04 | -. 792D+03 | . $116 \mathrm{D}+03$ | -. 107D+02 | .856D+03 | . $609 \mathrm{D}+11$ |
| 268.58 | .169D-04 | -.684D+03 | . $106 \mathrm{D}+03$ | -. 103D+02 | . 856D+03 | .609D+11 |
| 269.56 | .162D-04 | -. 585D+03 | . $957 \mathrm{D}+02$ | -.985D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 270.54 | .154D-04 | -. $496 \mathrm{D}+03$ | . 863D+02 | -.941D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 271.51 | .146D-04 | -. $416 \mathrm{D}+03$ | . $773 \mathrm{D}+02$ | -. 896D+01 | . 856D+03 | .609D+11 |
| 272.49 | .138D-04 | -. $344 \mathrm{D}+03$ | . $688 \mathrm{D}+02$ | -.850D+01 | . $856 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 273.47 | . 130D-04 | -. $280 \mathrm{D}+03$ | . $607 \mathrm{D}+02$ | -. 804D+01 | $.856 \mathrm{D}+03$ | $.609 \mathrm{D}+11$ |
| 274.44 | . 122D-04 | -. 224D+03 | . $531 \mathrm{D}+02$ | -. 757D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 275.42 | .114D-04 | -. $176 \mathrm{D}+03$ | . $459 \mathrm{D}+02$ | -.710D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 276.40 | . $106 \mathrm{D}-04$ | -. $134 \mathrm{D}+03$ | . $392 \mathrm{D}+02$ | -.662D+01 | .856D+03 | . $609 \mathrm{D}+11$ |
| 277.37 | . 983D-05 | -. $979 \mathrm{D}+02$ | . $330 \mathrm{D}+02$ | -. 614D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 278.35 | .902D-05 | -. $681 \mathrm{D}+02$ | . $273 \mathrm{D}+02$ | -. 565D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 279.33 | .821D-05 | -. $437 \mathrm{D}+02$ | .220D+02 | -. 516D+01 | .856D+03 | $.609 \mathrm{D}+11$ |
| 280.30 | . 740D-05 | -. 242D+02 | . $172 \mathrm{D}+02$ | -. 467D+01 | . 856D+03 | .609D+11 |
| 281.28 | .659D-05 | -. $915 \mathrm{D}+01$ | . $129 \mathrm{D}+02$ | -. 417D+01 | . 856D+03 | .609D+11 |
| 282.26 | . 578D-05 | . $192 \mathrm{D}+01$ | . $904 \mathrm{D}+01$ | -. 367D+01 | . 856D+03 | .609D+11 |
| 283.23 | . $497 \mathrm{D}-05$ | . $949 \mathrm{D}+01$ | . $570 \mathrm{D}+01$ | -. 316D+01 | . $856 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 284.21 | . $416 \mathrm{D}-05$ | . $140 \mathrm{D}+02$ | . $286 \mathrm{D}+01$ | -. $266 \mathrm{D}+01$ | . $856 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 285.19 | . $335 \mathrm{D}-05$ | .161D+02 | . $517 \mathrm{D}+00$ | -. 215D+01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 286.16 | . $254 \mathrm{D}-05$ | . $160 \mathrm{D}+02$ | -. $133 \mathrm{D}+01$ | -. $163 \mathrm{D}+01$ | . $856 \mathrm{D}+03$ | .609D+11 |
| 287.14 | . 173D-05 | .144D+02 | -. 267D+01 | -. 112D+01 | . 856D+03 | .609D+11 |
| 288.12 | . 924D-06 | .118D+02 | -.351D+01 | -. 597D+00 | . 856D+03 | .609D+11 |
| 289.09 | . 115D-06 | . 857D+01 | -. 384D+01 | -. 746D-01 | . 856D+03 | . $609 \mathrm{D}+11$ |
| 290.07 | -. $694 \mathrm{D}-06$ | . $528 \mathrm{D}+01$ | -.365D+01 | . $451 \mathrm{D}+00$ | .856D+03 | . $609 \mathrm{D}+11$ |
| 291.05 | -. 150D-05 | . 241D+01 | -. 295D+01 | $.979 \mathrm{D}+00$ | . $856 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 292.02 | -. $231 \mathrm{D}-05$ | . $486 \mathrm{D}+00$ | -. 174D+01 | .151D+01 | . $856 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |
| 293.00 | -. 312D-05 | . $000 \mathrm{D}+00$ | $.000 \mathrm{D}+00$ | $.205 \mathrm{D}+01$ | . $856 \mathrm{D}+03$ | . $609 \mathrm{D}+11$ |

OUTPUT VERIFICATION
THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT $=-.868 \mathrm{D}-06$ IN-LBS THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT $=-.850 \mathrm{D}-06$ LBS

## ABUT

PILE-HEAD DEFLECTION MAXIMUM BENDING MOMENT MAXIMUM SHEAR FORCE
NO. OF ITERATIONS
NO. OF ZERO DEFLECTION POINTS =
$=.120 \mathrm{D}+00 \mathrm{IN}$
$=.841 \mathrm{D}+06$ LBS-IN
$=-.116 \mathrm{D}+05$ LBS
$=\quad .11$


| BOUNDARY CONDITION | BOUNDARY CONDITION | AXIAL LOAD | PILE HEAD DEFLECTION | MAX. MOMENT | MAX. SHEAR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BC1 | BC2 | LBS | IN | IN-LBS | LBS |
| . $1200 \mathrm{D}+00$ | . 6770D+06 | $.6050 \mathrm{D}+06$ | .1200D+00 | . $8407 \mathrm{D}+06$ | -. 1157D+05 |

04/01/13 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 2 14:11:30 Licensed to: Licensee name not yet specified.

General Information:
====================
File Name: C:\DOCUME~1\BUIH\DESKTOP\BUI'SS~1 \ABUT30IN.COL
Project: FBR 0142-055 Code: ACI 318-89
Column:
Engineer: BUIH
Run Option: Investigation
Run Axis: X-axis

Units: US in-lbs
Date: 04/01/13 Time: 14:01:47
Short (nonslender) column
Column Type: Structural

Material Properties:
====================
f'c = 4 ksi fy $=60 \mathrm{ksi}$
$\mathrm{Ec}=3834.25 \mathrm{ksi}$
$\mathrm{fc}=3.4 \mathrm{ksi}$
eu $=0.003 \mathrm{in} / \mathrm{in}$
Es $=29000 \mathrm{ksi}$
erup $=0$ in/in
Stress Profile: Block
Beta1 $=0.85$
Geometry:
==ニ======
Circular: Diameter $=30$ in
Gross section area, $\mathrm{Ag}=706.858$ in^2
$I_{x}=39760.8$ in^4

```
Xo = 0 in
```

$I_{Y}=39760.8$ in^4

$$
\text { Yo }=0 \mathrm{in}
$$

Reinforcement:
==============

| RebarDatabase:  <br> Size Diam | Area | Size | Diam | Area | Size | Diam | Area |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.38 | 0.11 | 4 | 0.50 | 0.20 | 5 | 0.63 | 0.31 |
| 6 | 0.75 | 0.44 | 7 | 0.88 | 0.60 | 8 | 1.00 | 0.79 |
| 9 | 1.13 | 1.00 | 10 | 1.27 | 1.27 | 11 | 1.41 | 1.56 |
| 14 | 1.69 | 2.25 | 18 | 2.26 | 4.00 |  |  |  |

Confinement: Spiral; phi $(\mathrm{c})=0.75, \operatorname{phi}(\mathrm{~b})=0.9, \mathrm{a}=0.85$
\#5 ties with \#10 bars, \#4 with larger bars.
Pattern: Irregular
Total steel area, As $=14.00$ in^2 at $1.98 \%$

| Area <br> (in^2) | X-Loc <br> (in) | Y-Loc <br> (in) | Area <br> (in^2) | X-Loc <br> (in) | Y-Loc <br> (in) | Area <br> (in^2) | X-LOC <br> (in) | Y-Loc <br> (in) |
| :---: | ---: | ---: | :---: | ---: | :---: | ---: | ---: | ---: |
| -0.00 | 0.0 | 8.1 | 1.00 | 3.5 | 7.3 | 1.00 | 6.3 | 5.0 |
| 1.00 | 7.9 | 1.8 | 1.00 | 7.9 | -1.8 | 1.00 | 6.3 | -5.0 |
| 1.00 | 3.5 | -7.3 | 1.00 | 0.0 | -8.1 | 1.00 | -3.5 | -7.3 |
| 1.00 | -6.3 | -5.0 | 1.00 | -7.9 | -1.8 | 1.00 | -7.9 | 1.8 |
| 1.00 | -6.3 | 5.0 | 1.00 | -3.5 | 7.3 |  |  |  |

04/01/13 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 14:11:30 Licensed to: Licensee name not yet specified.

| Pt. |  | $\begin{aligned} & \text { Loads } \\ & \text { Mx } \\ & (f t-k) \end{aligned}$ | $\begin{gathered} \text { Computed } \\ \text { (kips) } \end{gathered}$ | $\begin{aligned} & \text { Strength } \\ & \text { Mx } \\ & (f t-k) \end{aligned}$ | Computed/ <br> Applied <br> Ray length |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 605 | 56 | 2037 | 190 | 3.367 |

Program completed as requested!


Licensed To: Licensee name not yet specified.
File name: C:\DOCUME~1 \BUIH $\backslash$ DESKTOP\BUI'SS~1 $\backslash$ ABUT30IN.COL

Project: FBR 0142-055
Column Id:
Engineer: BUIH
Date: 04/01/13
Time: 14:01:47
Cnde: ACI 318-89
unts: in-lb
X -axis slenderness is not considered.

Material Properties:
$\mathrm{Ec}=3834 \mathrm{ksi}$
$\mathrm{eu}=0.003 \mathrm{in} / \mathrm{in}$
$\mathrm{fc}=3.40 \mathrm{ksi}$
$\mathrm{Es}=29000 \mathrm{ksi}$
Beta1 $=0.85$
Stress Profile: Block
$\operatorname{phi}(\mathrm{c})=0.75, \operatorname{phi}(\mathrm{~b})=0.90$

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

PIER CAISSON DESIGN (CONTRULED AT PIER 2)
Strength I (Temp. + Creep + Shrinkage for Contraction)
Column deflection at top (csi)

$$
\begin{aligned}
U_{2}= & 0.098^{\prime} \\
U_{3}= & 0.0057^{\prime} \\
& U_{\text {Tot. }}=\sqrt{0.098^{2}+0.0057^{2}}=0.0982^{\prime}=1.18^{\prime \prime}
\end{aligned}
$$

Moment at Top of Columin (Csi\& RC-pier)

$$
M_{3}=2647.35 / 6=441.225 \mathrm{k} \cdot \mathrm{ft}^{\prime} \quad(\mathrm{csi})
$$

$M_{2}=980 \mathrm{~kJ}$ (from RC-pier, Member 10, node 15-Envelope Strength)

$$
M_{\text {rot }}=\sqrt{441.225^{2}+980^{2}}=1074.75 \mathrm{k.ff}=12,896,955 \text { bl. in }
$$

Axial Load at Top of column (Hand's calculation)

$$
P_{\text {Tot }}=1510.57 \text { Kip }=1,510,570 \mathrm{Cb}
$$

| By: $H$ B Date $7 / 13$ | Project no. FBR $0142-055$ | Project code (SAIl): 18085 |  |
| :---: | :--- | :---: | :---: |
| Chk'd:KLPDate | $8 / 13$ | Structure no. | $B-16-E V$ |
| Sheet 4290f 508 |  |  |  |

## PIER



```
PROGRAM LPILE1
                                    *
(C) COPYRIGHT }1986\mathrm{ ENSOFT, INC
ALL RIGHTS RESERVED
PREPARED ESPECIALLY FOR
STATE DEPARTMENT OF HIGHWAYS
DENVER, COLORADO 80222
LICENSE NO. 138
```

```
PROGRAM LPILE1
(C) COPYRIGHT }1985\mathrm{ ENSOFT, INC.
ALL RIGHTS RESERVED
```

PIER CAISSON DESIGN (CONTROLED PIER 2)
UNITS--ENGLISH UNITS
I NPUT I NFORMATION
*********************************

THE LOADING IS STATIC

## PILE GEOMETRY AND PROPERTIES

| PILE LENGTH |
| :--- |
| 4 POINTS |$=\quad 452.00 \mathrm{IN}$


| X | DIAMETER | MOMENT OF <br> INERTIA | AREA | MODULUS OF <br> ELASTICITY |
| ---: | :---: | :---: | :---: | :---: |
| IN | IN | IN**4 | IN**2 | LBS/IN**2 |
| .00 | 42.000 | $.779 \mathrm{D}+05$ | $.139 \mathrm{D}+04$ | $.407 \mathrm{D}+07$ |
| 188.00 | 42.000 | $.779 \mathrm{D}+05$ | $.139 \mathrm{D}+04$ | $.407 \mathrm{D}+07$ |
| 188.00 | 48.000 | $.133 \mathrm{D}+06$ | $.181 \mathrm{D}+04$ | $.383 \mathrm{D}+07$ |
| 452.00 | 48.000 | $.133 \mathrm{D}+06$ | $.181 \mathrm{D}+04$ | $.383 \mathrm{D}+07$ |

## SOILS INFORMATION

$X$ AT THE GROUND SURFACE $=164.00 \mathrm{IN}$
2 LAYER(S) OF SOIL
LAYER 1
Page 1

## PIER

THE SOIL IS A SAND
$X$ AT THE TOP OF THE LAYER

```
= 164.00 IN
= 176.00 IN
= . 600D+02 LBS/IN**3
```

LAYER 2
THE SOIL IS A STIFF CLAY WITH WATER-INDUCED EROSION
$X$ AT THE TOP OF THE LAYER $=176.00 \mathrm{IN}$
$X$ AT THE BOTTOM OF THE LAYER $=1000.00 \mathrm{IN}$
MODULUS OF SUBGRADE REACTION $=.200 \mathrm{D}+04 \mathrm{LBS} / \mathrm{IN} * * 3$

DISTRIBUTION OF EFFECTIVE UNIT WEIGHT WITH DEPTH
4 POINTS
X,IN WEIGHT,LBS/IN**3
164.00 .69D-01
176.00 .69D-01
176.00 .81D-01
1000.00 .81D-01

DISTRIBUTION OF STRENGTH PARAMETERS WITH DEPTH 4 POINTS

| X,IN | C,LBS/IN**2 | PHI,DEGREES | E50 |
| ---: | :---: | :---: | :---: |
| 164.00 | $.000 \mathrm{D}+00$ | $.330 \mathrm{D}+02$ | .-- |
| 176.00 | $.000 \mathrm{D}+00$ | $.330 \mathrm{D}+02$ | -- |
| 176.00 | $.694 \mathrm{D}+00$ | .000 | $.400 \mathrm{D}-02$ |
| 1000.00 | $.694 \mathrm{D}+02$ | .000 | $.400 \mathrm{D}-02$ |

BOUNDARY AND LOADING CONDITIONS

LOADING NUMBER 1
BOUNDARY CONDITION CODE

$$
\begin{aligned}
& = \\
& =\quad .118 \mathrm{D}+01 \mathrm{IN} \\
& =\quad .129 \mathrm{D}+08 \mathrm{IN}-\mathrm{LBS} \\
& =\quad .151 \mathrm{D}+07 \mathrm{LBS}
\end{aligned}
$$

DEFLECTION AT THE PILE HEAD
MOMENT AT THE PILE HEAD
AXIAL LOAD AT THE PILE HEAD

## FINITE-DIFFERENCE PARAMETERS

NUMBER OF PILE INCREMENTS $=$ 300
DEFLECTION TOLERANCE ON DETERMINATION OF CLOSURE = $.100 \mathrm{D}-05 \mathrm{IN}$
MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR PILE ANALYSIS $=10100$
MAXIMUM ALLOWABLE DEFLECTION $=.48 \mathrm{D}+03 \mathrm{IN}$

OUTPUT CODES
KOUTPT $=1$
KPYOP $=1$
INC $=1$

| DEPTH | DIAM | PHI | GAMMA | A | B | PCT | PCD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN | IN |  |  |  |  |  |  |
| .00 | 42.00 | 33.0 | $.694 \mathrm{DBS} / \mathrm{IN}^{*} * 3$ |  |  |  |  |




|  |  |  | $\begin{array}{r} \mathrm{PI} \\ .461 \\ .518 \\ .576 \\ .634 \\ .691 \\ 1.152 \\ 1.613 \\ 2.074 \\ 23.040 \end{array}$ | IER | $\begin{array}{r} 3836.423 \\ 3842.213 \\ 3818.901 \\ 3770.169 \\ 3698.903 \\ 2668.099 \\ 1635.775 \\ 603.451 \\ 603.451 \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { DEPTH } \\ & \text { IN } \\ & 192.00 \end{aligned}$ | $\begin{aligned} & \text { DIAM } \\ & \text { IN } \\ & 48.000 \end{aligned}$ | $\begin{array}{r} C \\ \text { LBS } / \mathrm{IN}^{* * 2} \\ .16 \mathrm{D}+02 \end{array}$ | $\begin{gathered} \text { CAVG } \\ \text { LBS/IN**2 } \\ .90 \mathrm{D}+01 \end{gathered}$ | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS } / \text { IN**3 } \\ & .80 \mathrm{D}-01 \end{aligned}$ | $\begin{gathered} E 50 \\ .400 \mathrm{D}-02 \end{gathered}$ |
|  | $\mathrm{AS}=.60$ | $A C=.30$ | $\mathrm{Y}, \mathrm{IN}$ .000 .058 .115 .173 .230 .288 .346 .403 .461 .518 .576 .634 .691 1.152 1.613 2.074 23.040 |  | $\begin{gathered} \text { P,LBS/IN } \\ 2270.000 \\ 3211.078 \\ 3741.026 \\ 4085.147 \\ 4320.185 \\ 4477.186 \\ 4573.893 \\ 4621.755 \\ 4628.729 \\ 4600.645 \\ 4541.937 \\ 4456.084 \\ 3214.270 \\ 1970.625 \\ 726.979 \\ 726.979 \end{gathered}$ |  |
|  | $\begin{aligned} & \text { DEPTH } \\ & \text { IN } \\ & 224.00 \end{aligned}$ | $\begin{aligned} & \text { DIAM } \\ & \text { IN } \\ & 48.000 \end{aligned}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{LBS} / \mathrm{IN}^{*} * 2 \\ .18 \mathrm{D}+02 \end{gathered}$ | $\begin{gathered} \text { CAVG } \\ \text { LBS/IN**2 } \\ .10 \mathrm{D}+02 \end{gathered}$ | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS/IN**3 } \\ & .80 \mathrm{D}-01 \end{aligned}$ | $\begin{gathered} E 50 \\ .400 \mathrm{D}-02 \end{gathered}$ |
|  | AS $=.60$ | $A C=.30$ | $\begin{array}{r} Y, I N \\ .000 \\ .058 \\ .115 \\ .173 \\ .230 \\ .288 \\ .346 \\ .403 \\ .461 \\ .518 \\ .576 \\ .634 \\ .691 \\ 1.152 \\ 1.613 \\ 2.074 \\ 23.040 \end{array}$ |  | $\begin{gathered} \text { P,LBS/IN } \\ 2656.000 \\ 3756.393 \\ 4376.707 \\ 4779.298 \\ 5054.273 \\ 5237.952 \\ 5351.092 \\ 5407.086 \\ 5415.246 \\ 5382.390 \\ 5313.706 \\ 5213.264 \\ 3760.441 \\ 2305.474 \\ 850.508 \\ 850.508 \end{gathered}$ |  |
| $\square$ | $\begin{aligned} & \text { DEPTH } \\ & \text { IN } \\ & 256.00 \end{aligned}$ | $\begin{aligned} & \text { DIAM } \\ & \text { IN } \\ & 48.000 \end{aligned}$ | $\begin{array}{r} C \\ \text { LBS } / \text { IN**2 } \\ .21 \mathrm{D}+02 \end{array}$ | CAVG LBS/IN**2 . 12D +02 ge 5 | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS } / \text { IN*** } \\ & .80 \mathrm{D}-01 \end{aligned}$ | $\begin{gathered} E 50 \\ .400 D-02 \end{gathered}$ |


| AS $=.60$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $A C=.30$ | Y,IN | P,LBS/IN |
|  |  | . 000 | . 000 |
|  |  | . 058 | 3042.210 |
|  |  | . 115 | 4302.335 |
|  |  | . 173 | 5012.381 |
|  |  | . 230 | 5473.449 |
|  |  | . 288 | 5788.362 |
|  |  | . 346 | 5998.719 |
|  |  | . 403 | 6128.291 |
|  |  | . 461 | 6192.417 |
|  |  | . 518 | 6201.763 |
|  |  | . 576 | 6164.134 |
|  |  | . 634 | 6085.475 |
|  |  | . 691 | 5970.445 |
|  |  | 1.152 | 4306.611 |
|  |  | 1.613 | 2640.324 |
|  |  | 2.074 | 974.037 |
|  |  | 23.040 | 974.037 |


| $\begin{aligned} & \text { DEPTH } \\ & \text { IN } \\ & 288.00 \end{aligned}$ | $\begin{aligned} & \text { DIAM } \\ & \text { IN } \\ & 48.000 \end{aligned}$ | $\begin{gathered} C \\ \text { LBS } / \mathrm{IN}^{*} * 2 \\ .24 \mathrm{D}+02 \end{gathered}$ | $\begin{gathered} \text { CAVG } \\ \text { LBS/IN**2 } \\ .13 D+02 \end{gathered}$ | $\begin{aligned} & \text { GAMMA } \\ & \text { LBS/IN**3 } \\ & .81 D-01 \end{aligned}$ | $\begin{gathered} E 50 \\ .400 D-02 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AS $=.60$ | $A C=.30$ | $0 \quad \begin{array}{r}\text { Y,IN } \\ \\ \hline 000\end{array}$ |  | P, LBS/IN .000 |  |
|  |  | . 058 |  | 3428.028 |  |
|  |  | . 115 |  | 4847.964 |  |
|  |  | . 173 |  | 5648.058 |  |
|  |  | . 230 |  | 6167.600 |  |
|  |  | . 288 |  | 6522.450 |  |
|  |  | . 346 |  | 6759.485 |  |
|  |  | . 403 |  | 6905.489 |  |
|  |  | . 461 |  | 6977.749 |  |
|  |  | . 518 |  | 6988.279 |  |
|  |  | . 576 |  | 6945.879 |  |
|  |  | . 634 |  | 6857.244 |  |
|  |  | . 691 |  | 6727.625 |  |
|  |  | 1.152 |  | 4852.782 |  |
|  |  | 1.613 |  | 2975.174 |  |
|  |  | 2.074 |  | 1097.566 |  |
|  |  | 23.040 |  | 1097.566 |  |

## OUTP U U T I I N F O R M A T I O N

LOADING NUMBER 1

BOUNDARY CONDITION CODE
DEFLECTION AT THE PILE HEAD
MOMENT AT THE PILE HEAD
AXIAL LOAD AT THE PILE HEAD
$=$
$=\quad .118 \mathrm{D}+01 \mathrm{IN}$
$=\quad .129 \mathrm{D}+08 \mathrm{IN}$ IBS
$=\quad .151 \mathrm{D}+07 \mathrm{LBS}$
$X$ DEFLECTION MOMENT SHEAR SOIL TOTAL FLEXURAL REACTION STRESS RIGIDITY Page 6

| PIER |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN | IN | LBS-IN | LBS | LBS/IN | LBS/IN**2 | LBS-IN**2 |
| ***** | ********** | ********** | ********** | ********* | ********** | ********** |
| . 00 | .118D+01 | . 129D+08 | 191D+05 | . $0000 \mathrm{D}+00$ | . $456 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 1.51 | $.117 \mathrm{D}+01$ | . $129 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $456 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 3.01 | . 115D+01 | . 129D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $456 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 4.52 | . 114D+01 | $.129 D+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $456 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 6.03 | . 112D+01 | .129D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $456 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 7.53 | .111D+01 | . $129 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $455 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 9.04 | .110D+01 | . $129 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $455 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 10.55 | 108D+01 | . 128D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $455 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 12.05 | 107D+01 | .128D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $455 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 13.56 | . $106 \mathrm{D}+01$ | . $128 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $454 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 15.07 | . 104D+01 | . 128D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 454D+04 | . $317 \mathrm{D}+12$ |
| 16.57 | $.103 \mathrm{D}+01$ | . $128 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 454D+04 | . $317 \mathrm{D}+12$ |
| 18.08 | . 102D+01 | . $128 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $454 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 19.59 | . 101D+01 | . $128 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 453D+04 | . $317 \mathrm{D}+12$ |
| 21.09 | $.993 \mathrm{D}+00$ | . $128 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $453 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 22.60 | $.980 \mathrm{D}+00$ | .128D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $453 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 24.11 | . 967D+00 | . $128 \mathrm{D}+08$ | -. 191D+05 | . 000D+00 | . $453 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 25.61 | $.955 \mathrm{D}+00$ | . 128D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $452 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 27.12 | . $942 \mathrm{D}+00$ | $.127 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $452 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 28.63 | $.930 \mathrm{D}+00$ | . $127 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $452 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 30.13 | . 918D+00 | . 127D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 452D+04 | . $317 \mathrm{D}+12$ |
| 31.64 | . $906 \mathrm{D}+00$ | . 127D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 451D+04 | . $317 \mathrm{D}+12$ |
| 33.15 | $.894 \mathrm{D}+00$ | $.127 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $451 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 34.65 | . 882D+00 | . 127D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . 451D+04 | . $317 \mathrm{D}+12$ |
| 36.16 | $.870 \mathrm{D}+00$ | . 127D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 450D+04 | . $317 \mathrm{D}+12$ |
| 37.67 | $.858 \mathrm{D}+00$ | . $127 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $450 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 39.17 | $.846 \mathrm{D}+00$ | . 127D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $450 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 40.68 | . 835D+00 | . 126D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $450 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 42.19 | .823D+00 | .126D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $449 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 43.69 | .812D+00 | 126D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $449 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 45.20 | $.801 \mathrm{D}+00$ | . 126D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $449 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 46.71 | $.789 \mathrm{D}+00$ | . $126 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $448 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 48.21 | . $778 \mathrm{D}+00$ | . 126D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $448 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 49.72 | $.767 \mathrm{D}+00$ | $.126 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $448 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 51.23 | $.756 \mathrm{D}+00$ | . $126 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $447 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 52.73 | $.745 \mathrm{D}+00$ | . $126 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $447 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 54.24 | $.734 \mathrm{D}+00$ | $.125 \mathrm{D}+08$ | -. 191D+05 | $.000 \mathrm{D}+00$ | . 447D+04 | . $317 \mathrm{D}+12$ |
| 55.75 | . $724 \mathrm{D}+00$ | . $125 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 446D+04 | . $317 \mathrm{D}+12$ |
| 57.25 | $.713 \mathrm{D}+00$ | $.125 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $446 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 58.76 | . $703 \mathrm{D}+00$ | . $125 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $446 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 60.27 | . 692D+00 | . $125 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $445 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 61.77 | . $682 \mathrm{D}+00$ | . $125 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $445 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 63.28 | .672D+00 | . $125 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $445 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 64.79 | .661D+00 | . $124 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $444 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 66.29 | .651D+00 | $.124 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . 444D+04 | . $317 \mathrm{D}+12$ |
| 67.80 | .641D+00 | $.124 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $443 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 69.31 | .631D+00 | . 124D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 443D+04 | . $317 \mathrm{D}+12$ |
| 70.81 | $.622 \mathrm{D}+00$ | $.124 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 443D+04 | . $317 \mathrm{D}+12$ |
| 72.32 | .612D+00 | $.124 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $442 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 73.83 | . $602 \mathrm{D}+00$ | .124D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $442 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 75.33 | . $593 \mathrm{D}+00$ | . $123 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 442D+04 | . $317 \mathrm{D}+12$ |
| 76.84 | . 583D+00 | . 123D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 441D+04 | . $317 \mathrm{D}+12$ |
| 78.35 | $.574 \mathrm{D}+00$ | . $123 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . 441D+04 | . $317 \mathrm{D}+12$ |
| 79.85 | . $565 \mathrm{D}+00$ | . $123 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $440 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 81.36 | . $556 \mathrm{D}+00$ | . $123 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $440 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 82.87 | . $546 \mathrm{D}+00$ | . $123 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $440 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 84.37 | . $537 \mathrm{D}+00$ | $.123 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $439 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 85.88 | . $528 \mathrm{D}+00$ | . 122D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $439 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 87.39 | $.520 \mathrm{D}+00$ | . $122 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $438 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 88.89 | . 511D+00 | . $122 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $438 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 90.40 | . $502 \mathrm{D}+00$ | $.122 \mathrm{D}+08$ | -.191D+05 | $.000 \mathrm{D}+00$ | . $437 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
|  |  |  | Page 7 |  |  |  |


|  |  |  | PIER |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 91.91 | . $494 \mathrm{D}+00$ | . $122 \mathrm{D}+08$ | -. 191D+05 | $.0000+00$ | . 437D+04 | . $317 \mathrm{D}+12$ |
| 93.41 | . 485D+00 | . 122D+08 | -. 191D+05 | . 000D+00 | . 437D+04 | $317 \mathrm{D}+12$ |
| 94.92 | .477D+00 | . $122 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . 436D+04 | $317 \mathrm{D}+12$ |
| 96.43 | . $468 \mathrm{D}+00$ | . $121 \mathrm{D}+08$ | -. 191D+05 | . 000D+00 | . 436D+04 | . $317 \mathrm{D}+12$ |
| 97.93 | . $460 \mathrm{D}+00$ | .121D+08 | -.191D+05 | $.000 \mathrm{D}+00$ | . $435 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 99.44 | . $452 \mathrm{D}+00$ | . 121D+08 | -. 191D+05 | . 000D+00 | . $435 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 100.95 | . $444 \mathrm{D}+00$ | .121D+08 | -.191D+05 | . $000 \mathrm{D}+00$ | . $434 \mathrm{D}+04$ | $317 \mathrm{D}+12$ |
| 102.45 | . $436 \mathrm{D}+00$ | .121D+08 | -.191D+05 | . $000 \mathrm{D}+00$ | . $434 \mathrm{D}+04$ | $317 \mathrm{D}+12$ |
| 103.96 | . $428 \mathrm{D}+00$ | . $121 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $434 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 105.47 | . 420D+00 | . $120 \mathrm{D}+08$ | -. 191D+05 | . 000D+00 | . $433 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 106.97 | . $413 \mathrm{D}+00$ | . $120 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $433 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 108.48 | . $405 \mathrm{D}+00$ | . $120 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $432 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 109.99 | . $398 \mathrm{D}+00$ | . $120 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $432 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 111.49 | $.390 \mathrm{D}+00$ | $.120 \mathrm{D}+08$ | -.191D+05 | . $000 \mathrm{D}+00$ | . 431D+04 | . $317 \mathrm{D}+12$ |
| 113.00 | $.383 \mathrm{D}+00$ | .119D+08 | -. 191D+05 | $.000 \mathrm{D}+00$ | . 431D+04 | $.317 \mathrm{D}+12$ |
| 114.51 | $.375 \mathrm{D}+00$ | . 119D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $430 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 116.01 | $.368 \mathrm{D}+00$ | $.119 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $430 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 117.52 | . $361 \mathrm{D}+00$ | .119D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $429 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 119.03 | $.354 \mathrm{D}+00$ | . $119 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $429 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 120.53 | . $347 \mathrm{D}+00$ | . 119D+08 | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $428 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 122.04 | $.340 \mathrm{D}+00$ | $.118 \mathrm{D}+08$ | -.191D+05 | . $000 \mathrm{D}+00$ | . $428 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 123.55 | $.334 \mathrm{D}+00$ | . $118 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $427 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 125.05 | . $327 \mathrm{D}+00$ | . 118D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . 427D+04 | . $317 \mathrm{D}+12$ |
| 126.56 | . $320 \mathrm{D}+00$ | . $118 \mathrm{D}+08$ | -. 191D+05 | . 000D+00 | . 426D+04 | . $317 \mathrm{D}+12$ |
| 128.07 | $.314 \mathrm{D}+00$ | . $118 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $426 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 129.57 | . $307 \mathrm{D}+00$ | . $117 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . 425D+04 | . $317 \mathrm{D}+12$ |
| 131.08 | . 301D+00 | . $117 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $425 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 132.59 | .295D+00 | .117D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . $424 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 134.09 | . 289D+00 | . $117 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . $424 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 135.60 | . 283D+00 | . 117D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . $423 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 137.11 | . $277 \mathrm{D}+00$ | .116D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . $423 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 138.61 | .271D+00 | $.116 \mathrm{D}+08$ | -. 191D+05 | . $0000 \mathrm{D}+00$ | . $422 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 140.12 | .265D+00 | . $116 \mathrm{D}+08$ | -.191D+05 | . $0000 \mathrm{D}+00$ | . $422 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 141.63 | .259D+00 | .116D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . 421D+04 | . $317 \mathrm{D}+12$ |
| 143.13 | $.253 \mathrm{D}+00$ | . $116 \mathrm{D}+08$ | -. $191 \mathrm{D}+05$ | . $000 \mathrm{D}+00$ | . $420 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 144.64 | . $248 \mathrm{D}+00$ | . $115 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . 420D+04 | . $317 \mathrm{D}+12$ |
| 146.15 | . 242D+00 | . $115 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . 419D+04 | . $317 \mathrm{D}+12$ |
| 147.65 | .237D+00 | .115D+08 | -. $191 \mathrm{D}+05$ | . $000 \mathrm{D}+00$ | . 419D+04 | $.317 \mathrm{D}+12$ |
| 149.16 | . $231 \mathrm{D}+00$ | . $115 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . 418D+04 | . $317 \mathrm{D}+12$ |
| 150.67 | .226D+00 | .115D+08 | -. 191D+05 | . $000 \mathrm{D}+00$ | . $418 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 152.17 | .221D+00 | $.114 \mathrm{D}+08$ | -.191D+05 | . $000 \mathrm{D}+00$ | . 417D+04 | $.317 \mathrm{D}+12$ |
| 153.68 | $.216 \mathrm{D}+00$ | $.114 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | .417D+04 | . $317 \mathrm{D}+12$ |
| 155.19 | .211D+00 | $.114 \mathrm{D}+08$ | -.191D+05 | . $000 \mathrm{D}+00$ | . $416 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 156.69 | . 206D+00 | . $114 \mathrm{D}+08$ | -.191D+05 | . $000 \mathrm{D}+00$ | . $415 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 158.20 | . 201D+00 | .114D+08 | -. 191D+05 | $.000 \mathrm{D}+00$ | . $415 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 159.71 | $.196 \mathrm{D}+00$ | . $113 \mathrm{D}+08$ | -. 191D+05 | . $000 \mathrm{D}+00$ | . 414D+04 | . $317 \mathrm{D}+12$ |
| 161.21 | . $192 \mathrm{D}+00$ | . $113 \mathrm{D}+08$ | -. $191 \mathrm{D}+05$ | . $000 \mathrm{D}+00$ | . $414 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 162.72 | .187D+00 | $.113 \mathrm{D}+08$ | -.191D+05 | . $000 \mathrm{D}+00$ | . $413 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 164.23 | $.182 \mathrm{D}+00$ | . $113 \mathrm{D}+08$ | -.191D+05 | -. $248 \mathrm{D}+01$ | . $413 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 165.73 | $.178 \mathrm{D}+00$ | . $113 \mathrm{D}+08$ | -.191D+05 | -. $185 \mathrm{D}+02$ | . 412D+04 | . $317 \mathrm{D}+12$ |
| 167.24 | $.174 \mathrm{D}+00$ | . $112 \mathrm{D}+08$ | -. 191D+05 | -. $338 \mathrm{D}+02$ | . 411D+04 | . $317 \mathrm{D}+12$ |
| 168.75 | $.169 \mathrm{D}+00$ | . $112 \mathrm{D}+08$ | -.192D+05 | -. $482 \mathrm{D}+02$ | . 411D+04 | . $317 \mathrm{D}+12$ |
| 170.25 | $.165 \mathrm{D}+00$ | . $112 \mathrm{D}+08$ | -.193D+05 | -. $620 \mathrm{D}+02$ | . 410D+04 | $.317 \mathrm{D}+12$ |
| 171.76 | .161D+00 | .112D+08 | -. 194D+05 | -. $750 \mathrm{D}+02$ | . $410 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 173.27 | $.157 \mathrm{D}+00$ | . $111 \mathrm{D}+08$ | -. $195 \mathrm{D}+05$ | -. $873 \mathrm{D}+02$ | $.409 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 174.77 | $.153 \mathrm{D}+00$ | . 111D+08 | -. 196D+05 | -. 989D+02 | . $408 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 176.28 | . $149 \mathrm{D}+00$ | . $111 \mathrm{D}+08$ | -. 198D+05 | -. 149D+03 | . $408 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 177.79 | $.145 \mathrm{D}+00$ | .111D+08 | -. 201D+05 | -. 173D+03 | . $407 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 179.29 | $.142 \mathrm{D}+00$ | . $110 \mathrm{D}+08$ | -. $204 \mathrm{D}+05$ | -. $197 \mathrm{D}+03$ | . $406 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 180.80 | .138D+00 | . $110 \mathrm{D}+08$ | -. 207D+05 | -. 221D+03 | . $406 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
| 182.31 | $.134 \mathrm{D}+00$ | .110D+08 | -. $210 \mathrm{D}+05$ | -. $244 \mathrm{D}+03$ | . $405 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 183.81 | $.131 \mathrm{D}+00$ | .110D+08 | -. $214 \mathrm{D}+05$ | -. $267 \mathrm{D}+03$ | $.404 \mathrm{D}+04$ | $.317 \mathrm{D}+12$ |
| 185.32 | . $127 \mathrm{D}+00$ | .109D+08 | -. 218D+05 | -. 289D+03 | . $403 \mathrm{D}+04$ | . $317 \mathrm{D}+12$ |
|  |  |  | Page 8 |  |  |  |


| IER |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 186.83 | . 124D+00 | . $109 \mathrm{D}+08$ | -. 139D+07 | -. 3110+03 | . 403D+04 | . $317 \mathrm{D}+12$ |
| 188.33 | . 121D+00 | . $109 \mathrm{D}+08$ | -. 222D+07 | $-.3600+03$ | . $280 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 189.84 | . $118 \mathrm{D}+00$ | . $108 \mathrm{D}+08$ | -. 233D+05 | -. 3810+03 | .279D+04 | . $509 \mathrm{D}+12$ |
| 191.35 | $.114 \mathrm{D}+00$ | . $108 \mathrm{D}+08$ | -. 239D+05 | -. 402D+03 | $.279 \mathrm{D}+04$ | $.509 \mathrm{D}+12$ |
| 192.85 | $.111 \mathrm{l}+00$ | . $108 \mathrm{D}+08$ | -. 246D+05 | -. $422 \mathrm{D}+03$ | . $278 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 194.36 | . $108 \mathrm{D}+00$ | .108D+08 | -. 252D+05 | -. 441D+03 | . $277 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 195.87 | $.105 \mathrm{D}+00$ | .107D+08 | -. $259 \mathrm{D}+05$ | -. $459 \mathrm{D}+03$ | . $277 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 197.37 | . $102 \mathrm{D}+00$ | .107D+08 | -. 266D+05 | -. 477D+03 | . $276 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 198.88 | .994D-01 | .106D+08 | -. 273D+05 | -. 494D+03 | . $276 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 200.39 | .965D-01 | .106D+08 | -. 281D+05 | -. 5100+03 | .275D+04 | . $509 \mathrm{D}+12$ |
| 201.89 | .937D-01 | .106D+08 | -. 289D+05 | -. 526D+03 | . $274 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 203.40 | .909D-01 | .105D+08 | -. 297D+05 | -. 541D+03 | . 273D+04 | . $509 \mathrm{D}+12$ |
| 204.91 | .881D-01 | .105D+08 | -. 305D+05 | -. 555D+03 | . $273 \mathrm{D}+04$ | . 509D+12 |
| 206.41 | . $855 \mathrm{D}-01$ | .104D+08 | -.313D+05 | -. $569 \mathrm{D}+03$ | . $272 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 207.92 | .828D-01 | .104D+08 | -. 322D+05 | -. 5820+03 | .271D+04 | . $509 \mathrm{D}+12$ |
| 209.43 | .802D-01 | .104D+08 | -. 331D+05 | -. 594D+03 | . $270 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 210.93 | . $777 \mathrm{D}-01$ | . $103 \mathrm{D}+08$ | -. $340 \mathrm{D}+05$ | -. 606D+03 | . $270 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 212.44 | . $752 \mathrm{D}-01$ | .103D+08 | -. 349D+05 | -. 617D+03 | . 269D+04 | . $509 \mathrm{D}+12$ |
| 213.95 | . 727D-01 | . $102 \mathrm{D}+08$ | -. $358 \mathrm{D}+05$ | -. 627D+03 | . $268 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 215.45 | . $703 \mathrm{D}-01$ | .102D+08 | -. 368D+05 | -. $636 \mathrm{D}+03$ | . $267 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 216.96 | .679D-01 | . $101 \mathrm{D}+08$ | -.378D+05 | -. 645D+03 | . $266 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 218.47 | .656D-01 | .101D+08 | -. 387D+05 | -. 654D+03 | .265D+04 | . $509 \mathrm{D}+12$ |
| 219.97 | .633D-01 | .100D+08 | -.397D+05 | -. 661D+03 | . $264 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 221.48 | .611D-01 | . $994 \mathrm{D}+07$ | -. 407D+05 | -. $6688 \mathrm{D}+03$ | . $263 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 222.99 | . 589D-01 | $.989 \mathrm{D}+07$ | -. 417D+05 | -. 674D+03 | . 262D+04 | . $509 \mathrm{D}+12$ |
| 224.49 | . $568 \mathrm{D}-01$ | . 983D+07 | -. 428D+05 | -. 680D+03 | . 261D+04 | . $509 \mathrm{D}+12$ |
| 226.00 | . 547D-01 | .976D+07 | -. 438D+05 | -. 685D+03 | .260D+04 | . $509 \mathrm{D}+12$ |
| 227.51 | . $526 \mathrm{D}-01$ | .970D+07 | -. $448 \mathrm{D}+05$ | -. 689D+03 | . $258 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 229.01 | . 506D-01 | .963D+07 | -. $459 \mathrm{D}+05$ | -. 693D+03 | . $257 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 230.52 | . $486 \mathrm{D}-01$ | .957D+07 | -. 469D+05 | -. 696D+03 | . $256 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 232.03 | . $467 \mathrm{D}-01$ | $.950 \mathrm{D}+07$ | -. $480 \mathrm{D}+05$ | -. 699D+03 | . $255 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 233.53 | . 448D-01 | .943D+07 | -. $490 \mathrm{D}+05$ | -. 700D+03 | $.254 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 235.04 | .430D-01 | .936D+07 | -. 501D+05 | -. 702D+03 | . 252D+04 | . $509 \mathrm{D}+12$ |
| 236.55 | . 412D-01 | .928D+07 | -. 511D+05 | -. $702 \mathrm{D}+03$ | . $251 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 238.05 | . $394 \mathrm{D}-01$ | .921D+07 | -. 522D+05 | -. 702D+03 | . $250 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 239.56 | . $377 \mathrm{D}-01$ | .913D+07 | -. 532D+05 | -. 701D+03 | . $248 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 241.07 | . $360 \mathrm{D}-01$ | .905D+07 | -. $543 \mathrm{D}+05$ | -. $700 \mathrm{D}+03$ | .247D+04 | . $509 \mathrm{D}+12$ |
| 242.57 | . 344D-01 | .897D+07 | -. 554D+05 | -. 698D+03 | . $245 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 244.08 | . $328 \mathrm{D}-01$ | .889D+07 | -. 564D+05 | -. 695D+03 | . $244 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 245.59 | . $312 \mathrm{D}-01$ | .881D+07 | -. $575 \mathrm{D}+05$ | -. 692D+03 | . $242 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 247.09 | .297D-01 | . $872 \mathrm{D}+07$ | -. $585 \mathrm{D}+05$ | -.688D+03 | .241D+04 | . $509 \mathrm{D}+12$ |
| 248.60 | .282D-01 | .864D+07 | -. 595D+05 | -. 683D+03 | .239D+04 | . $509 \mathrm{D}+12$ |
| 250.11 | . $268 \mathrm{D}-01$ | .855D+07 | -. 605D+05 | -. 678D+03 | . $238 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 251.61 | .254D-01 | .846D+07 | -. $616 \mathrm{D}+05$ | -. $672 \mathrm{D}+03$ | . $236 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 253.12 | . 240D-01 | .837D+07 | -. 626D+05 | -. 665D+03 | . $234 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 254.63 | .227D-01 | .827D+07 | -. 636D+05 | -. 658D+03 | . $233 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 256.13 | .214D-01 | . 818D+07 | -. 646D+05 | -. $650 \mathrm{D}+03$ | .231D+04 | . $509 \mathrm{D}+12$ |
| 257.64 | .202D-01 | .808D+07 | -. $655 \mathrm{D}+05$ | -. 642D+03 | . $229 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 259.15 | . 189D-01 | . $798 \mathrm{D}+07$ | -. $665 \mathrm{D}+05$ | -. 632D+03 | . 228D+04 | . $509 \mathrm{D}+12$ |
| 260.65 | . $178 \mathrm{D}-01$ | . $789 \mathrm{D}+07$ | -. $674 \mathrm{D}+05$ | -. $622 \mathrm{D}+03$ | . $226 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 262.16 | .166D-01 | . $778 \mathrm{D}+07$ | -. $684 \mathrm{D}+05$ | -. 612D+03 | . $224 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 263.67 | . 155D-01 | . $768 \mathrm{D}+07$ | -. 693D+05 | -. 600D+03 | . 222D+04 | . $509 \mathrm{D}+12$ |
| 265.17 | . 144D-01 | . $758 \mathrm{D}+07$ | -. 702D+05 | -. 588D+03 | . $220 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 266.68 | .134D-01 | .747D+07 | -. $710 \mathrm{D}+05$ | -. $575 \mathrm{D}+03$ | . $218 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 268.19 | .124D-01 | . $737 \mathrm{D}+07$ | -. 719D+05 | -. 561D+03 | . $216 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 269.69 | . 114D-01 | . $726 \mathrm{D}+07$ | -. $727 \mathrm{D}+05$ | -. 547D+03 | . $214 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 271.20 | .104D-01 | . $715 \mathrm{D}+07$ | -. $736 \mathrm{D}+05$ | -. 531D+03 | .212D+04 | . $509 \mathrm{D}+12$ |
| 272.71 | . 951D-02 | . $704 \mathrm{D}+07$ | -. $743 \mathrm{D}+05$ | -. 515D+03 | . 211D+04 | . $509 \mathrm{D}+12$ |
| 274.21 | . 863D-02 | . 693D+07 | -. 751D+05 | -. 497D+03 | . 208D+04 | . $509 \mathrm{D}+12$ |
| 275.72 | . $778 \mathrm{D}-02$ | . $682 \mathrm{D}+07$ | -. $758 \mathrm{D}+05$ | -. $479 \mathrm{D}+03$ | . $206 \mathrm{D}+04$ | . $509 \mathrm{D}+12$ |
| 277.23 | .696D-02 | . $670 \mathrm{D}+07$ | -. $765 \mathrm{D}+05$ | -. 459D+03 | . 204D+04 | . $509 \mathrm{D}+12$ |
| 278.73 | .616D-02 | . $659 \mathrm{D}+07$ | -. $772 \mathrm{D}+05$ | -. $438 \mathrm{D}+03$ | . 202D+04 | . $509 \mathrm{D}+12$ |
| 280.24 | . 540D-02 | .647D+07 | -. 779D+05 | -. $416 \mathrm{D}+03$ | .200D+04 | . $509 \mathrm{D}+12$ |
|  |  |  | Page 9 |  |  |  |



|  | 376.67 | -. 536D-02 | . $511 \mathrm{D}+06$ | PIER $-.292 \mathrm{D}+05$ | . 769D+03 | . 927D+03 | 509D+12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 378.17 | -. $524 \mathrm{D}-02$ | . $468 \mathrm{D}+06$ | -. $280 \mathrm{D}+05$ | . $765 \mathrm{D}+03$ | $.919 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 379.68 | -. 511D-02 | . 426D+06 | -. 269D+05 | . 761D+03 | . 911D+03 | . $509 \mathrm{D}+12$ |
|  | 381.19 | -. 499D-02 | . $387 \mathrm{D}+06$ | -. 257D+05 | . $757 \mathrm{D}+03$ | . 904D+03 | . $509 \mathrm{D}+12$ |
|  | 382.69 | -. 486D-02 | . $349 \mathrm{D}+06$ | -. 246D+05 | . $753 \mathrm{D}+03$ | . 897D+03 | . $509 \mathrm{D}+12$ |
|  | 384.20 | -. $473 \mathrm{D}-02$ | . $312 \mathrm{D}+06$ | -. $235 \mathrm{D}+05$ | . $748 \mathrm{D}+03$ | . $891 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 385.71 | -. $459 \mathrm{D}-02$ | . $278 \mathrm{D}+06$ | -. $223 \mathrm{D}+05$ | . $742 \mathrm{D}+03$ | $.884 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 387.21 | -. $446 \mathrm{D}-02$ | . $244 \mathrm{D}+06$ | -. 212D+05 | . $737 \mathrm{D}+03$ | . $878 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 388.72 | -. $433 \mathrm{D}-02$ | . $213 \mathrm{D}+06$ | -. 201D+05 | . $730 \mathrm{D}+03$ | . $873 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 390.23 | -. $419 \mathrm{D}-02$ | . $183 \mathrm{D}+06$ | -. 190D+05 | . $724 \mathrm{D}+03$ | . $867 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 391.73 | -. 406D-02 | . $155 \mathrm{D}+06$ | -. 179D+05 | . 717D+03 | . 862D+03 | . $509 \mathrm{D}+12$ |
|  | 393.24 | -. 392D-02 | . $129 \mathrm{D}+06$ | -. 169D+05 | . $710 \mathrm{D}+03$ | . $858 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 394.75 | -. 378D-02 | .104D+06 | -. $158 \mathrm{D}+05$ | . $702 \mathrm{D}+03$ | . $853 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 396.25 | -. 365D-02 | . 810D+05 | -. 147D+05 | .693D+03 | . $849 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 397.76 | -. $351 \mathrm{D}-02$ | . $594 \mathrm{D}+05$ | -. $137 \mathrm{D}+05$ | . $685 \mathrm{D}+03$ | . $845 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 399.27 | -. $337 \mathrm{D}-02$ | . $393 \mathrm{D}+05$ | -. $127 \mathrm{D}+05$ | . $675 \mathrm{D}+03$ | .841D+03 | $.509 \mathrm{D}+12$ |
|  | 400.77 | -. $323 \mathrm{D}-02$ | . $207 \mathrm{D}+05$ | -. $117 \mathrm{D}+05$ | . $666 \mathrm{D}+03$ | . $838 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 402.28 | -. 309D-02 | . $369 \mathrm{D}+04$ | -. 107D+05 | .656D+03 | . $835 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 403.79 | -. 296D-02 | -. 119D+05 | -. $970 \mathrm{D}+04$ | .645D+03 | . $836 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 405.29 | -. 282D-02 | -. 259D+05 | -. 873D+04 | . $634 \mathrm{D}+03$ | .839D+03 | . $509 \mathrm{D}+12$ |
|  | 406.80 | -. 268D-02 | -. 386D+05 | -. $779 \mathrm{D}+04$ | . $622 \mathrm{D}+03$ | . 841D+03 | . $509 \mathrm{D}+12$ |
|  | 408.31 | -. 254D-02 | -. $498 \mathrm{D}+05$ | -. $686 \mathrm{D}+04$ | . $609 \mathrm{D}+03$ | .843D+03 | $.509 \mathrm{D}+12$ |
|  | 409.81 | -. 240D-02 | -. 597D+05 | -. 595D+04 | . $596 \mathrm{D}+03$ | . $845 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 411.32 | -. 227D-02 | -. 682D+05 | -. 507D+04 | . 583D+03 | . 847D+03 | . $509 \mathrm{D}+12$ |
|  | 412.83 | -. 213D-02 | -. 754D+05 | -. 420D+04 | . $568 \mathrm{D}+03$ | . 848D+03 | . $509 \mathrm{D}+12$ |
|  | 414.33 | -. 199D-02 | -. 813D+05 | -. 335D+04 | . $553 \mathrm{D}+03$ | . 849D+03 | . $509 \mathrm{D}+12$ |
|  | 415.84 | -. $185 \mathrm{D}-02$ | -.859D+05 | -. $253 \mathrm{D}+04$ | . 537D+03 | . $850 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 417.35 | -. 172D-02 | -.893D+05 | -. $174 \mathrm{D}+04$ | . $520 \mathrm{D}+03$ | . $850 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 418.85 | -. $158 \mathrm{D}-02$ | -. $915 \mathrm{D}+05$ | -. $967 \mathrm{D}+03$ | . $502 \mathrm{D}+03$ | . $851 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 420.36 | -. $145 \mathrm{D}-02$ | -. $926 \mathrm{D}+05$ | -. $225 \mathrm{D}+03$ | . $483 \mathrm{D}+03$ | . 851D+03 | . $509 \mathrm{D}+12$ |
|  | 421.87 | -. 131D-02 | -. 926D+05 | . 487D+03 | . 463D+03 | . 851D+03 | . $509 \mathrm{D}+12$ |
|  | 423.37 | -. 118D-02 | -. 916D+05 | .117D+04 | . 441D+03 | . 851D+03 | . $509 \mathrm{D}+12$ |
|  | 424.88 | -. $104 \mathrm{D}-02$ | -.895D+05 | .181D+04 | . 417D+03 | . $850 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 426.39 | -.910D-03 | -.865D+05 | . $242 \mathrm{D}+04$ | . 392D+03 | . $850 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 427.89 | -. $777 \mathrm{D}-03$ | -. $826 \mathrm{D}+05$ | . $299 \mathrm{D}+04$ | . $364 \mathrm{D}+03$ | . $849 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 429.40 | -. $644 \mathrm{D}-03$ | -. $779 \mathrm{D}+05$ | $.352 \mathrm{D}+04$ | . $334 \mathrm{D}+03$ | . 848D+03 | . $509 \mathrm{D}+12$ |
|  | 430.91 | -. 511D-03 | -. 724D+05 | . $400 \mathrm{D}+04$ | . 299D+03 | .847D+03 | . $509 \mathrm{D}+12$ |
|  | 432.41 | -. 379D-03 | -. 662D+05 | . $442 \mathrm{D}+04$ | $.259 \mathrm{D}+03$ | . $846 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 433.92 | -. 247D-03 | -. $595 \mathrm{D}+05$ | . $477 \mathrm{D}+04$ | . $210 \mathrm{D}+03$ | .845D+03 | $.509 \mathrm{D}+12$ |
|  | 435.43 | -. $115 \mathrm{D}-03$ | -. 523D+05 | . 501D+04 | $.105 \mathrm{D}+03$ | . $844 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 436.93 | .163D-04 | -. $448 \mathrm{D}+05$ | . $508 \mathrm{D}+04$ | -. $149 \mathrm{D}+02$ | . 842D+03 | . $509 \mathrm{D}+12$ |
|  | 438.44 | .148D-03 | -. $374 \mathrm{D}+05$ | . $496 \mathrm{D}+04$ | -. $135 \mathrm{D}+03$ | . 841D+03 | . $509 \mathrm{D}+12$ |
|  | 439.95 | . $279 \mathrm{D}-03$ | -. $302 \mathrm{D}+05$ | . $469 \mathrm{D}+04$ | -. $228 \mathrm{D}+03$ | . $840 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 441.45 | . 410D-03 | -. 236D+05 | . $431 \mathrm{D}+04$ | -. $278 \mathrm{D}+03$ | . $839 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 442.96 | . 541D-03 | -. 177D+05 | . $385 \mathrm{D}+04$ | -. 322D+03 | . 837D+03 | . $509 \mathrm{D}+12$ |
|  | 444.47 | .671D-03 | -. $124 \mathrm{D}+05$ | . $334 \mathrm{D}+04$ | -. $360 \mathrm{D}+03$ | . $836 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 445.97 | . $802 \mathrm{D}-03$ | -. $798 \mathrm{D}+04$ | .277D+04 | -. $396 \mathrm{D}+03$ | . $836 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 447.48 | . 933D-03 | -. $445 \mathrm{D}+04$ | . $215 \mathrm{D}+04$ | -. $429 \mathrm{D}+03$ | . $835 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 448.99 | . $106 \mathrm{D}-02$ | -. 190D+04 | . $148 \mathrm{D}+04$ | -.461D+03 | . $835 \mathrm{D}+03$ | . $509 \mathrm{D}+12$ |
|  | 450.49 | .119D-02 | -. $393 \mathrm{D}+03$ | . $762 \mathrm{D}+03$ | -. $491 \mathrm{D}+03$ | . $834 \mathrm{D}+03$ | $.509 \mathrm{D}+12$ |
|  | 452.00 | . 133D-02 | . $000 \mathrm{D}+00$ | . $000 \mathrm{D}+00$ | $-.520 \mathrm{D}+03$ | . 834D+03 | . $509 \mathrm{D}+12$ |

## OUTPUT VERIFICATION

THE MAXIMUM MOMENT IMBALANCE FOR ANY ELEMENT $=-. .261 D-04$ IN-LBS
THE MAX. LATERAL FORCE IMBALANCE FOR ANY ELEMENT $=\quad .204 D-04$ LBS

OUTPUT SUMMARY
PILE-HEAD DEFLECTION
$=.118 \mathrm{D}+01 \mathrm{IN}$
Page 11

|  | PIER |  |
| :--- | :--- | ---: | :--- |
| MAXIMUM BENDING MOMENT | $=$ | $.129 \mathrm{D}+08$ LBS-IN |
| MAXIMUM SHEAR FORCE | $=$ | $-.222 \mathrm{D}+07 \mathrm{LBS}$ |
| NO. OF ITERATIONS | 16 |  |
| NO. OF ZERO DEFLECTION POINTS | $=$ | 2 |

## S U M M A R Y Y T A B B L E E

| BOUNDARY | BOUNDARY | AXIAL | PILE HEAD | MAX. | MAX. |
| ---: | :---: | :---: | :---: | :---: | :---: |
| CONDITION | CONDITION | LOAD | DEFLECTION | MOMENT | SHEAR |
| BC1 | BC2 | LBS | IN | IN-LBS | LBS |
| $.1180 D+01$ | $.1290 D+08$ | $.1510 D+07$ | $.1180 D+01$ | $.1290 D+08$ | $-.2219 D+07$ |

04/01/13 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 2 16:10:21 Licensed to: Licensee name not yet specified.

General Information:
=====================
File Name: C:\DOCUME~1\BUIH\DESKTOP\BUI'SS~1\PIER48IN.COL
Project: FBR 0142-055 Code: ACI 318-89
Column: 48IN CAISSON Units: US in-lbs
Engineer: BUIH
Run Option: Investigation
Run Axis: X -axis
Date: 04/01/13 Time: 14:13:31
Short (nonslender) column
Column Type: Structural

## Material Properties:

====================

```
f'c = 4 ksi fy = 60 ksi
    EC = 3834.25 ksi Es = 29000 ksi
    fc = 3.4 ksi
    eu = 0.003 in/in
    Stress Profile: Block Beta1 = 0.85
```

Geometry:
=========
Circular: $\quad$ Diameter $=48$ in
Gross section area, $\mathrm{Ag}=1809.56$ in^2
Ix $=260576$ in^4 $\quad$ Xo $=0$ in
Iy $=260576$ in^4 $\quad$ Yo $=0$ in

## Reinforcement:

==============
Rebar Database: ASTM

| Size | Diam | Area | Size | Diam | Area | Size | Diam | Area |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.38 | 0.11 | 4 | 0.50 | 0.20 | 5 | 0.63 | 0.31 |
| 6 | 0.75 | 0.44 | 7 | 0.88 | 0.60 | 8 | 1.00 | 0.79 |
| 9 | 1.13 | 1.00 | 10 | 1.27 | 1.27 | 11 | 1.41 | 1.56 |
| 14 | 1.69 | 2.25 | 18 | 2.26 | 4.00 |  |  |  |

Confinement: Spiral; phi $(\mathrm{c})=0.75, \operatorname{phi}(\mathrm{~b})=0.9, \mathrm{a}=0.85$
\#5 ties with \#10 bars, \#4 with larger bars.
Layout: Circular
Pattern: All Sides Equal [Cover to transverse reinforcement (ties)]
Total steel area, As $=35.56$ in^2 at $1.97 \%$
28-\#10 Cover = 6 in

04/01/13 PCACOL (tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 16:10:21 Licensed to: Licensee name not yet specified.

| Pt. | $\begin{gathered} \text { Applied } \\ \text { P } \\ \text { (kips) } \end{gathered}$ | Loads Mx (ft-k) | $\begin{gathered} \text { Computed } \\ \text { P } \\ \text { (kips) } \end{gathered}$ | $\begin{aligned} & \text { Strength } \\ & \text { Mx } \\ & (\mathrm{ft}-\mathrm{k}) \end{aligned}$ | Computed/ <br> Applied <br> Ray length |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1510 | 1075 | 3519 | 2548 | 2.344 |



Licensed To: Licensee name not yet specified.
File name: C:\DOCUME~1 \BUIH\DESKTOP\BUI'SS~1 \PIER48IN.COL

Project: FBR 0142-055
Column Id: 48IN CAISSON
Engineer: BUIH
Date: 04/01/13 Time: 14:13:31
C ᄀe: ACI 318-89
Units: in-lb
X -axis slenderness is not considered.

Material Properties:
$\mathrm{Ec}=3834$ ksi $\quad \mathrm{eu}=0.003 \mathrm{in} / \mathrm{in}$
$\mathrm{fc}=3.40 \mathrm{ksi} \quad \mathrm{Es}=29000 \mathrm{ksi}$
Beta1 $=0.85$
Stress Profile: Block
$\operatorname{phi}(\mathrm{c})=0.75, \operatorname{phi}(\mathrm{~b})=0.90$

04/01/13 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 2 16:09:17 Licensed to: Licensee name not yet specified.

General Information:
====================
File Name: C:\DOCUME~1\BUIH\DESKTOP\BUI'SS~1\PIER42IN.COL
Project: FBR 0142-055 Code: ACI 318-89
Column: 42IN COLUMN Units: US in-1bs
Engineer: BUIH
Run Option: Investigation
Date: 04/01/13 Time: 15:29:32
Short (nonslender) column
Run Axis: X-axis
Column Type: Structural
Material Properties:
===================

| $\mathrm{f} \cdot \mathrm{c}=4.5 \mathrm{ksi}$ | fy $=60 \mathrm{ksi}$ |
| :--- | :--- |
| $\mathrm{Ec}=4066.84 \mathrm{ksi}$ | Es $=29000 \mathrm{ksi}$ |
| $\mathrm{fc}=3.825 \mathrm{ksi}$ | erup $=0 \mathrm{in} / \mathrm{in}$ |
| eu $=0.003 \mathrm{in} / \mathrm{in}$ |  |
| Stress Profile: Block | Betal $=0.825$ |

Geometry:
=========
Circular: $\quad$ Diameter $=42$ in
Gross section area, $\mathrm{Ag}=1385.44$ in^2
$I x=152745$ in^4 $\quad$ Xo $=0$ in
IY $=152745$ in^4 $\quad$ Yo $=0$ in

## Reinforcement:

=============
Rebar Database: ASTM

| Size | Diam | Area | Size | Diam | Area | Size | Diam | Area |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.38 | 0.11 | 4 | 0.50 | 0.20 | 5 | 0.63 | 0.31 |
| 6 | 0.75 | 0.44 | 7 | 0.88 | 0.60 | 8 | 1.00 | 0.79 |
| 9 | 1.13 | 1.00 | 10 | 1.27 | 1.27 | 11 | 1.41 | 1.56 |
| 14 | 1.69 | 2.25 | 18 | 2.26 | 4.00 |  |  |  |

Confinement: Spiral; phi(c) $=0.75, \operatorname{phi}(b)=0.9, \quad a=0.85$
\#5 ties with \#10 bars, \#4 with larger bars.
Layout: Circular
Pattern: All Sides Equal [Cover to transverse reinforcement (ties)]
Total steel area, As $=35.56$ in^2 at $2.57 \%$
28-\#10 Cover = 3 in

04/01/13 PCACOL(tm)V2.30 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 16:09:17 Licensed to: Licensee name not yet specified.

|  | Applied Loads |  | Computed | Strength | Computed/ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pt. | (kips) | (ft-k) | (kips) | (ft-k) | Applied |
| 1 | 1510 | 1075 | 2958 | 2202 | 1.989 |



Licensed To: Licensee name not yet specified.
File name: C:\DOCUME~1 \BUIH\DESKTOP\BUI'SS~1\PIER42IN.COL

Project: FBR 0142-055
Column Id: 42IN COLUMN
Engineer: BUIH
Date: 04/01/13 Time: 15:29:32
Pe: ACI 318-89
Units: in-1b
X -axis slenderness is not considered.

Material Properties:
$\mathrm{Ec}=4067 \mathrm{ksi} \quad$ eu $=0.003 \mathrm{in} / \mathrm{in}$
$\mathrm{fc}=3.83 \mathrm{ksi}$
Es $=29000 \mathrm{ksi}$
Beta1 $=0.82$
Stress Profile: Block
$\operatorname{phi}(\mathrm{c})=0.75, \quad \operatorname{phi}(\mathrm{~b})=0.90$





| gibentley |  | Colorado DOT |  | Sheet \# | DS-5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Job \# | FBR 0142-055 |
| Program: | LEAP® RC-PIER® V8i (SELECTseries1) |  |  | By | H. BUI |
| Version: | Version: 09.00.00 |  |  | Copyright © Bentley Systems, Inc. 1984-2009. |  | Date | Dec/18/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked | H. BUI |
| File Name | SH14 OVER POUDRE RIVER IN FT. COLLINS |  |  | Date |  |


| $\begin{gathered} \text { Loc } \\ \mathrm{ft} \end{gathered}$ | $\begin{gathered} \text { AbsLoc } \\ \mathrm{ft} \end{gathered}$ | Pos | kips | Comb | Tu kips-ft | Comb | kips | kips-ft | $\text { in^} 2 / \mathrm{ft}$ | 2Ats/s in ${ }^{\wedge} 2 / \mathrm{ft}$ | $\begin{aligned} & \text { Av/s } \\ & \text { in^2/ft } \end{aligned}$ | Aprv/s <br> $\mathrm{in}^{\wedge} 2 / \mathrm{ft}$ | $\begin{gathered} A l x \\ i n^{\wedge} 2 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.55 | 29.80 | R | 535.0 | 18 | 475.0 | 525 | 203.5 | 137.5 | 1.37 | 0.61 | 1.98 | 2.99 | 0.00 |
| 6.39 | 34.64 | L | 520.5 | 18 | 475.0 | 525 | 227.9 | 137.5 | 1.15 | 0.58 | 1.73 | 2.99 | 0.00 |
|  |  | R | 146.8 | 90 | 336.2 | 523 | 368.8 | 137.5 | 0.30 | 0.34 | 0.64 | 2.99 | 0.00 |
| 12.47 | 40.72 | L | 128.5 | 90 | 336.2 | 523 | 304.5 | 137.5 | 0.28 | 0.37 | 0.64 | 1.24 | 0.00 |
|  |  | R | 312.4 | 411 | 266.7 | 831 | 262.8 | 137.5 | 0.34 | 0.31 | 0.64 | 1.24 | 0.00 |
| 18.55 | 46.80 | L | 330.7 | 411 | 266.7 | 831 | 270.0 | 137.5 | 0.34 | 0.30 | 0.64 | 3.95 | 0.00 |
|  |  | R | 690.9 | 188 | 341.6 | 621 | 190.4 | 137.5 | 2.14 | 0.45 | 2.59 | 3.95 | 0.00 |
| 20.95 | 49.20 | L | 698.1 | 188 | 341.6 | 621 | 170.1 | 137.5 | 2.39 | 0.48 | 2.87 | 3.95 | 1.35 |

## Span 4: From 50.75 ft To 73.25 ft

| $\begin{gathered} \text { Loc } \\ \mathrm{ft} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { AbsLoc } \\ \mathrm{ft} \end{gathered}$ | Pos | $\begin{gathered} \hline \mathrm{Vu} \\ \mathrm{kips} \end{gathered}$ | Comb | $\begin{gathered} \mathrm{Tu} \\ \text { kips-ft } \end{gathered}$ | Comb | kips | kips-ft | $\text { in^ } 2 / \mathrm{f}$ | /s | $\begin{aligned} & \hline \text { Av/s } \\ & \text { in^2/ft } \end{aligned}$ | $\begin{aligned} & \hline \text { Aprols Alx } \\ & \text { in } 2 / \mathrm{ft} \text { in }{ }^{\wedge} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.55 | 52.30 | R | 794.3 | 76 | 582.8 | 509 | 155.1 | 137.5 | 3.06 | 0.86 | 3.92 | 3.952 .25 |
| 2.14 | 52.89 | L | 792.5 | 76 | 582.8 | 509 | 155.3 | 137.5 | 3.05 | 0.86 | 3.91 | 3.950 .00 |
|  |  | R | 424.8 | 15 | 423.0 | 502 | 234.7 | 137.5 | 0.74 | 0.51 | 1.25 | 3.950 .00 |
| 8.22 | 58.97 | L | 406.6 | 15 | 423.0 | 502 | 246.2 | 137.5 | 0.61 | 0.50 | 1.11 | 1.240 .29 |
|  |  | R | 80.4 | 825 | 326.9 | 821 | 377.7 | 137.5 | 0.31 | 0.33 | 0.64 | 1.240 .00 |
| 14.30 | 65.05 | L | 81.7 | 176 | 326.9 | 713 | 374.1 | 137.5 | 0.31 | 0.33 | 0.64 | 1.240 .00 |
|  |  | R | 407.9 | 6 | 423.0 | 497 | 246.2 | 137.5 | 0.62 | 0.50 | 1.11 | 1.240 .29 |
| 20.39 | 71.14 | L | 426.2 | 6 | 423.0 | 497 | 234.3 | 137.5 | 0.75 | 0.51 | 1.25 | 3.950 .00 |
|  |  | R | 793.7 | 61 | 582.7 | 485 | 155.1 | 137.5 | 3.06 | 0.86 | 3.92 | 3.950 .00 |
| 20.95 | 71.70 | L | 795.4 | 61 | 582.7 | 485 | 154.9 | 137.5 | 3.07 | 0.86 | 3.93 | 3.952 .26 |

## Span 5: From 73.25 ft To 95.75 ft

| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | $\begin{gathered} \hline \text { AbsLoc } \\ \mathrm{ft} \end{gathered}$ | Pos | kips | Com | kips-ft | Comb | kips | kips-ft |  | 2Ats/s | in^2/ft | $\begin{aligned} & \text { Aprv/s Alx } \\ & \text { in^2/ft } \text { in }^{\wedge} 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.55 | 74.80 | R | 696.8 | 164 | 341.4 | 584 | 170.3 | 137.5 | 2.39 | 0.48 | 2.86 | 3.951 .34 |
| 3.97 | 77.22 | L | 689.5 | 164 | 341.4 | 584 | 190.7 | 137.5 | 2.13 | 0.45 | 2.58 | 3.950 .00 |
|  |  | R | 329.8 | 371 | 266.7 | 810 | 270.4 | 137.5 | 0.34 | 0.30 | 0.64 | 3.950 .00 |
| 10.05 | 83.30 | L | 311.6 | 371 | 266.7 | 810 | 262.7 | 137.5 | 0.34 | 0.31 | 0.64 | 1.240 .00 |
|  |  | R | 129.8 | 48 | 336.0 | 481 | 304.1 | 137.5 | 0.28 | 0.37 | 0.64 | 1.240 .00 |
| 16.14 | 89.39 | L | 148.0 | 48 | 336.0 | 481 | 369.0 | 137.5 | 0.30 | 0.34 | 0.64 | 2.990 .00 |
|  |  | R | 521.9 | 2 | 475.2 | 471 | 227.6 | 137.5 | 1.16 | 0.58 | 1.73 | 2.990 .00 |
| 20.95 | 94.20 | L | 536.3 | 2 | 475.2 | 471 | 203.2 | 137.5 | 1.38 | 0.61 | 1.99 | 2.990 .00 |

## Span 6: From 95.75 ft To 118.25 ft

| $\begin{gathered} \text { Loc } \\ \mathrm{ft} \end{gathered}$ | $\begin{gathered} \hline \text { AbsLoc } \\ \mathrm{ft} \end{gathered}$ | Pos | $\begin{gathered} \hline \mathrm{Vu} \\ \text { kips } \end{gathered}$ | Com | kips-ft | Comb | kips | kips-ft | $\begin{aligned} & \text { Avs/s } \\ & \text { in^} 2 / \mathrm{ft} \end{aligned}$ | in^2f | in^2/ft | $\begin{aligned} & \text { Aprvis } \\ & \text { in }{ }^{\wedge} 2 / f t \end{aligned}$ | $\begin{aligned} & \hline \text { s Alx } \\ & t \operatorname{in}{ }^{\wedge} 2 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.55 | 97.30 | R | 697.5 | 4 | 268.4 | 796 | 170.2 | 137.5 | 2.39 | 0.38 | 2.77 | 2.99 | 4.87 |
| 5.80 | 101.55 | L | 684.7 | 4 | 268.4 | 796 | 191.5 | 137.5 | 2.10 | 0.35 | 2.45 | 2.99 | 0.00 |
|  |  | R | 308.0 | 29 | 301.5 | 468 | 302.3 | 137.5 | 0.32 | 0.33 | 0.64 | 2.99 | 0.00 |
| 11.89 | 107.64 | L | 289.8 | 29 | 301.5 | 468 | 232.6 | 137.5 | 0.28 | 0.36 | 0.64 | 1.24 | 0.53 |
|  |  | R | 132.3 | 4 | 390.9 | 440 | 255.3 | 137.5 | 0.19 | 0.45 | 0.64 | 1.24 | 0.00 |
| 17.97 | 113.72 | L | 150.6 | 4 | 390.9 | 440 | 300.5 | 137.5 | 0.22 | 0.43 | 0.64 | 2.48 | 0.00 |
|  |  | R | 518.4 | 29 | 508.1 | 462 | 226.6 | 137.5 | 1.15 | 0.62 | 1.77 | 2.48 | 0.11 |
| 20.95 | 116.70 | L | 527.3 | 29 | 508.1 | 462 | 226.2 | 137.5 | 1.19 | 0.62 | 1.81 | 2.48 | 0.00 |

## Span 7: From 118.25 ft To 124.00 ft



| $5 \text { Bentley }$ |  | Colorado DOT |  | Sheet \# | DS-6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Job \# | FBR 0142-055 |
| Program: | LEAP® RC-PIER® V8i (SELECTseries1) |  |  | By | H. BUI |
| Version: | Version: 09.00.00 |  |  | Copyright © Bentley Systems, Inc. 1984-2009. |  | Date | Dec/18/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked | H. BUI |
| File Name | SH14 OVER POUDRE RIVER IN FT. COLLINS |  |  | Date |  |


| Shear and Torsion Design : Notes |
| :--- |
| -Pos is the design position. L suggests the calculation is done at immediate left of "Loc" and $R$ suggests at immediate right of it. |
| -T-lim is the limiting value of torsion for the concrete section. If actual torsion is higher than this value, torsional steel has to be provided. |
| - Avs/s is the required area of steel per unit length for shear force. |
| -2Ats/s is the required area of steel per unit length for two legs of torsional reinforcement. |
| -Av/s is the total required area of steel per unit length due to shear plus torsion. |
| -Aprvs/s is the total provided area of steel per unit length due to shear (stirups). |
| -Alx is the EFFECTIVE longitudinal steel required in addition to the PROVIDED EFFECTIVE flexural steel. |

## CRACKING/FATIGUE CHECK

| Span 1: From 0.00 ft To 5.75 ft |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | $\begin{array}{cc} \text { AbsLoc } & \begin{array}{c} \mathrm{H} \\ \mathrm{ft} \end{array} \\ \text { in } \end{array}$ | Cracking Comb | Cracking fs-t fs-b ksi | $\begin{gathered} \text { Cracking } \\ \text { dc } \\ \text { in } \end{gathered}$ | Cracking Srqt Srqb in | Cracking Sprt Sprb in | Fatigue fs-t fs-b ksi | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| 4.20 | 4.248 .0 | 1753 | 0.4 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |



$$
\begin{aligned}
& \frac{8.3}{8.1}=1.025 \\
& 2.5 \%<5 \% \quad \text { ok }
\end{aligned}
$$

Span 3: From 28.25 ft To 50.75 ft

| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | $\begin{array}{cc} \text { AbsLoc } & \begin{array}{c} \mathrm{H} \\ \mathrm{ft} \end{array} \\ \text { in } \end{array}$ | Cracking Comb | $\begin{gathered} \hline \text { Cracking } \\ \text { fs-t } \\ \text { fs-b } \\ \text { ksi } \\ \hline \end{gathered}$ | Cracking dc in | Cracking <br> Srqt <br> Srqb <br> in | Cracking Sprt Sprb in | Fatigue fs-t fs-b ksi | Fatigue ratio is t ratio fs-b | Fatigue Comb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.55 | 29.848 .0 | 3574 | 20.2 | 3.3 | 24.9 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 6.39 | 34.648 .0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |


| Bentley |  | Colorado DOT |  | Sheet \# | DS-7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Job\# | FBR 0142-055 |
| Program: | LEAP® RC-PIER® V8i (SELECTseries1) |  |  | By | H. BUI |
| Version: | Version: 09.00 .00 |  |  | Copyright © Bentley Systems, Inc. 1984-2009. |  | Date | Dec/18/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked | H. BUI |
| File Name: ${ }^{\text {SH14 OVER POUDRE RIVER IN FT. COLLINS }}$ |  |  |  | Date |  |


| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | AbsLoc | $\begin{aligned} & \mathrm{H} \\ & \text { in } \end{aligned}$ | Cracking Comb | Cracking fs-t fs-b ksi | Cracking dc in | Cracking Srqt Srqb in | Cracking Sprt Sprb in | Fatigue fs-t fs-b ksi | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3567 | 16.9 | 3.3 | 31.0 | 6.9 | 0.0 | 0.00 | 0 |
| 12.47 | 40.7 | 48.0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 3498 | 24.4 | 3.3 | 19.5 | 6.9 | 0.0 | 0.00 | 0 |
| 18.55 | 46.8 | 48.0 | 3495 | 11.2 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 20.95 | 49.2 | 48.0 | 3565 | 30.6 | 3.3 | 14.2 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |


| Span 4: From 50.75 ft To 73.25 ft |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | $\begin{array}{cc} \text { AbsLoc } & \mathrm{H} \\ \mathrm{ft} & \text { in } \end{array}$ | Cracking Comb | $\begin{gathered} \hline \text { Cracking } \\ \text { fs-t } \\ \text { fs-b } \\ \text { ksi } \\ \hline \end{gathered}$ | Cracking dc in | $\begin{gathered} \hline \text { Cracking } \\ \text { Srqt } \\ \text { Srqb } \\ \text { in } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Cracking } \\ \text { Sprt } \\ \text { Sprb } \\ \text { in } \\ \hline \end{gathered}$ | Fatigue fs-t fs-b ksi | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| 1.55 | 52.348 .0 | 3554 | 20.9 | 3.3 | 23.9 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 2.14 | 52.948 .0 | 3554 | 15.5 | 3.3 | 34.5 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 8.22 | 59.048 .0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 3495 | 23.1 | 3.3 | 20.9 | 6.9 | 0.0 | 0.00 | 0 |
| 14.30 | 65.148 .0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 3486 | 23.0 | 3.3 | 21.0 | 6.9 | 0.0 | 0.00 | 0 |
| 20.39 | 71.148 .0 | 3543 | 15.6 | 3.3 | 34.1 | 8.3 | 0.0 | 0.00 | 0 |
|  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 20.95 | 71.748 .0 | 3543 | 20.8 | 3.3 | 23.9 | 8.3 | 0.0 | 0.00 | - 0 |
|  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |


| Span 5: From 73.25 ft To 95.75 ft |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Loc } \\ & \text { it } \end{aligned}$ | $\begin{gathered} \text { AbsLoc } \\ \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \text { H } \\ & \text { in } \end{aligned}$ | Cracking Comb | $\begin{gathered} \hline \text { Cracking } \\ \text { fs-t } \\ \text { fs-b } \\ \text { ksi } \\ \hline \end{gathered}$ | Cracking dc in | Cracking Srqt Srqb in | Cracking Sprt Sprb in | $\begin{gathered} \text { Fatigue } \\ \text { fs-t } \\ \text { fs-b } \\ \text { ksi } \\ \hline \end{gathered}$ | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| 1.55 | 74.8 | 48.0 | 3538 | 30.6 | 3.3 | 14.2 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 3.97 | 77.2 | 48.0 | 3486 | 11.1 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |
| 10.05 | 83.3 | 48.0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 3482 | 24.4 | 3.3 | 19.5 | 6.9 | 0.0 | 0.00 | 0 |
| 16.14 | 89.4 | 48.0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 3527 | 16.8 | 3.3 | 31.2 | 6.9 | 0.0 | 0.00 | 0 |
| 20.95 | 94.2 | 48.0 | 3526 | 20.2 | 3.3 | 24.8 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |


| Span 6: From 95.75 ft To 118.25 ft |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | $\begin{aligned} & \text { AbsLoc } \\ & \mathrm{ft} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \text { in } \end{aligned}$ | Cracking Comb | Cracking fs-t fs-b ksi | Cracking dc in | Cracking Srqt Srqb in | Cracking <br> Sprt <br> Sprb <br> in | Fatigue fs-t fs-b ksi | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| 1.55 | 97.3 | 48.0 | 3521 | 43.4 | 3.3 | 8.1 | $8.3^{*}$ ) | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | -6.9 | 0.0 | 0.00 | 0 |
| 5.80 | 101.6 | 48.0 | 3482 | 4.4 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 3484 | 8.4 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |


| BiBntley |  | Colorado DOT |  | Sheet \# | DS-8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Job \# | FBR 0142-055 |
| Program: | LEAP® RC-PIER® V8i (SELECTseries1) |  |  | By | H. BUI |
| Version: | Version: 09.00.00 |  |  | Copyright © Bentley Systems, Inc. 1984-2009. |  | Date | Dec/18/2012 |
|  |  | www.bentley.com | Phone: 1-800-778-4277 | Checked | H. BUI |
| File Name: SH14 $^{\text {O }}$ OVER POUDRE RIVER IN FT. COLLINS |  |  |  | Date |  |


| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | AbsLoc ft | $\begin{aligned} & \text { H } \\ & \text { in } \end{aligned}$ | Cracking Comb | Cracking fs-t fs-b ksi | Cracking dc in | Cracking Srqt Srqb in | Cracking Sprt Sprb in | Fatigue fs-t fs-b ksi | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11.89 | 107.6 | 48.0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 3514 | 37.0 | 3.3 | 10.6 | 6.9 | 0.0 | 0.00 | 0 |
| 17.97 | 113.7 | 48.0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 3509 | 35.8 | 3.3 | 11.2 | 6.9 | 0.0 | 0.00 | 0 |
| 20.95 | 116.7 | 48.0 | 0 | 0.0 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 2186 | 22.5 | 3.3 | 21.6 | 6.9 | 0.0 | 0.00 | 0 |


| Span 7: From 118.25 ft To 124.00 ft |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Loc } \\ & \mathrm{ft} \end{aligned}$ | AbsLoc ft | $\begin{aligned} & \text { H } \\ & \text { in } \end{aligned}$ | Cracking Comb | Cracking fs-t fs-b ksi | Cracking dc in | Cracking Srqt Srqb in | Cracking Sprt Sprb in | Fatigue fs-t fs-b ksi | Fatigue ratio fs-t ratio fs-b | Fatigue Comb |
| 1.55 | 119.8 | 48.0 | 1969 | 0.4 | 3.3 | 48.0 | 8.3 | 0.0 | 0.00 | 0 |
|  |  |  | 0 | 0.0 | 3.3 | 48.0 | 6.9 | 0.0 | 0.00 | 0 |

## Cracking and fatigue Check : Notes

* Provided rebar spacing is not adequate for crack control.

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)


| By: HB Date $7 / 13$ | Project no. | FBR 0142-055 | Project code (SAAH): 18085 |
| :---: | :---: | :--- | :---: | :---: |
| Chk'd:KLPDate $8 / 13$ | Structure no. | $B-16-E V$ | Sheet 457 of 508 |
| CDOT Form \#1034 3/ |  |  |  |

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

Dowel Design at pier


$$
V_{u}=\max (4792.02(0.15), 563.2)=718.8 \mathrm{~K}
$$

Diaphragm Length $=121.5^{\prime}$



COLORADO DEPARTMENT OF TRANSPORTATION
DESGIN computations (anta)


COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)


Project:
$7:$
Date:
Checked:
Date:
Page:

Reactions - kips, kip ft


Shear - kips


Moment - kip ft


Rotation - radians


Deflection - inches


## Project:

y
Date:
Checked:
Date:
Page:

Analysis Data:
Beam Length $=$ 127. feet
Number of Nodes $=224$
Number of Elements $=223$
Number of Degrees of Freedom $=448$

Reactions:

| X | Vert <br> kips | Rot <br> kip ft |
| ---: | ---: | ---: |
| 7.250 | 449.389 |  |
| 22.250 | 484.881 |  |
| 37.250 | 475.798 |  |
| 52.250 | 519.232 |  |
| 69.125 | 556.728 |  |
| 86.000 | 543.508 |  |
| 102.875 | 561.360 |  |
| 119.750 | 469.064 |  |

Equilibrium:

| Force | Reaction | Diff |
| ---: | ---: | ---: | ---: |
| Vert -4059.960 | 4059.960 | 0.000 kips |
| Rot 258045.841 | -258046 | -0.000 kip ft |

Min \& Max values:

| Min Shear | $=$ | -387.536 | kips | at | 69.125 |
| :--- | :--- | ---: | :--- | ---: | :--- |
| feet |  |  |  |  |  |
| Max Shear | $=$ | 391.316 kips | at | 102.875 | feet |
| Min Moment | $=-715.633 \mathrm{kip} \mathrm{ft}$ | at | 102.875 | feet |  |
| Max Moment | $=$ | 615.827 kip ft | at | 112.625 | feet |
| Min Rotation | $=$ | -0.0001166 | radians at | 116.205 | feet |
| Max Rotation | $=0.0001093$ radians at | 55.880 feet |  |  |  |
| Min Deflection $=$ | -0.007733 in | at | 111.760 | feet |  |
| Max Deflection $=$ | 0.0001519 in | at | 120.650 | feet |  |

## Project:

Date: Checked:
Date:
Page:

|  | $\begin{gathered} \mathrm{x} \\ \text { in } \end{gathered}$ | $\begin{array}{r} \text { EI } \\ \text { kip in^2 } \\ \hline \end{array}$ | Shear kips | Moment kip in | Rotation rad | Disp in |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.000 | $1.921 e+009$ | 0.000 | 0.000 | -0.0001049 | -0.007691 |  |  |
|  | 7.620 | $1.921 \mathrm{e}+009$ | -22.968 | -40.531 | -0.0001049 | -0.006891 |  |  |
|  | 22.860 | $1.921 e+009$ | -26.003 | -413.687 | -0.0001031 | -0.005303 |  |  |
|  | 38.100 | $1.921 e+009$ | -29.038 | -833.101 | -9.818e-005 | -0.003765 |  |  |
|  | 53.340 | $1.921 \mathrm{e}+009$ | -32.074 | -1298.773 | -8.975e-005 | -0.002328 |  |  |
|  | 66.000 | $1.921 \mathrm{e}+009$ | -34.595 | -1720.785 | -7.982e-005 | -0.001252 |  |  |
|  | 76.200 | $1.921 e+009$ | -283.193 | -4598.998 | -6.305e-005 | -0.000510 |  |  |
|  | * 87.000 | $1.921 e+009$ | -285.344 | -7669.103 | -2.858e-005 | 0.000000 |  |  |
|  | 99.060 | $1.921 e+009$ | 161.643 | -5705.207 | $1.338 \mathrm{e}-005$ | 0.000079 |  |  |
|  | 114.300 | $1.921 \mathrm{e}+009$ | 158.607 | -3264.900 | $4.893 \mathrm{e}-005$ | -0.000420 |  |  |
|  | 129.540 | $1.921 e+009$ | 155.572 | -870.851 | $6.53 \mathrm{e}-005$ | -0.001315 |  |  |
|  | 144.780 | $1.921 e+009$ | 152.537 | 1476.940 | $6.286 \mathrm{e}-005$ | -0.002315 |  |  |
|  | 160.020 | $1.921 \mathrm{e}+009$ | 149.502 | 3778.473 | $4.199 \mathrm{e}-005$ | -0.003137 |  |  |
|  | 174.000 | $1.921 \mathrm{e}+009$ | 146.717 | 5849.043 | $6.938 \mathrm{e}-006$ | -0.003497 |  |  |
|  | 182.880 | $1.921 \mathrm{e}+009$ | -126.459 | 4733.937 | $-1.753 \mathrm{e}-005$ | -0.003446 |  |  |
|  | 198.120 | $1.921 \mathrm{e}+009$ | -129.495 | 2783.567 | -4.737e-005 | -0.002932 |  |  |
|  | 213.360 | $1.921 \mathrm{e}+009$ | -132.530 | 786.939 | -6.156e-005 | -0.002081 |  |  |
|  | 228.600 | $1.921 \mathrm{e}+009$ | -135.565 | -1255.946 | -5.973e-005 | -0.001137 |  |  |
|  | 243.840 | $1.921 \mathrm{e}+009$ | -138.601 | -3345.090 | -4.152e-005 | -0.000344 |  |  |
|  | 259.080 | $1.921 \mathrm{e}+009$ | -141.636 | -5480.491 | -6.542e-006 | 0.000044 |  |  |
| * | 267.000 | $1.921 \mathrm{e}+009$ | -143.213 | -6608.494 | $1.837 \mathrm{e}-005$ | 0.000000 |  |  |
|  | 281.940 | $1.921 e+009$ | 338.692 | -1526.206 | $4.997 \mathrm{e}-005$ | -0.000560 |  |  |
|  | 289.560 | $1.921 \mathrm{e}+009$ | 67.834 | -987.365 | $5.492 \mathrm{e}-005$ | -0.000961 |  |  |
|  | 304.800 | $1.921 \mathrm{e}+009$ | 64.799 | 23.303 | $5.871 \mathrm{e}-005$ | -0.001837 |  |  |
|  | 320.040 | $1.921 e+009$ | 61.764 | 987.713 | $5.467 \mathrm{e}-005$ | -0.002710 |  |  |
|  | 335.280 | $1.921 \mathrm{e}+009$ | 58.729 | 1905.865 | $4.317 \mathrm{e}-005$ | -0.003465 |  |  |
|  | 350.520 | $1.921 e+009$ | 55.693 | 2777.759 | $2.456 \mathrm{e}-005$ | -0.003990 |  |  |
|  | 365.760 | $1.921 e+009$ | 52.658 | 3603.395 | -7.81e-007 | -0.004180 |  |  |
|  | 381.000 | $1.921 \mathrm{e}+009$ | 49.623 | 4382.773 | -3.249e-005 | -0.003934 |  |  |
|  | 390.000 | $1.921 e+009$ | 47.830 | 4821.311 | -5.405e-005 | -0.003546 |  |  |
|  | 403.860 | $1.921 e+009$ | -224.723 | 1725.776 | -7.769e-005 | -0.002607 |  |  |
|  | 419.100 | $1.921 \mathrm{e}+009$ | -227.759 | -1722.136 | -7.774e-005 | -0.001388 |  |  |
|  | 434.340 | $1.921 \mathrm{e}+009$ | -230.794 | -5216.306 | -5.025e-005 | -0.000378 |  |  |
| * | 447.000 | $1.921 \mathrm{e}+009$ | -233.315 | -8154.118 | -6.211e-006 | 0.000000 |  |  |
|  | 457.200 | $1.921 \mathrm{e}+009$ | 240.451 | -5691.160 | $3.053 \mathrm{e}-005$ | -0.000135 |  |  |
|  | 472.440 | $1.921 e+009$ | 237.415 | -2049.821 | $6.12 \mathrm{e}-005$ | -0.000871 |  |  |
|  | 487.680 | $1.921 e+009$ | \% 234.380 | 1545.260 | $6.318 \mathrm{e}-005$ | -0.001855 |  |  |
|  | 498.000 | $1.921 e+009$ | Max 232.325 | 3953.457 | $4.84 \mathrm{e}-005$ | -0.002442 |  |  |
|  | 510.540 | $1.921 e+009$ | -40.220 | 3464.759 | $2.417 \mathrm{e}-005$ | -0.002893 |  |  |
|  | 525.780 | $1.921 e+009$ | -43.255 | 2828.679 | -8.211e-007 | -0.003065 |  |  |
|  | 541.020 | $1.921 e+009$ | -46.290 | 2146.341 | -2.058e-005 | -0.002895 |  |  |
|  | 556.260 | $1.921 e+009$ | -49.326 | 1417.745 | -3.475e-005 | -0.002466 |  |  |
|  | 571.500 | $1.921 e+009$ | -52.361 | 642.892 | -4.295e-005 | -0.001866 |  |  |
|  | 586.740 | $1.921 e+009$ | -55.396 | -178.220 | -4.483e-005 | -0.001189 | *@ | Support |
|  | 601.980 | $1.921 \mathrm{e}+009$ | -58.432 | -1045.590 | -4e-005 | -0.000534 |  | support |
|  | 609.600 | $1.921 \mathrm{e}+009$ | -328.518 | -2463.470 | $-3.406 e-005$ | -0.000248 |  |  |
|  | * 624.840 | $1.921 e+009$ | -331.554 | -7493.218 | $5.399 \mathrm{e}-006$ | 0.000021 |  |  |
|  | 632.460 | $1.921 \mathrm{e}+009$ | 186.161 | -7190.431 | $3.611 \mathrm{e}-005$ | -0.000139 |  |  |
|  | 647.700 | $1.921 \mathrm{e}+009$ | 183.126 | -4376.466 | $8.196 \mathrm{e}-005$ | -0.001067 |  |  |
|  | 662.940 | $1.921 e+009$ | 180.090 | -1608.758 | 0.0001057 | -0.002524 |  |  |
|  | 678.180 | $1.921 e+009$ | 177.055 | 1112.691 | 0.0001076 | -0.004177 |  |  |
|  | 693.420 | $1.921 \mathrm{e}+009$ | 174.020 | 3787.882 | $8.813 \mathrm{e}-005$ | -0.005695 |  |  |
|  | 708.660 | $1.921 e+009$ | 170.985 | 6416.815 | $4.763 \mathrm{e}-005$ | -0.006756 |  |  |
|  | 716.280 | $1.921 e+009$ | -97.551 | 6704.607 | $2.059 \mathrm{e}-005$ | -0.007017 |  |  |
|  | 731.520 | $1.921 \mathrm{e}+009$ | -100.586 | 5194.799 | -2.663e-005 | -0.006956 |  |  |
|  | 746.760 | $1.921 \mathrm{e}+009$ | -103.622 | 3638.733 | -6.17e-005 | -0.006267 |  |  |
|  | 762.000 | $1.921 e+009$ | -106.657 | 2036.409 | -8.424e-005 | -0.005139 |  |  |

## Project:

Date:
Checked:
Date:
Page:
777.240 792.480 807.720 819.000 * 829.500 838.200 853.440 868.680 883.920 899.160 914.400 925.500
937.260 952.500 967.740
982.980
998.220
1013.460 1028.700 1036.320 1051.560 1066.800 1082.040 1097.280 1112.520 1127.760 1138.500 1150.620 1165.860 1181.100 1196.340 1211.580 1226.820 * 1234.500 1245.000 1257.300 1272.540 1287.780 1303.020 1318.260 1333.500 1348.740 1356.360 1371.600 1386.840 1402.080 1417.320 1432.560

* 1440.180 1455.420 1463.040 1478.280 1493.520 1508.760 1518.000
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$ $1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 e+009$
$1.921 \mathrm{e}+009$
$1.921 e+009$
$1.921 \mathrm{e}+009$
$1.921 e+009$
$1.921 \mathrm{e}+009$
$1.921 e+009$ $1.921 e+009$
$1.921 e+009$
$1.921 e+009$


| -112.728 |
| ---: |
| $\left\lvert\, \begin{array}{r}-115.763 \\ -118.010 \\ -387.536 \\ 167.460 \\ 164.424 \\ \hline 161.389\end{array}\right.$ |
| 158.354 |

158.354 155.318 152.283 150.072
-119.599
$-122.634$
$-125.670$
$-128.705$
$-131.740$

| -134.775 |
| :--- |
| -137.811 |

136.846
133.811
130.775
127.740
124.705
121.669
118.634
116.495
-153.338
-156.373
-159.408
$-162.444$

| -165.479 |
| :--- |
| -168.514 |$|$

$-170.044$
389.225
119.702
113.632
110.596
107.561
104.526
101.490
-168.400
-171.436
-174.471
$-177.506$

| -180.542 |
| :--- |
| -183.577 |

283.969
280.934
$\frac{33.591}{30.556}$
27.521
24.485
22.645
$387.827-9.388 e-005$ $-1307.013-9.027 e-005$ -3048.111-7.303e-005 $-4366.587-5.127 e-005$ $-8424.734-1.633 e-005$
-6960.298
$1.85 \mathrm{e}-005$
-4431. 344
6.365e-005
8.893e-005
$9.469 \mathrm{e}-005$
$8.131 e-005$
$4.915 \mathrm{e}-005$

1. $412 \mathrm{e}-005$
-2.386e-005
$5507.255-2.386 e-005$
$3661.438-6.026 e-005$
1769.364-8.183e-005
$-168.968-8.821 e-005$
$-2153.559-7.903 e-005$
$-4184.407-5.392 e-005$
$-6261.513-1.252 e-005$
$-6124.340 \quad 1.307 e-005$
-4061.936 5.344e-005
-2045.790 7.763e-005
$-75.902$
1847.728
3725.100
$5.682 \mathrm{e}-005$
$6818.859-1.462 e-005$
4975.034-5.184e-005
2615.037-8.197e-005 $208.783-9.32 \mathrm{e}-005$
$-2243.729-8.516 e-005$
$-4742.500-5.748 e-005$
$-7287.528-9.799 e-006$
-8587.591 2.193e-005
$-4489.751 \quad 5.765 e-005$
$-3002.349 \quad 8.162 e-005$
-1201.217 9.826e-005 $553.656 \quad 0.0001008$
2262.272 8.96e-005
$3924.629 \quad 6.503 \mathrm{e}-005$
5540.729 2.746e-005
7110.571-2.275e-005
$6573.852-5.083 e-005$
3984.302-9.274e-005
1348.494 -0.0001139
$-1333.572-0.000114$
$-4061.895-9.264 e-005$
$-6836.477-4.944 e-005$
$-6749.492-2.078 e-005$
$-2444.931 \quad 1.566 e-005$
$-1548.956 \quad 2.274 e-005$
-1060.155 3.306e-005
$-617.612 \quad 3.968 e-005$
-221.327 4.298e-005
-3.585 4.351e-005
$-0.003765$ $-0.002344$
$-0.001083$
$-0.000374$
0.000000
$-0.000014$
$-0.000666$
-0.001853
$-0.003277$
$-0.004642$
$-0.005660$
-0.006020
$-0.005955$
$-0.005295$
$-0.004193$
-0.002878
$-0.001584$
$-0.000550$
$-0.000023$
$-0.000026$
$-0.000553$
$-0.001572$
$-0.002839$
$-0.004116$
$-0.005169$
$-0.005773$
$-0.005808$
-0.005393
$-0.004350$
$-0.002991$
-0.001607
$-0.000495$
0.000043
0.000000
-0.000437
$-0.001304$
$-0.002693$
-0.004227
$-0.005695$
-0.006890
-0.007611
-0.007663
-0.007381
-0.006261
-0.004660
$-0.002896$
-0.001294
-0.000183
0.000085
0.000080
-0.000068
-0.000498
-0.001057
-0.001691
$-0.002091$


## Shear Design for Abutment Lower Cap

 Cap 51' x 36'Ultimate Loads from Winbeam

$$
\begin{array}{llll}
\mathrm{M}_{\mathrm{u}}:=715.633 & \mathrm{~K} \text {-ft } & \mathrm{M}_{\mathrm{u}}=715.633 & \mathrm{~K} \text {-ft } \\
\mathrm{V}_{\mathrm{u}}:=234.38 & \mathrm{~K} & \mathrm{~V}_{\mathrm{u}}=234.38 & \mathrm{~K}
\end{array}
$$

Materials

$$
f_{y}:=60 \quad \text { ksi } \quad f_{c}^{\prime}:=4.5 \quad \text { ksi }
$$

Total Strength I Flexure required (bending about transverse horizontal axis) (AASHTO LRFD Design 2012 - Sec. 5.7.3.3.2 \& Sec. 5.4.2.6)

$$
\begin{aligned}
& f_{r}:=0.24 \cdot \sqrt{f_{c}^{\prime}} \\
& \mathrm{I}:=\frac{36 \cdot(51)^{3}}{12} \\
& \mathrm{f}_{\mathrm{r}}=0.509 \\
& \mathrm{I}=3.98 \times 10^{5} \quad \mathrm{in}^{4} \\
& \mathrm{~S}_{\mathrm{c}}:=\frac{\mathrm{I}}{\left(\frac{51}{2}\right)} \\
& \mathrm{S}_{\mathrm{c}}=1.561 \times 10^{4} \quad \mathrm{in}^{3} \\
& M_{c r}:=\left(0.75 \cdot 1.6 \cdot \mathrm{~S}_{\mathrm{C}} \cdot \mathrm{f}_{\mathrm{r}}\right) \cdot \frac{1}{12} \\
& \mathrm{M}_{\mathrm{cr}}=794.528 \\
& \text { K-ft } \\
& M_{u v}:=\max \left(M_{u}, \min \left(M_{c r}, 1.33 \cdot M_{u}\right)\right) \\
& \mathrm{M}_{\mathrm{u}}=794.528 \\
& \text { K-ft } \\
& d_{s}:=46.67 \quad \text { in } \\
& \mathrm{A}_{\mathrm{s}}:=1.56 \cdot 3 \quad \mathrm{in}^{2} \\
& \mathrm{~b}:=36 \text { in } \\
& \mathrm{a}:=\frac{\mathrm{A}_{\mathrm{S}} \cdot \mathrm{f}_{\mathrm{y}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \mathrm{~b}} \quad \mathrm{a}=2.039 \quad \text { in }
\end{aligned}
$$

Shear resistance by stirrups \# 5 spacing 12"
(AASHTO LRFD Design 2012 - Sec. 5.8.2.5, 5.8.3.3, 5.8.3.4, \& App. B5)

$$
M_{\mu v}:=M_{u} \cdot(12)
$$

$$
\mathrm{M}_{\mathrm{u}}=9.534 \times 10^{3} \quad \mathrm{~K} \text {-in }
$$

$$
\mathrm{E}_{\mathrm{s}}:=29000 \quad \mathrm{ksi}
$$

$$
\mathrm{V}_{\mathrm{u}}=234.38 \quad \mathrm{~K}
$$

$\mathrm{A}_{\mathrm{m}}:=3 \cdot(1.56) \quad \mathrm{in}^{2}$

No prestress: $\quad V_{p}:=0 \quad$ Apsfpo $:=0 \quad$ EpAps $:=0$

No factored axial force:
$N_{u}:=0$
$\phi:=0.9$
$\mathrm{s}:=12$ in
$b_{v}:=36$
in
$d_{v}:=d_{s}-\frac{a}{2}$
$d_{v}=45.65 \quad$ in
$\mathrm{A}_{\mathrm{v}}:=0.31 \cdot 2 \quad \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{v}}=0.62 \quad \mathrm{in}^{2}$
$\begin{array}{llll}\mathrm{A}_{v}=0.62 & \text { in }^{2} & > & 0.0316 \cdot \sqrt{\mathrm{f}_{\mathrm{c}}} \cdot \frac{\mathrm{b}_{v} \cdot \mathrm{~s}}{\mathrm{f}_{\mathrm{y}}}=0.483\end{array}$
$\varepsilon_{\mathrm{s}}:=\frac{\frac{\left|M_{u}\right|}{d_{v}}+0.5 \cdot N_{u}+\left|V_{u}-V_{p}\right|-A p s f p o}{E_{s} \cdot A_{s}+E p A p s} \quad \varepsilon_{s}=3.266 \times 10^{-3}$
$\theta:=29+3500 \cdot \varepsilon_{\mathrm{s}}$
$\theta=40.43 \quad \circ$
$\theta:=(\theta) \cdot\left(\frac{\pi}{180}\right)$
$\theta=0.706$
rad
$s_{x}:=\min \left(d_{v}, 43.34\right)$
$s_{x}=43.34 \quad$ in

$$
\mathrm{a}_{\mathrm{g}}:=0.75 \quad \text { in }
$$

$s_{x e}:=\min \left(\max \left(12.0, s_{x} \cdot \frac{1.38}{a_{g}+0.63}\right), 80.0\right)$

$$
s_{x e}=43.34 \quad \text { in }
$$

$$
\beta:=\left\lvert\, \begin{aligned}
& \frac{4.8}{1+750 \cdot \varepsilon_{\mathrm{s}}} \text { if } A_{v} \geq 0.0316 \cdot \sqrt{\mathrm{f}_{\mathrm{c}}} \cdot \frac{\mathrm{~b}_{\mathrm{v}} \cdot \mathrm{~s}}{\mathrm{f}_{\mathrm{y}}} \\
& \left(\frac{4.8}{1+750 \cdot \varepsilon_{\mathrm{s}}}\right) \cdot\left(\frac{51}{39+\mathrm{s}_{\mathrm{xe}}}\right) \text { otherwise }
\end{aligned}\right.
$$

$$
\beta=1.392
$$

$V_{c}:=0.0316 \cdot \beta \cdot \sqrt{f_{c}^{\prime}} \cdot b_{v} \cdot d_{v}$
$V_{c}=153.301 \quad K$
$\alpha:=(90) \cdot\left(\frac{\pi}{180}\right)$
$V_{S}:=\frac{A_{v} \cdot f_{y} \cdot d_{V} \cdot\left(\frac{1}{\tan (\theta)}+\frac{1}{\tan (\alpha)}\right) \cdot \sin (\alpha)}{s}$
$V_{s}=166.103 \quad \mathrm{~K}$
$V_{\mathrm{n}}:=\min \left[\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{p}}\right),\left(0.25 \cdot \mathrm{f}_{\mathrm{c}} \cdot \mathrm{b}_{\mathrm{V}} \cdot \mathrm{d}_{\mathrm{v}}+\mathrm{V}_{\mathrm{p}}\right)\right]$
$V_{n}=319.403 \quad K$

内 $:=0.9$
$\mathrm{V}_{\mathrm{r}}:=\phi \cdot \mathrm{V}_{\mathrm{n}}$
$V_{r}=287.463 \quad K$
$V_{u}<V_{r} \quad O K$

巨

| ULTIMATE MOMENT CAPACITY |  |
| :---: | :---: |
|  | Pj (T) ${ }^{\text {c }}$ |
|  | P] ( $\mathrm{T}_{2}$ ) $=$ |
|  | Pf ( $\mathrm{T}^{\text {J }}$ ) |
| Trial distance from the top to the N.A. ( (n) = |  |
| Concrote | Dopth (Fr. Top) |
|  | 51.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
| mill Reintorcting | Depth (FF. Top) |
|  | 46.67 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
|  | 0.00 |
| Pretension T 1 | 0.00 |
| Pretension T2 | 0.00 |
| Protenstion T3 | 0.00 |
|  | e for Mn |
|  | 1068.22 |
|  | 961.40 |

(1) Moment about N.A.
(2) Moment about Centrold of Compession Bock(s)

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

ABUTMENT SHEAR KEY DESIGN FOR SEISMIC LOAD

From the CST (SA P2000) output for Extreme Event I load combination, The gravity factored Load on top of Abutment bearing is 1981.6 K

SEismic Lateral Load
From Geology report, SDI $=0.08<0.15 \Rightarrow$ seismic zone 1 (tab. 3.10.6-1)
$A_{s}=0.094>0.05 \Rightarrow$ Horizontal connection force shall not be less than 0.15 times the vertical reaction $(3.10 .9 .2)$

The maximuen spectral acceleration e is $20.2 \%$
Lateral Load on Longitudinal Direction:
Load on Bearing Type I

$$
\begin{aligned}
& P_{u}=1981.6(0.202)=400.3 \mathrm{c} / \text { Abut. } \\
& P_{4}=\frac{400.3}{14}=28.6 \mathrm{k} / \text { Bearing }
\end{aligned}
$$

$$
P_{R}=P_{n} \phi \quad(\phi=1.0,14.6 .1)
$$

$$
P_{n}=G A \frac{\Delta_{u}}{h_{r t}} \quad, \quad h_{r t} \geqslant 2 \Delta_{u} \quad(14 \cdot 7 \cdot 5 \cdot 3 \cdot 2-1)
$$

$$
P_{n} \leqslant \operatorname{GA} \frac{\Delta_{n}}{2 \Delta_{n}}=\frac{\operatorname{Gi} 4}{2}
$$

$$
P_{n} \leqslant \frac{0.1(16.5)^{2}}{2}=13.61 \mathrm{~K}
$$

Bearings: $P_{R}=13.61(14)(1)=190.6 \mathrm{~K} /$ Abut.
Backfill: $P_{R}=\frac{4}{2(3)}(.125)(8.03)^{2}(125)=67 / .7 k / 460 \%, \quad K=\frac{4}{3}$

$$
190.6+671.7=862.3 \mathrm{~K}>400.3 \mathrm{~K} \quad 0 k
$$

Lateral Load on transience direction
Load on shear Kay

$$
P_{n}=1983.1(0.25)=495.8 \quad \text { E/Abut }
$$

| By: HB Date $7 / 13$ | Project no. FBR $0142-055$ | Project code (SA\#): $/ 8085$ |  |
| :---: | :--- | :--- | :--- |
| Chk'diKLP Date $8 / 13$ | Structure no. | B-/6-EV | Sheet 471 of 508 |



| By:HB Date $7 / 13$ | Project no. FBR 0/42-055 | Project code (SAAF): 18085 |
| :---: | :--- | :---: | :---: |
| Chk'd:KLPDate 8/13 | Structure no. B-/6-EV | Sheet 472 of 508 |



 슨

人


COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)


## COLORADO DEPARTMENT OF TRANSPORTATION

 DESIGN COMPUTATIONS (Grid)


$$
\begin{aligned}
& \text { 否 }
\end{aligned}
$$

SH 14 at Poudre - Scour Results at upstream BR face

|  | Ground Elev <br> (ft) | Long-Term Degradation ( t ) | Contraction Scour (ft) | Abutment Scour ( tt ) | Pressure Scour (ft) | Pier Scour <br> (ft) | $\begin{array}{\|c\|} \text { Total } \\ \text { Scour }(\mathrm{tt}) \end{array}$ | Scour Elev <br> ( ft ) | Total Scour (ti) with Abutment Protection (negates Abutment Scour) | Scour Elev ( t ) with Abutment Protection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abutment 1 | 4931.00 | 1.00 | 0.00 | 24.70 | 0.00 |  | 25.70 | 4905.30 | 1.00 | 4930.00 |
| Pier 2 | 4930.27 | 1.00 | 0.00 |  | 0.00 | 5.77 | 6.77 | 4923.50 | 6.77 | 4923.50 |
| Pier 3 | 4930.12 | 1.00 | 0.00 |  | 0.00 | 5.78 | 6.78 | 4923.34 | 6.78 | 4923.34 |
| Pier 4 | 4929.34 | 1.00 | 0.00 |  | 0.00 | 6.39 | 7.39 | 4921.95 | 7.39 | 4921.95 |
| Channel | 4926.15 | 1.00 | 0.00 |  | 0.00 |  | 1.00 | 4925.15 | -1.00 | 4925.15 |
| Pier 5 | 4928.75 | 1.00 | 0.00 |  | 0.00 | 6.46 | 7.46 | 4921.29 | 7.46 | 4921.29 |
| Abutment 6 | 4932.59 | 1.00 | 0.00 | 16.80 | 0.00 |  | 17.80 | 4914.79 | 1.00 | 4931.59 |

100-Year Scour Results

|  | Ground Elev <br> (ft) | Long-Term Degradation <br> ( t ) | Contraction Scour (ft) | Abutment <br> Scour (ft) | Pressure Scour (ft) | Pier Scour <br> (tt) | Total Scour (ft) | Scour Elev <br> (ft) | Total Scour (ft) with Abutment Protection (negates Abutment Scour) | Scour Elev (ft) with Abutment Protection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abutment 1 | 4931.00 | 1.00 | 0.00 | 29.70 | 0.00 |  | 30.70 | 4900.30 | 1.00 | 4930.00 |
| Pier 2 | 4930.27 | 1.00 | 0.00 |  | 0.00 | 6.50 | 7.50 | 4922.77 | 7.50 | 4922.77 |
| Pier 3 | 4930.12 | 1.00 | 0.00 |  | 0.00 | 6.51 | 7.51 | 4922.61 | 7.51 | 4922.61 |
| Pier 4 | 4929.34 | 1.00 | 0.00 |  | 0.00 | 6.13 | 7.13 | 4922.21 | 7.13 | 4922.21 |
| Channel | 4926.15 | 1.00 | 0.00 |  | 0.00 |  | 1.00 | 4925.15 | 1.00 | 4925.15 |
| Pier 5 | 4928.75 | 1.00 | 0.00 |  | 0.00 | 6.19 | 7.19 | 4921.56 | 7.19 | 4921.56 |
| Abutment 6 | 4932.59 | 1.00 | 0.00 | 24.50 | 0.00 |  | 25.50 | 4907.09 | 1.00 | 4931.59 |

500-Year Scour Results

## DESIGN COMPUTATIONS (Grid)



TEMPORARY BRACING AT ABUTMENTS

Service Loads, V,

Girder
Wet concrete Deck
41.8k per girder
$\left.\begin{array}{l}\quad 41.8 k \text { per girder } \\ \therefore \quad 27.8 k \text { per girder }\end{array}\right\}$ From Conspan
Construction Load: $0.05(6)(64.5) \frac{1}{2}=9.7$ k. per girder
Screed Load $: \frac{2.23}{8} \frac{1}{2}+\frac{0.64}{8}=0.22$ K per girder

Factored Load, V,
$V_{1}=(41.8+27.8) 1.25+(9.7+0.22) 15=10188$ \& per girder $V_{1}=\frac{101.88}{6}=16.98 \mathrm{k}$ per ft

Factored Load $V_{2}$
$V_{2}=3(5.75)(1)(0.15)(1.25)=3.23 \mathrm{k}$ per ft
Factored Wind Load, P wind


 $\mathrm{fc}=$
$\mathrm{fy}=$
Spacing
Clear Cover
(1.25*Ab"fy)/sqrt(fc)




## Structure B-16-EV

Expansion Joint Design:
By: H. Bui, 05/2013







 DESIGN COMPUTATIONS (Grid)

NOTES:

1. Elastomeric pad, expanded polystyrene and miscellaneous hardware shall be inclucted in the bid price for items 512, Bearing Device (Type I).
2. Grade 3 elastomer shall be used. Higher grade elastomer may be Substituted for grade 3 at no additional cos to the project.
3. Shear modulus $G=0.1$ Rsi $+/-15 \%$ at $73^{\circ} \mathrm{F}$.
4. AASHTO de sign method A has been used.
5. Contractor shall support the abutment sufficiently to ensure that it remains vertical durmy and after superstructure construction. The contractor shall submit support details to the Engineer for approval. The details shall be prepared and sealed by a professional Engineer registered in the State of Coloracho.

| By: HB Date $3 / 13$ | Project no. FBR O/42-055 | Project code (SAR): 18085 |
| :---: | :--- | :---: | :---: |
| Chk'd:KLP Date $8 / 13$ | Structure no. $\quad$ B-16- IV | Sheet 492 of 508 |






| By: 4 B Date $3 / 13$ | Project no. | FBR $0142-055$ | Project code (SAA): 18085 |
| :---: | :---: | :--- | :---: | :---: |
| Chk'd:JE Date $8 / 13$ | Structure no. | B-16-EV | Sheet 499 of 508 |

COLORADO DEPARTMENT OF TRANSPORTATION
DESIGN COMPUTATIONS (Grid)


COLORADO DEPARTMENT OF TRANSPORTATION
DESIGN COMPUTATIONS (Grid)


COLORADO DEPARTMENT OF TRANSPORTATION
DESIGN COMPUTATIONS (Grid)


## DESIGN COMPUTATIONS (Grid)

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)


COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)


COLORADO DEPARTMENT OF TRANSPORTATION
DESIGN COMPUTATIONS (Grid)


## PIER GEOMETRY

| LOCATION | FINISHED GADE AT A | ELEV. A | ELEV. B | ELEV. C | ELEV. D | ELEV. E | ELEV. $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pier 2 | 4948.27 | 4944.79 | 4943.67 | 4943.43 | 4944.49 | 4939.43 | 4923.9 |
| Pier 3 | 4947.18 | 4943.70 | 4942.58 | 4942.34 | 4943.40 | 4938.34 | 4923.9 |
| Pier 4 | 4946.09 | 4942.61 | 4941.49 | 4941.25 | 4942.31 | 4937.25 | 4923.9 |
| Pier 5 | 4945.00 | 4941.52 | 4940.40 | 4940.16 | 4941.22 | 4936.16 | 4923.9 |

SUPERSTRUCTURE DEPTH

| Asphalt | 3 |  |
| :--- | :---: | :---: |
| Deck | 5 |  |
| haunch | 3 |  |
| Girder | 30 |  |
| Leveling pad | $\underline{0.75}$ |  |
|  | $\mathbf{4 1 . 7 5}$ | 3.479 FT. |

OFFSET
A to B $\quad 56$
A to C 68
A to D 15
C to E 4


[^0]:    Span:1, Beam:1
    PRESTRESSED STEEL:
    24 strands, 6/10-270K-LL, Low relaxation strands

[^1]:    Span:3, Beam:4
    PRESTRESSED STEEL:
    34 strands, $6 / 10-270 \mathrm{~K}-\mathrm{LL}$, Low relaxation strands

[^2]:    $232 / 508$

