DESIGN NOTES FOR

STRUCTURES WALL- B-16-G \& WALL B-16-H

PROJECT NO. FBR 0142-055, SA.: 18085
BY: HOANG BUI

TABLE OF CONTENTS:

1. Wall-B-16-G

- Cast-in-place retaining wall design for various heights of 3^{\prime} to 10^{\prime}
pg. 1-24
- Moment slab design
pg. 25-28
- Structure details
pg. 29-30

2. Wall-B-16-G

- Cast-in-place retaining wall design for various heights of 3^{\prime} to 9^{\prime}
pg. 31-57
- Structure details
pg. 58-61

LRFD DESIGN FOR CIP RETAINING WALL B-16-G (SOUTH WALL) AUTHOR: BUl, HUANG

I. INPUT (ENGLISH)

Concrete Density (pct)
Soil Density (pct)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Internal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (ff)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (ft)
Top wall Thickness (ft)
Wall Thickness @ Base (ft)
Front Base Length (fit)
Back Base Length (ft)
Base Thickness (fit)
Shear Key Depth (ft)
Shear Key Width (ii)
Distance from Toe to Key (ti)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
fc (psi) $=4500$
Ultimate Foundation Bearing (kef) =
Bearing Resistance Factor (${ }^{\circ}$)
Sliding Resistance Factor (Concrete on Soil) (")
Sliding Resistance Factor (Soil on Soil) (**)
Coefficient of Sliding Resistance (μ)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

LOAD FACTORS

Load Combination	$\gamma_{D C}$	$\gamma_{E V}$	$\gamma_{L S}$	$\gamma_{E H}$	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Enter 1 for using Rankine horizontal back fill, otherwise enter 0
Angle of $B . F$. of Wall to Horizontal (degree)

Active Fluid Weight (Coefficient and pct), (Ka)
Passive Fluid Weight (Coefficient and pct)
0
000

Not Submergence	Submergence
35.34	17.70
442.14	221.42

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$P_{p}=$	1.11

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{v}(\mathrm{~K} . \mathrm{Ft})$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{H}(\mathrm{~K} . \mathrm{Ft})$
Strength I (Min)	1.67	3.30	0.99	1.59
Strength I Max)	2.24	4.33	0.99	1.59
Service I	1.73	3.28	0.62	0.97

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:

$E_{\text {max }}$	$=$	0.83
x_{1}	$=$	f.
Actual e	$=$	0.02
ft. (LOCATION OF RESULTANT FROM THE TOE)		

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK:

3. CHECK BEARING FOR FOUNDATION RESTS ON SOIL

Vertical Stress (Uniform) = 0.91 ks
2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK

Vert. Sires (max.) $=\quad$ N/A ksf
Vert. Stress (min.) $=$ N/A ks

V. CHECK SLIDING

Friction Resistance $=$	0.96	k
Factored Sliding Force $=$	0.99	k
Sliding Resistance $=$	1.33	k

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Phi $=$	0.11	1.33	0.15
Ph2 $=$	0.03	0.25	0.01
Ph $=$	0.00	0.17	0.00
Ph,water $=$	0.01	0.17	0.00
Ph,sc $=$	$\underline{0.21}$	1.50	$\underline{0.32}$
	0.36		0.47

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.23	0.75	0.17
W4 $=$	0.56	0.75	0.42
W5 $=$	0.00	1.00	0.00
Pv1 $=$	0.00	1.50	0.00
Pv2 $=$	0.02	1.50	0.03
Pv3 $=$	$\underline{0.00}$	1.50	$\underline{0.00}$
	0.81		0.62

Ultimate Loads

Load Combination	Strength I (Max)		Service I	
	$V(K)$	$M(K . F t)$	$V(K)$	$M(K . F V)$
Toe	0.91	0.46	N / A	N / A
Heel	1.07	0.82	$\mathrm{~N} / \mathrm{A}$	N / A
Stem	0.59	0.79	0.36	0.47

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

Spacing $_{\text {Top }}=$	18	in
Spacing $_{\text {Boom }}=$	18	in
$\beta=$	2	
$\phi_{\text {Shear }}=$	0.9	
$A_{\text {t Top }}=$	0.13	in $^{\wedge} 2$

1. HEEL

VIl. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design
$1 \times$ DESIGN STEM FOR SHEAR

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathrm{Mu}=$

	0.47	k.ft
$f_{s 3}=$	5.67	ksi
$d_{c}=$	2.25	in
$\beta_{s}=$	1.32	
$S<=$	88.96	in

$\mathrm{S}_{\mathrm{x}}=$	7.66	in	
$\mathrm{A}_{4 \text { Sum }}=$	0.13	in^2	
$\varepsilon_{s}=$	0.000481778		
$\mathrm{~S}_{\mathrm{xe}}=$	12	in	
$>\quad \beta=$	3.53		
$>\quad$		0.59	$k G O O D$

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.5	18	2
FOOTING BOTTOM MAT	0.5	18	3
STEM	0.5	18	2

LRFD DESIGN FOR CIR RETAINING WALL B-16-G (SOUTH WALL) AUTHOR: BUl, HOANG

1. INPUT (ENGLISH)

Concrete Density (pct)
Soil Density (pct)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Internal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta\left({ }^{*}\right)$
Surcharge in Feet
Water depth behind wall, from bottom base (f)
Top Wall to Backfill Depth (fit)
Height from Top Base to Top Wall (f)
Top wall Thickness (f)
Wall Thickness @ Base (ft)
Front Base Length (f)
Back Base Length (ii)
Base Thickness (f)
Shear Key Depth (ft)
Shear Key Width (ft)
Distance from Toe to Key (ft)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
$\mathrm{Pc}(\mathrm{psi})=44500$
Ultimate Foundation Bearing (cst) =
Bearing Resistance Factor (")
Sliding Resistance Factor (Concrete on Soil) ("")
Sliding Resistance Factor (Soil on Soil) (")
Coefficient of Sliding Resistance (μ)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

LOAD FACTORS

Load Combination	γ_{DC}	γ_{EV}	γ_{LS}	γ_{EH}	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Enter 1 for using Rankine horizontal back fill, otherwise enter 0	0		
Angle of B.F. of Wall to Horizontal (degree)	90.00	Not Submergence	Submergence
Active Fluid Weight (Coefficient and pcf), (Ka)	0.283	35.34	17.70
Passive Fluid Weight (Coefficient and pct)	3.54	442.14	221.42

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$P_{p}=$	1.11

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{v}(\mathrm{~K} . \mathrm{Ft})$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{H}(\mathrm{~K} . \mathrm{Ft})$
Strength I (Min)	2.38	5.52	1.42	2.74
Strength I Max)	3.17	7.19	1.42	2.74
Service I	2.43	5.40	0.88	1.68

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:

$E_{\text {max }}$	$=$	0.96
x_{1}	$=$	1.17
ft.		
Actual $\mathrm{e}=$	0.75	ft.
(LOCATION OF RESULTANT FROM THE TOE)		

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK: NO

$E_{\text {max }}=$	N/A	ft.		
$x_{1}=$	N/A	f. (LOCATION OF RESULTANT FROM THE TOE)		
Actual $e=$	N/A	ft.		
IV. CHECK BEARING				
Actual $\mathrm{e}=$	0.51	ft.		
Bearing Resistance $=$	2.915	ksf		
1. CHECK BEARING FOR FOUNDATION RESTS ON SOIL:				YES
Vertical Sress (Uniform) =	1.13	ksf	GOOD	
2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK:				NO
Vert. Sress (max.) =	N/A	ksf		
Vert. Sress (min.) =	N/A	ksf		
V. CHECK SLIDING				
Friction Resistance $=$	1.38	k		
Factored Sliding Force $=$	1.42	k		
Sliding Resistance $=$	1.65	k	GOOD	

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Amm	Moment
Ph1 $=$	0.16	2.00	0.32
Ph2 $=$	0.07	0.50	0.04
Ph3 $=$	0.01	0.33	0.00
Ph,water $=$	0.03	0.33	0.01
Ph,sc $=$	$\underline{0.28}$	2.00	0.57

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Am	Moment
W3 $=$	0.30	1.00	0.30
W4 $=$	1.00	1.00	1.00
W5 $=$	0.00	1.33	0.00
Pv1 $=$	0.00	2.00	0.00
Pv2 $=$	0.05	2.00	0.10
Pv3 $=$	$\underline{0.01}$	2.00	$\underline{0.01}$

Ultimate Loads

Load Combination	Strength I (Max)		Service I	
	$V(K)$	$M(K . F t)$	$V(K)$	$M(K . F t)$
Toe	1.13	0.57	N / A	N / A
Heel	1.80	1.88	N / A	N / A
Stem	0.90	1.54	0.55	0.93

For conservative the ultimate shear at toe is calculated at front face of wall. VII. DESIGN FOOTING FOR SHEARS

$\mathrm{Cl}_{\text {Top fooking }}=$	2
$\mathrm{Cl}_{\text {Bottom }}$ Footing $=$	3
Top bar Diameter =	0.5
ttom bar Diameter $=$	0.5

Spacing $_{\text {Top }}=$	18
Spacingrottom $=$	18
$\beta=$	2
$\phi_{\text {shear }}=$	0.9

	d_{3} Heell $=$	9.75
	$\mathrm{a}_{\text {Heed }}=$	0.17
	$\mathrm{d}_{\mathbf{V} \text { HeNI }}=$	9.66
	$V_{R \text { Heed }}=$	13.99
2. TOE		
	$d_{3} \mathrm{Tom}=$	8.75
	$\mathrm{a}_{\text {Toe }}=$	0.17
	$\mathrm{d}_{v \mathrm{To8}}=$	8.66
	$V_{R} \mathrm{TO}_{\circ}=$	12.55

$>\quad 1.80 \quad k$
$\mathrm{A}_{8 \text { Botuom }}=0.13 \quad \mathrm{in}^{\wedge} 2$

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

```
OK
```

OK

IX. DESIGN STEM FOR SHEAR

$\mathrm{Cl}_{\text {Back Stom }}=$	2
Bar Diameter at Stem =	0.5
Spacing =	18
$\mathrm{d}_{\mathrm{s} \text { stom }}=$	7.75
$\mathrm{a}_{\text {stam }}=$	0.17
$\mathrm{d}_{\mathrm{vsmm}}=$	7.66
$\mathrm{V}_{\text {R Stom }}=$	16.10

$\mathrm{S}_{\mathrm{x}}=$	7.66	in
$\mathrm{A}_{8} \mathrm{Smm}=$	0.13	in^2
$\mathrm{C}_{4}=$	0.000871961	
$\mathrm{~S}_{\mathrm{x}}=$	12	in
$\beta=$	2.90	
$\beta \quad$	0.90	k

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)

Service $M u=$	0.93	k.ft	
	$f_{s s}=$	11.15	ksi
$d_{c}=$	2.25	in	
$\beta_{s}=$	1.32		
$S<=$	43.01	in	

 ment (5.7.3.4)
 SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.5	18	2
FOOTING BOTTOM MAT	0.5	18	3
STEM	0.5	18	2

LRFD DESIGN FOR CIP RETAINING WALLL B-16-G (SOUTH WALL)
AUTHOR: BUI, HOANG

I. INPUT (ENGLISH)

Concrete Density (pef)
Soil Density (pcf)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta(*)$
Surcharge in Feet
Water depth behind wall, from bottom base (fi)
Top Wall to Backfill Depth (f)
Height from Top Base to Top Wall (fi)
Top wall Thickness (ft)
Wall Thickness @ Base (ft)
Front Base Length (ft)
Back Base Length (fi)
Base Thickness (ft)
Shear Key Depth (fi)
Shear Key Width (f)
Distance from Toe to Key (ft)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
Pc (psi) $=4500$
Utimate Foundation Bearing (ksf) =
Bearing Resistance Factor (")
Sliding Resistance Factor (Concrete on Soil) (**)
Sliding Resistance Factor (Soil on Soil) (*)
Coefficient of Sliding Resistance (μ)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{D}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et at., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$
Sliding	ϕ_{r}	Precast concrele placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	0.22	2.67	0.58
Ph2 $=$	0.13	0.75	0.10
Ph3 $=$	0.02	0.50	0.01
Ph,water $=$	0.07	0.50	0.04
Ph,sc $=$	$\underline{0.35}$	2.50	$\underline{0.88}$

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Amm	Moment
W3 $=$	0.38	1.25	0.47
W4 $=$	1.56	1.25	1.95
W5 $=$	0.00	1.67	0.00
Pv1 $=$	0.00	2.50	0.00
Pv2 $=$	0.09	2.50	0.22
PV3 $=$	$\underline{0.01}$	2.50	$\underline{0.03}$

Ultimate Loads				
Load Combination	Strength I (Max)		Service I	
	$V(\mathrm{~K})$	M (K.Ft)	$V(\mathrm{~K})$	M (K.Fi)
Toe	1.36	0.68	N/A	N/A
Heel	2.73	3.60	N/A	N/A
Stem	1.28	2.63	0.79	1.61

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

	$\mathrm{d}_{3} \mathrm{HeNl}=$	9.75	in
	$a_{\text {Hew }}=$	0.17	in
	$d_{v} \mathrm{HeNl}=$	9.66	in
	$V_{R \text { hoel }}=$	13.99	k
2. TOE			
	$d_{3 \text { To4 }}=$	8.75	in
	$\mathrm{a}_{\text {To4 }}=$	0.17	in
	$d_{v T \infty}=$	8.66	in
	$\mathrm{V}_{\mathrm{R} \text { Tos }}=$	12.55	k

	$\mathrm{A}_{\text {top }}=$	0.13
$>$		in^{\wedge}
$>$	2.73	k

GOOD

Vili. DESIGN FOOTING FOR BENDINGS
Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design
IX. DESIGN STEM FOR SHEAR
$\mathrm{A}_{8 \text { Batom }}=0.13 \quad \mathrm{in}^{\wedge} 2$
$>\quad 1.36 \quad$ k
GOOD

$\mathrm{Cl}_{\text {Back Sum }}=$	2
Bar Diameter at Stem =	0.5
Spacing =	18
$\mathrm{d}_{\text {stomm }}=$	7.75
$a_{\text {stem }}=$	0.17
$\mathrm{d}_{\mathrm{v} \text { siom }}=$	7.66
$V_{R} \operatorname{Stam}=$	12.89

$\mathrm{S}_{\mathrm{x}}=$	7.66	in
$\mathrm{A}_{\mathrm{s} \text { Stom }}=$	0.13	$\mathrm{in}^{\wedge} 2$
$\varepsilon_{\mathrm{s}}=$	0.001420614	
$\mathrm{~S}_{\mathrm{x}}=$	12	in
$\beta \quad \beta=$	2.32	
$>\quad 1.28$	k GOOD	

Use sheet 4 (Stem Bending) for the stem bending design
OK
Check control of cracking by distribution of reinforcement (5.7.3.4)

Service $\mathrm{Mu}=$		1.61	k.ft
	$\mathbf{f}_{\mathbf{s z}}=$	19.20	ksi
	$\mathbf{d}_{\mathrm{c}}=$	2.25	in
	$\boldsymbol{\beta}_{\mathrm{s}}=$	1.32	
$\mathrm{~S}<=$	23.09	in	

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.5	18	2
FOOTING BOTTOM MAT	0.5	18	3
STEM	0.5	18	2

LRFD DESIGN FOR CIP RETAINING WALL.
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

Concreie Density (pcr)
Soil Density (pcf)
Backfill Slope β (by degree)
Intemal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (f)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (fi)
Top wall Thickness (fi)
Wall Thickness @ Base (ft)
Front Base Length (fi)
Back Base Length (ft)
Base Thickness (fi)
Shear Key Depth (ft)
Shear Key Width (fi)
Distance from Toe to Key (ft)
Front Soil Depth to Base (fi)
Enter 1 for rock foundation, 0 for soif
fc (psi) $=4500$

Utimate Foundation Bearing (ksf) =
Bearing Resistance Factor (${ }^{+\circ}$)
Sliding Resistance Factor (Concrete on Soil) (")
Sliding Resistance Factor (Soil on Soil) ("*)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

		Method / Soil / Condition	Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \end{aligned}$
Sliding	ϕ_{τ}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & \hline \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

LOAD FACTORS

Load Combination	γ_{OC}	γ_{EV}	γ_{LS}	γ_{EH}	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Enter 1 for using Rankine horizontal back fill, otherwise enter 0
Angle of B.F. of Wall to Horizontal (degree)

Active Fluid Weight (Coefficient and pct), (Ka)
Passive Fluid Weight (Coefficient and pct)
Pa

Not Submergence	Submergence
35.34	17.70
442.14	221.42

H	$=7.50$
	$0.4 \mathrm{H}=3.00$
	$0.6 \mathrm{H}=4.50$

Trial to match provided (Ka) from Geology Unit

Unfactored Vertical Loads

Uniactored Verucal Loads	Force (K)	Mo. Arm	Moment
Loads	0.81	1.42	1.15
W1 $=$	0.13	0.34	0.04
W2 $=$	0.76	2.54	1.94
W3 $=$	2.44	3.46	8.43
W4 $=$	0.00	4.00	0.00
W5 $=$	0.00	5.08	0.00
Pv1 $=$	0.29	5.08	1.45
Pv2 $=$	$\underline{0.05}$	5.08	$\underline{0.23}$
Pv3 $=$	4.47		13.25

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$\mathrm{P}_{\mathrm{p}}=$	1.11

Factored Loads and Moments

Load Combination	vertical Loads $V(K)$	Moment $M_{V}(K . F)$	Horiz. Loads $V(K)$	Moment $M_{H}(K . F T)$
Strength I (Min)	4.47	13.78	2.47	6.36
Strength I (Max)	5.91	17.83	2.47	6.36
Service I	4.47	13.25	1.56	3.95

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:

$E_{\max }=$	1.27	fl.
$x_{1}=$	1.66	f. (LOCATION OF RESULTANT FROM THE TOE)
Actual $\mathrm{e}=$	0.88	f.

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK: NO

$E_{\text {max }}=$	N/A	f.
$x_{1}=$	N/A	f. (LOCATION OF RESULTANT FROM THE TOE)
Actual $\mathrm{e}=$	NA	ft.
IV. CHECK BEARING		
Actual $\mathrm{e}=$	0.60	f.

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	0.28	3.33	0.94
Ph2 $=$	0.21	1.00	0.21
Ph3 $=$	0.04	0.67	0.02
Ph,water $=$	0.12	0.67	0.08
Ph $\mathrm{sc}=$	$\underline{0.42}$	3.00	1.27
	1.08		2.53

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment	
W3 =	0.49	1.63	0.79	
W4 =	2.44	1.63	3.96	
W5 =	0.00	2.17	0.00	
Pv1 =	0.00	3.25	0.00	
Pv2 $=$	0.14	3.25	0.46	
Pv3 $=$	$\underline{0.02}$	3.25	0.07	
	3.09		5.28	
Ultimate Loads				
Load Combination	Strength I (Max)		Service I	
	V (K)	M (K.Ft)	\checkmark (K)	M (K.Ft)
Toe	1.53	0.76	N/A	N/A
Heel	4.15	7.13	N/A	N/A
Stem	1.72	4.12	1.08	2.53

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

$\mathrm{Cl}_{\text {Top Footing }}$	$=\frac{2}{}$
$\mathrm{Cli}_{\text {Ootiom Fcoomm }}=$	3
Top bar Diameter	$=0.625$

Bottom bar Diameter $=\quad 0.625 \quad$ in

1. HEEL

$d_{\text {H Heal }}=$	9.6875	in
$a_{\text {Hoed }}=$	0.32	in
$d_{\text {vheol }}=$	9.53	in
$V_{R_{\text {Hoel }}}=$	13.79	k

$d_{8 \text { To4 }}=$	8.6875	in
$a_{\text {TO0 }}=$	0.32	in
$d_{V \text { To0 }}=$	8.64	in
$V_{R \text { TOO }}=$	12.51	k

VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

Spacing $_{\text {Top }}=$	15	in
Spacingeottom $=$	15	in
$\beta=$	2	
$\phi_{\text {shear }}=$	0.9	

2. TOE
IX. DESIGN STEM FOR SHEAR

$\mathrm{Clr}_{\text {Bace stam }}=$	2
Bar Diameter at Stem $=$	0.625
Spacing =	15
$\mathrm{d}_{\text {s Smm }}=$	7.69
$\mathrm{a}_{\text {stom }}=$	0.32
d_{v} stm $=$	7.53
$\mathrm{V}_{\mathrm{R} \text { Stem }}=$	13.96

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design

$\begin{array}{ll} & A_{8 \text { TOD }}= \\ > & \end{array}$	0.25	in^2
	4.15	k GOOD
$A_{8 \text { Botam }}=$	0.25	in^2
$>$	1.53	k GOOD
		$\begin{aligned} & \text { OK } \\ & \text { OK } \end{aligned}$

$\begin{aligned} \text { Clir }_{\text {Back Stem }}= & 2 \\ \text { Bar Diameter at Stem }= & 0.625\end{aligned}$

$S_{\text {x }}=$	7.53
$A_{\text {s Stom }}=$	0.25
$\varepsilon_{4}=$	0.001164751
$\mathrm{S}_{\mathrm{xe}}=$	12
$\beta=$	2.56
	1.72

$$
i n^{\wedge} 2
$$

in
k GOOD

Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathbf{M u}=$

	2.53	k.ft
$f_{2 s}=$	16.46	ksi
$d_{c}=$	2.31	in
$\beta_{5}=$	1.33	
$S<=$	27.35	in

OK

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.625	15	2
FOOTING BOTTOM MAT	0.625	15	3
STEM	0.625	15	2

LRFD DESIGN FOR CIP RETAINING WALL.
AUTHOR: BUI, HOANG

I. INPUT (ENGLISH)

Concrete Density (pcf)
Soil Density (pcf)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta(*)$
Surcharge in Feet
Water depth behind wall, from bottom base (f)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (fi)
Top wall Thickness (f)
Wall Thickness © Base (fi)
Front Base Length (ft)
Back Base Length (ft)
Base Thickness (ft)
Shear Key Depth (fi)
Shear Key Width (fi)
Distance from Toe to Key (ft)
Front Soil Depth to Base (fi)
Enter 1 for rock foundation, 0 for soil
fc (psi) $=4500$
Utimale Foundation Bearing (ksf) =
Bearing Resistance Factor ("*)
Sliding Resistance Factor (Concrete on Soil) (*)
Sliding Resistance Factor (Soil on Soil) (")

	150.00	
	125.00	
	0.00	
	34.00	
	30.00	
	30.00	(*) Table 3.11.5.3-1
	2.00	
	3.5	
	0.50	
	7.50	
	0.83	H = TOP OF WALL TO BOTTOM OF BASE
	0.83	$\mathrm{H} / 12$ to H/10 0.71
	1.00	H/10 TO H/8 0.85
	4.00	
	1.00	H/12 to H/10
	1.26	
	0.67	
	0.00	
	1.50	
	0.00	
$\mathrm{fy}(\mathrm{psi})=$	60000.00	
	5.30	
	0.55	(*) Table 10.5.5.2.2-1
	0.80	(*) Table 10.5.5.2.2-1
	0.90	$\left({ }^{(+)}\right.$) Table 10.5.5.2.2-1

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$
Sliding	ϕ_{t}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & \hline 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

LOAD FACTORS

Load Combination	γ_{DC}	γ_{EV}	γ_{LS}	γ_{EH}	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Enter 1 for using Rankine horizontal back fill, otherwise enter 0
Angle of B.F. of Wall to Horizontal (degree)
Active Fluid Weight (Coefficient and pcf). (Ka)
Passive Fluid Weight (Coefficient and pct)

$\mathrm{h} 1=$	3.75
$\mathrm{~h} 2=$	$\mathrm{a}=$
	Base Width (1)

	Base Width (f) $=$		
Unactored Horizontal Loads		5.83	
Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	0.36	5.00	1.79
Ph2 $=$	0.56	1.75	0.97
Ph3 $=$	0.11	1.17	0.13
Ph,water $=$	0.38	1.17	0.45
Ph,sc $=$	$\underline{0.57}$	4.00	$\underline{2.26}$
	1.97		5.60

Unfactored Vertical Loads

Loads	Force (K)	Mo. Amm	Moment
W1 $=$	0.94	1.42	1.33
W2 $=$	0.13	0.34	0.04
W3 $=$	0.87	2.92	2.55
W4 $=$	3.50	3.83	13.42
W5 $=$	0.00	4.50	0.00
PV1 $=$	0.00	5.83	0.00
PV2 $=$	0.38	5.83	2.19
PV3 $=$	$\underline{0.06}$	5.83	$\underline{0.37}$
	5.88		19.89

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$P_{p}=$	1.11

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{V}(\mathrm{~K} . \mathrm{Ft})$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{H}(\mathrm{K.FI})$
Strength I (Min)	5.90	20.78	3.10	8.96
Strength I (Max)	7.80	26.85	3.10	8.96
Service I	5.88	19.89	1.97	5.60

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:

$E_{\text {max }}$	$=$	1.46
x_{r}	$=$	2.00
ft. (LOCATION OF RESULTANT FROM THE TOE)		
Actual $e=$	0.91	ft.

YES
2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK:

GOOD

$E_{\text {max }}$	$=$	N/A		
x_{1}	$=$	f.		
Actual e	$=$	N/A		ft. (LOCATION OF RESULTANT FROM THE TOE)
:---				
IV. CHECK BEARING				
Actual $e=$				

IV. CHECK BEARING

Actual $\mathrm{e}=0.62 \quad \mathrm{ft}$.
Bearing Resistance $=\quad 2.915 \quad$ ksf

1. CHECK BEARING FOR FOUNDATION RESTS ON SOIL:

Vertical Sress (Uniform) $=1.70 \quad$ ksf
2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK:

$$
\begin{array}{lll}
\text { Vert. Sress }(\text { max. })= & \text { N/A } & \text { ksf } \\
\text { Vert. Sress }(\min .)= & \text { N/A } & \text { ksf }
\end{array}
$$

V. CHECK SLIDING

Friction Resistance $=\quad 3.41 \quad k$
Factored Sliding Force $=\quad \mathbf{3 . 1 0} \quad \mathbf{k}$
Sliding Resistance $=\quad 3.28 \quad k$

Not Submergence	Submergence
35.34	17.70
442.14	221.42

H	$=8.50$
0.4 H	$=3.40$
0.6 H	$=5.10$
	Trial to match provided
	(Ka) from Geology Unit

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	0.36	4.00	1.43
Ph2 $=$	0.31	1.25	0.39
Ph3 $=$	0.06	0.83	0.05
Ph,water $=$	0.20	0.83	0.16
Ph,sc $=$	$\underline{0.49}$	3.50	1.73

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.60	2.00	1.20
W4 $=$	3.50	2.00	7.00
W5 $=$	0.00	2.67	0.00
Pv1 $=$	0.00	4.00	0.00
Pv2 $=$	0.21	4.00	0.83
Pv3 $=$	0.03	4.00	0.13
	4.34		9.16

Ultimate Loads				
Load Combination	Strength I (Max)	Service I		
	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K.Ft})$	$\mathrm{V}(\mathrm{K})$	
Toe	1.70	0.85	$\mathrm{~N} / \mathrm{A}$	
Heel	5.84	12.39	$\mathrm{~N} / \mathrm{A}$	
Stem	2.24	6.07	1.41	

For conservative the ultimate shear at toe is calculated at front face of wall. VII. DESIGN FOOTING FOR SHEARS
 1. HEEL

$d_{8 \text { Heol }}=$	9.625
$a_{\text {Heal }}=$	0.46
$d_{v_{\text {Heal }}}=$	9.39
$V_{R_{\text {Hed }}}=$	13.60

$A_{8 \text { Top }}=$	0.35	$i n^{\wedge} 2$
$>$		5.84

$>$	5.84	k G
$A_{* \text { Botiom }}=$	0.25	in^2

GOOD
2. TOE

$d_{\text {sioe }}=$	8.6875
$\mathrm{a}_{\text {Te }}=$	0.32
$\mathrm{d}_{\mathrm{V} \text { T00 }}=$	8.64
$V_{\text {R }}{ }_{\text {cos }}=$	12.51

$>\quad 1.70 \quad k \quad$ GOOD
VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
ok
Use sheet 3 (Toe Bending) for the Toe bending design OK
IX. DESIGN STEM FOR SHEAR

$\mathrm{Cl}_{\text {dack Stam }}=$	2
Bar Diameter at Stem =	0.625
Spacing =	15
$\mathrm{d}_{\text {simm }}=$	7.69
$\mathrm{a}_{\text {sum }}=$	0.32
$\mathrm{d}_{\mathrm{vSmm}}=$	7.53
$V_{\text {R Stom }}=$	11.59

in

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathrm{Mu}=$

	3.76	k.ft
$f_{s i}=$	24.41	ksi
$d_{c}=$	2.31	in
$\beta_{s}=$	1.33	
$S<=$	16.93	in

$\mathrm{S}_{\mathrm{x}}=$	7.53	in
$A^{\text {stam }}=$	0.25	$\mathrm{in}^{\wedge} 2$
$\varepsilon_{\square}=$	0.001674594	
$\mathrm{S}_{\mathrm{x} 0}=$	12	in
$\beta=$	2.13	
$>$	2.24	k

$$
i n^{\wedge} 2
$$

LRFD DESIGN FOR CIP RETAINING WALL
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

Concrele Density (p Cf)
Soil Density (pcf)
Backill Slope β (by degree)
Internal Friction Angle of Backfill Soil $\$$
Intemal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (ft)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (ft)
Top wall Thickness (ft)
Wall Thickness @l Base (f)
Front Base Length (fi)
Back Base Length (fi)
Base Thickness (fi)
Shear Key Depth (f)
Shear Key Width (fi)
Distance from Toe to Key (f)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
$\mathrm{fc}(\mathrm{psi})=\quad 4500$

Utimate Foundation Bearing (ksf) =
Bearing Resistance Factor (${ }^{-}$)
Sliding Resistance Factor (Concrete on Soil) ("*)
Sliding Resistance Factor (Soil on Soil) (${ }^{+}$)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \end{aligned}$
Sliding	ϕ_{r}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

Unfactored Vertical Loads	Force (K)	Mo. Arm	Moment
Loads	1.06	1.42	1.51
WI $=$	0.13	0.34	0.04
WV =	0.99	3.29	3.25
W3 =	4.75	4.21	19.99
W4 =	0.00	5.00	0.00
W5 =	0.00	6.58	0.00
Pv1 $=$	0.48	6.58	3.14
Pv2 $=$	$\underline{0.08}$	6.58	$\underline{0.54}$
PV3 $=$	7.48		28.46

Unfactored Sliding Resistance from Shear Key	
Loads	Force (K)
$P_{p}=$	1.11

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $\mathrm{M}_{\mathrm{V}}(\mathrm{K} . \mathrm{Ft})$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{\mathrm{H}}(\mathrm{K} . \mathrm{FI})$
Strength I (Min)	7.55	29.82	3.80	12.17
Strength I (Max)	9.97	38.50	3.80	12.17
Service I	7.48	28.46	2.43	7.63

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:

YES

$E_{\text {max }}$	$=$	1.65
x_{1}	$=$	2.34
f.	f. (LOCATION OF RESULTANT FROM THE TOE)	
Actual e	$=$	0.95
f.		

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK:

NO

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph $=$	0.44	4.67	2.06
Ph $=$	0.42	1.50	0.64
Ph $=$	0.08	1.00	0.08
Ph,water $=$	0.28	1.00	0.28
Ph,sc $=$	$\underline{0.57}$	4.00	$\underline{2.26}$

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.71	2.38	1.69
WA $=$	4.75	2.38	11.28
W5 $=$	0.00	3.17	0.00
Pv1 $=$	0.00	4.75	0.00
Pv2 $=$	0.29	4.75	1.36
Pv3 $=$	$\underline{0.05}$	4.75	$\underline{0.22}$
	5.79		14.55

For conservative the ultimate shear at toe is calculated at front face of wall.

Spacing $_{\text {Top }}=$	11	in
Spacing $_{\text {Boom }}=$	11	in
$\beta=$	2	
Q Shear $=$	0.9	
A $_{\text {Top }}$	$=$	0.48

VIII. DESIGN FOOTING FOR ENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathrm{Mu}=\quad 5.32$ k.ft

$\mathbf{f}_{5 x}=$	25.54	ksi
$d_{c}=$	2.31	in
$\beta_{2}=$	1.33	
$S<$	15.98	in

Kin

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.75	11	2
FOOTING BOTTOM MAT	0.625	11	3
STEM	0.625	11	2

LRFD DESIGN FOR CID RETAINING WALL
AUTHOR: BUl, HOANG

I. INPUT (ENGLISH)

Concrete Density (pf)
Soil Density (pcf)
Backfill Slope β (by degree)
Intemal Friction Angle of Backfill Soil ϕ
Internal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta\left({ }^{*}\right)$
Surcharge in Feet
Water depth behind wall, from bottom base (ft)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (ft)
Top wall Thickness (ft)
Wall Thickness (a) Base (fl)
Front Base Length (ft)
Back Base Length (ft)
Base Thickness (ft)
Shear Key Depth (f)
Shear Key Width (fl)
Distance from Toe to Key (ft)
Front Soil Depth to Base (fl)
Enter 1 for rock foundation, 0 for soil
fc (psi) $=44500$

Ultimate Foundation Bearing (kif) =
Bearing Resistance Factor (**)
Sliding Resistance Factor (Concrete on Soil) (${ }^{* *}$)
Sliding Resistance Factor (Soil on Soil) (")

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Phi $=$	0.53	5.33	2.85
Ph2 $=$	0.56	1.75	0.97
Ph $=$	0.11	1.17	0.13
Ph,water $=$	0.38	1.17	0.45
Ph,sc $=$	$\underline{0.64}$	4.50	$\underline{2.86}$

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
WB $=$	0.83	2.75	2.27
W4 $=$	6.19	2.75	17.02
W5 $=$	0.00	3.67	0.00
Pv1 $=$	0.00	5.50	0.00
Pv2 $=$	0.38	5.50	2.06
Pv3 $=$	$\underline{0.06}$	5.50	$\underline{0.34}$
	7.45		21.69

Ultimate Loads				
Load Combination	Strength I (Max)	Service I		
	$V(K)$	$M(K . F 1)$	$V(K)$	$M(K . F t)$
Toe	2.08	1.04	NRA	NRA
Heel	10.04	29.42	NRA	NRA
Stem	3.49	11.61	2.22	7.26

For conservative the ultimate shear at toe is calculated at front face of wall. VII. DESIGN FOOTING FOR SHEARS

$>$		
	10.04	k GOOD
$A_{8 \text { Bosom }}=$	0.59	in ^2
$>$	2.08	k GOOD

VIII. DESIGN FOOTING FOR BENDING

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

$\left.\begin{array}{rcc}\text { IX. DESIGN STEM FOR SHEAR } \\ \text { ClII } & \\ \text { Back Stem } & = & 2\end{array}\right]$ in

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathrm{Mu}=\quad \mathbf{7 . 2 6}$ k.ft

$f_{5 s}=$	20.43	ksi
$\boldsymbol{d}_{c}=$	2.38	in
$\beta_{3}=$	1.34	
$S<$	20.84	in

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.875	9	2
FOOTING BOTTOM MAT	0.75	9	3
STEM	0.75	9	2

LRFD DESIGN FOR CIP RETAINING WALL.
AUTHOR: BUI, HOANG

I. INPUT (ENGLISH)

Concrete Density (pcr)
Soil Density (pcf)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta\left({ }^{*}\right)$
Surcharge in Feet
Water depth behind wall, from bottom base (ft)
Top Wall to Backfill Depth (it)
Height from Top Base to Top Wall (ft)
Top wall Thickness (ft)
Wall Thickness @ Base (ft)
Front Base Length (fi)
Back Base Length (ft)
Base Thickness (ft)
Shear Key Depth (ft)
Shear Key Width (fi)
Distance from Toe to Key (fi)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
$\mathrm{fc}\langle\mathrm{psi}\rangle=44500$
Utimate Foundation Bearing (ks) =
Bearing Resistance Factor ("\#)
Sliding Resistance Factor (Concrete on Soil) (**)
Sliding Resistance Factor (Soil on Soil) (")

	150.00	(*) Table 3.11.5.3-1
	125.00	
	0.00	
	34.00	
	30.00	
	30.00	
	2.00	
	5.0	
	0.60	
	10.50	
	0.83	H = TOP OF WALL TO BO
	0.83	H/12 to H/10
	1.00	H/10 TO H/8
	6.00	
	1.00	H/12 to H/10
	1.25	
	0.67	
	0.00	
	1.50	
	0.00	
fy (psi) $=$	60000.00	
	7.18	
	0.55	(*) Table 10.5.5.2.2-1
	0.80	(*) Table 10.5.5.2.2-1
	0.90	(*) Table 10.5.5.2.2-1

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \end{aligned}$
Sliding	$\phi_{\text {r }}$	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & \hline \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

Load Combination	$\gamma_{\text {DC }}$	$\gamma_{\text {EV }}$	$\gamma_{L S}$	$\gamma_{\text {EH }}$	Application	
Strength I (Min) Strength I (Max) Service I	0.90	1.00	1.75	1.5	Sliding \& overturning Bearing \& wall strength Wall crack control	
	1.25	1.35	1.75	1.5		
	1.00	1.00	1.00	1.00		
II. OUTPUT						
Enter 1 for using Rankine horizontal back fill, otherwise enter 0			0	Not Submergence		
Angle of B.F. of Wall to Morizontal (degree)			90.00		Submergence	
Active Fluid Weight (Coefficient and pcf), (Ka)			0.28	35.34	17.70	
Passive Fluid Weight (Coefficient and pcf)			3.54	442.14	221.42	
	3.75	$a=$	11.00		$H=11.50$	
	2.50	$b=$	11.00		$0.4 \mathrm{H}=4.60$	
		Base Width (ft) =	7.83	0.4 H to 0.6 H Adjust Fluid Weight	$0.6 \mathrm{H}=6.90$	
Unactored Horizontal Loads					1	Trial to match provided (Ka) from Geology Unit
Loads	Force (K)	Mo. Arm	Moment		(Ka) from Geology Unit	
$\begin{aligned} \text { Ph1 } & = \\ \text { Ph2 } & = \\ \text { Ph3 } & = \\ \text { Ph,water } & = \\ \text { Ph,sc } & =\end{aligned}$	0.64	7.00	4.45			
	1.06	2.50	2.65			
	0.22	1.67	0.37			
	0.78	1.67	1.30			
	0.78	5.50	4.28			
	3.47		13.05			
Unfactored Vertical Loads						
Loads	Force (K)	Mo. Arm	Moment			
W1 =	1.31	1.42	1.86			
W2 =	0.13	0.34	0.04			
W3 $=$	1.17	3.92	4.60			
W4 =	7.50	4.83	36.25			
W5 =	0.00	5.83	0.00			
Pvi $=$	0.00	7.83	0.00			
Pv2 $=$	0.72	7.83	5.60			
Pv3 $=$	0,13	7.83	1.00			
	10.96		49.36			
Unfactored Sllding Resistanc	from Shear	orizontal)				
Loads	Force (K)					
$\mathrm{P}_{\mathrm{p}}=$	1.11					
Factored Loads and Moments						
Load Combination	vertical Loads $V(K)$	Moment $M_{V}(K . F t)$	Horiz. Loads $V(K)$	Moment $M_{H}(K . F t)$		
Strength I (Min)	11.12	52.01	5.41	20.64		
Strength I (Max)	14.66	66.97	5.41	20.64		
Service I	10.96	49.36	3.47	13.05		
III. CHECK OVER TURNING						
1. CHECK OVERTURNING FOR	FOUNDATION	STS ON SOIL:		YES		
$\mathrm{E}_{\text {max }}=$	1.96					
$x_{1}=$	2.82	(LOCATION OF R	ULTANT FROM	E TOE)		
Actual e $=$	1.10		GOOD			
2. CHECK OVERTURNING FOR	FOUNDATION	STS ON ROCK:		NO		
$\mathrm{E}_{\text {max }}=$	N/A					
$x_{1}=$	N/A	(LOCATION OF R	ULTANT FROM	E TOE)		
Actual $\mathrm{e}=$	N/A					
IV. CHECK BEARING						
Actual $\mathrm{e}=$	0.76					
Bearing Resistance $=$	3.949					
1. CHECK BEARING FOR FOU	DDATION RES	N SOIL:		YES		
Vertical Sress (Uniform) =	2.32		GOOD			
2. CHECK BEARING FOR FOU	NDATION REST	N ROCK:		NO		
Vert. Sress (max.) =	N/A					
Vert. Sress (min.) =	N/A					
V. CHECK SLIDING						
Friction Resistance $=$	6.42					
Factored Sliding Force $=$	5.41					
Sliding Resistance $=$	5.69		GOOD			

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph $=$	0.64	6.00	3.82
Ph $=$	0.71	2.00	1.41
Ph $=$	0.14	1.33	0.19
Ph,water $=$	0.50	1.33	0.67
Ph.sc $=$	$\underline{0.71}$	5.00	$\underline{3.53}$

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.90	3.00	2.70
WU $=$	7.50	3.00	22.50
W5 $=$	0.00	4.00	0.00
Pv1 $=$	0.00	6.00	0.00
PV2 $=$	0.48	6.00	2.86
PV3 $=$	$\underline{0.08}$	6.00	$\underline{0.49}$
	8.96		28.55

Ultimate Loads				
Load Combination	Strength I (Max)	Service I		
	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}\{$ K.Ft $)$	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K} . \mathrm{Ft})$
Toe	2.32	1.16	$\mathrm{~N} / \mathrm{A}$	N / A
Heel	12.09	38.78	$\mathrm{~N} / \mathrm{A}$	N / A
Stem	4.21	15.31	2.69	9.62

For conservative the ultimate shear at toe is calculated at front face of wall.

VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

IX. DESIGN STEM FOR SHEAR		
CIr	in	
Bar Stem	$=$	2

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service Mu =

	9.62	k.ft
$\mathrm{f}_{\mathrm{ss}}=$	21.17	ksi
$d_{c}=$	2.38	in
$\beta_{\mathrm{z}}=$	1.34	
$\mathrm{~S}<=$	19.94	in

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.875	7	2
FOOTING BOTTOM MAT	0.75	7	3
STEM	0.75	7	2

COLORADO DEPARTMENT OF TRANSPORTATION DESIGN COMPUTATIONS (Grid)

$(*):$ for $T \angle 3$ or $T \angle 4$
$w=(17.06)(0.15)=2.56 \mathrm{~K}$ per fo

1) Sliding of the traffic Railing - Moment Slab

$$
\begin{aligned}
& \phi R_{n} \geqslant \gamma_{c T} F_{t s} \\
& \phi=0.8 \quad \text { (Table } 10.5 .5-1) \\
& \gamma_{C T}=10 \quad \text { (Extreme event for CT load) } \\
& \\
& R_{n}=\gamma_{D C} w \tan \phi_{s} \quad, \phi_{S}=3 A^{\circ}, \delta_{D C}=0.9 \text { for } D L
\end{aligned}
$$

The soil - Nomest slab interface 15 smooth \Rightarrow use 0.8 tan ϕ_{s} $R_{n}=(0.9)(2.56)(0.8) \tan 34^{\circ}=1.24 \mathrm{k}$ per ft

Assume the moment slab has a rigid body behavior $=60$ ft upper limit

$$
0.8(1.24)(60)=59.68 *(1.0)(54)=54 k \quad \operatorname{Say} \quad 0 k
$$

By: $H B$ Date $07 / 43$	Project no. FBR $0142-055$	Project code (SAA): 18085
Chk'd:CT Date $08 / 13$	Structure no. Wall B-16-G	Sheet 25 of 6/

2) Overturning of the traffic Railing - Moment Slab

$$
\begin{aligned}
& \phi=0.9 \\
& \gamma_{C T}=1.0, \gamma_{D C}=0.9 \\
& F_{t}=54 \mathrm{~K} \\
& H=2 t 1.42=3.42^{\prime}, \angle=3.67, \\
& M_{n}=\gamma_{D C} L(60)=0.9(2.56)(3.67)(60)=507.3 \mathrm{K.ft} \\
& \left.\phi M_{n}=0.9(507.3)=456.6 \mathrm{k.ft}\right\rangle(1.0)(54)(3.42)=184.7 \mathrm{K.ft} \text { ok }
\end{aligned}
$$

3) Reinforcing design:

Distribution Length $=16 \mathrm{ft}$

$$
M_{M}=\frac{184.7}{16}=11.54 \text { k.ft per ft. }<M_{R}=28.01 \text { K.ft per ft }
$$

| By: HB Date $07 / 13$ | Project no. FBR $0 / 42-055$ | Project code (SAF): 18085 |
| :---: | :--- | :--- | :--- |
| Chk'd:CT Date $08 / 13$ | Structure no. wall B-16-G | Sheet 26 of 61 |

ब ${ }^{\text {E }}$
ब 怎品

LRFD DESIGN FOR CIR RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUl, HANG

1. INPUT. (ENGLISH)

Concrete Density (pct)
Soil Density (pct)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Internal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta\left({ }^{*}\right)$
Surcharge in Feet
Water depth behind wall, from bottom base (ii)
Top Wall to Backfill Depth (ti)
Height from Top Base to Top Wall (f)
Top wall Thickness (ft)
Wall Thickness @ Base (ft)
Front Base Length (ii)
Back Base Length (ft)
Base Thickness (ft)
Shear Key Depth (f)
Shear Key Width (ft)
Distance from Toe to Key (ii)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
$\mathrm{fc}(\mathrm{psi})=44500$
Ultimate Foundation Bearing (cst) =
Bearing Resistance Factor ("*)
Sliding Resistance Factor (Concrete on Soil) (**)
Sliding Resistance Factor (Soil on Soil) ("")
Coefficient of Sliding Resistance (μ)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem			
Loads	Force (K)	Mo. Arm	Moment
Ph $=$	0.34	1.44	0.49
Ph $=$	0.02	0.08	0.00
Ph $=$	0.00	0.06	0.00
Ph,water $=$	0.00	0.06	0.00
Ph,sc $=$	0.31	1.50	$\underline{0.46}$

Unfactored Vertical Loads behind Stem		Moment	
Loads	Force (K)	Mom	Mo.
W3 $=$	0.40	1.00	0.40
WY $=$	0.75	1.00	0.75
W5 $=$	0.12	1.33	0.17
Pv1 $=$	0.17	2.00	0.34
Pv2 $=$	0.01	2.00	0.03
PV3 $=$	$\underline{0.00}$	2.00	$\underline{0.00}$
	1.46		1.68

Ultimate Loads				
Load Combination	Strength I (Max)	Service I		
	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K.Ft})$	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K.Ft)}$
Toe	1.23	0.61	$\mathrm{~N} / \mathrm{A}$	N / A
Heel	1.95	2.28	$\mathrm{~N} / \mathrm{A}$	
Stem	1.08	1.55	0.67	$\mathrm{~N} / \mathrm{A}$

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

$\mathrm{Clr}_{\text {Top Footing }}$	$=$
$\mathrm{Clr}_{\text {Bottom Footing }}$	$=$
Top bar Diameter	$=$
in	
Bottom bar Diameter	$=$
in	

Spacing $_{\text {ToD }}$	$=$	18
Spacingettom $=$	18	in
β	$=$	2
$\phi_{\text {shear }}$	$=$	0.9

1. HEEL

$A_{\text {Top }}=$	0.13	in $^{\wedge} 2$
$>$		1.95

Vill. DESIGN FOOTING FOR BENDINGS
Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

X. DESIGN STEM FOR BENDING
Use sheet 4 (Stem Bending) for the stem bending design
OK
Check control of cracking by distribution of reinforcement (5.7.3.4)

Service $\mathrm{Mu}=$		0.95	k.ft
	$\mathrm{f}_{\mathrm{s}}=$	11.42	ksi
$\mathrm{d}_{\mathrm{c}}=$	2.25	in	
$\boldsymbol{\beta}_{\mathbf{s}}=$	1.32		
$\mathrm{~S}<=$	41.87	in	

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.5	18	2
FOOTING BOTTOM MAT	0.5	18	3
STEM	0.5	18	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

Concrete Density (pcf)
Soil Density (pcf)
Backfill Slope β (by degree)
Intemal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (fi)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (ft)
Top wall Thickness (fl)
Wall Thickness @ Base (if)
Front Base Length (fi)
Back Base Length (ft)
Base Thickness (fi)
Shear Key Depth (fi)
Shear Key Width (fi)
Distance from Toe to Key (ft)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
$\mathrm{fc}(\mathrm{psi})=\quad 4500$
Utimate Foundation Bearing (ksf)=
Bearing Resistance Factor (")
Sliding Resistance Factor (Concrete on Soil) ("*)
Sliding Resistance Factor (Soil on Soil) (${ }^{+0}$)
Coefficient of Sliding Resistance (μ)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

		Method / Soil / Condition	Resistance Factor
Bearing Resistance	$\phi_{\text {b }}$	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \end{aligned}$
Sliding	ϕ_{τ}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & \hline 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

LOAD FACTORS

Load Combinalion	γ_{OC}	γ_{EV}	γ_{LS}	γ_{EH}	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Unfactored Vertical Loads

Loads	Force (K)	Mo. Arm	Moment
W1 $=$	0.44	1.42	0.62
W2 $=$	0.13	0.34	0.04
W3 $=$	1.12	2.79	3.12
W4 $=$	1.41	3.71	5.21
W5 $=$	0.44	4.33	1.90
Pv1 $=$	0.20	5.58	1.14
Pv2 $=$	0.26	5.58	1.46
Pv3 $=$	$\underline{0.03}$	5.58	$\underline{0.15}$
	4.02		13.64

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$P_{p}=$	0.34

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $\mathrm{M}_{\mathrm{V}}(\mathrm{K} . \mathrm{Ft})$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{\mathrm{H}}(\mathrm{K} . \mathrm{FI})$
Strength I (Min)	4.10	14.64	2.12	4.53
Strength I (Max)	5.33	18.46	2.12	4.53
Service I	4.02	13.64	1.41	2.86

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL: YES

$E_{\text {max }}$	$=$	1.40
x_{1}	$=$	2.47
f.		
Actual $\mathrm{e}=$	0.32	f. (LOCATION OF RESULTANT FROM THE TOE)
GOOD		

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK: NO

$E_{\text {max }}$	$=$	N/A
x_{1}	$=$	f.
Actual $\mathrm{e}=$	N/A	f. (LOCATION OF RESULTANT FROM THE TOE)
		f.

IV. CHECK BEARING

Actual $\mathrm{e}=0.18 \quad$ f..
Bearing Resistance $=\quad 2.86 \quad$ ksf

1. CHECK BEARING FOR FOUNDATION RESTS ON SOIL:

$$
\text { Vertical Sress (Uniform) }=\quad 1.02 \quad \text { ksf }
$$

2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK:

Vert. Sress (max.) $=$	N/A	ksf
Vert. Sress (min.) $=$	N/A	ksf

V. CHECK SLIDING

Friction Resistance $=\quad 2.36 \quad \mathrm{k}$
Factored Sliding Force $=2.12 \mathrm{k}$
Sliding Resistance $=\quad 2.06 \quad$ k

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	0.41	2.07	0.84
Ph2 $=$	0.09	0.33	0.03
Ph3 $=$	0.01	0.22	0.00
Ph,water $=$	0.01	0.22	0.00
Ph,sc $=$	$\underline{0.31}$	1.50	0.46
	0.82		1.34

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.75	1.88	1.41
W4 $=$	1.41	1.88	2.64
W5 $=$	0.44	2.50	1.10
Pv1 $=$	0.20	3.75	0.77
Pv2 $=$	0.06	3.75	0.22
Pv3 $=$	$\underline{0.00}$	3.75	$\underline{0.01}$
	2.86		6.14

Ultimate Loads

Load Combination	Strength I (Max)	Service I	
	$V(K)$	$M($ K.FI $)$	$V(K)$
Toe	1.02	0.51	$\mathrm{~N} / \mathrm{A}$
Heel	3.83	8.30	$\mathrm{~N} / \mathrm{A})$
Stem	1.31	2.13	0.82

For conservative the ultimate shear al toe is calculated al front face of wall. VII. DESIGN FOOTING FOR SHEARS

Clr $_{\text {Top Footing }}$	$=$
Clr $_{\text {Sottom Footing }}$	$=$
Top bar Diameter	$=$
in	
Bottom bar Diameter	$=$
in	

Spacing $_{\text {Top }}$	$=$	18
Spacing $_{\text {Botiom }}=$	18	in
β	in	
$\phi_{\text {Shear }}$	$=$	2
$A_{\text {fiop }}$		0.9

1. HEEL

	$d_{\text {a Heal }}=$	13.6835
	$a_{\text {Head }}=$	0.27
	$\mathrm{d}_{\mathbf{v} \text { thel }}=$	13.55
	$\mathrm{V}_{\mathrm{R} \text { Heal }}=$	19.62
2. TOE		
	$d_{\text {s }}^{\text {To0 }}$ =	12.746
	$\mathrm{a}_{\text {P00 }}=$	0.17
	$d_{v \text { Toe }}=$	12.66
	$\mathrm{V}_{\mathrm{R} \text { Toe }}=$	18.33

>	3.83	k GOOD
A_{88} Botom $=$	0.13	in^2
>	1.02	k GOOD
		$\begin{aligned} & \text { OK } \\ & \text { OK } \end{aligned}$

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

> OK
IX. DESIGN STEM FOR SHEAR

$\mathrm{Clir}_{\text {bact Stum }}=$	2
Bar Diameter at Stem =	0.5
Spacing =	18
$d_{\text {s sum }}=$	7.75
$\mathrm{a}_{\text {stam }}=$	0.17
$\mathrm{d}_{\mathrm{v} \text { sum }}=$	7.66
$\mathrm{V}_{\mathrm{R} \text { Stemm }}=$	13.87

Use sheel 4 (Stem Bending) for the stem bending design
OK
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service Mu =

	1.34	$\mathrm{k} . \mathrm{ft}$
$\mathrm{f}_{4 s}=$	16.06	ksi
$\mathrm{d}_{\mathrm{c}}=$	2.25	in
$\beta_{s}=$	1.32	
$\mathrm{~S}<=$	28.48	in

[^0]SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.625	18	2
FOOTING BOTTOM MAT	0.5	18	3
STEM	0.5	18	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUI, HOANG

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	0.54	2.28	1.23
Ph2 $=$	0.11	0.33	0.04
Ph3 $=$	0.01	0.22	0.00
Ph,water $=$	0.01	0.22	0.00
Ph,sc $=$	$\underline{0.41}$	2.00	$\underline{0.82}$
	1.08		2.09

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.60	1.50	0.90
W4 $=$	1.50	1.50	2.25
W5 $=$	0.28	2.00	0.56
Pv1 $=$	0.27	3.00	0.81
Pv2 $=$	0.07	3.00	0.22
Pv3 $=$	$\underline{0.00}$	3.00	$\underline{0.01}$
	2.73		4.75

Ultimate Loads				
Load Combination	Strength I (Max)		Service I	
	$V(\mathrm{~K})$	M (K.Ft)	$V(\mathrm{~K})$	M (K.Ft)
Toe	1.42	0.71	N/A	N/A
Heel	3.67	6.47	N/A	N/A
Stem	1.72	3.34	1.08	2.09

For conservative the ultimate shear at toe is calculated at front face of wall.

$\mathrm{Cl}^{\text {Top footing }}{ }^{\text {a }}$	2
$\mathrm{Cl}_{\text {Bothom Footing }}=$	3
Top bar Diameter $=$	0.5
Bottom bar Diameter $=$	0.5
1. HEEL	
d_{3} Heal $=$	13.746
$\mathrm{a}_{\text {Hedl }}=$	0.19
$\mathrm{d}_{\mathbf{4} \text { Hew }}=$	13.65
$V_{\text {R How }}=$	19.76
2. TOE	
$\mathrm{d}_{\mathbf{5 1 0 0}}=$	12.746
$\mathrm{a}_{\text {To4 }}=$	0.19
d_{v} Toe $=$	12.65
$V_{\text {R Toe }}=$	18.32

Spacing $_{\text {Top }}=$	16	in
Spacing $_{\text {Botom }}=$	16	in
$\beta=$	2	
$\phi_{\text {Shear }}=$	0.9	
$A_{\text {S Top }}=$	0.15	inA2 $^{\wedge}$

VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

IX. DESIGN STEM FOR SHEAR

$\mathrm{Cl}_{\text {Back Stomm }}=$	2
Bar Diameter at Stem $=$	0.5
Spacing =	16
$\mathrm{d}_{\mathbf{5 m m}}=$	7.75
$a_{\text {Stam }}=$	0.19
$\mathrm{d}_{\mathrm{vstan}}=$	7.65
$\mathrm{V}_{\text {Stam }}=$	11.96

$\mathrm{S}_{\mathrm{x}}=$	7.65	in
A_{4} stam $=$	0.15	in ${ }^{\text {A }}$
$\varepsilon_{8}=$	0.001630188	
$S_{x 0}=$	12	in
$\beta=$	2.16	
	1.72	k

k GOOD

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the slem bending design
OK
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathrm{Mu}=\quad 2.09$ k.ft

$f_{s s}=$	22.27	ksi
$d_{c}=$	2.25	in
$\beta_{s}=$	1.32	
$S<=$	19.28	in

GOOD
SUMMARY OF CONCRETE DESIGN

	BAR DIA. (NN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.5	16	2
FOOTING BOTTOM MAT	0.5	16	3
STEM	0.5	16	2

LRFD DESIGN FOR CIP RETAINING WALL. B-16.H (NORTH WALL)
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

Concrete Density (pct)
Soil Density (pcf)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (fi)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (fi)
Top wall Thickness (ft)
Wall Thickness @ Base (fi)
Front Base Length (f)
Back Base Length (fi)
Base Thickness (f)
Shear Key Depth (fi)
Shear Key Width (fi)
Distance from Toe to Key (ft)
Front Soil Depth to Base (fi)
Enter 1 for rock foundation, 0 for soil
$\mathrm{Pc}(\mathrm{psi})=44500$
Utimate Foundation Bearing (ksf) =
Bearing Resistance Factor (${ }^{-\dagger}$)
Sliding Resistance Factor (Concrete on Soil) (")
Sliding Resistance Factor (Soil on Soil) (")
Coefficient of Sliding Resistance (μ)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$
Sliding	ϕ_{τ}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

LOAD FACTORS

Load Combination	$\gamma_{D C}$	$\gamma_{E V}$	$\gamma_{L S}$	$\gamma_{E H}$	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Enter 1 for using Rankine horizontal back fill, otherwise enter 0
Angle of B.F. of Wall to Horizontal (degree)

Active Fluid Weight (Coefficient and pct), (Ka)
Passive Fluid Weight (Coefficient and pct)

1
90.00

Not Submergence
$0.412 \quad 51.53$
51.53
Submergence
25.81
221.42

$$
\begin{aligned}
\mathrm{H}= & 5.49 \\
0.4 \mathrm{H}= & 2.20 \\
0.6 \mathrm{H}= & 3.30 \\
& \text { Trial to match provided } \\
& \text { (Ka) from Geology Unit }
\end{aligned}
$$

\square

Loads	Force (K)	Mo. Am	Moment
Ph $=$	0.63	3.75	2.37
Ph $=$	0.48	1.00	0.48
Ph $=$	0.05	0.67	0.03
Ph,water $=$	0.12	0.67	0.08
Ph,sc $=$	$\underline{0.51}$	2.50	$\underline{1.28}$
	1.80		4.26

Unfactored Vertical Loads

Loads	Force (K)	Mo. Arm	Moment
W1 $=$	0.52	1.42	0.74
W2 $=$	0.13	0.34	0.04
W3 $=$	1.27	3.17	4.01
W4 $=$	2.06	4.08	8.41
W5 $=$	0.63	4.83	3.06
Pv1 $=$	0.32	6.33	2.01
Pv2 $=$	0.33	6.33	2.06
Pv3 $=$	$\underline{0.03}$	6.33	$\underline{0.17}$
	5.27		20.49

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$P_{p}=$	0.34

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $\mathrm{M}_{\mathrm{V}}(\mathrm{K} . \mathrm{Ft})$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{H}(\mathrm{K.Ft})$
Strength I (Min)	5.42	22.13	2.70	6.71
Strength I (Max)	7.03	27.82	2.70	6.71
Service I	5.27	20.49	1.80	4.26

ll. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL

YES

$E_{\text {max }}=$	1.58	ft.
x_{1}	$=$	2.85
f. (LOCATION OF RESULTANT FROM THE TOE)		
Actual $\mathrm{e}=$	0.32	ft.
GOOD		

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK:

$E_{\text {max }}$	$=$	N/A
x_{1}	$=$	A.
N/A	f. (LOCATION OF RESULTANT FROM THE TOE)	
Actual $\mathrm{e}=$	N/A	f..

IV. CHECK BEARING
Actual $\mathrm{e}=0.16 \quad \mathrm{ft}$.
Bearing Resistance $=\quad 2.86 \quad \mathrm{ksf}$

1. CHECK BEARING FOR FOUNDATION RESTS ON SOIL:

Vertical Cress (Uniform) $=1.17 \quad$ ksf
2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK

$$
\text { Vert. Sress (max.) }=\quad \text { NRA } \quad \text { ks }
$$

$$
\text { Vert. Sires (min.) }=\quad \text { N/A } \quad \text { ks }
$$

v. CHECK SLIDING

Friction Resistance $=$	3.13	k
Factored Sliding Force $=$	2.70	k
Sliding Resistance $=$	2.67	k

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph $=$	0.63	2.41	1.53
Ph $=$	0.12	0.33	0.04
Ph 3 $=$	0.01	0.22	0.00
Ph,water $=$	0.01	0.22	0.00
Ph,sc $=$	$\underline{0.38}$	1.83	$\underline{0.69}$

Unfactored Vertical Loads behind Stem			
Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.90	2.25	2.02
W4 $=$	2.06	2.25	4.63
W5 $=$	0.63	3.00	1.90
Pv1 $=$	0.32	4.50	1.43
Pv2 $=$	0.08	4.50	0.36
Pv3 $=$	$\underline{0.00}$	4.50	$\underline{0.01}$
	3.99		10.36

Ultimate Loads								
Load Combination	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K} . \mathrm{Ft})$	Service !	$\mathrm{V}(\mathrm{K})$				
	1.17	0.58	$\mathrm{~N} / \mathrm{A}$	$\mathrm{M}(\mathrm{K} . \mathrm{Ft})$				
Toe	5.36	14.05	$\mathrm{~N} / \mathrm{A}$	NRA				
Heel	1.82	3.57	1.15	NRA				
Stem		2.26						

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

Spacing $_{\text {op }}=$	16	in
Spacing $_{\text {Bottom }}=$	16	in
$\beta=$	2	
$\phi_{\text {Shear }}=$	0.9	
$A_{\text {T TOD }}=$	0.33	in $^{\wedge} 2$

$d_{i \text { Head }}=$	13.621	in
$a_{\text {Heel }}=$	0.43	in
$d_{v_{\text {Heel }}}=$	13.40	in
$V_{R_{\text {Head }}}=$	19.41	k

2. TOE

$>$
3.

A_{s} Bottom $=$
$0.15 \quad$ in^2
1.17

VIII. DESIGN FOOTING FOR ENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)
Service $\mathrm{Mu}=\quad 2.26$ kit

$f_{s s}=$	24.12	ksi
$d_{c}=$	2.25	in
$\beta_{s}=$	1.32	
$S<=$	17.46	in

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.75	16	2
FOOTING BOTTOM MAT	0.5	16	3
STEM	0.5	16	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

Concrete Density (pcr)
Soil Density (pcf)
Backill Slope β (by degree)
Internal Friction Angle of Backrill Soil $\$$
Intemal Friction Angle Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (ft)
Top Wall to Backfill Depth (fi)
Height from Top Base to Top Wall (ft)
Top wall Thickness (ft)
Wall Thickness @ Base (ft)
Front Base Length (ft)
Back Base Length (ft)
Base Thickness (fi)
Shear Key Depth (ft)
Shear Key Width (ft)
Distance from Toe to Key (ft)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
Pc (psi) $=$

Utimate Foundation Bearing (ksi) =
Bearing Resistance Factor (${ }^{\circ}$)
Sliding Resistance Factor (Concrete on Soil) (")
Sliding Resistance Factor (Soil on Soil) (")
Coefficient of Sliding Resistance (μ)
nce of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	$\phi_{\text {b }}$	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$
Sliding	$\phi_{\text {r }}$	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Am	Moment
Ph1 $=$	0.78	3.11	2.44
Ph2 $=$	0.24	0.58	0.14
Ph3 $=$	0.02	0.39	0.01
Ph,water $=$	0.04	0.39	0.02
Ph,sc $=$	$\underline{0.52}$	2.50	1.29
Unfactored Vertical Loads behind Stem		3.89	
Loads	Force (K)	Mo. Arm	Moment
W3 $=$	0.80	2.00	1.60
W4 $=$	2.50	2.00	5.00
W5 $=$	0.50	2.67	1.33
Pv1 $=$	0.39	4.00	1.57
Pv2 $=$	0.16	4.00	0.65
Pv3 $=$	0.01	4.00	0.04

Load Combination	Strength I (Max)		Service I	
	$V(\mathrm{~K})$	$\mathrm{M}(\mathrm{K} . \mathrm{Ft})$	V (K)	M (K.Ft)
Toe	1.64	0.82	N/A	N/A
Hee!	5.90	13.94	N/A	N/A
Stem	2.53	6.16	1.60	3.89

For conservalive the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

Spacing $_{\text {Top }}=$	15	in
Spacing $_{\text {Botom }}=$	15	in
$\beta=$	2	
$\phi_{\text {shear }}=$	0.9	
A $_{\text {STop }}=$	0.35	in^2

	$\mathrm{d}_{\mathrm{s}_{\text {heel }}}=$	13.621	in
	$a_{\text {mead }}=$	0.46	in
	$\mathrm{d}_{\mathrm{v} \text { Head }}=$	13.39	in
	$\mathrm{V}_{\mathrm{R} \text { Hed }}=$	19.39	k
2. TOE			
	$d^{\text {T00 }}=$	12.6835	in
	$\mathrm{a}_{\text {Toe }}=$	0.32	in
	$d_{v}{ }_{\text {Tos }}=$	12.52	in
	$\mathrm{V}_{\mathrm{R} \text { Tot }}=$	18.13	k

$A_{\text {e }}^{\text {Top }}$ =	0.35
$>$	5.90

GOOD
VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

$\mathrm{Clr}_{\text {gack Stum }}=$	2
Bar Diameter at Stem $=$	0.625
Spacing =	15
$\mathrm{d}_{\text {s stum }}=$	7.68
$\mathrm{a}_{\text {stam }}=$	0.32
$\mathrm{d}_{\mathrm{v} \text { Stom }}=$	7.52
$\mathrm{V}_{\mathrm{R} \text { Stam }}=$	11.36

$\mathrm{S}_{\mathrm{x}}=$	7.52	in
A_{2} sum $=$	0.25	in^2
$\varepsilon_{4}=$	0.001735608	
$\mathrm{S}_{\mathrm{xe}}=$	12	in
$\beta=$	2.09	
>	2.53	k GOOD

X. DESIGN STEM. FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
OK
Check control of cracking by distribution of reinforcement (5.7.3.4)

Service $M u=$		3.89	k.ft
	$f_{s s}=$	25.29	ksi
	$d_{c}=$	2.31	in
$\beta_{s}=$	1.33		
	$S<=$	16.18	in

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.75	15	2
FOOTING BOTTOM MAT	0.625	15	3
STEM	0.625	15	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUI, HOANG

I. INPUT (ENGLISH)

Concrete Density (PCA)
Soil Density (pcf)
Backfill Slope β (by degree)
Internal Friction Angle of Backfill Soil ϕ
Intemal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall $\delta\left({ }^{*}\right)$
Surcharge in Feet
Water depth behind wall, from bottom base (fi)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (fi)
Top wall Thickness (fi)
Wall Thickness © Base (fi)
Front Base Length (ft)
Back Base Length (ft)
Base Thickness (fi)
Shear Key Depth (fi)
Shear Key Width (it)
Distance from Toe to Key (fl)
Front Soil Depth to Base (fi)
Enter 1 for rock foundation, 0 for soil
$\mathrm{fc}(\mathrm{psi})=$
4500

Utimate Foundation Bearing (ksf) =
Bearing Resistance Factor ("*)
Sliding Resistance Factor (Concrete on Soil) (")
Sliding Resistance Factor (Soil on Soil) (*")

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empinical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \end{aligned}$
Sliding	ϕ_{τ}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

V. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	1.08	3.94	4.24
Ph2 $=$	0.42	0.83	0.35
Ph3 $=$	0.03	0.56	0.02
Ph,water $=$	0.09	0.56	0.05
Ph,sc $=$	$\underline{0.62}$	3.00	1.86
	2.24		6.52

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	1.00	2.50	2.50
W4 $=$	3.75	2.50	9.38
W5 $=$	0.78	3.33	2.60
Pv1 $=$	0.54	5.00	2.69
Pv2 $=$	0.29	5.00	1.43
PV3 $=$	$\underline{0.02}$	5.00	$\underline{0.09}$
	6.37		18.69

Ulitimate Loads				
Load Combination	Strength I (Max)		Service I	
	V (K)	M (K.FI)	V (K)	M (K.FI)
Toe	1.88	0.94	N/A	N/A
Heel	8.63	25.61	N/A	N/A
Stem	3.51	10.24	2.24	6.52

For conservative the ullimate shear at toe is caiculated at front face of wall.

$\mathrm{Clit}_{\text {Top Foobing }}=$	2
$\mathrm{Clim}_{\text {Botiom Foobing }}=$	3
Top bar Diameler $=$	0.75
Bottom bar Diameler $=$	0.625
1. HEEL	
$d_{\text {athel }}=$	13.621
$a_{\text {Htod }}=$	0.63
$\mathrm{d}_{\text {v Hood }}=$	13.31
$\mathrm{V}_{\mathrm{R} \text { Heal }}=$	19.27
2. TOE	
$d_{\text {c }} \mathrm{TOO}=$	12.6835
$\mathrm{a}_{\text {Toe }}=$	0.44
$d_{v T 00}=$	12.46
$\mathrm{V}_{\mathrm{R} \text { T00 }}=$	18.05

Spacing ${ }_{\text {Top }}=$	11	in
Spacingrotum $=$	11	in
$\beta=$	2	
$\phi_{\text {shear }}=$	0.9	
$A_{8100}=$	0.48	in^2
>	8.63	k GOOD
$A_{\text {bottom }}=$	0.33	$\mathrm{in}^{\wedge} 2$
>	1.88	k GOOD
		OK OK

VIII. DESIGN FOOTING FOR BENDINGS Use sheet 2 (Heel Bending) for the heel bending design

Use sheet 3 (Toe Bending) for the Toe bending design
OK

$\mathrm{ClI}_{\text {Back Stom }}=$	2
Bar Diameter at Stem $=$	0.625
Spacing =	11
$\mathrm{d}_{\text {s Stum }}=$	7.68
$\mathrm{a}_{\text {stom }}=$	0.44
$\mathrm{d}_{\mathrm{v} \text { Smm }}=$	7.46
$\mathrm{V}_{\mathrm{R} \text { summ }}=$	10.20

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)

		6.52	kervice $M u=$
	$f_{\text {ss }}=$	31.31	ksi
$d_{c}=$	2.31	in	
$\beta_{4}=$	1.33		
$S<=$	12.18	in	

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.75	11	2
FOOTING BOTTOM MAT	0.625	11	3
STEM	0.625	11	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

1.INPUT (ENGLISH)				
Concrele Density (PCt)		150.00		
Soil Density (pcf)		125.00		
Backfill Slope β (by degree)		26.57		
Intemal Friction Angle of Backfill Soil ϕ		34.00		
Internal Friction Angle of Soil at Foundation ϕ		30.00		
Friction Angle belween Fill and Wall δ (*)		30.00	(*) Table 3.11.5.3-1	
Surcharge in Feet		2.00		
Water depth behind wall, from bottom base (f)		3.5		
Top Wall to Backfill Depth (ft)		0.50		
Height from Top Base to Top Wall (f)		7.50		
Top wall Thickness (f)		0.83	H = TOP OF WALL TO BOTTOM OF BASE	
Wall Thickness © Base (ft)		0.83	H/12 to H/10 0.74	0.88
Front Base Length (ft)		1.00	$\mathrm{H} / 10$ TО H/8 0.8833	1.10
Back Base Length (ft)		6.00		
Base Thickness (fi)		1.33	H/12 to H/10	
Shear Key Depth (ft)		1.25		
Shear Key Width (fi)		0.67		
Distance from Toe to Key (f)		0.00		
Front Soil Depth to Base (ft)		1.50		
Enter 1 for rock foundation, 0 for soil		0.00		
fc (psi) $=$ 4500	fy (psi) $=$	60000.00		
Utimate Foundation Bearing (ks) =		5.30		
Bearing Resistance Factor (*)		0.55	(**) Table 10.5.5.2.2-1	
Sliding Resistance Factor (Concrete on Soil) (")		0.80	(*) Table 10.5.5.2.2-1	
Sliding Resistance Factor (Soil on Soil) (${ }^{\text {+*) }}$)		0.90	(*) Table 10.5.5.2.2-1	

Sliding Resistance Factor (Soil on Soil) (**)

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empinical methods (Meyethof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \end{aligned}$
Sliding	ϕ_{τ}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

LOAD FACTORS

Load Combination	$\gamma_{D C}$	$\gamma_{E V}$	$\gamma_{L S}$	$\gamma_{E H}$	Application
Strength I (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength
Service I	1.00	1.00	1.00	1.00	Wall crack control

II. OUTPUT

Enter 1 for using Rankine horizontal back fill, otherwise enter 0

Angle of B.F. of Wail to Horizontal (degree)			90.00
Active Fluid Weight (Coefficient and pcf), (Ka)			0.412
Passive Fluid Weight (Coefficient and pct)			3.54
$\mathrm{h1}=$	4.08	$\mathrm{a}=$	11.33
h2 =	2.83	$\mathrm{b}=$	8.33
		Base Wdth (ft) =	7.83
Unactored Horizontal Loads			
Loads	Force (K)	Mo. Arm	Moment
Ph1 =	1.41	6.11	8.64
$\mathrm{Ph} 2=$	1.26	1.75	2.21
Ph3 =	0.14	1.17	0.16
Ph,water = Ph,sc=	0.38	1.17	0.45
	0.86	4.17	3.58
	4.06		15.04

Unfactored Vertical Loads

Loads	Force (K)	Mo. Arm	Moment
W1 $=$	0.94	1.42	1.33
W2 $=$	0.13	0.34	0.04
W3 $=$	1.57	3.92	6.13
W4 $=$	5.25	4.83	25.37
W5 $=$	1.12	5.83	6.56
Pv1 $=$	0.71	7.83	5.54
Pv2 $=$	0.85	7.83	6.68
Pv3 $=$	$\underline{0.08}$	7.83	$\underline{0.64}$
	10.64		52.29

Unfactored Sliding Resistance from Shear Key (Horizontal)

Loads	Force (K)
$\mathrm{P}_{\mathrm{p}}=$	1.23

Factored Loads and Moments

Load Combination	vertical Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{V}($ K.Ft $)$	Horiz. Loads $\mathrm{V}(\mathrm{K})$	Moment $M_{H}(\mathrm{~K} . \mathrm{Ft})$
Strength 1 (Min)	11.20	57.97	6.09	23.46
Strength 1 (Max)	14.35	71.77	6.09	23.46
Service I	10.64	52.29	4.06	15.04

III. CHECK OVER TURNING

1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:
YES

$E_{\text {max }}=$	1.96	ft.
$x_{1}=$	3.08	f. (LOCATION OF RESULTANT FROM THE TOE)
Actual $\mathrm{e}=$	0.84	ft.

2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK:
NO

$E_{\max }=$	N/A	f.
$x_{1}=$	N/A	f. (LOCATION OF RESULTANT FROM THE TOE)
Actual $e=$	N/A	f.

IV. CHECK BEARING
Actual $\mathrm{e}=\quad 0.55 \quad \mathrm{ft}$.
Bearing Resistance $=\quad 2.915$ ksf

1. CHECK BEARING FOR FOUNDATION RESTS ON SOIL:
Vertical Sress (Uniform) = 2.13 ksf
2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK:GOOD
YES
Vert. Sress (max.) = N/A ksf
Vert. Sress (min.) $=$ N/A ksf
V. CHECK SLIDING
Friction Resistance $=6.47 \quad k$
Factored Sliding Force $=\quad 6.09 \quad k$
Sliding Resistance $=\quad 5.79 \mathrm{k}$

V. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph $=$	1.41	4.78	6.76
Ph $=$	0.65	1.08	0.70
Ph $=$	0.05	0.72	0.04
Ph,water $=$	0.15	0.72	0.11
Ph,sc $=$	$\underline{0.72}$	3.50	$\underline{2.53}$
	2.99		10.13

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
WB $=$	1.20	3.00	3.60
WY $=$	5.25	3.00	15.75
W5 $=$	1.12	4.00	4.50
Pv1 $=$	0.71	6.00	4.24
Pv2 $=$	0.44	6.00	2.63
Pv3 $=$	$\underline{0.03}$	6.00	$\underline{0.19}$
	8.75		30.91

Ultimate Loads				
Load Combination	Strength $\operatorname{(Max})$		Service I	
	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K} . \mathrm{Ft})$	$\mathrm{V}(\mathrm{K})$	
Toe	2.13	1.07	$\mathrm{~N} / \mathrm{A}$	
Heel	11.87	42.42	$\mathrm{~N} / \mathrm{A}$	
Stem	4.66	15.83	2.99	

For conservative the ultimate shear at toe is calculated at front face of wall. VII. DESIGN FOOTING FOR SHEARS

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	0.875	9	2
FOOTING BOTTOM MAT	0.75	9	3
STEM	0.75	9	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL)
AUTHOR: BUI, HOANG

1. INPUT (ENGLISH)

Concrete Density (pC1)
Soil Density (pcf)
Backfill Slope β (by degree)
Intemal Friction Angle of Backfill Soil \$
Intemal Friction Angle of Soil at Foundation ϕ
Friction Angle between Fill and Wall δ (*)
Surcharge in Feet
Water depth behind wall, from bottom base (fi)
Top Wall to Backfill Depth (ft)
Height from Top Base to Top Wall (f)
Top wall Thickness (ft)
Wall Thickness © Base (ft)
Front Base Length ($f t$)
Back Base Length (ft)
Base Thickness (fi)
Shear Key Depth (ft)
Shear Key Width (it)
Distance from Toe to Key (fi)
Front Soil Depth to Base (ft)
Enter 1 for rock foundation, 0 for soil
$\mathrm{fc}(\mathrm{psi})=44500$
Utimate Foundation Bearing (kst) =
Bearing Resistance Factor (")
Sliding Resistance Factor (Concrete on Soil) (*)
Sliding Resistance Factor (Soil on Soil) (")

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyernof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$
Sliding	$\phi_{\text {r }}$	Precast concrele placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & \hline 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

VI. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Ph1 $=$	1.80	5.61	10.09
Ph2 $=$	0.92	1.33	1.23
Ph3 $=$	0.08	0.89	0.07
Ph,water $=$	0.22	0.89	0.20
Ph,sc $=$	$\underline{0.82}$	4.00	3.30
	3.85		14.89

Unfactored Vertical Loads behind Stem			
Loads	Force (K)	Mo. Arm	Moment
W3 $=$	1.40	3.50	4.90
W4 $=$	7.00	3.50	24.50
W5 $=$	1.53	4.67	7.15
Pv1 $=$	0.90	7.00	6.29
Pv2 $=$	0.62	7.00	4.35
PV3 $=$	$\underline{0.05}$	7.00	$\underline{0.33}$
	11.50		47.52

Ultimate Loads				
Load Combination	Strength I (Max)		Service I	
	$V(\mathrm{~K})$	M (K.Ft)	V (K)	M (K.Ft)
Toe	2.39	1.20	N/A	N/A
Heel	15.62	65.31	N/A	N/A
Stem	5.98	23.16	3.85	14.89

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

1. HEEL

	$d_{3} \mathrm{HoNlO}=$	13.496
	$a_{\text {HeNI }}=$	1.76
	$\mathrm{d}_{\mathrm{v} \text { Howl }}=$	12.62
	$\mathrm{V}_{\mathrm{R} \text { Howl }}{ }^{\text {I }}$	18.27
2. TOE		
	$\mathrm{d}_{8 \mathrm{~T} 08}=$	12.621
	$\mathrm{a}_{\text {T06 }}=$	0.99
	$\mathrm{d}_{\mathrm{v} \text { Tos }}=$	12.13
	$V_{\mathrm{R} \text { Toi }}=$	17.56

\square
$A_{\text {s Botiom }}=0.76 \quad$ in^2
$V_{R \text { Toe }}=\quad 17.56 \quad k$
2.39

VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design

$\mathrm{Cli}_{\text {Back stum }}=$	2
Bar Diameter at Stem =	0.75
Spacing =	7
d_{3} Stom $=$	7.62
$\mathrm{a}_{\text {stam }}=$	0.99
$\mathrm{d}_{\mathrm{vsmm}}=$	7.20
$V_{\text {R Stam }}=$	9.92

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
Check control of cracking by distribution of reinforcement (5.7.3.4)

| Service $M u=$ | 14.89 | k.ft |
| :--- | :---: | :---: | :--- |
| | | |
| $\mathrm{f}_{\mathrm{ss}}=$ | 32.76 | ksi |
| $\mathrm{d}_{\mathrm{c}}=$ | 2.38 | in |
| $\beta_{\mathrm{s}}=$ | 1.34 | |
| $\mathrm{~S}<=$ | 11.20 | in |

$\mathrm{S}_{\mathrm{x}}=$	7.20	in
$\mathrm{A}_{85 \mathrm{~m}}=$	0.76	in^2
$\varepsilon_{5}=$	0.002029406	
$\mathrm{S}_{\mathrm{xe}}=$	12	in
$\beta=$	1.90	
$>$	5.98	k

in $^{\wedge} 2$
in

- GOOD

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	1	7	2
FOOTING BOTTOM MAT	0.75	7	3
STEM	0.75	7	2

LRFD DESIGN FOR CIP RETAINING WALL B-16-H (NORTH WALL) AUTHOR: BUI, HOANG

Table 10.5.5.2.2-1 Resistance Factors for Geotechnical Resistance of Shallow Foundations at Strength Limit State

Method / Soil / Condition			Resistance Factor
Bearing Resistance	ϕ_{b}	Theoretical Method (Munfakh et al., 2001), in clay Theoretical Method (Munfakh et al., 2001), in sand, using CPT Theoretical Method (Munfakh et al., 2001), in sand, using SPT Semi-empirical methods (Meyerhof, 1957), all soils Footing on rock Plate Load Test	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.55 \\ & \hline \end{aligned}$
Sliding	ϕ_{τ}	Precast concrete placed on sand Cast-in Place Concrete on sand Cast-in-Place or precast Concrete on clay Soil on soil	$\begin{aligned} & 0.90 \\ & 0.80 \\ & 0.85 \\ & 0.90 \end{aligned}$
	$\phi_{\text {ep }}$	Passive earth pressure component of sliding resistance	0.50

Load Combination	$\gamma_{D C}$	$\gamma_{\text {EV }}$	$\gamma_{L S}$	$\gamma_{\text {Eh }}$	Application	
Strength 1 (Min)	0.90	1.00	1.75	1.5	Sliding \& overturning	
Strength I (Max)	1.25	1.35	1.75	1.5	Bearing \& wall strength	
Service 1	1.00	1.00	1.00	1.00	Wall crack control	
Il. OUTPUT						
Enter 1 for using Rankine horizontal back fill, otherwise enter 0			1	Not Submergence		
Angle of B.F. of Wall to Horizontal (degree)			90.00		Submergence	
Active Fluid Weight (Coefficient and pcr), (Ka)			0.41	51.53	25.81	
Passive Fluid Weight (Coefficient and pcr)			3.54	442.14	221.42	
$\mathrm{h} 1=$$\mathrm{h} 2=$	4.08	$\mathrm{a}=$	13.91		$H=10.58$	
	2.83	$\mathrm{b}=$	10.08		$0.4 \mathrm{H}=4.23$	
		Base Width (fi) =	9.49	0.4 H to 0.6 H Adjust Fluid Weight	$0.6 \mathrm{H}=6.35$	
Unactored Horizontal Loads					1	Trial to match provided (Ka) from Geology Unit
Loads	Force (K)	Mo. Arm	Moment		(Ka) from Geology Unit	
Ph1 =	2.79	6.58	18.34			
Ph2 $=$	1.48	1.46	2.16			
$\mathrm{Ph} 3=$	0.10	0.97	0.10			
Ph,water =	0.27	0.97	0.26			
Ph,sc =	1.04	5.04	5.24			
	5.67		26.09			
Unfactored Vertical Loads						
Loads	Force (k)	Mo. Arm	Moment			
W1 =	1.16	1.42	1.64			
W2 =	0.13	0.34	0.04			
W3 $=$	1.90	4.75	9.01			
W4 =	8.38	5.66	47.45			
W5 =	1.83	6.94	12.73			
Pv1 $=$	1.39	9.49	13.23			
Pv2 $=$	1.00	9.49	9.47			
Pv3 $=$	0.06	9.49	0.54			
	15.84		94.09			
Unfactored Sliding Resistance from Shear Key (Horizontal)						
Loads	Force (K)					
$\mathrm{P}_{\mathrm{p}}=$	1.23					
Factored Loads and Moments						
Load Combination	vertical Loads $V(K)$	Moment $M_{v}(K . F t)$	Horiz. Loads $V(K)$	Moment $M_{H}(K . F t)$		
Strength I (Min)	16.74	104.64	8.76	40.44		
Strength I (Max)	21.43	129.44	8.76	40.44		
Service I	15.84	94.09	5.67	26.09		
III. CHECK OVER TURNING						
1. CHECK OVERTURNING FOR FOUNDATION RESTS ON SOIL:				(8) YES		
$\begin{aligned} E_{\text {max }} & = \\ \mathrm{x}_{1} & =\end{aligned}$	2.37	t.				
	3.83	t. (LOCATION OF RESULTANT FROM THE TOE)				
Actual $\mathrm{e}=$	0.91		GOOD			
2. CHECK OVERTURNING FOR FOUNDATION RESTS ON ROCK:				NO		
$E_{\text {max }}=$	N/A	f.		-		
$x_{r}=$	N/A	f. (LOCATION OF RESULTANT FROM THE TOE)				
Actual $\mathrm{e}=$	N/A					
IV. CHECK BEARING						
Actual $\mathrm{e}=$	0.59	t.				
Bearing Resistance $=$	3.949	sf				
1. CHECK BEARING FOR FOUNDATION RESTS ON SOIL:				YES		
Vertical Sress (Uniform) =	2.58	kf	GOOD			
2. CHECK BEARING FOR FOUNDATION RESTS ON ROCK:				NO		
Vert. Sress (max.) =	N/A	ksf				
Vert. Sress (min.) =	N/A	ksf				
V. CHECK SLIDING						
Friction Resistance $=$	9.67	k				
Factored Sliding Force $=$	8.76	k				
Sliding Resistance $=$	8.35		GOOD			

Vl. ULTIMATE LOADS

Unactored Horizontal Loads on Stem

Loads	Force (K)	Mo. Arm	Moment
Phi $=$	2.79	5.25	14.63
Ph2 $=$	0.71	0.79	0.56
Ph3 $=$	0.03	0.53	0.02
Ph,water $=$	0.08	0.53	0.04
Ph,sc $=$	$\underline{0.90}$	4.38	3.95
	4.50		19.19

Unfactored Vertical Loads behind Stem

Loads	Force (K)	Mo. Arm	Moment
W3 $=$	1.53	3.83	5.87
W4 $=$	8.38	3.83	32.09
W5 $=$	1.83	5.11	9.36
Pv1 $=$	1.39	7.66	10.67
Pv2 $=$	0.48	7.66	3.64
Pv3 $=$	$\underline{0.02}$	7.66	$\underline{0.13}$
	13.63		61.76

Ultimate Loads				
Load Combination	Strength I (Max)	Service I		
	$\mathrm{V}(\mathrm{K})$	M (K.Ft)	$\mathrm{V}(\mathrm{K})$	$\mathrm{M}(\mathrm{K} . \mathrm{Ft})$
Toe	2.58	1.29	$\mathrm{~N} / \mathrm{A}$	N / A
Heel	18.53	84.96	$\mathrm{~N} / \mathrm{A}$	N / A
Stem	6.98	29.77	4.50	19.19

For conservative the ultimate shear at toe is calculated at front face of wall.
VII. DESIGN FOOTING FOR SHEARS

$\mathrm{Cl}_{\text {Top footing }}=$	2	in	Spacing $_{\text {top }}=$	6
$\mathrm{Cl}_{\text {Sothom Footina }}=$	3	in	Spacingeotem $=$	6
Top bar Diameter $=$	1	in	$\beta=$	2
Bottom bar Diameter =	0.875	in	$\phi_{\text {shear }}=$	0.9

1. HEEL			
	$\mathrm{d}_{\text {ateat }}=$	13.496	in
	$\mathrm{a}_{\text {Hew }}=$	2.05	in
	$\mathrm{d}_{\mathrm{v} \text { teal }}=$	12.47	in
	$\mathrm{V}_{\mathrm{R} \text { tred }}=$	18.05	k
2. TOE			
	$d_{3} \mathrm{Tosec}=$	12.5585	in
	$\mathrm{a}_{\text {T04 }}=$	1.57	in
	$d^{\text {v Tox }}=$	11.77	in
	$\mathrm{V}_{\mathrm{R} \text { Tot }}=$	17.05	k

$\quad A_{\text {ITOP }}=$	$1.57 \quad$ in $^{\wedge} 2$
$<$	10.53

$<$
18.53
k GOOD
2. TOE

A_{8} Botiom $=$	1.20	in
$>$	2.58	k

in^2 $^{\wedge}$

VIII. DESIGN FOOTING FOR BENDINGS

Use sheet 2 (Heel Bending) for the heel bending design
Use sheet 3 (Toe Bending) for the Toe bending design
ok
IX. DESIGN STEM FOR SHEAR
$\sigma_{2 \text { stem }}=7.56$
$a_{\text {stam }}=\quad 1.57 \quad$ in
$\begin{array}{ccc}d_{\text {vemm }}= & 7.20 & \text { in } \\ V_{\text {R Stom }}= & 11.29 & k\end{array}$

$\mathrm{S}_{\mathrm{x}}=$	7.20	in	
A_{3} Sum	$=$	1.20	in 2
ε_{8}	$=$	0.001622636	
$\mathrm{~S}_{\mathrm{x} 0}=$	12	in	
$>\quad \beta=$	2.17		
$>\quad$		6.98	k

in^2
$>$
GOOD

X. DESIGN STEM FOR BENDING

Use sheet 4 (Stem Bending) for the stem bending design
OK
Check control of cracking by distribution of reinforcement (5.7.3.4)

		19.19	k.ft
	$f_{\mathbf{s a}}=$	26.59	ksi
$d_{\mathbf{c}}=$	2.44	in	
$\beta_{\mathbf{s}}=$	1.35		
$\mathrm{~S}<=$	14.65	in	

SUMMARY OF CONCRETE DESIGN

	BAR DIA. (IN)	SPACING (IN)	COVER (IN)
FOOTING TOP MAT	1	6	2
FOOTING BOTTOM MAT	0.875	6	3
STEM	0.875	6	2

[^0]: GOOD

