Report No. CDOT-DTD-R-2006-12 Final Report

HOT MIX ASPHALT VOIDS ACCEPTANCE REVIEW OF QC/QA DATA 2000 THROUGH 2004

Eric Chavez, CDOT Pavement Design Unit

July 2006

COLORADO DEPARTMENT OF TRANSPORTATION RESEARCH BRANCH

The contents of this report reflect the views of the author(s), who is(are) responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

		rech	inicai Report Do	cumentation Page	
1. Report No. 2. C CDOT-DTD-R-2006-12	Government Accession No.	3. Rec	ipient's Catalog No.		
4. Title and Subtitle HOT MIX ASPHALT VOIDS ACCEPT REVIEW OF QC/QA DATA 2000 THF		5. Report Date July 2006			
		6. Per	forming Organization	n Code	
7. Author(s) Eric Chavez			orming Organization T-DTD-R-2006-1		
9. Performing Organization Name and Address Colorado Department of Transportatio			ork Unit No. (TRAIS)		
4201 E. Arkansas Ave. Denver, Colorado 80222		11. Co	ntract or Grant No.		
12. Sponsoring Agency Name and Address Colorado Department of Transportation 4201 E. Arkansas Ave. Denver, CO 80222	on - Research	13. Ty _l	oe of Report and Pe	riod Covered	
Deriver, CO 60222		14. Sp	onsoring Agency Co	de	
15. Supplementary Notes Prepared in cooperation with the US [Department of Transportation	on, Federal Hig	hway Administra	ation	
the testing criteria for the years 2000 of reviewing the Calculated Pay Factor of the test elements: asphalt content, vootables, figures, and reports. Various of The specification and the projects are received incentive payments than disilevels in the individual elements are a quality levels with an average of 95.00 percent asphalt are third and fourth we requirement beginning in 2003. The prontractors gain experience in this are	Composite (CPFC) and Inceids in mineral aggregate, aid data groupings are used to performing reasonably we neentive payments. The art reasonable levels. Over to Mat density has the next ith average quality levels of pay factor for this element is	entive/Disincen r voids, mat de evaluate the da l. Over the five verage pay ove he five-year time best results were 90.41 and 89. It is just under 1.0	tive Payments (It insity, and joint of ata including: year time period the five years in a period the VM ith an average of 86. Joint density but is expected	/DP). Analysis of each of density is presented in ar, region, & grading. Industry the density is presented in ar, region, & grading. Industry the density is 1.00848. The quality is 1.00848. The pest is 1.00848. Air voids and y testing has been a	
17. Keywords Quality Control/Quality Assurance (Qo percent within limits, Incentive/Disince voids acceptance, asphalt content, vo air voids, mat density, joint density	entive Payments (I/DP),		. This document in tional Technical	is available to the public I Information Service	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this pag Unclassified	e)	21. No. of Pages 140	22. Price	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Hot Mix Asphalt Voids Acceptance Review of QC/QA Data 2000 Through 2004

by

Eric Chavez

Report No. CDOT-DTD-R-2006-12

Prepared by
Colorado Department of Transportation
Research Branch

Sponsored by the
Colorado Department of Transportation
In Cooperation with the
U.S. Department of Transportation
Federal Highway Administration

July 2006

Colorado Department of Transportation Research Branch 4201 E. Arkansas Ave. Denver, CO 80222 (303) 757-9266

TABLE OF CONTENTS

1.0	INTR	ODUCTION AND COMMENTS	1
2.0	SPE	CIFICATIONS	2
3.0	CAL	CULATIONS AND DEFINITIONS	3
4.0	DES	CRIPTION OF REPORTS	8
5.0	CDO	T ENGINEERING REGIONS	12
6.0	DISC	CUSSION OF DATA	13
	6.1	Projects Evaluated	13
	6.2	Variability of the Reported Data and Construction Experience.	14
	6.3	Calculated Pay Factor Composite	15
	6.4	Calculated Pay Factor Composite by Year and Region	18
	6.5	Incentive/Disincentive Payments	19
	6.6	Review of Yearly Data by Test Element 2000 through 2004	21
	6.7	Comparison Between Test Element Quality Levels	30
	6.8	Calculated Pay Factor Composite for Gradings S & SX	34
	6.9	Test Element Quality Levels for Gradings S & SX	36
	6.10	Recap Reports, 2000 through 2004 Data	43
	6.11	Yearly Reports 2000 though 2003	44
7.0	SUM	MARY	45
8.0	UPD	ATES AND CONTACT	48
REF	FEREN	ICES	48
URL	_S		48
App	endix	A Recap Reports by Year 2000 through 2004	
App	endix	B Recap Reports by Grading/Year 2000 through 2004	
Арр	endix	C Detailed Reports for 2004 Projects	

LIST OF FIGURES

	1.	CDOT Engineering Regions	12
	2.	Calculated Pay Factor Composite by Year	17
	3.	Calculated Pay Factor Composite by Region	18
	4.	Percent Asphalt Quality Levels	25
	5.	Percent Asphalt Pay Factors	25
	6.	VMA Quality Levels	26
	7.	VMA Pay Factors	26
	8.	Air Voids Quality Levels	27
	9.	Air Voids Pay Factors	27
	10.	Mat Density Quality Levels	28
	11.	Mat Density Pay Factors	28
	12.	Joint Density Quality Levels	29
	13.	Joint Density Pay Factors	29
	14.	Quality Levels by Test Element	30
	15.	Quality Levels by Test Element	31
	16.	Pay Factors by Test Element	31
	17.	Quality Levels by Test Element & W Factor	33
	18.	Average Pay Factors 2000 to 2004	33
	19.	Calculated Pay Factor Composite by Year, Grading S & SX	36
	20.	Percent Asphalt Quality Levels, Grading S & SX	39
	21.	VMA Quality Levels, Grading S & SX	39
	22.	Air Voids Quality Levels, Grading S & SX	40
	23.	Mat Density Quality Levels, Grading S & SX	40
	24.	Joint Density Quality Levels, Grading S & SX	41
	25.	Element Quality Levels by Grading 2000 to 2004	42
	26.	Element Pay Factors by Grading 2000 to 2004	43
LI	ST (OF TABLES	
	1.	"W" Factors for Various Elements	2
	2.	Projects Evaluated by Bid Date	13

4	Calculated Pay Factor Composite by Year/Region	16
5	5. Incentive/Disincentive Payments – Recap by Year	20
6	6. Recap of Yearly Data by Test Element All Gradings	23
7	7. Test Element Results, All Gradings – 2000 to 2004	24
8	3. Calculated Pay Factor Composite by Year and Grading	35
9	Review of Test Elements - Gradings S & SX	37
1	0. Quality Levels and Pay Factors by Grading 2000 to 2004	42
LIS	T OF REPORTS	
1.	Asphalt Content – Recap by Year/Region	Appendix A
2.	VMA – Recap by Year/Region	Appendix A
3.	Air Voids – Recap by Year/Region	Appendix A
4.	Mat Density – Recap by Year/Region	Appendix A
5.	Joint Density – Recap by Year/Region	Appendix A
6.	Asphalt Content – Recap by Grading/Year/Region	Appendix B
7.	VMA – Recap by Grading/Year/Region	Appendix B
8.	Air Voids – Recap by Grading/Year/Region	Appendix B
9.	Mat Density – Recap by Grading/Year/Region	Appendix B
10	.Joint Density – Recap by Grading/Year/Region	Appendix B
11	. Project Listing by Start Date/Region/Subaccount	Appendix C
12	.Project Data	Appendix C
13	.Calculated Pay Factor Composite and I/DP by Region	Appendix C
14	. Asphalt Content – Process Information	Appendix C
15	.VMA – Process Information	Appendix C
16	. Air Voids – Process Information	Appendix C
17	.Mat Density – Process Information	Appendix C
18	.Joint Density – Process Information	Appendix C

3. Projects Evaluated by Start Date......13

1.0 INTRODUCTION AND COMMENTS

The Colorado Department of Transportation (CDOT) began Quality Control/Quality Assurance (QC/QA) construction for hot bituminous pavement (HBP) in 1992 with the implementation of a three-year pilot program which was essentially completed in 1994 (several projects were held over and completed in 1995). Three test elements were included in the calculations for pay factors, percent asphalt, mat density, and aggregate gradation.

In 1993 CDOT announced their intent to adopt a QC/QA voids acceptance (VA) specification for HBP. Under Phase 1 of the VA pilot program nine VA pilot projects were completed by the end of 1996. Three additional projects were constructed in 1997.

In 1998 a series of VA projects were let to contract under Phase 2 of the pilot specification. Four test elements were included in the calculations for pay factors under Phase 2, percent asphalt, voids in mineral aggregate, air voids, and mat density. The specification was released as a standard special provision on July 21, 1999.

In December of 2002 joint density testing was added as the fifth element included in the calculation for Incentive/Disincentive Payment (I/DP). The weights of the original elements were adjusted to account for the new element.

This report analyzes the voids acceptance data for the years 2000 through 2004. Reports evaluating the asphalt content, voids in mineral aggregate, air voids, mat density, & joint density elements sorted by year & region are presented in this report. Recap reports of the same data sorted by grading are also presented. Charts comparing the quality level and pay factor information for the years 2000 through 2004 are displayed for the percent asphalt, voids in mineral aggregate, air voids, and mat density elements. The joint density test information for the years 2003 and 2004 is also presented. Detailed reports that show all the process data for the year 2004 are included in Appendix C.

A major change in the format of this report compared to the previous reports is that the major data grouping is now by start date, the date the paving began, instead of bid date, date on which the project was awarded to contract. On numerous projects the paving began in the following year after the project was awarded to contract. The new data grouping more accurately groups the projects according to the time of their construction. The information presented in this report for the years 2000 through 2003 will not match that of previous reports since the grouping is different. Also, additional project data has been received and added to the data base for these years. Otherwise, the general format and presentation of data in this report is similar to that used in previous QC/QA reports. Information on the background, development, philosophy and rationale involved can be found in the previous reports and is not repeated here.

2.0 SPECIFICATIONS

Specifications - Revision of Sections 105 and 106, Quality of Hot Bituminous Pavement (Voids Acceptance). The Revision to Sections 105 & 106 governs the QC/QA calculations. A major change to the specification was made with the release of the specification dated December 20, 2002. Joint density testing was included in the calculation for Incentive/Disincentive Payments (I/DP) in this release. The joint density element accounts for 15 percent of the total in the calculation for I/DP. The weights associated with the other test elements were adjusted to account for the new testing element. Table 1 shows the old and new weights and test elements. No other changes were made in the specification that affected the calculations for quality level, pay factor, or I/DP.

Table 1. "W" Factors for Various Elements

	W Factor				
Specification	Percent Asphalt	VMA	Air Voids	Mat Density	Joint Density
10/4/01 & Older	10	10	40	40	
12/20/02 & Newer	10	10	30	35	15

The Revision of Sections 105 and 106 has been revised numerous times over the years but the changes were in other areas and did not affect the QC/QA calculations. The calculation for quality levels has remained unchanged since the beginning. Use of CDOT's QC/QA computer program is a requirement of the specification. The computer program is based on this specification.

3.0 CALCULATIONS AND DEFINITIONS

Process Quantities – Process quantities are used for all calculations in this report except for the calculation of the Calculated Pay Factor Composite. In general, processes group like material or construction techniques together. As long as the material being evaluated remains unchanged it will be added to the current process. If a change to the material or the construction technique occurs then a new process will be created. Please see the Revision to Sections 105 & 106, Quality of Hot Bituminous Pavement (Voids Acceptance) for details on processes.

Award Date – The date on which the project was awarded to contract.

Bid Date - Same as Award Date.

Calculated Pay Factor Composite – The Calculated Pay Factor Composite (CPFC) is a way to evaluate the overall quality of the HMA used on the project. The CPFC represents the percentage increase or decrease to the unit price for HMA paid on the project. Projects with a CPFC greater than 1.0 will have received an incentive payment. Projects with a CPFC less than 1.0 will have received a disincentive payment. The CPFC is back calculated from the project's Final Incentive/Disincentive Payment (I/DP). This calculation is used rather than an overall quality level calculation since a project can contain processes in which no quality level is calculated, processes with less than three tests. The calculation used here also addresses the problem that occurred in some of the reported projects in which the final element quantities were not equal between test elements. The main reason this calculation is used is to avoid the problems associated with averaging of the data. The calculation is as follows:

$$CPFC = (I/DP / ((UP_p) * (QR_p))) + 1$$

Where: CPFC = Calculated Pay Factor Composite.

I/DP = Incentive/Disincentive Payment for the project.

UP_P = Calculated Unit Price for the project.

QR_P = Quantity Represented Project, average of the tons reported in the percent asphalt, VMA, and air voids elements.

$$UP_P = (\sum (UP_n * T_n)) / \sum T_n$$

Where: UP_n = Unit Price for the process.

T_n = Tons represented by the process, average of the tons reported in the percent asphalt, VMA, and air voids elements.

Note: The quantities used in the calculation of average tons and average price are the quantities reported in the percent asphalt, VMA, and air voids elements. After reviewing the project data it was determined that these quantities most accurately represented the actual produced quantity when the reported quantities were not equal in the test elements.

CTS (Compaction Test Section) – A compaction pavement test section used to establish the number of rollers and rolling pattern needed to achieve specified densities, see Revision of Section 401, Compaction Test Section for details.

CTS Tons (Compaction test section tons) – Tons of material accounted for in the mat density test element by the construction of compaction test sections within the project.

CTS I/DP (Compaction test section Incentive/Disincentive payment) – The calculated I/DP for compaction test sections.

I/DP (Incentive/Disincentive Payment) - The amount of increase or decrease paid for a quantity of material within a test element, based on the calculated pay factor. The I/DP for a project is the summation of all calculated element I/DPs.

Joint Density – Density measurements taken on the longitudinal joint between paving passes, see subsection 401.17 Compaction for details.

Mean – Or Average, the sum of all test values divided by the number of tests.

Mean to TV - The absolute value of the difference between the calculated mean for the process and the target value for the test element. The lower the value the closer the mean approaches the target value of the specification. One of the two factors that affects the quality level calculation, the other factor being the standard deviation for the process.

Pay Factor - The amount of increase or decrease, displayed as a percentage, applied to the unit price of the pavement. Multiplied by the W factor for the element to calculate I/DP for an element.

PF 1.0 Tons (Pay factor 1.0 tons) – Used in the mat density element to account for tons of material in which the pay factor is set to 1.0 by specification. Usually used on a project when the thickness of the mat being placed becomes too thin to be accurately tested.

Project Code – An alpha-numeric identifier unique to each project.

Quality Level – Quality Levels (Percent within limits) are calculated in accordance with Colorado Procedure 71. Quality Level analysis is a statistical procedure for estimating the percent compliance to specification limits and is affected by shifts in the arithmetic mean and by the sample standard deviation. Analysis of both factors is essential whenever evaluating quality level results.

Slope of the regression line equation: $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

Slope shows both steepness and direction. With positive slope the line moves upward when going from left to right. With negative slope the line moves down when going from left to right. The higher the value the steeper the line.

Start Date – The date the HMA paving began on the project.

Std. Dev. (Standard Deviation) - Definition, see variance.

equation: $SD = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$

Where: $\Sigma =$ summation

 x_i = individual test value

 \overline{X} = mean

n = number of samples

 $Std.\ Dev.-V\ (Standard\ Deviation\ minus\ the\ V\ Factor)$ - A comparison of the standard deviation for the process to the historical standard deviation for the element, the V factor. Negative values indicate that the process has a smaller standard deviation than historically reported. The lower this number the better. One of the two factors that affects the quality level calculation, the other factor being the mean for the process as it relates to the target value for the specification.

Subaccount – A unique five digit numeric identifier for a project.

Trendline equation: y = mx + b

Where: m = slope of the line.

b = y-intercept.

TV (Target Value) - The midpoint of the specification range.

V (V Factor) - One standard deviation for the test element based on historical data.

VA – Voids Acceptance

Variance - A measure of the average distance between each of a set of data points and their mean value; equal to the sum of the squares of the deviation from the mean value. The square root of the variance is the standard deviation.

equation:
$$\sigma = SD^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$$

Where: $\Sigma = \text{summation}$

 x_i = individual test value

 \overline{X} = mean

n =number of samples

VMA - Voids in Mineral Aggregate

W Factor – The weight given the test element. Used in the calculation of I/DP's, see Table 1.

Weighted Average – The weighted average used in this report is calculated on the tons of material represented.

2V Adj. (2V adjustment) – Test results in the asphalt content or mat density test elements that are greater than 2 x V outside the tolerance limits are designated as a separate process and the quantity it represents is price reduced according to subsection 105.03(d). A price reduction is applied to all of the test elements for the quantity of material represented. This requires that adjustments are made to the original calculations for I/DP in the other test elements. The amount shown as the 2V Adj. is the total amount of adjustment applied to the original calculations.

7

4.0 DESCRIPTION OF REPORTS

Report Criteria – At the beginning of each report the selection criteria are listed for the data contained in the report. The primary grouping of projects is by their start date, the date the paving began. Quality levels are not calculated on processes that contain less than three test results. Therefore, those processes are excluded from the reports that contain quality level calculations. Other justifications as to why a project or process is excluded from the report are detailed in the report criteria.

Sample Size – Not too many conclusions should be drawn when the number of observations, sample size, is small. Generally speaking, an evaluation of five or less samples is not considered very reliable. Always check the number of samples included in the evaluation when doing comparisons of the data. Most of the reports presented here will indicate the number of samples included in the various data groupings. Figures that appear in this report will have associated tables that will give the number of samples included in the data groupings. Whenever possible the number of samples will be included in the figures.

Reports 1 to 5 - Test Element Reports, Recap by Year/Region 2000 through 2004: Asphalt Content, Voids in Mineral Aggregate, Air Voids, Mat Density, & Joint Density, Appendix A. For each of the test elements a report that recaps the information is presented. The information is grouped by year and then by region. Information presented includes: processes, tons, and tests along with the weighted averages for price, quality level, pay factor, mean to target value, standard deviation, and standard deviation minus the V value. Totals are calculated for each year. These reports are very useful for tracking the performance of the HMA through the years and by each region.

Reports 6 to 10 - Test Element Reports, Recap by Grading/Year/Region 2000 through 2004: Asphalt Content, Voids in Mineral Aggregate, Air Voids, Mat Density, & Joint Density, Appendix B. For each of the test elements a report that recaps the information is presented. The information is first grouped by grading and

then by year and region. Information presented includes: processes, tons, and tests along with the weighted averages for price, quality level, pay factor, mean to target value, standard deviation, and standard deviation minus the V value. Totals are calculated for each year by grading. Overall results for each grading are also calculated. These reports are useful for tracking the performance of the HMA by grading through the years and by region.

2004 REPORTS (PROJECTS WITH START DATES OF 2004), APPENDIX C

A series of detailed reports are presented for the year 2004.

Project Listing by Region/Subaccount, Report 11. This report contains information for the projects with a start date of 2004 included in the evaluations. The subaccount, project code, location, region, supplier, bid date, start date, total bid, and plan quantity are listed for each project. The report groups the projects by region and contains a region recap. A statewide recap is given at the end of the report.

Project Data, Report 12. The Project Data report displays all of the QC/QA data reported for each project. The projects are sorted by subaccount number. Each project's data is detailed by mix design and process number. The number of tests, quantity in tons, quality levels, pay factors, and Incentive/Disincentive Payment are given for each mix design and process. A summary for each project is also displayed and shows the CPFC. This report contains all of the project's data and is the best report to review when concerned about an individual project. All of a project's data may not be contained in other reports if the data does not meet that report's individual criteria.

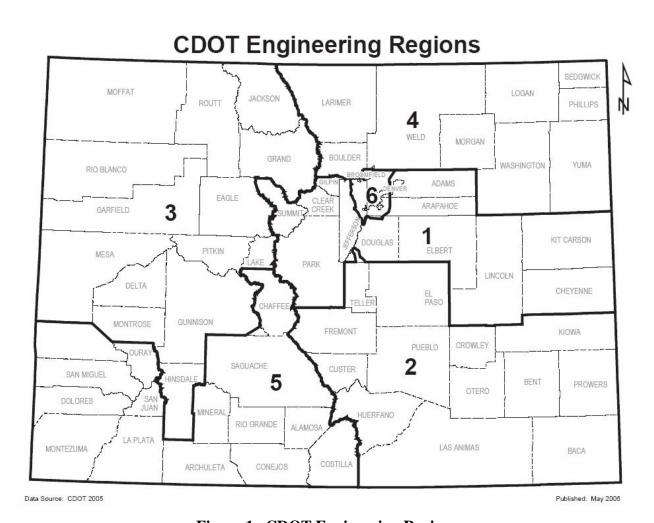
Calculated Pay Factor Composite and I/DP by Region, Report 13. This report evaluates two key calculations for each project, the Calculated Pay Factor Composite (CPFC) and the project Incentive/Disincentive Payment (I/DP). The Calculated Pay Factor Composite gives an index of the overall quality of the project; see Calculations

for details on the calculation of the CPFC. The I/DP is the incentive or disincentive amount the project received for the HMA. The report groups the projects by region and contains a region recap. A statewide recap of the information is given at the end of the report.

Asphalt Content – Process Information, Report 14. Asphalt Content information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Voids In Mineral Aggregate – Process Information, Report 15. Voids in Mineral Aggregate information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Air Voids – Process Information, Report 16. Air Voids information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.


Mat Density – **Process Information, Report 17.** Mat Density information is detailed in this report. The information is grouped by grading and sorted by quality level. For

each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Joint Density – Process Information by Grading, Report 18. Joint density information is detailed in this report for the projects that contained that specification. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

5.0 CDOT ENGINEERING REGIONS

CDOT has established six Engineering Regions across the state in order to decentralize many of its design, construction and maintenance project functions and maximize contact with local governments, industry, and the public. An overview of the region boundaries is given in Figure 1.

Figure 1. CDOT Engineering Regions

6.0 DISCUSSION OF THE DATA

6.1 Projects Evaluated

Table 2 displays the number of projects and tons of material awarded by year. The gradation acceptance projects are covered in a separate report. Table 3 lists the projects evaluated by start date, the date the paving began. The start date is used as the primary data grouping for this report. The voids acceptance specification became a standard special provision on July 21, 1999. All projects evaluated in this report were constructed using the standard special provision specification. Additional project data will be added to the database as it is received by the Pavement Design Unit.

Table 2. Projects Evaluated by Bid Date

			Eva	luated		
	Aw	arded	led Voids Acceptance Gradation Accep		Acceptance	
Year	Projects	Tons	Projects	Tons	Projects	Tons
2000	78	2,258,407	11	741,956	50	1,186,203
2001	53	1,306,757	3	155,270	40	954,646
2002	71	1,974,106	21	826,936	42	880,699
2003	74	2,327,464	21	967,742	33	879,370
2004	78	2,348,013	23	1,091,072	26	530,005

Table 3. Projects Evaluated by Start Date

Projects by Start Date	Voids Acceptance				
Year	Projects Tons				
2000	5	216,281			
2001	9	680,945			
2002	11	421,562			
2003	29	1,265,596			
2004	19	1,068,777			

6.2 Variability of the Reported Data and Construction Experience

Much of the data evaluated in this report does not show clear trends and shows variation from year to year. Two factors can explain some of this variation. First, the new voids acceptance specification and testing requirements. Second, the amount of experience the contractor has in constructing voids acceptance projects. The specification was released as a standard special provision in 1999. The first projects constructed using the new specification are those reported for the year 2000. The contractors who selected these first projects probably did so cautiously but were also confident that they could handle the new testing requirements. The results for 2000 were very good. The results for 2001 showed improvements in most areas. Experience most likely played a big part in this. A single contractor completed four of the nine projects completed in that year. That same contractor had completed one of the projects in 2000. Four contractors completed their first VA projects in 2001. Two of the projects received the best results reported in that year. The other two projects had the worst results. 2002 generally has the worst results of any year. Eight of the eleven projects completed in that year were constructed by contractors who had not previously constructed a voids acceptance project. 2002 also contained the project with the worst overall results. This project decreased the overall results for that year. The projects constructed in 2002 were completed by contractors with the least overall VA experience. Twenty-nine projects were completed in 2003. Five of the nine projects that had the lowest results were constructed by contractors for which these projects were their first voids acceptance projects. The seven best reported projects were all constructed by contractors who had previously completed at least two voids acceptance projects. Experience with the new specification does seem to pay off. In 2004 only three contractors constructed their first voids acceptance projects. Fourteen of the nineteen projects completed were by contractors with at least three previous voids acceptance projects. By 2004 good experience had been reached with the voids acceptance specification and testing requirements. 2004 has shown good results in all areas.

6.3 Calculated Pay Factor Composite

The Calculated Pay Factor Composite (CPFC) information for the years 2000 through 2004 is displayed in Table 4. The information is sorted by year and then by region. The CPFC represents the percentage increase or decrease to the unit price for HMA paid on the project, see Calculations and Definitions for details on the calculation of the CPFC. A CPFC above 1.0 indicates that an incentive payment was paid for the HMA. A CPFC below 1.0 indicates that a disincentive was applied to the pavement. The maximum and minimum values are displayed for each data grouping. The weighted average is calculated for each year and for the five-year time period. Figure 2 displays the overall CPFC, all gradings of HMA included, by year for the years 2000 through 2004. 2001 shows the best results with an average of over 2% incentive being awarded to the projects in that year. The following year, 2002, showed the worst results with an average CPFC of 0.9870. On average, disincentives were applied to the projects constructed in this year. In 2003 the CPFC was again above the neutral mark of 1.0 and incentives were being paid for most of the HMA. Improvements continued in 2004 with the CPFC improving by 0.007% from the previous year. 2004 has the second best average CPFC reported for any year. For the five-year time period, 2000 through 2004, the overall average is 1.00848. More projects have received incentive payments than disincentive payments over this time period.

Table 4. Calculated Pay Factor Composite by Year/Region

			_	Calculated Pay Factor Composite			
2000	Region	Projects	Tons	Average	Minimum	Maximum	
	1	1	12,317	1.03974	1.03974	1.03974	
	2	2	122,774	1.00330	0.99521	1.01140	
	4	1	74,292	0.98801	0.98801	0.98801	
	6	1	19,841	1.03272	1.03272	1.03272	
	Totals	5	229,224	1.01342	0.98801	1.03974	
				Calculate	d Pay Factor C	omposite	
2001	Region	Projects	Tons	Average	Minimum	Maximum	
	2	4	264,164	1.02421	0.99949	1.05302	
	4	3	250,886	1.03080	1.02708	1.03414	
	5	1	70,475	0.97118	0.97118	0.97118	
	6	1	53,879	1.04691	1.04691	1.04691	
	Totals	9	639,404	1.02304	0.97118	1.05302	
				Calculate	d Pay Factor C	omnosita	
2002	Pogion	Projects	Tons			_	
2002	Region	Projects		Average	Minimum	Maximum	
	1	1	71,404	1.04132	1.04132	1.04132	
	2	3	128,628	0.89072	0.76392	0.98500	
	3	1	38,628	1.00929	1.00292	1.00292	
	4 6	1 5	75,069	1.01807	1.01807	1.01807	
	б	5	144,641	1.02319	0.98943	1.04162	
	Totals	11	458,370	0.98698	0.76392	1.04162	
				Calculate	d Pay Factor C	omposite	
2003	Region	Projects	Tons	Average	Minimum	Maximum	
	1	1	16,978	1.00047	1.00047	1.00047	
	2	10	384,758	1.01097	0.96642	1.02979	
	3	3	149,180	0.99094	0.97720	1.00292	
	4	4	354,150	1.01462	0.97187	1.03799	
	5	1	113,295	0.99338	0.99338	0.99338	
	6	10	213,162	1.00784	0.83698	1.04771	
	Totals	29	1,231,523	1.00736	0.83698	1.04771	
			_	Calculate	d Pay Factor C	omposite	
2004	Region	Projects	Tons	Average	Minimum	Maximum	
	1	3	212,060	1.00909	0.96524	1.03872	
		4	195,284	1.03012	1.02044	1.04055	
	2 3	2	206,299	0.99636	0.98525	1.00747	
	4	3	261,023	1.01310	1.00383	1.02639	
	6	7	137,023	1.01352	0.94133	1.03329	
	Totals	19	1,011,689	1.01444	0.94133	1.04055	

Table 4. Continued

				Calculated Pay Factor Composite			
2000 to 2004	Region	Projects	Tons	Average	Minimum	Maximum	
	1	6	312,759	1.01813	0.96524	1.04132	
	2	23	1,095,608	1.00026	0.76392	1.05302	
	3	6	394,107	0.99580	0.97720	1.00929	
	4	12	1,015,420	1.01635	0.97187	1.03799	
	5	2	183,770	0.98228	0.97118	0.99338	
	6	24	568,546	1.01536	0.83698	1.04771	
	Totals	73	3,570,210	1.00848	0.76392	1.05302	

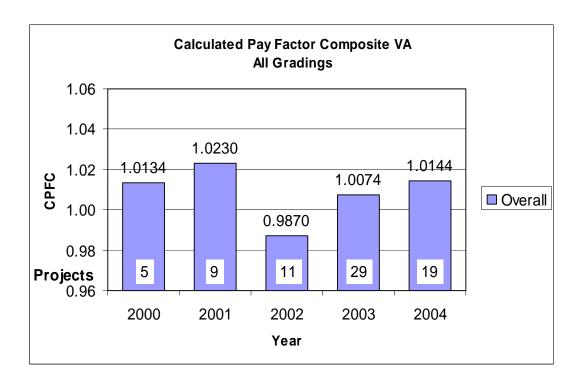


Figure 2. Calculated Pay Factor Composite by Year

6.4 Calculated Pay Factor Composite by Year and Region

The five-year, 2000 through 2004, Calculated Pay Factor Composite information by region is displayed at the end of Table 4. The maximum and minimum values are also displayed. The overall results for all projects are also calculated. Four of the six regions have overall results above 1.0, incentive being paid for the HMA. Region 1 has the best results with an average CPFC of 1.01813. Two regions have average CPFC that are less than 1.0, disincentives being paid. Region 5 shows the worst results but only two projects have been completed using the voids acceptance specification. Regions 2 and 6 have completed the most voids acceptance projects, 23 and 24 respectively. The overall CPFC is 1.00848, more incentives being paid than disincentives. Figure 3 shows the overall results for each region for the five-year time period.

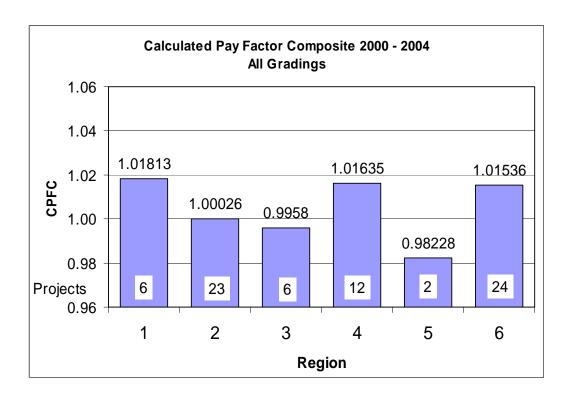


Figure 3. Calculated Pay Factor Composite 2000 to 2004 by Region

6.5 Incentive/Disincentive Payments

A recap of the Incentive/Disincentive Payments (I/DP) for the years 2000 through 2004 is presented in Table 5. For each year, the total number of projects, the number that had incentive payments, and number with disincentive payments is displayed. The summation of the I/DPs, the maximum, minimum and average are given for each year. The I/DP is the total dollar amount of incentive or disincentive payment the project received for the HMA. The calculation for I/DP is directly related to the tons of material used in the project, pay factor times tons represented. The size of the projects, tons of HMA, included in the evaluations can somewhat skew the results. Large projects being compared to smaller projects will have different I/DPs purely based on the multiplication of the pay factor times the tons of material. The projects with the largest I/DPs do not necessarily equate to the projects with the best quality levels. It is important to consider the dollar amounts being paid but a better way of evaluating the HMA is to review the Calculated Pay Factor Composite and quality levels. The percentage of projects receiving disincentive payments is also calculated for each year and for the five-year time period. Overall, 2000 through 2004, 25% of the projects have received some amount of disincentive payment. In 2000 the percentage receiving disincentive payments was 40%. In 2004 the percentage receiving disincentive payments had dropped to 16%.

Table 5. Incentive/Disincentive Payments – Recap by Year

Incentive/Disincentive Payment

2000

2000			incentive/Disincentive Payment				
	Number of Projects	5	Sum I/DPs	\$41,411.82			
	Positive I/DPs	3	Maximum	\$29,863.90			
	Negative I/DPs	2 40%	Minimum	(\$34,248.47)			
	Total Tons	229,224	Average I/DP	\$8,282.36			
2001			Incentive/Disir	centive Payment			
	Number of Projects	9	Sum I/DPs	\$489,645.08			
	Positive I/DPs	7	Maximum	\$119,561.18			
	Negative I/DPs	2 22%	Minimum	(\$67,655.18)			
	Total Tons	639,404	Average I/DP	\$54,405.01			
0000							
2002	N	4.4		ncentive Payment			
	Number of Projects	11	Sum I/DPs	\$113,487.41			
	Positive I/DPs	7	Maximum	\$99,877.90			
	Negative I/DPs	4 36%	Minimum	(\$95,998.88)			
	Total Tons	827,915	Average I/DP	\$10,317.04			
2003			Incentive/Disinc	ntive/Disincentive Payment			
	Number of Projects	29	Sum I/DPs	\$533,992.91			
	Positive I/DPs	22	Maximum	\$109,804.69			
	Negative I/DPs	7 24%	Minimum	(\$53,185.02)			
	Total Tons	1,231,523	Average I/DP	\$18,413.55			
2004			Incentive/Disinc	-			
	Number of Projects	19	Sum I/DPs	\$368,089.92			
	Positive I/DPs	16	Maximum	\$119,310.36			
	Negative I/DPs	3 16%	Minimum	(\$83,206.36)			
	Total Tons	1,011,689	Average I/DP	\$19,373.15			
2000 to 2004		Incentive/Disincentive Payment					
	Number of Projects	73	Sum I/DPs	\$1,546,627.14			
	Positive I/DPs	55	Maximum	\$119,561.18			
	Negative I/DPs	18 25%	Minimum	(\$95,998.88)			
	Total Tons	3,570,210	Average I/DP	\$21,186.67			
		, , -	3	. ,			

6.6 Review of Yearly Data by Test Element 2000 through 2004

The overall results, all grading included, for each of the test elements for the years 2000 through 2004 are listed in Table 6. The quality level, pay factor, and standard deviation are shown for each element. The mean to target value and standard deviation minus V factor are also calculated. The mean to target value calculation shows the relationship between the mean for the processes in comparison to the midpoint of the specification limits, the target value. The calculated value is the absolute difference between the mean and the target value. The lower the value the closer the mean is to the target value, which increases the probability that the material will be within specification. The standard deviation minus V factor shows the comparison of the standard deviation for the processes to the historical standard deviation, the V factor. A negative number indicates that the standard deviation for the processes is less than the historical value, increasing the probability that the material will be within specification. Positive values show that the standard deviations have exceeded the historical values. The calculation of quality levels is dependent on the relationship of both of these values as they relate to the specification limits. Quality levels are not calculated on processes with less than three tests. Therefore, these processes are excluded from the evaluations that include the quality level calculation. Table 7 contains the five year average for the percent asphalt, VMA, air voids, & mat density elements.

Most of the element pay factors reported show good results. Eighteen of the twenty-two elements are above 1.0 indicating that incentives are being paid. The yearly quality levels for each of the elements also show good results. The lowest reported quality level is 83.845 in the joint density element for 2004. However, this is only the second year that this element has been tested and included in the calculations for I/DP. The next lowest reported quality level is 87.678 in the percent asphalt element for 2003. At this level the calculated pay factor is just under the 1.0 value. All of the other reported quality levels are above this level and the associated pay factors are greater than 1.0, incentive payments being awarded. When evaluating the mean to target value calculations we see that the material is being produced close to the midpoint of the specification, calculated values approaching zero. This increases the probability that the material will be within specification limits. All of the calculated values are within 0.75 of the V value to the mean except for those reported in the joint density element. A

mean within 0.75 V to the midpoint of the specification generally results in good quality level calculations. However, quality level calculations are also dependent on the calculated standard deviation for the process. The standard deviations reported for the test results show that the majority of the material being produced is below the variation of the historical data, negative values in the standard deviation minus V value column. Excluding the joint density results, all of the calculated values in this column except one are negative numbers. The variation being reported in the joint density element has been equal to or above the V value in its first two years of being tested. The quality levels and pay factors for each of the elements are displayed in Figures 4 – 13.

The results for the test elements are somewhat mixed. Reliable trends cannot be established on all of the elements. The data tends to vary over the five-year time period. Part of this variation is probably due to the newness of the specification and the time required for the contractors to gain experience on voids acceptance projects. The pattern that is generally seen in the test elements is: good initial results. This is probably due to the limited number of contractors who bid on the first voids acceptance In the second or third years there was a decrease in the quality levels projects. reported. In 2002 the number of contractors constructing their first voids acceptance projects was the greatest. In the last two or three years evaluated the results have been increasing. Most of the contractors had completed at least two VA projects by this time. This particular pattern can be seen in the percent asphalt, VMA, and air voids elements. These elements have all shown acceptable results and resulted in incentive payments being made. The five-year average quality levels have been: percent asphalt 89.855, VMA 95.041, and Air Voids 90.408. The mat density results have remained at a constant level, excluding 2000. The average quality level over the last four years is 93.1. The quality levels have been within 1% of each other over the last four years. Incentive payments of approximately 2% have been made on this element over this time. Joint density testing has been a requirement since 2003. The results for 2004 are less than those reported in 2003. More data is required to fully evaluate this element.

Table 6. Recap of Yearly Data by Test Element, All Gradings

Percent Asphalt

Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	St. Dev. - V
2000	5	229,224	234	90.232	1.01083	0.10	0.146	0.200	-0.054
2001	9	638,541	641	91.889	1.01833	0.06	0.152	0.200	-0.048
2002	11	449,348	478	92.385	1.02744	0.06	0.151	0.200	-0.049
2003	29	1,217,072	1248	87.678	0.99472	0.08	0.168	0.200	-0.032
2004	19	1,005,858	1027	89.981	1.01142	0.07	0.158	0.200	-0.042
VMA									
Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	St. Dev. - V
2000	5	229,224	234	96.034	1.03765	0.28	0.461	0.600	-0.139
2001	9	638,540	641	96.691	1.04257	0.26	0.417	0.600	-0.183
2002	11	445,348	475	93.464	1.02296	0.27	0.504	0.600	-0.096
2003	29	1,223,050	1254	93.925	1.02450	0.38	0.421	0.600	-0.179
2004	19	1,005,858	1026	95.823	1.03195	0.29	0.419	0.600	-0.181
Air Voids									
Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
2000	5	229,224	234	87.841	0.99411	0.42	0.575	0.600	-0.025
2001	9	617,540	620	90.942	1.01246	0.31	0.575	0.600	-0.025
2002	11	445,348	461	89.503	1.00273	0.25	0.628	0.600	0.028
2003	29	1,222,085	1253	89.369	1.00613	0.36	0.593	0.600	-0.007

Notes: *Mean to TV* – The closer the calculated value is to zero the better. *Std. Dev. - V* – The smaller the value the better.

1026

92.328

2004

19

1,005,858

1.02260

0.31

0.553

0.600

-0.047

Table 6. Continued

Mat Density

Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
2000	5	227,946	463	89.214	0.99597	0.694	0.987	1.100	-0.113
2001	9	586,423	1,180	93.449	1.02151	0.595	0.879	1.100	-0.221
2002	11	408,517	818	92.807	1.02312	0.559	0.897	1.100	-0.203
2003	29	1,118,739	2,289	93.586	1.02641	0.424	0.919	1.100	-0.181
2004	19	868,004	1,750	92.634	1.01820	0.451	0.989	1.100	-0.111
Joint Density									
Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	St. Dev. - V
2003	16	730,560	398	90.171	1.00955	1.577	1.600	1.600	0.000

0.96445

2.007

1.600

0.113

1.713

Notes: *Mean to TV* – The closer the calculated value is to zero the better. *Std. Dev. - V* – The smaller the value the better.

552

83.845

2004

19

836,133

Table 7. Test Element Results, All Gradings - 2000 through 2004

Test	Tons	Proc.	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
Percent Asphalt	3,540,043	183	3,628	89.855	1.00892	0.07	0.159	0.200	-0.041
VMA	3,542,020	185	3,630	95.041	1.03053	0.31	0.433	0.600	-0.167
Air Voids	3,520,055	183	3,594	90.408	1.01074	0.33	0.582	0.600	-0.018
Mat Density	3,209,629	176	6,500	92.894	1.02071	0.50	0.932	1.100	-0.168

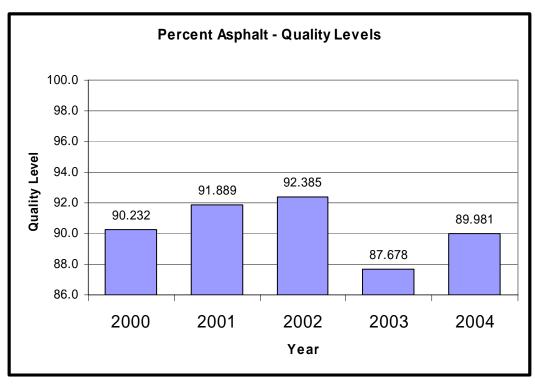
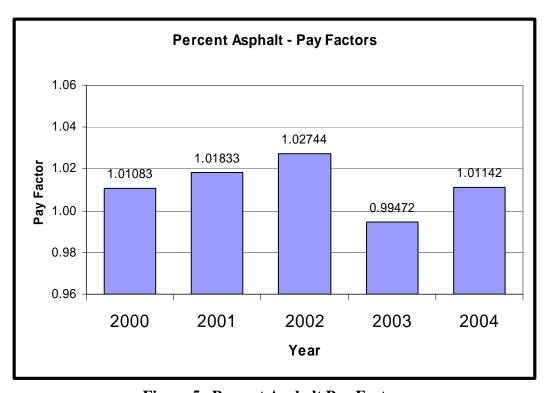



Figure 4. Percent Asphalt Quality Levels

Figure 5. Percent Asphalt Pay Factors

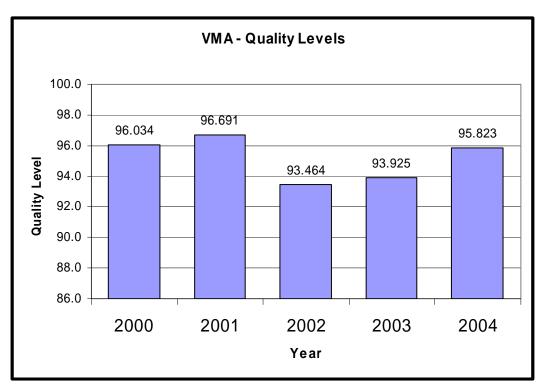


Figure 6. VMA Quality Levels



Figure 7. VMA Pay Factors

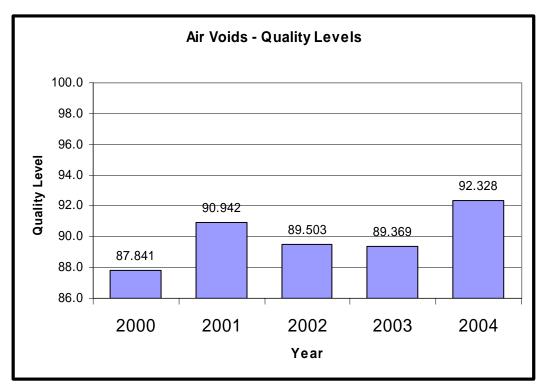
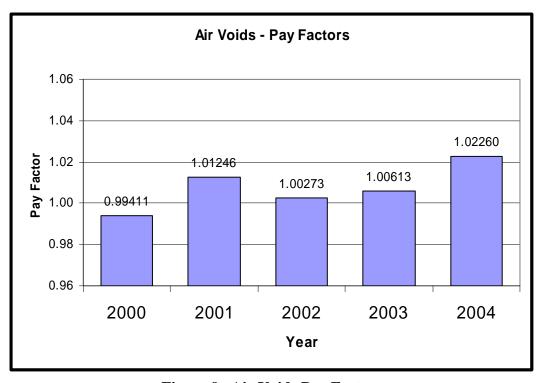



Figure 8. Air Voids Quality Levels

Figure 9. Air Voids Pay Factors

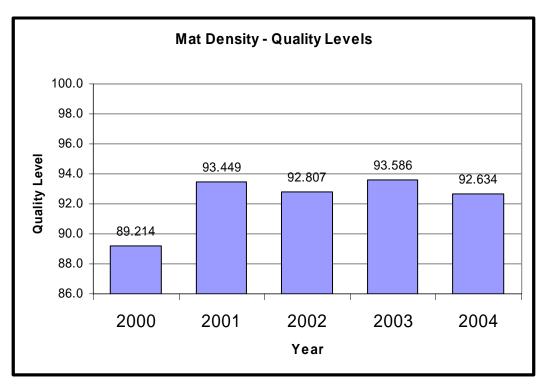
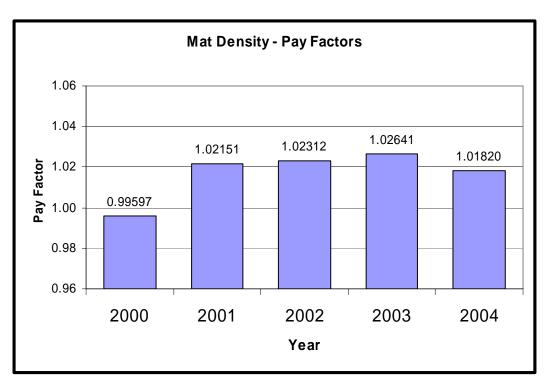



Figure 10. Mat Density Quality Levels

Figure 11. Mat Density Pay Factors

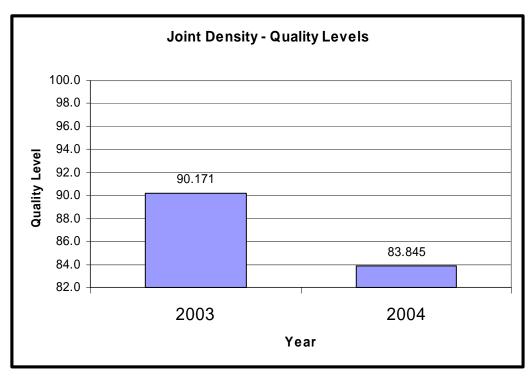
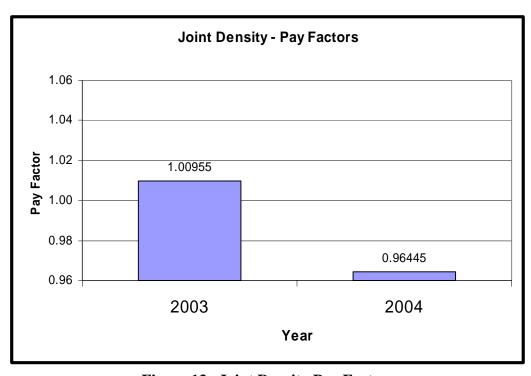



Figure 12. Joint Density Quality Levels

Figure 13. Joint Density Pay Factors

6.7 Comparison Between Test Element Quality Levels 2000 through 2004

The quality levels for each of the elements by year, excluding joint density, 2000 through 2004, are displayed in Figures 14 and 15. These figures help display the relationship between the quality levels of the test elements. The quality levels for VMA have been the best of any of the elements in each year. Mat density has had the next best results in the last four years. Percent asphalt had the third best results in the first three years. It had the worst results in the last two years. Air voids had the worst results in the first three years but then moved ahead of percent asphalt in the last two years. The results do tend to be gapped in most instances, having the same ranking and distance between elements. This is especially true when reviewing the results for the last two years. The pay factors results are displayed in Figure 16.

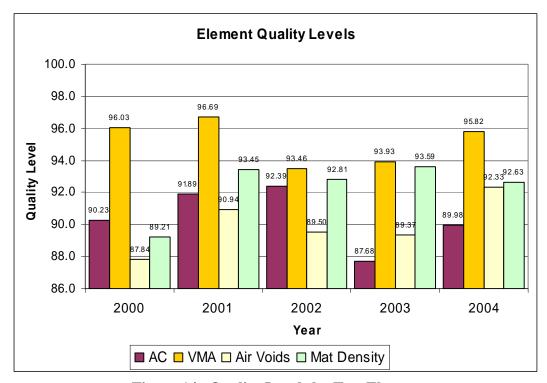


Figure 14. Quality Levels by Test Element

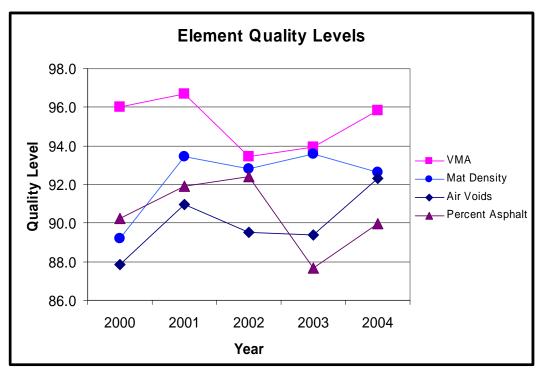


Figure 15. Quality Levels by Test Element

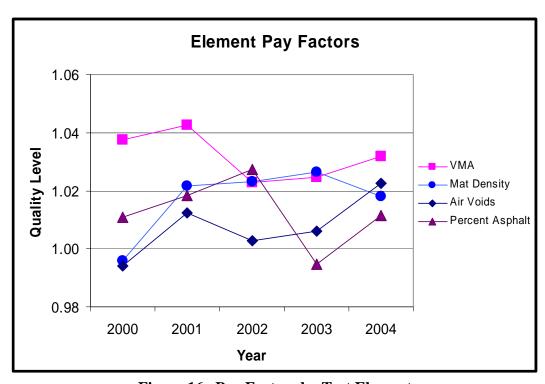


Figure 16. Pay Factors by Test Element

One factor that might influence how the elements rank, lowest to highest, in quality levels is the importance given the test element by the specification, the weight assigned to the element. Table 1, "W" Factors for Various Elements displays the weights given to each of the elements. Figure 17 displays the average quality levels, 2000 through 2004, for each of the test elements and its assigned weight. A high level of importance is given to the mat density element. Its W factor is equal to or higher than the other elements. This element ranks second in reported quality levels. The air voids element has the second highest W factor and is ranked third behind mat density. The VMA element has the highest reported quality levels but its weight is only 10%. Joint density has been a testing requirement for two years. This element is still too new and requires more data to be received before a good analysis can be completed on it. Overall there does seem to be a relationship between the element weight and the resulting quality levels, with the exception of the VMA element. The current quality levels are acceptable and are expected to increase as more experience is gained. Figure 18 displays the average pay factor for each of the test elements, 2000 through 2004. Except for joint density, all of the average pay factors are above 1.0.

Table 1. "W" Factors for Various Elements

	W Factor								
Specification	Percent Asphalt	VMA	Air Voids	Mat Density	Joint Density				
10/4/01 & Older	10	10	40	40					
12/20/02 & Newer	10	10	30	35	15				

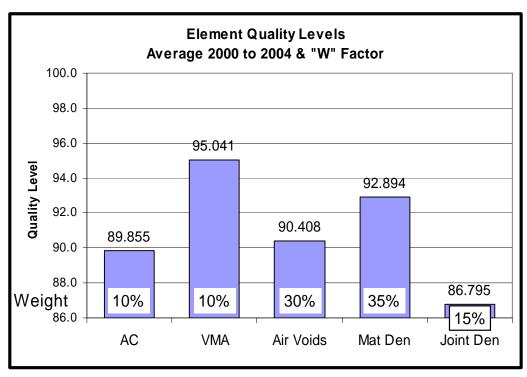


Figure 17. Quality Levels by Test Element 2000 to 2004 & "W" Factor

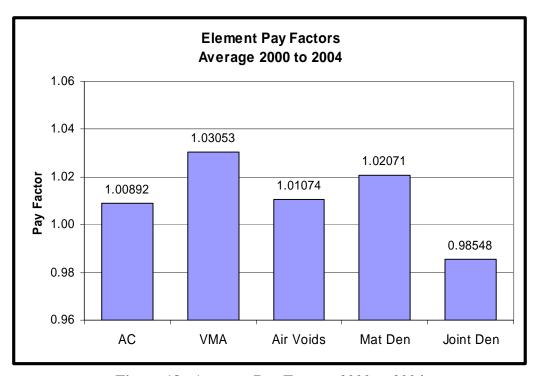


Figure 18. Average Pay Factors 2000 to 2004

6.8 Calculated Pay Factor Composite for Gradings S & SX, 2000 Through 2004

For each year, the calculated pay factor composite for gradings S and SX is given in Table 8. Only thirteen of the sixty-eight projects evaluated contained grading SX. No projects in 2000 contained grading SX. Only one project in 2001 and two in 2002 contained grading SX. Overall grading S has had better results in each year except 2002. However, only two grading SX projects were constructed in 2002. A good comparison of the two gradings is limited because of the small number of SX projects. By comparing the data for the last two years, the years with the best data, grading S shows better results than grading SX. Over the five-year time period, 2000 to 2004, grading S has a 0.005% higher CPFC than grading SX. Both gradings on average are receiving incentive payments. Figure 18 displays the CPFC for each grading 2000 through 2004.

Table 8. Calculated Pay Factor Composite by Year and Grading

					CPFC	
Year	Grading	Projects	Tons	Average	Minimum	Maximum
2000	S	5	229,224	1.01342	0.98801	1.03974
	Totals	5	229,224	1.01342	0.98801	1.03974
2001	S SX	8 1	568,929 70,475	1.02952 0.97118	0.99949 0.97118	1.05302 0.97118
	Totals	9	639,404	1.02304	0.97118	1.05302
2002	S SX	9 2	348,338 110,032	0.97847 1.02530	0.76392 1.00929	1.04162 1.04132
	Totals	11	458,370	0.98698	0.76392	1.04162
2003	S SX	21 5	762,090 289,475	1.01000 0.99410	0.83698 0.97720	1.04771 1.00431
	Totals	26	1,051,565	1.00695	0.83698	1.04771
2004	S SX	12 5	499,312 367,665	1.01963 1.01395	0.94133 0.98525	1.04055 1.03872
	Totals	17	886,977	1.01796	0.94133	1.04055
Overall '00 to '04	S SX	55 13	2,407,893 837,647	1.01009 1.00477	0.76392 0.97118	1.05302 1.04132
	Totals	68	3,245,540	1.00908	0.76392	1.05302

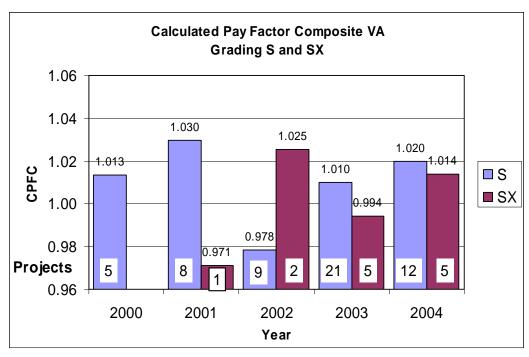


Figure 19. Calculated Pay Factor Composite by Year, Grading S & SX

6.9 Test Element Quality Levels for Gradings S & SX 2000 Through 2004

For each of the test elements the quality level information is separated into gradings S and SX by year and is presented in Table 9. Figures 20 to 24 graphically present the quality level information for each element. Good comparison of the results of the two gradings is limited by the fact that there are a small number of SX projects. No projects were constructed in 2000 that used SX. Only one project in 2001 and two in 2002 used grading SX. The results are somewhat scattered with trends not clearly defined. This is probably due to the newness of the specification and the time needed for the contractors to gain experience constructing voids acceptance projects. Most of the quality levels are above 85% within specification limits. At this level the resulting pay factor will be close to the neutral mark of 1.0. Pay factors above 1.0 will result in incentive payments being awarded. The results for grading S are slightly better than that of SX in most comparisons. In 2004 the differences between the two gradings are the closest of any year in each of the elements. Excluding joint density, the difference between the two gradings is less than 1.6% in each of the elements. The small number of SX projects limits the comparison to the two gradings. The number of projects of each grading years 2003 and 2004 is sufficient for a good comparison of the two gradings. No conclusions on the difference between the two gradings should be made until more data is available.

Table 9. Review of Test Elements – Gradings S & SX

			Percent As	sphalt		0	Davi
Grading	Year	Projects	Processes	Tests	Tons	Quality Level	Pay Factor
S	2000	5	14	234	229,224	90.232	1.01083
	2001	8	21	569	568,066	92.886	1.02389
	2002	9	17	365	339,316	91.991	1.02581
	2003	24	54	928	904,748	88.652	1.00191
	2004	14	32	573	559,904	89.837	1.01200
SX	2000	0					
	2001	1	3	72	70,475	83.847	0.97351
	2002	2	4	113	110,032	93.599	1.03248
	2003	8	14	320	312,324	84.857	0.97390
	2004	7	24	454	445,954	90.161	1.01070
			VMA				
Grading	Year	Projects	Processes	Tests	Tons	Quality Level	Pay Factor
•		-					
S	2000	5	15	234	229,224	96.034	1.03765
	2001	8	21	569	568,065	97.891	1.04875
	2002	9	17	362	335,316	91.679	1.01300
	2003	24	54	933	909,726	96.924	1.04388
	2004	14	32	572	559,904	95.097	1.02612

3

4

15

24

72

113

321

454

70,475

110,032

313,324

445,954

87.015

98.906

85.220

96.736

0.99281

1.05330

0.96826

1.03928

SX

2000

2001

2002

2003

2004

0

1

2

8

7

Table 9. Continued

Air Voids	
Quality Grading Year Projects Processes Tests Tons Level	Pay Factor
S 2000 5 14 234 229,224 87.841	0.99411
2001 8 20 548 547,065 91.863	1.01741
2002 9 17 348 335,316 87.493	0.98952
2003 24 54 932 908,761 91.184	1.01829
2004 14 32 572 559,904 91.724	1.02105
SX 2000 0	
2001 1 3 72 70,475 83.789	0.97401
2002 2 4 113 110,032 95.631	1.04299
2003 8 15 321 313,324 84.103	0.97088
2004 7 24 454 445,954 93.087	1.02455
Mad Daniell	
Mat Density	Davi
Quality Grading Year Projects Processes Tests Tons Level	Pay Factor
S 2000 5 15 463 227,946 89.214	0.99597
2001 8 21 1084 539,011 94.411	1.02832
2002 9 21 692 344,838 92.926	1.02415
2003 24 58 1739 849,001 94.099	1.03151
2004 14 30 1038 515,306 92.767	1.01990
SX 2000 0	
2001 1 2 96 47,412 82.510	0.94405
2002 2 2 126 63,679 92.166	1.01752
2003 8 10 550 269,738 91.973	1.01035

Joint Density Quality Pay Grading **Projects Processes** Level Year **Tests Tons Factor** S 2003 13 342 25 628,271 89.603 1.00652 2004 14 485,477 19 302 85.998 0.98576SX 2003 3 3 56 102,289 93.654 1.02815 2004 7 8 250 350,656 80.864 0.93495

712

352,698

92.440

1.01573

17

2004

7

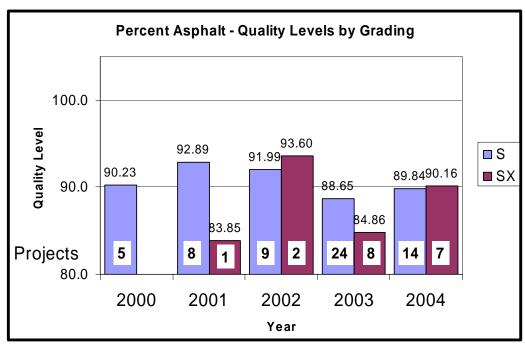


Figure 20. Percent Asphalt Quality Levels – Gradings S & SX

Figure 21. VMA Quality Levels – Gradings S & SX

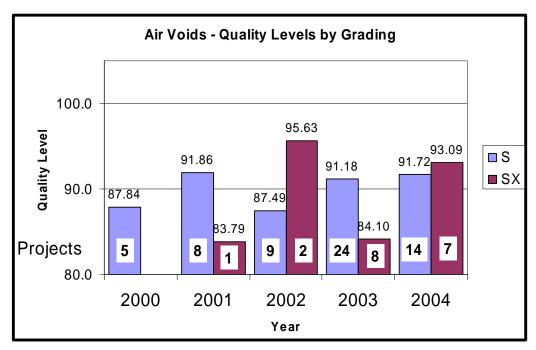


Figure 22. Air Voids Quality Levels – Gradings S & SX

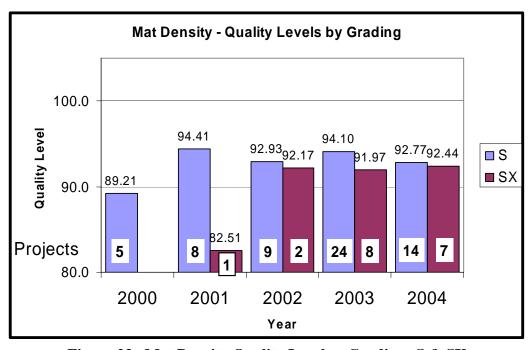


Figure 23. Mat Density Quality Levels – Gradings S & SX

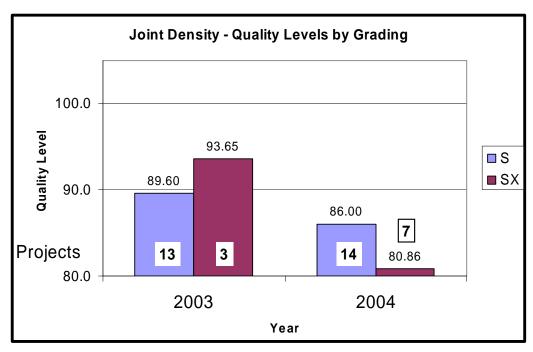


Figure 24. Joint Density Quality Levels – Gradings S & SX

Table 10 displays the five-year averages for quality level and pay factor for each of the elements. On average grading S has shown better results in each of the test elements. The difference in the quality levels of three of the elements is 2.1% or less. The difference in the VMA element is 3.6%. The difference in the joint density element after two years of testing is 4.3%. The differences at this stage appear to be within reasonable limits. Seven of the ten pay factors are above 1.0 indicating that on average incentive payments are being awarded. Two of the evaluations are less than 0.003% under 1.0. Just slightly more disincentives were made than incentives. The joint density results for grading SX have the lowest reported pay factors. Joint density testing has been a requirement for two years. Grading SX has been used on only 10 projects that contained the joint density testing requirement. Figures 25 and 26 display the five-year average quality level and pay factors information for each of the elements.

Table 10. Quality Levels and Pay Factors by Grading Average 2000 Through 2004

	Processes	Tons	Tests	Quality Level	Pay Factor
S	138	2,601,258	2,669	90.407	1.01278
SX	45	938,785	959	88.325	0.99822
S	139	2,602,235	2,670	95.988	1.03659
SX	46	939,785	960	92.421	1.01376
S	137	2,580,270	2,634	90.669	1.01282
SX	46	939,785	960	89.692	1.00503
s	145	2,476,102	5,016	93.277	1.02410
SX	31	733,527	1,484	91.602	1.00927
S	44	1,113,748	644	88.032	0.99747
SX	11	452,945	306	83.752	0.95600
	SX S SX S SX S SX S	\$ 138 \$X 45 \$ 139 \$X 46 \$ 137 \$X 46 \$ 145 \$X 31 \$ 44	S 138 2,601,258 SX 45 938,785 S 139 2,602,235 SX 46 939,785 S 137 2,580,270 SX 46 939,785 S 145 2,476,102 SX 31 733,527 S 44 1,113,748	S 138 2,601,258 2,669 SX 45 938,785 959 S 139 2,602,235 2,670 SX 46 939,785 960 S 137 2,580,270 2,634 SX 46 939,785 960 S 145 2,476,102 5,016 SX 31 733,527 1,484 S 44 1,113,748 644	Processes Tons Tests Level S 138 2,601,258 2,669 90.407 SX 45 938,785 959 88.325 S 139 2,602,235 2,670 95.988 SX 46 939,785 960 92.421 S 137 2,580,270 2,634 90.669 SX 46 939,785 960 89.692 S 145 2,476,102 5,016 93.277 SX 31 733,527 1,484 91.602 S 44 1,113,748 644 88.032

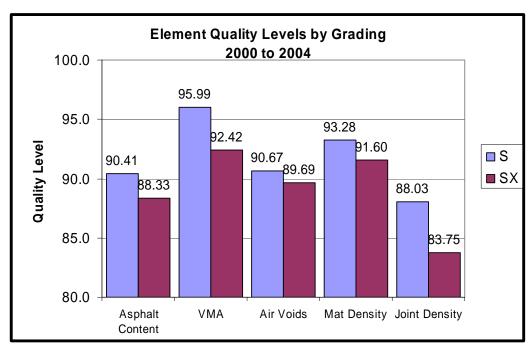


Figure 25. Element Quality Levels by Grading 2000 to 2004

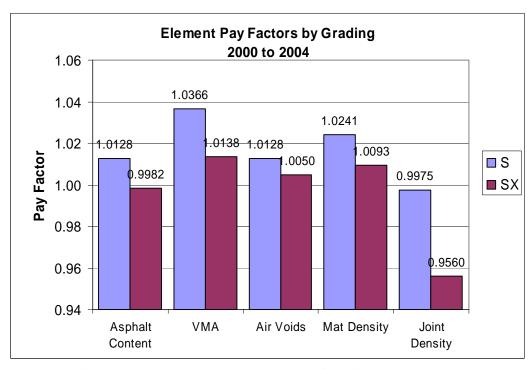


Figure 26. Element Pay Factors by Grading 2000 to 2004

6.10 Recap Reports, 2000 through 2004 Data

A series of recap reports for the information contained in this report 2000 through 2004 is presented in Appendix A. For each of the test elements a report is presented in which the data is grouped by year and then by region. The weighted averages are calculations for: price, quality level, pay factor, mean to target value, standard deviation, and standard deviation minus the V factor. These reports help evaluate the data by year and by region. When evaluating the results by region remember to consider the number of projects included in the grouping. Data sets with less than five observations are usually not considered very reliable. Appendix B contains a series of reports similar to those in Appendix A but the data is first grouped by grading. These reports are useful for evaluating the data by grading S or SX.

6.11 Yearly Reports for 2004 Projects

A series of detailed reports is presented in Appendix C that covers the test information for projects with a start date of 2004. These are detailed reports that contain all of the data and calculations not contained in previous reports. Specific information about each process can be found in these reports. Report number 11 details the project information by region and displays the total bid amount and the plan quantity. The Project Data report, report number 12, contains all of the test data for each project broken out by mix design and process This is a complete listing of the reported tests associated with the project. Calculations are displayed for: target value, mean, mean to target value, standard deviation, and standard deviation minus the V value. The Calculated Pay Factor Composite and Incentive/Disincentive Payment information is also detailed. This is the best report to review when concerned about any single project. The Calculated Pay Factor Composite and Incentive/Disincentive Payment information by region is presented in report 13. For each region the number of projects and tons of material are displayed. The maximum, minimum, and average values are given for both CPFC and I/DP. Reports 14 through 18 detail the results for each of the elements: asphalt content, VMA, air voids, mat density and joint These reports contain all of the process information that is included in the density. evaluations. Calculations are given for each process that show the target value, mean, mean to target value, standard deviation, and standard deviation minus the V value. The reports are grouped by grading and grading results are calculated that show the best, worst and weighted average values. At the end of the report the overall results are given for the year showing the best, worst, and weighted averages.

7.0 SUMMARY

The voids acceptance specification and the projects are performing reasonably well at this time. The specification was released as a standard special provision in 1999. Experience with the new specification does seem to pay off when constructing projects. Some of the variability of the data reported in the first three years is most likely due to the newness of the specification and testing requirements. By 2003 most of the contractors had completed at least one VA project. The results for 2004 showed improvements in all areas. Joint density testing has been a requirement beginning in 2003. The initial results are somewhat low but are also expected to increase with experience.

Reviewing the CPFC is one way to evaluate the HMA. The CPFC represents the percentage increase or decrease to the unit price for HMA paid on the project. The worst results were shown in 2002 with an average CPFC of 0.9870. On average disincentives were applied to the projects constructed in this year. 2002 had the highest number of contractors constructing their first voids acceptance projects. In 2003 the average CPFC was above the neutral mark of 1.0 and incentives were being paid for most of the HMA. Improvements continued in 2004 with the CPFC improving by 0.007% from the previous year. For the five-year time period, 2000 through 2004, the overall average is 1.00848. Overall, 2000 through 2004, 25% of the projects have received some amount of disincentive payment. In 2000 the percentage receiving disincentive payments was 40%. In 2004 the percentage receiving disincentive payments had dropped to 16%.

Most of the element pay factors reported have shown good results. Eighteen of the twenty-two elements groupings are above 1.0 indicating that incentives are being paid. The yearly quality levels for each of the elements also show good results. The lowest reported quality level is 83.845 in the joint density element for 2004. However, this is only the second year that this element has been tested and included in the calculations for I/DP. The next lowest reported quality level is 87.678 in the percent asphalt element for 2003. At this level the calculated pay factor is just under the 1.0 value. All of the other reported quality levels are above this level and the associated pay factors are greater than 1.0, incentive payments being awarded. The mean to target value calculations show that the material is being

produced close to the midpoint of the specification. This increases the probability that the material will be within specification limits. The standard deviations reported for the test results show that the majority of the material being produced is below the variation of the historical data. The variation being reported in the joint density element has been equal to or above the V value in its first two years of being tested.

The results for the test elements are somewhat mixed. Reliable trends cannot be established on all of the elements. The data tends to vary over the five-year time period. Part of the variation is probably due to the newness of the specification and the time required for the contractors to gain experience on voids acceptance projects. Three of the test elements showed the following pattern: good initial results in the first and second years; in the second or third years there was a decrease; in the last two or three years the results have been increasing. This pattern can be seen in the percent asphalt, VMA, and air voids elements. These elements have all shown acceptable results and resulted in incentive payments being made. The five-year average quality levels have been: percent asphalt 89.855, VMA 95.041, and air voids 90.408. The mat density results have remained at a constant level, excluding 2000. The average quality level over the last four years is 93.1. The quality levels have been within 1% of each other over the last four years. Incentive payments of approximately 2% have been made on this element over this time period. Joint density testing has been a requirement since 2003. The results for 2004 are less than those reported in 2003. More data is required to fully evaluate this element.

The relationship between the test elements quality levels was also analyzed. The quality levels for VMA have been the best of any of the elements in each year. Mat density has had the next best results in the last four years. Percent asphalt had the third best results in the first three years. It had the worst results in the last two years. Air voids had the worst results in the first three years but then moved ahead of percent asphalt in the last two years. Joint density has only been tested since 2003. The results tend to be gapped in most instances, having the same ranking and same interval between elements. This is especially true when reviewing the results for 2003 and 2004.

One factor that might influence how the elements rank, lowest to highest, in quality levels is the importance given the test element by the specification, the weight assigned to the element. A high level of importance is given to the mat density element. Its W factor is equal to or higher than the other elements. This element ranks second in reported quality levels. The air voids element has the second highest W factor and is ranked third behind mat density. The VMA element has the highest reported quality levels but its weight is only 10%. The weight given the element and its reported quality levels does show a relationship in the mat density and air voids elements but this is not true for all of the elements. Overall there does seem to be a relationship between the element weight and the resulting quality levels, with the exception of the VMA element. Joint density has been a testing requirement for two years. This element is still too new and requires more data to be received before a good analysis can be completed on it. The current quality levels are acceptable and are expected to increase as more experience is gained. Except for joint density, all of the average pay factors are above 1.0.

Differences between grading S and SX were also analyzed. Only thirteen of the sixty-eight projects evaluated contained grading SX. Overall grading S has had better results in each year except 2002. However, only two grading SX projects were constructed in 2002. A good comparison of the two gradings is limited because of the small number of SX projects. Over the five-year time period, 2000 to 2004, grading S has a 0.005% higher CPFC than grading SX. Overall both gradings on average are receiving incentive payments. In evaluating the individual elements grading S has shown better results than SX. The difference in the quality levels of the percent asphalt, air voids, and mat density elements is 2.1% or less. The difference in the VMA element is 3.6%. The difference in the joint density element after two years of testing is 4.3%. The differences at this stage appear to be within reasonable limits. Seven of the ten pay factors are above 1.0 indicating that on average incentive payments are being awarded.

8.0 UPDATES AND CONTACT

The QC database will be updated as additional project data is received. Project data that

was received after the cut-off date was not able to be included in this report. If you have any

questions concerning this report please contact Eric Chavez at 303 757-9308,

Eric.Chavez@dot.state.co.us. If you find any errors in the project data please report them to

Eric Chavez.

REFERENCES

1. Standard Recommended Practice for Acceptance Sampling Plans for Highway

Construction, AASHTO Designation: R9-97 (2000)

2. Hot Bituminous Pavement Gradation Acceptance Review of QC/QA Data 2000 to 2002,

(March 2004, Eric Chavez, Colorado Department of Transportation, 4201 East Arkansas

Ave, Denver, CO 80222), Report No. CDOT-DTD-R-2004-04.

3. Hot Bituminous Pavement Voids Acceptance Review of QC/QA Data 2000 through 2003,

(March 2005, Eric Chavez, Colorado Department of Transportation, 4201 East Arkansas

Ave, Denver, CO 80222), Report No. CDOT-DTD-R-2005-8.

URLs

CDOT Library: http://www.dot.state.co.us/Publications/Library.htm

CDOT 2005 Construction Specifications Book:

http://www.dot.state.co.us/DesignSupport/Construction/2005SpecsBook/2005Book/2005text%201.ht

<u>m</u>

CDOT Standard Special Provisions:

http://www.dot.state.co.us/DesignSupport/Construction/2005SpecsBook/2005SSP/2005 SSP Index

.htm

CDOT Field Materials Manual:

http://www.dot.state.co.us/DesignSupport/Field%20Materials%20Manual/2007/Table%20of%20Cont

ents%2007.pdf

CDOT Application Software: http://www.dot.state.co.us/ecsu/Products.asp

48

Appendix A

Recap Reports by Year 2000 through 2004

Report 1	Asphalt Content – Recap by Year/RegionA	- 1
Report 2	VMA – Recap by Year/RegionA	- 3
Report 3	Air Voids – Recap by Year/RegionA	- 5
Report 4	Mat Density – Recap by Year/Region A	- 7
Report 5	Joint Density – Recap by Year/RegionA	- 9

Asphalt Content - Recap by Year/Region, VA

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

						Weig	ghted A	verage		
	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2000										
Region: 1	2	12,317	16	\$49.20	85.903	1.01275	0.16	0.129	0.200	-0.071
Region: 2	4	122,774	124	\$29.91	92.988	1.02540	0.08	0.140	0.200	-0.060
Region: 4	7	74,292	74	\$38.44	89.036	1.00066	0.11	0.139	0.200	-0.061
Region: 6	1	19,841	20	\$46.00	80.347	0.95762	0.08	0.220	0.200	0.020
Totals 2000	14	229,224	234	\$35.10	90.232	1.01083	0.10	0.146	0.200	-0.054
2001										
Region: 2	8	264,164	264	\$28.34	93.476	1.02307	0.05	0.151	0.200	-0.049
Region: 4	12	250,023	251	\$42.55	91.174	1.01805	0.09	0.145	0.200	-0.055
Region: 5	3	70,475	72	\$33.31	83.847	0.97351	0.06	0.197	0.200	-0.003
Region: 6	1	53,879	54	\$37.50	97.940	1.05500	0.01	0.131	0.200	-0.069
Totals 2001	24	638,541	641	\$35.23	91.889	1.01833	0.06	0.152	0.200	-0.048
2002										
Region: 1	2	71,404	73	\$33.86	97.826	1.05314	0.04	0.124	0.200	-0.076
Region: 2	6	128,628	154	\$32.05	91.438	1.02333	0.05	0.159	0.200	-0.041
Region: 3	2	38,628	40	\$36.38	85.786	0.99428	0.07	0.191	0.200	-0.009
Region: 4	4	75,069	76	\$37.25	92.942	1.02971	0.10	0.136	0.200	-0.064
Region: 6	7	135,619	135	\$39.88	91.990	1.02600	0.06	0.154	0.200	-0.046
Totals 2002	21	449,348	478	\$35.94	92.385	1.02744	0.06	0.151	0.200	-0.049

							Weig	ghted A	verage		
		Processe	s Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
2003											
	Region: 1	4	16,978	24	\$36.39	76.824	0.97074	0.10	0.211	0.200	0.011
	Region: 2	19	378,653	384	\$32.48	88.593	1.00057	0.09	0.158	0.200	-0.042
	Region: 3	7	149,180	150	\$33.10	85.724	0.98792	0.04	0.199	0.200	-0.001
	Region: 4	20	349,400	358	\$33.93	87.134	0.98847	0.09	0.160	0.200	-0.040
	Region: 5	1	113,295	117	\$31.30	87.504	0.97305	0.02	0.195	0.200	-0.005
	Region: 6	17	209,566	215	\$37.44	89.296	1.01308	0.09	0.158	0.200	-0.042
Totals 2	2003	68	1,217,072	1248	\$33.77	87.678	0.99472	0.08	0.168	0.200	-0.032
2004											
	Region: 1	6	212,060	216	\$35.59	94.832	1.04015	0.05	0.146	0.200	-0.054
	Region: 2	8	194,420	198	\$31.59	93.984	1.03561	0.05	0.152	0.200	-0.048
	Region: 3	10	203,648	207	\$33.89	90.767	1.01376	0.05	0.157	0.200	-0.043
	Region: 4	22	258,707	260	\$35.38	83.516	0.97984	0.11	0.174	0.200	-0.026
	Region: 6	10	137,023	146	\$32.72	87.829	0.98881	0.08	0.158	0.200	-0.042
Totals 2	2004	56	1,005,858	1027	\$34.03	89.981	1.01142	0.07	0.158	0.200	-0.042

Asphalt Content - Totals 1/1/2000 to 12/31/2004.

					Weig	hted Average		
Process	es Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV St. Dev.	v	StDev - V
183	3,540,043	3,628	\$34.47	89.855	1.00892	0.07 0.159	0.200	-0.041

VMA - Recap by Year/Region

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

2000											
	Region: 1	2	12,317	16	\$49.20	100.000	1.04260	0.07	0.318	0.600	-0.282
	Region: 2	4	122,774	124	\$29.91	97.228	1.04863	0.31	0.460	0.600	-0.140
	Region: 4	7	74,292	74	\$38.44	97.270	1.03894	0.20	0.431	0.600	-0.169
	Region: 6	2	19,841	20	\$46.00	81.561	0.96184	0.51	0.669	0.600	0.069
Totals	2000	15	229,224	234	\$35.10	96.034	1.03765	0.28	0.461	0.600	-0.139
2001											
	Region: 2	8	264,164	264	\$28.34	97.385	1.04825	0.31	0.399	0.600	-0.201
	Region: 4	12	250,022	251	\$42.55	98.561	1.04792	0.19	0.335	0.600	-0.265
	Region: 5	3	70,475	72	\$33.31	87.015	0.99281	0.36	0.703	0.600	0.103
	Region: 6	1	53,879	54	\$37.50	97.266	1.05500	0.21	0.514	0.600	-0.086
Totals	2001	24	638,540	641	\$35.23	96.691	1.04257	0.26	0.417	0.600	-0.183
2002											
	Region: 1	2	71,404	73	\$33.86	99.734	1.05500	0.31	0.334	0.600	-0.266
	Region: 2	6	124,628	151	\$32.16	83.116	0.95988	0.36	0.716	0.600	0.116
	Region: 3	2	38,628	40	\$36.38	97.374	1.05016	0.22	0.487	0.600	-0.113
	Region: 4	4	75,069	76	\$37.25	100.000	1.05134	0.11	0.281	0.600	-0.319
	Region: 6	7	135,619	135	\$39.88	94.941	1.04059	0.28	0.528	0.600	-0.072
Totals	2002	21	445,348	475	\$36.01	93.464	1.02296	0.27	0.504	0.600	-0.096
2003											
	Region: 1	4	16,978	24	\$36.39	98.666	1.03911	0.13	0.556	0.600	-0.044
	Region: 2	19	381,653	387	\$32.47	91.868	1.01272	0.49	0.350	0.600	-0.250
	Region: 3	8	149,180	150	\$33.10	87.540	0.98846	0.52	0.483	0.600	-0.117
	Region: 4	20	350,400	359	\$33.91	97.916	1.04791	0.29	0.372	0.600	-0.228
	Region: 5	1	113,295	117	\$31.30	90.584	0.99861	0.32	0.646	0.600	0.046
	Region: 6	17	211,544	217	\$37.44	96.939	1.04511	0.31	0.455	0.600	-0.145
Totals	2003	69	1,223,050	1254	\$33.77	93.925	1.02450	0.38	0.421	0.600	-0.179

					Weighted Average:						
		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2004											
	Region: 1	6	212,060	216	\$35.59	94.300	1.02659	0.28	3 0.472	0.600	-0.12
	Region: 2	8	194,420	198	\$31.59	95.801	1.03156	0.26	6 0.398	0.600	-0.20
	Region: 3	10	203,648	207	\$33.89	96.283	1.03756	0.44	4 0.355	0.600	-0.24
	Region: 4	22	258,707	260	\$35.38	94.667	1.02351	0.28	3 0.458	0.600	-0.14
	Region: 6	10	137,023	145	\$32.72	99.714	1.04843	0.15	5 0.385	0.600	-0.21
Totals	2004	56	1,005,858	1026	\$34.03	95.823	1.03195	0.29	9 0.419	0.600	-0.18

VMA - Totals 1/1/2000 to 12/31/2004.

				Weighted Average:								
Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V			
185	3,542,020	3,630	\$34.47	95.041	1.03053	0.31	0.433	0.600	-0.167			

Air Voids - Recap by Year/Region

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

						Weighte	ed Aver	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDe ⁻
2000										
Region: 1	2	12,317	16	\$49.20	98.668	1.04260	0.39	0.416	0.600	-0.184
Region: 2	4	122,774	124	\$29.91	86.690	0.98077	0.38	0.596	0.600	-0.00
Region: 4	7	74,292	74	\$38.44	85.698	0.99318	0.51	0.583	0.600	-0.017
Region: 6	1	19,841	20	\$46.00	96.268	1.05000	0.31	0.513	0.600	-0.08
Totals: 2000	14	229,224	234	\$35.10	87.841	0.99411	0.42	0.575	0.600	-0.02
2001										
Region: 2	7	243,164	243	\$28.55	91.065	1.00889	0.28	0.601	0.600	0.00
Region: 4	12	250,022	251	\$42.55	92.251	1.02304	0.33	0.505	0.600	-0.09
Region: 5	3	70,475	72	\$33.31	83.789	0.97401	0.26	0.806	0.600	0.20
Region: 6	1	53,879	54	\$37.50	93.666	1.02977	0.47	0.482	0.600	-0.11
Totals: 2001	23	617,540	620	\$35.54	90.942	1.01246	0.31	0.575	0.600	-0.02
2002										
Region: 1	2	71,404	73	\$33.86	98.602	1.05500	0.20	0.423	0.600	-0.17
Region: 2	6	124,628	137	\$32.14	76.457	0.91225	0.40	0.815	0.600	0.21
Region: 3	2	38,628	40	\$36.38	90.137	1.02080	0.10	0.722	0.600	0.12
Region: 4	4	75,069	76	\$37.25	98.282	1.05049	0.17	0.451	0.600	-0.14
Region: 6	7	135,619	135	\$39.88	91.662	1.02678	0.23	0.634	0.600	0.03
Totals: 2002	21	445,348	461	\$36.00	89.503	1.00273	0.25	0.628	0.600	0.02

						Weight	ed Aver	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2003										
Region: 1	4	16,978	24	\$36.39	77.461	0.96446	0.32	0.893	0.600	0.293
Region: 2	19	381,653	387	\$32.47	91.320	1.01942	0.36	0.516	0.600	-0.084
Region: 3	8	149,180	150	\$33.10	80.952	0.95816	0.50	0.732	0.600	0.132
Region: 4	20	350,400	359	\$33.91	89.851	1.00588	0.44	0.559	0.600	-0.041
Region: 5	1	113,295	117	\$31.30	88.851	0.98425	0.01	0.757	0.600	0.157
Region: 6	17	210,579	216	\$37.44	92.230	1.03160	0.32	0.577	0.600	-0.023
Totals: 2003	69	1,222,085	1253	\$33.76	89.369	1.00613	0.36	0.593	0.600	-0.007
2004										
Region: 1	6	212,060	216	\$35.59	91.010	1.01241	0.34	0.588	0.600	-0.012
Region: 2	8	194,420	198	\$31.59	92.661	1.02169	0.28	0.584	0.600	-0.016
Region: 3	10	203,648	207	\$33.89	95.255	1.03673	0.29	0.479	0.600	-0.121
Region: 4	22	258,707	260	\$35.38	88.974	1.01124	0.40	0.568	0.600	-0.032
Region: 6	10	137,023	145	\$32.72	95.880	1.04013	0.14	0.538	0.600	-0.062
Totals: 2004	56	1,005,858	1026	\$34.03	92.328	1.02260	0.31	0.553	0.600	-0.047

Air Voids - Totals 1/1/2000 to 12/31/2004.

					Weighte	ed Avera	age:		
Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
183	3,520,055	3,594	\$34.52	90.408	1.01074	0.33	0.582	0.600	-0.018

Mat Density - Recap by Year/Region, Voids

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

Compaction Test Sections not included.

							Weig	hted Avera	age:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2000											
	Region: 1	2	12,317	31	\$49.20	94.174	1.04331	0.458	0.989	1.100	-0.111
	Region: 2	4	122,274	246	\$29.91	91.387	0.99865	0.696	0.901	1.100	-0.199
	Region: 4	7	73,514	146	\$38.46	82.829	0.96848	0.813	1.155	1.100	0.055
	Region: 6	2	19,841	40	\$46.00	96.410	1.05194	0.386	0.892	1.100	-0.208
Totals	2000	15	227,946	463	\$35.11	89.214	0.99597	0.694	0.987	1.100	-0.113
2001											
	Region: 2	8	262,664	526	\$28.33	92.495	1.01264	0.637	0.890	1.100	-0.21
	Region: 4	12	222,468	450	\$43.30	95.578	1.03916	0.695	0.774	1.100	-0.32
	Region: 5	2	47,412	96	\$33.31	82.510	0.94405	0.383	1.422	1.100	0.322
	Region: 6	1	53,879	108	\$37.50	98.934	1.06000	0.160	0.777	1.100	-0.323
Totals	2001	23	586,423	1,180	\$35.25	93.449	1.02151	0.595	0.879	1.100	-0.221
2002											
	Region: 1	1	37,338	76	\$36.05	95.177	1.03804	0.317	0.972	1.100	-0.12
	Region: 2	6	128,628	260	\$32.05	96.066	1.03847	0.483	0.793	1.100	-0.30
	Region: 3	1	26,341	50	\$35.47	87.899	0.98844	0.140	1.292	1.100	0.19
	Region: 4	5	75,069	158	\$37.25	85.665	0.97372	0.946	0.969	1.100	-0.13
	Region: 6	10	141,141	274	\$39.97	93.925	1.03793	0.566	0.859	1.100	-0.24
Totals	2002	23	408,517	818	\$36.33	92.807	1.02312	0.559	0.897	1.100	-0.203

							Weig	hted Aver	rage:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2003											
	Region: 1	4	16,978	41	\$36.39	92.332	1.03273	0.530	0.856	1.100	-0.24
	Region: 2	18	338,117	682	\$32.58	92.822	1.02437	0.581	0.894	1.100	-0.20
	Region: 3	6	127,131	258	\$33.73	90.702	1.00589	0.523	1.073	1.100	-0.02
	Region: 4	21	318,891	644	\$33.99	94.863	1.03603	0.393	0.899	1.100	-0.20
	Region: 5	1	107,489	221	\$31.30	92.700	1.00664	0.149	1.108	1.100	0.00
	Region: 6	18	210,133	443	\$37.45	95.179	1.03709	0.291	0.807	1.100	-0.29
Totals	2003	68	1,118,739	2,289	\$33.96	93.586	1.02641	0.424	0.919	1.100	-0.18
2004											
	Region: 1	4	174,036	351	\$35.89	91.312	1.00695	0.379	1.097	1.100	-0.00
	Region: 2	8	193,420	390	\$31.59	93.773	1.02650	0.525	0.896	1.100	-0.20
	Region: 3	7	164,320	331	\$34.46	91.038	1.00730	0.315	1.109	1.100	0.00
	Region: 4	18	201,690	404	\$35.74	94.559	1.03440	0.580	0.858	1.100	-0.24
	Region: 6	10	134,538	274	\$32.74	91.771	1.00986	0.410	1.030	1.100	-0.07
Totals	2004	47	868,004	1,750	\$34.14	92.634	1.01820	0.451	0.989	1.100	-0.11

Mat Density - Totals 1/1/2000 to 12/31/20

				weighted Average:							
Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V		
176	3,209,629	6,500	\$34.63	92.894	1.02071	0.499	0.932	1.100	-0.168		

Joint Density - Recap by Year/Region, VA

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

						We	eighted Av	erage:			
	Processes	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDe
2003											
Region: 2	13	334,800	188	88.795	1.00092	92.00	90.173	1.997	1.518	1.60	-0.082
Region: 3	2	78,685	38	95.028	1.03214	92.00	91.359	0.641	1.670	1.60	0.070
Region: 4	9	242,139	131	96.133	1.04205	92.00	91.185	0.995	1.571	1.60	-0.029
Region: 6	4	74,936	41	71.952	0.91940	92.00	89.437	2.563	1.991	1.60	0.391
Totals 2003	28	730,560	398	90.171	1.00955	92.00	90.561	1.577	1.600	1.60	0.000
2004											
Region: 1	4	170,859	92	88.557	0.99493	92.00	90.385	1.615	1.553	1.60	-0.047
Region: 2	6	188,581	105	93.199	1.03979	92.00	90.671	1.329	1.679	1.60	0.079
Region: 3	3	159,343	142	72.323	0.86084	92.00	89.277	2.723	2.169	1.60	0.569
Region: 4	6	180,327	111	88.858	0.99511	92.00	90.693	1.892	1.449	1.60	-0.151
Region: 6	8	137,023	102	71.897	0.90290	92.00	89.255	2.745	1.776	1.60	0.176
Totals 2004	27	836,133	552	83.845	0.96445	92.00	90.120	2.007	1.713	1.60	0.113
t Density Tota	<i>els</i> 1/1	/2000 to 1	12/31/20	004		Wei	ghted Ave	erage:			
F	Processes	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
	55 1	,566,693	950	86.795	0.98548	92.00	90.325	1.806	1.661	1.60	0.061

Appendix B

Recap Reports by Grading/Year 2000 through 2004

Report 6	Asphalt Content – Recap by Grading/Year/Region B	- 1
Report 7	VMA – Recap by Grading/Year/RegionB	- 4
Report 8	Air Voids – Recap by Grading/Year/Region B	- 7
Report 9	Mat Density – Recap by Grading/Year/Region B -	10
Report 10	Joint Density – Recap by Grading/Year/Region B -	13

Asphalt Content - Recap by Grading/Year/Region, VA

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

rading: S Weighted Average Quality Pay Mean StDev Processes Tons Tests Price Level Factor to TV St. Dev. V - V													
	Processes	Tons	Tests	Price				St. Dev.	V				
Region: 1	2	12,317	16	\$49.20	85.903	1.01275	0.16	0.129	0.200	-0.071			
Region: 2	4	122,774	124	\$29.91	92.988	1.02540	0.08	0.140	0.200	-0.060			
Region: 4	7	74,292	74	\$38.44	89.036	1.00066	0.11	0.139	0.200	-0.061			
Region: 6	1	19,841	20	\$46.00	80.347	0.95762	0.08	0.220	0.200	0.020			
2000	14	229,224	234	\$35.10	90.232	1.01083	0.10	0.146	0.200	-0.054			
Region: 2	8	264,164	264	\$28.34	93.476	1.02307	0.05	0.151	0.200	-0.049			
Region: 4	12	250,023	251	\$42.55	91.174	1.01805	0.09	0.145	0.200	-0.055			
Region: 6	1	53,879	54	\$37.50	97.940	1.05500	0.01	0.131	0.200	-0.069			
2001	21	568,066	569	\$35.46	92.886	1.02389	0.06	0.147	0.200	-0.053			
Region: 2	6	128,628	154	\$32.05	91.438	1.02333	0.05	0.159	0.200	-0.041			
Region: 4	4	75,069	76	\$37.25	92.942	1.02971	0.10	0.136	0.200	-0.064			
Region: 6	7	135,619	135	\$39.88	91.990	1.02600	0.06	0.154	0.200	-0.046			
2002	17	339,316	365	\$36.33	91.991	1.02581	0.07	0.152	0.200	-0.048			
Region: 1	4	16,978	24	\$36.39	76.824	0.97074	0.10	0.211	0.200	0.011			
Region: 2	16	338,653	344	\$32.47	89.878	1.00904	0.09	0.153	0.200	-0.047			
Region: 4	18	346,551	352	\$33.85	87.466	0.98952	0.09	0.160	0.200	-0.040			
Region: 6	16	202,566	208	\$37.25	89.622	1.01378	0.09	0.156	0.200	-0.044			
2003	54	904,748	928	\$34.14	88.652	1.00191	0.09	0.158	0.200	-0.042			
	Region: 2 Region: 6 2000 Region: 6 2001 Region: 6 2001 Region: 4 Region: 6 2002 Region: 1 Region: 2 Region: 4 Region: 6 2002	Region: 1 2 Region: 2 4 Region: 4 7 Region: 6 1 2000 14 Region: 2 8 Region: 4 12 Region: 6 1 2001 21 Region: 2 6 Region: 4 4 Region: 6 7 2002 17 Region: 1 4 Region: 2 16 Region: 4 18 Region: 6 16	Region: 1 2 12,317 Region: 2 4 122,774 Region: 4 7 74,292 Region: 6 1 19,841 2000 14 229,224 Region: 2 8 264,164 Region: 4 12 250,023 Region: 6 1 53,879 2001 21 568,066 Region: 2 6 128,628 Region: 4 4 75,069 Region: 6 7 135,619 2002 17 339,316 Region: 1 4 16,978 Region: 2 16 338,653 Region: 4 18 346,551 Region: 6 16 202,566	Region: 1 2 12,317 16 Region: 2 4 122,774 124 Region: 4 7 74,292 74 Region: 6 1 19,841 20 2000 14 229,224 234 Region: 2 8 264,164 264 Region: 4 12 250,023 251 Region: 6 1 53,879 54 2001 21 568,066 569 Region: 2 6 128,628 154 Region: 4 4 75,069 76 Region: 6 7 135,619 135 2002 17 339,316 365 Region: 1 4 16,978 24 Region: 2 16 338,653 344 Region: 4 18 346,551 352 Region: 6 16 202,566 208	Region: 1 2 12,317 16 \$49.20 Region: 2 4 122,774 124 \$29.91 Region: 4 7 74,292 74 \$38.44 Region: 6 1 19,841 20 \$46.00 2000 14 229,224 234 \$35.10 Region: 2 8 264,164 264 \$28.34 Region: 4 12 250,023 251 \$42.55 Region: 6 1 53,879 54 \$37.50 2001 21 568,066 569 \$35.46 Region: 2 6 128,628 154 \$32.05 Region: 4 75,069 76 \$37.25 Region: 6 7 135,619 135 \$39.88 2002 17 339,316 365 \$36.33 Region: 1 4 16,978 24 \$36.39 Region: 2 16 338,653 344 \$32.47 Region: 4 18 346,551 352 \$33.85 Region: 6 16 202,566 <td>Region: I 2 12,317 16 \$49.20 85.903 Region: 2 4 122,774 124 \$29.91 92.988 Region: 4 7 74,292 74 \$38.44 89.036 Region: 6 1 19,841 20 \$46.00 80.347 2000 14 229,224 234 \$35.10 90.232 Region: 2 8 264,164 264 \$28.34 93.476 Region: 4 12 250,023 251 \$42.55 91.174 Region: 6 1 53,879 54 \$37.50 97.940 2001 21 568,066 569 \$35.46 92.886 Region: 2 6 128,628 154 \$32.05 91.438 Region: 4 4 75,069 76 \$37.25 92.942 Region: 6 7 135,619 135 \$39.88 91.990 2002 17 339,316 365 \$36.33 91.991 <td>Region: I 2 12,317 16 \$49,20 85,903 1,01275 Region: 2 4 122,774 124 \$29,91 92,988 1,02540 Region: 4 7 74,292 74 \$38,44 89,036 1,0066 Region: 6 1 19,841 20 \$46,00 80,347 0,95762 2000 14 229,224 234 \$35,10 90,232 1,01083 Region: 2 8 264,164 264 \$28,34 93,476 1,02307 Region: 4 12 250,023 251 \$42,55 91,174 1,01805 Region: 6 1 53,879 54 \$37,50 97,940 1,02500 2001 21 568,066 569 \$35,46 92,886 1,02389 Region: 2 6 128,628 154 \$32,05 91,438 1,02333 Region: 4 4 75,069 76 \$37,25 92,942 1,02971 Region: 5</td><td>Region: 1 2 12,317 16 \$49.20 \$85.903 1.01275 0.16 Region: 2 4 122,774 124 \$29.91 92.988 1.02540 0.08 Region: 4 7 74,292 74 \$38.44 89.036 1.00066 0.11 Region: 6 1 19,841 20 \$46.00 80.347 0.95762 0.08 2000 14 229,224 234 \$35.10 90.232 1.01083 0.10 Region: 2 8 264,164 264 \$28.34 93.476 1.02307 0.05 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 Region: 6 1 53,879 54 \$37.50 97.940 1.02500 0.01 2001 21 568,066 569 \$35.46 92.886 1.02333 0.05 Region: 4 4 75,069 76 \$37.25 92.942 1.02971 0.10</td><td>Region: I 2 12,317 16 \$49.20 85.903 1.01275 0.16 0.129 Region: 2 4 122,774 124 \$29.91 92.988 1.02540 0.08 0.140 Region: 4 7 74,292 74 \$38.44 89.036 1.00066 0.11 0.139 Region: 6 1 19,841 20 \$46.00 80.347 0.95762 0.08 0.220 2000 14 229,224 234 \$35.10 90.232 1.01083 0.10 0.146 Region: 2 8 264,164 264 \$28.34 93.476 1.02307 0.05 0.151 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 Region: 6 1 53,879 54 \$37.50 97.940 1.05500 0.01 0.131 2001 21 568,066 569 \$35.46 92.886 1.02333 0.05 0.159 <td>Region: 1 2 12,317 16 \$49,20 85,903 1.01275 0.16 0.129 0.200 Region: 2 4 122,774 124 \$29,91 92,988 1.02540 0.08 0.140 0.200 Region: 4 7 74,292 74 \$38.44 89,036 1.00066 0.11 0.139 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 4 12 229,224 234 \$35.10 90,232 1.01083 0.10 0.146 0.200 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 0.200 Region: 6 1 53,879 54 \$37.50 97.940 1.05600 0.01 0.131 0.200 Region: 4</td></td></td>	Region: I 2 12,317 16 \$49.20 85.903 Region: 2 4 122,774 124 \$29.91 92.988 Region: 4 7 74,292 74 \$38.44 89.036 Region: 6 1 19,841 20 \$46.00 80.347 2000 14 229,224 234 \$35.10 90.232 Region: 2 8 264,164 264 \$28.34 93.476 Region: 4 12 250,023 251 \$42.55 91.174 Region: 6 1 53,879 54 \$37.50 97.940 2001 21 568,066 569 \$35.46 92.886 Region: 2 6 128,628 154 \$32.05 91.438 Region: 4 4 75,069 76 \$37.25 92.942 Region: 6 7 135,619 135 \$39.88 91.990 2002 17 339,316 365 \$36.33 91.991 <td>Region: I 2 12,317 16 \$49,20 85,903 1,01275 Region: 2 4 122,774 124 \$29,91 92,988 1,02540 Region: 4 7 74,292 74 \$38,44 89,036 1,0066 Region: 6 1 19,841 20 \$46,00 80,347 0,95762 2000 14 229,224 234 \$35,10 90,232 1,01083 Region: 2 8 264,164 264 \$28,34 93,476 1,02307 Region: 4 12 250,023 251 \$42,55 91,174 1,01805 Region: 6 1 53,879 54 \$37,50 97,940 1,02500 2001 21 568,066 569 \$35,46 92,886 1,02389 Region: 2 6 128,628 154 \$32,05 91,438 1,02333 Region: 4 4 75,069 76 \$37,25 92,942 1,02971 Region: 5</td> <td>Region: 1 2 12,317 16 \$49.20 \$85.903 1.01275 0.16 Region: 2 4 122,774 124 \$29.91 92.988 1.02540 0.08 Region: 4 7 74,292 74 \$38.44 89.036 1.00066 0.11 Region: 6 1 19,841 20 \$46.00 80.347 0.95762 0.08 2000 14 229,224 234 \$35.10 90.232 1.01083 0.10 Region: 2 8 264,164 264 \$28.34 93.476 1.02307 0.05 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 Region: 6 1 53,879 54 \$37.50 97.940 1.02500 0.01 2001 21 568,066 569 \$35.46 92.886 1.02333 0.05 Region: 4 4 75,069 76 \$37.25 92.942 1.02971 0.10</td> <td>Region: I 2 12,317 16 \$49.20 85.903 1.01275 0.16 0.129 Region: 2 4 122,774 124 \$29.91 92.988 1.02540 0.08 0.140 Region: 4 7 74,292 74 \$38.44 89.036 1.00066 0.11 0.139 Region: 6 1 19,841 20 \$46.00 80.347 0.95762 0.08 0.220 2000 14 229,224 234 \$35.10 90.232 1.01083 0.10 0.146 Region: 2 8 264,164 264 \$28.34 93.476 1.02307 0.05 0.151 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 Region: 6 1 53,879 54 \$37.50 97.940 1.05500 0.01 0.131 2001 21 568,066 569 \$35.46 92.886 1.02333 0.05 0.159 <td>Region: 1 2 12,317 16 \$49,20 85,903 1.01275 0.16 0.129 0.200 Region: 2 4 122,774 124 \$29,91 92,988 1.02540 0.08 0.140 0.200 Region: 4 7 74,292 74 \$38.44 89,036 1.00066 0.11 0.139 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 4 12 229,224 234 \$35.10 90,232 1.01083 0.10 0.146 0.200 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 0.200 Region: 6 1 53,879 54 \$37.50 97.940 1.05600 0.01 0.131 0.200 Region: 4</td></td>	Region: I 2 12,317 16 \$49,20 85,903 1,01275 Region: 2 4 122,774 124 \$29,91 92,988 1,02540 Region: 4 7 74,292 74 \$38,44 89,036 1,0066 Region: 6 1 19,841 20 \$46,00 80,347 0,95762 2000 14 229,224 234 \$35,10 90,232 1,01083 Region: 2 8 264,164 264 \$28,34 93,476 1,02307 Region: 4 12 250,023 251 \$42,55 91,174 1,01805 Region: 6 1 53,879 54 \$37,50 97,940 1,02500 2001 21 568,066 569 \$35,46 92,886 1,02389 Region: 2 6 128,628 154 \$32,05 91,438 1,02333 Region: 4 4 75,069 76 \$37,25 92,942 1,02971 Region: 5	Region: 1 2 12,317 16 \$49.20 \$85.903 1.01275 0.16 Region: 2 4 122,774 124 \$29.91 92.988 1.02540 0.08 Region: 4 7 74,292 74 \$38.44 89.036 1.00066 0.11 Region: 6 1 19,841 20 \$46.00 80.347 0.95762 0.08 2000 14 229,224 234 \$35.10 90.232 1.01083 0.10 Region: 2 8 264,164 264 \$28.34 93.476 1.02307 0.05 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 Region: 6 1 53,879 54 \$37.50 97.940 1.02500 0.01 2001 21 568,066 569 \$35.46 92.886 1.02333 0.05 Region: 4 4 75,069 76 \$37.25 92.942 1.02971 0.10	Region: I 2 12,317 16 \$49.20 85.903 1.01275 0.16 0.129 Region: 2 4 122,774 124 \$29.91 92.988 1.02540 0.08 0.140 Region: 4 7 74,292 74 \$38.44 89.036 1.00066 0.11 0.139 Region: 6 1 19,841 20 \$46.00 80.347 0.95762 0.08 0.220 2000 14 229,224 234 \$35.10 90.232 1.01083 0.10 0.146 Region: 2 8 264,164 264 \$28.34 93.476 1.02307 0.05 0.151 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 Region: 6 1 53,879 54 \$37.50 97.940 1.05500 0.01 0.131 2001 21 568,066 569 \$35.46 92.886 1.02333 0.05 0.159 <td>Region: 1 2 12,317 16 \$49,20 85,903 1.01275 0.16 0.129 0.200 Region: 2 4 122,774 124 \$29,91 92,988 1.02540 0.08 0.140 0.200 Region: 4 7 74,292 74 \$38.44 89,036 1.00066 0.11 0.139 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 4 12 229,224 234 \$35.10 90,232 1.01083 0.10 0.146 0.200 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 0.200 Region: 6 1 53,879 54 \$37.50 97.940 1.05600 0.01 0.131 0.200 Region: 4</td>	Region: 1 2 12,317 16 \$49,20 85,903 1.01275 0.16 0.129 0.200 Region: 2 4 122,774 124 \$29,91 92,988 1.02540 0.08 0.140 0.200 Region: 4 7 74,292 74 \$38.44 89,036 1.00066 0.11 0.139 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 6 1 19,841 20 \$46.00 80,347 0.95762 0.08 0.220 0.200 Region: 4 12 229,224 234 \$35.10 90,232 1.01083 0.10 0.146 0.200 Region: 4 12 250,023 251 \$42.55 91.174 1.01805 0.09 0.145 0.200 Region: 6 1 53,879 54 \$37.50 97.940 1.05600 0.01 0.131 0.200 Region: 4			

Grading: S							Wei	ghted A	verage		
-		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2004											
	Region: 1	1	39,910	40	\$30.00	95.002	1.04167	0.03	0.152	0.200	-0.048
	Region: 2	8	194,420	198	\$31.59	93.984	1.03561	0.05	0.152	0.200	-0.048
	Region: 4	15	210,007	211	\$34.27	83.998	0.98275	0.11	0.175	0.200	-0.025
	Region: 6	8	115,567	124	\$31.74	91.688	1.01518	0.06	0.156	0.200	-0.044
Totals 2	004	32	559,904	573	\$32.51	89.837	1.01200	0.07	0.161	0.200	-0.039
Totals G	rading: S						Weig	jhted Av	verage		
	J	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
		138 2	,601,258	2669	\$34.45	90.407	1.01278	0.08	0.154	0.200	-0.046
Grading: SX							Wei	ghted A	verage		
		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2001											
	Region: 5	3	70,475	72	\$33.31	83.847	0.97351	0.06	0.197	0.200	-0.003
Totals 2	001	3	70,475	72	\$33.31	83.847	0.97351	0.06	0.197	0.200	-0.003
2002											
	Region: 1	2	71,404	73	\$33.86	97.826	1.05314	0.04	0.124	0.200	-0.076
	Region: 3	2	38,628	40	\$36.38	85.786	0.99428	0.07	0.191	0.200	-0.009
Totals 2	002	4	110,032	113	\$34.74	93.599	1.03248	0.05	0.148	0.200	-0.052
2003											
	Region: 2	3	40,000	40	\$32.52	77.711	0.92887	0.11	0.195	0.200	-0.005
	Region: 3	7	149,180	150	\$33.10	85.724	0.98792	0.04	0.199	0.200	-0.001
	Region: 4	2	2,849	6	\$43.00	46.730	0.86015	0.33	0.206	0.200	0.006
	Region: 5	1	113,295	117	\$31.30	87.504	0.97305	0.02	0.195	0.200	-0.005
	Region: 6	1	7,000	7	\$42.75	79.880	0.99276	0.11	0.214	0.200	0.014
Totals 2	003	14	312,324	320	\$32.68	84.857	0.97390	0.05	0.198	0.200	-0.002

g: SX							Weig	ghted A	verage		
		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2004											
	Region: 1	5	172,150	176	\$36.88	94.792	1.03979	0.05	0.144	0.200	-0.056
	Region: 3	10	203,648	207	\$33.89	90.767	1.01376	0.05	0.157	0.200	-0.043
	Region: 4	7	48,700	49	\$40.17	81.436	0.96729	0.10	0.166	0.200	-0.034
	Region: 6	2	21,456	22	\$38.00	67.048	0.84677	0.23	0.170	0.200	-0.030
Totals	2004	24	445,954	454	\$35.93	90.161	1.01070	0.07	0.154	0.200	-0.046

Totals Grading: S.	\boldsymbol{X}					Weig	hted A	verage		
	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
	45	938,785	959	\$34.51	88.325	0.99822	0.06	0.171	0.200	-0.029

Asphalt Content - Totals 1/1/2000 to 12/31/2004.

					Weig	hted Ave	erage		
Processe	es Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
183	3,540,043	3,628	\$34.47	89.855	1.00892	0.07	0.159	0.200	-0.041

VMA - Recap by Grading/Year/Region

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

rading: S							Weigh	ted Ave	erage:		
Ü		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2000											
	Region: 1	2	12,317	16	\$49.20	100.000	1.04260	0.07	0.318	0.600	-0.282
	Region: 2	4	122,774	124	\$29.91	97.228	1.04863	0.31	0.460	0.600	-0.140
	Region: 4	7	74,292	74	\$38.44	97.270	1.03894	0.20	0.431	0.600	-0.169
	Region: 6	2	19,841	20	\$46.00	81.561	0.96184	0.51	0.669	0.600	0.069
Totals	2000	15	229,224	234	\$35.10	96.034	1.03765	0.28	0.461	0.600	-0.139
2001											
	Region: 2	8	264,164	264	\$28.34	97.385	1.04825	0.31	0.399	0.600	-0.201
	Region: 4	12	250,022	251	\$42.55	98.561	1.04792	0.19	0.335	0.600	-0.265
	Region: 6	1	53,879	54	\$37.50	97.266	1.05500	0.21	0.514	0.600	-0.086
Totals	2001	21	568,065	569	\$35.46	97.891	1.04875	0.24	0.382	0.600	-0.218
2002											
	Region: 2	6	124,628	151	\$32.16	83.116	0.95988	0.36	0.716	0.600	0.116
	Region: 4	4	75,069	76	\$37.25	100.000	1.05134	0.11	0.281	0.600	-0.319
	Region: 6	7	135,619	135	\$39.88	94.941	1.04059	0.28	0.528	0.600	-0.072
Totals	2002	17	335,316	362	\$36.42	91.679	1.01300	0.27	0.543	0.600	-0.057
2003											
	Region: 1	4	16,978	24	\$36.39	98.666	1.03911	0.13	0.556	0.600	-0.044
	Region: 2	16	340,653	346	\$32.46	95.827	1.03886	0.41	0.360	0.600	-0.240
	Region: 4	18	347,551	353	\$33.84	97.966	1.04810	0.29	0.371	0.600	-0.229
	Region: 6	16	204,544	210	\$37.26	96.834	1.04545	0.31	0.459	0.600	-0.141
Totals	2003	54	909,726	933	\$34.14	96.924	1.04388	0.34	0.390	0.600	-0.210

Grading:	S							Weigh	ted Ave	erage:		
O .			Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	2004											
		Region: 1	1	39,910	40	\$30.00	83.176	0.95759	0.47	0.731	0.600	0.131
		Region: 2	8	194,420	198	\$31.59	95.801	1.03156	0.26	0.398	0.600	-0.202
		Region: 4	15	210,007	211	\$34.27	94.101	1.02158	0.27	0.462	0.600	-0.138
		Region: 6	8	115,567	123	\$31.74	99.839	1.04890	0.11	0.386	0.600	-0.214
	Totals	2004	32	559,904	572	\$32.51	95.097	1.02612	0.25	0.444	0.600	-0.156
	Totals	Grading:	S					Weigh	ted Ave	erage:		
			Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
			139	2,602,235	2,670	\$34.46	95.988	1.03659	0.28	0.426	0.600	-0.174
Grading:	SX							Weigh	ited Ave	erage:		
			Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	2001											
		Region: 5	3	70,475	72	\$33.31	87.015	0.99281	0.36	0.703	0.600	0.103
	Totals	2001	3	70,475	72	\$33.31	87.015	0.99281	0.36	0.703	0.600	0.103
	2002											
		Region: 1	2	71,404	73	\$33.86	99.734	1.05500	0.31	0.334	0.600	-0.266
		Region: 3	2	38,628	40	\$36.38	97.374	1.05016	0.22	0.487	0.600	-0.113
	Totals	2002	4	110,032	113	\$34.74	98.906	1.05330	0.28	0.388	0.600	-0.212
	2003											
		Region: 2	3	41,000	41	\$32.53	58.976	0.79556	1.12	0.268	0.600	-0.332
		Region: 3	8	149,180	150	\$33.10	87.540	0.98846	0.52	0.483	0.600	-0.117
		Region: 4	2	2,849	6	\$43.00	91.760	1.02500	0.65	0.427	0.600	-0.173
		Region: 5	1	113,295	117	\$31.30	90.584	0.99861	0.32	0.646	0.600	0.046
		Region: 6	1	7,000	7	\$42.75	100.000	1.03500	0.33	0.340	0.600	-0.260
	Totals	2003	15	313,324	321	\$32.68	85.220	0.96826	0.52	0.510	0.600	-0.090

Grading: SX							Weigh	ted Ave	erage:		_
		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2004											
	Region: 1	5	172,150	176	\$36.88	96.879	1.04259	0.24	0.412	0.600	-0.188
	Region: 3	10	203,648	207	\$33.89	96.283	1.03756	0.44	0.355	0.600	-0.245
	Region: 4	7	48,700	49	\$40.17	97.108	1.03182	0.28	0.437	0.600	-0.163
	Region: 6	2	21,456	22	\$38.00	99.040	1.04593	0.35	0.381	0.600	-0.219
Totals	2004	24	445,954	454	\$35.93	96.736	1.03928	0.34	0.387	0.600	-0.213
m . 1	<i>a v</i>	O.T.					Weigh	ted Ave	rago.		

Totals Grading:	SX					Weigh	ted Ave	erage:		
	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
	46	939,785	960	\$34.51	92.421	1.01376	0.40	0.452	0.600	-0.148

VMA - Totals 1/1/2000 to 12/31/2004.

					Weigh	ted Ave	erage:		
Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
185	3,542,020	3,630	\$34.47	95.041	1.03053	0.31	0.433	0.600	-0.167

Air Voids - Recap by Grading/Year/Region

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

ling: S						Weighte	ed Avera	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
2000										
Region: 1	2	12,317	16	\$49.20	98.668	1.04260	0.39	0.416	0.600	-0.184
Region: 2	4	122,774	124	\$29.91	86.690	0.98077	0.38	0.596	0.600	-0.004
Region: 4	7	74,292	74	\$38.44	85.698	0.99318	0.51	0.583	0.600	-0.017
Region: 6	1	19,841	20	\$46.00	96.268	1.05000	0.31	0.513	0.600	-0.087
Totals: 2000	14	229,224	234	\$35.10	87.841	0.99411	0.42	0.575	0.600	-0.025
2001										
Region: 2	7	243,164	243	\$28.55	91.065	1.00889	0.28	0.601	0.600	0.001
Region: 4	12	250,022	251	\$42.55	92.251	1.02304	0.33	0.505	0.600	-0.095
Region: 6	1	53,879	54	\$37.50	93.666	1.02977	0.47	0.482	0.600	-0.118
Totals: 2001	20	547,065	548	\$35.83	91.863	1.01741	0.32	0.545	0.600	-0.055
2002										
Region: 2	6	124,628	137	\$32.14	76.457	0.91225	0.40	0.815	0.600	0.215
Region: 4	4	75,069	76	\$37.25	98.282	1.05049	0.17	0.451	0.600	-0.149
Region: 6	7	135,619	135	\$39.88	91.662	1.02678	0.23	0.634	0.600	0.034
Totals: 2002	17	335,316	348	\$36.41	87.493	0.98952	0.28	0.660	0.600	0.060
2003										
Region: 1	4	16,978	24	\$36.39	77.461	0.96446	0.32	0.893	0.600	0.293
Region: 2	16	340,653	346	\$32.46	92.608	1.02578	0.30	0.525	0.600	-0.075
Region: 4	18	347,551	353	\$33.84	89.768	1.00572	0.44	0.559	0.600	-0.041
Region: 6	16	203,579	209	\$37.26	92.364	1.03169	0.33	0.568	0.600	-0.032
Totals: 2003	54	908,761	932	\$34.14	91.184	1.01829	0.36	0.554	0.600	-0.046

Grading:	\boldsymbol{S}						Weighte	ed Avera	age:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	2004										
	Region: 1	1	39,910	40	\$30.00	92.372	1.02380	0.30	0.617	0.600	0.017
	Region: 2	8	194,420	198	\$31.59	92.661	1.02169	0.28	0.584	0.600	-0.016
	Region: 4	15	210,007	211	\$34.27	88.502	1.00980	0.43	0.574	0.600	-0.026
	Region: 6	8	115,567	123	\$31.74	95.777	1.03947	0.11	0.558	0.600	-0.042
	Totals: 2004	32	559,904	572	\$32.51	91.724	1.02105	0.30	0.577	0.600	-0.023
	Totals Grading:	: S					Weighte	ed Avera	age:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
		137	2,580,270	2634	\$34.53	90.669	1.01282	0.33	0.573	0.600	-0.027
Grading:	SX						Weighte	ed Avera	age:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	2001										
	Region: 5	3	70,475	72	\$33.31	83.789	0.97401	0.26	0.806	0.600	0.206
	Totals: 2001	3	70,475	72	\$33.31	83.789	0.97401	0.26	0.806	0.600	0.206
	2002										
	Region: 1	2	71,404	73	\$33.86	98.602	1.05500	0.20	0.423	0.600	-0.177
	Region: 3	2	38,628	40	\$36.38	90.137	1.02080	0.10	0.722	0.600	0.122
	Totals: 2002	4	110,032	113	\$34.74	95.631	1.04299	0.17	0.528	0.600	-0.072
	2003										
	Region: 2	3	41,000	41	\$32.53	80.616	0.96658	0.87	0.441	0.600	-0.159
	Region: 3	8	149,180	150	\$33.10	80.952	0.95816	0.50	0.732	0.600	0.132
	Region: 4	2	2,849	6	\$43.00	100.000	1.02500	0.23	0.650	0.600	0.050
	Region: 5	1	113,295	117	\$31.30	88.851	0.98425	0.01	0.757	0.600	0.157
	Region: 6	1	7,000	7	\$42.75	88.339	1.02885	0.03	0.818	0.600	0.218
	Totals: 2003	15	313,324	321	\$32.68	84.103	0.97088	0.36	0.704	0.600	0.104

SX						Weighte	ed Aver	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2004										
Region: 1	5	172,150	176	\$36.88	90.694	1.00977	0.35	0.581	0.600	-0.019
Region: 3	10	203,648	207	\$33.89	95.255	1.03673	0.29	0.479	0.600	-0.121
Region: 4	7	48,700	49	\$40.17	91.006	1.01745	0.30	0.544	0.600	-0.056
Region: 6	2	21,456	22	\$38.00	96.438	1.04365	0.34	0.430	0.600	-0.170
Totals: 2004	24	445,954	454	\$35.93	93.087	1.02455	0.31	0.523	0.600	-0.077
Totals Grading	: SX					Weighte	ed Aver	age:		
3	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
	46	939,785	960	\$34.51	89.692	1.00503	0.31	0.605	0.600	0.005

				Weighted Average:									
Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V				
183	3.520.055	3.594	\$34.52	90.408	1.01074	0.33	0.582	0.600	-0.018				

Mat Density - Recap by Grading/Year/Region, VA

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included. Compaction Test Sections not included.

· S						Weig	ghted Av	erage:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2000										
Region: 1	2	12,317	31	\$49.20	94.174	1.04331	0.458	0.989	1.100	-0.111
Region: 2	4	122,274	246	\$29.91	91.387	0.99865	0.696	0.901	1.100	-0.199
Region: 4	7	73,514	146	\$38.46	82.829	0.96848	0.813	1.155	1.100	0.055
Region: 6	2	19,841	40	\$46.00	96.410	1.05194	0.386	0.892	1.100	-0.208
Totals 2000	15	227,946	463	\$35.11	89.214	0.99597	0.694	0.987	1.100	-0.113
2001										
Region: 2	8	262,664	526	\$28.33	92.495	1.01264	0.637	0.890	1.100	-0.210
Region: 4	12	222,468	450	\$43.30	95.578	1.03916	0.695	0.774	1.100	-0.326
Region: 6	1	53,879	108	\$37.50	98.934	1.06000	0.160	0.777	1.100	-0.323
Totals 2001	21	539,011	1,084	\$35.42	94.411	1.02832	0.613	0.831	1.100	-0.269
2002										
Region: 2	6	128,628	260	\$32.05	96.066	1.03847	0.483	0.793	1.100	-0.307
Region: 4	5	75,069	158	\$37.25	85.665	0.97372	0.946	0.969	1.100	-0.131
Region: 6	10	141,141	274	\$39.97	93.925	1.03793	0.566	0.859	1.100	-0.241
Totals 2002	21	344,838	692	\$36.42	92.926	1.02415	0.618	0.858	1.100	-0.242
2003										
Region: 1	4	16,978	41	\$36.39	92.332	1.03273	0.530	0.856	1.100	-0.244
Region: 2	17	311,117	628	\$32.60	92.566	1.02258	0.581	0.900	1.100	-0.200
Region: 4	21	318,891	644	\$33.99	94.863	1.03603	0.393	0.899	1.100	-0.201
Region: 6	16	202,015	426	\$37.24	95.403	1.03801	0.240	0.827	1.100	-0.273
Totals 2003	58	849,001	1,739	\$34.30	94.099	1.03151	0.428	0.881	1.100	-0.219

Grading: S						Weig	ghted Av	erage:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2004										
Region: 1	1	39,910	80	\$30.00	88.765	0.98671	0.381	1.206	1.100	0.106
Region: 2	8	193,420	390	\$31.59	93.773	1.02650	0.525	0.896	1.100	-0.204
Region: 4	13	168,894	338	\$34.58	94.135	1.03246	0.579	0.876	1.100	-0.224
Region: 6	8	113,082	230	\$31.74	90.416	1.00155	0.415	1.089	1.100	-0.011
Totals 2004	30	515,306	1,038	\$32.48	92.767	1.01990	0.507	0.956	1.100	-0.144
Totals - Grading: S						Weig	ghted Av	erage:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
	145	2,476,102	5,016	\$34.54	93.277	1.02410	0.536	0.892	1.100	-0.208
Grading: SX						Wei	ghted Av	erage:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2001										
Region: 5	2	47,412	96	\$33.31	82.510	0.94405	0.383	1.422	1.100	0.322
Totals 2001	2	47,412	96	\$33.31	82.510	0.94405	0.383	1.422	1.100	0.322
2002										
Region: 1	1	37,338	76	\$36.05	95.177	1.03804	0.317	0.972	1.100	-0.128
Region: 3	1	26,341	50	\$35.47	87.899	0.98844	0.140	1.292	1.100	0.192
Totals 2002	2	63,679	126	\$35.81	92.166	1.01752	0.244	1.104	1.100	0.004
2003										
Region: 2	1	27,000	54	\$32.41	95.771	1.04500	0.585	0.825	1.100	-0.275
Region: 3	6	127,131	258	\$33.73	90.702	1.00589	0.523	1.073	1.100	-0.02
Region: 5	1	107,489	221	\$31.30	92.700	1.00664	0.149	1.108	1.100	0.008
Region: 6	2	8,118	17	\$42.75	89.610	1.01415	1.552	0.313	1.100	-0.78
Totals 2003	10	269,738	550	\$32.90	91.973	1.01035	0.411	1.039	1.100	-0.061

Grading: SX						Wei	ghted Av	erage:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2004										
Region: 1	3	134,126	271	\$37.64	92.070	1.01297	0.378	1.065	1.100	-0.035
Region: 3	7	164,320	331	\$34.46	91.038	1.00730	0.315	1.109	1.100	0.009
Region: 4	5	32,796	66	\$41.75	96.740	1.04440	0.582	0.763	1.100	-0.337
Region: 6	2	21,456	44	\$38.00	98.915	1.05364	0.387	0.720	1.100	-0.380
Totals 2004	17	352,698	712	\$36.56	92.440	1.01573	0.368	1.036	1.100	-0.064
Totals - Grading: SX						Wei	ghted Av	erage:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
	31	733,527	1,484	\$34.94	91.602	1.00927	0.374	1.068	1.100	-0.032
Mat Density - Totals 1	/1/2000 to 1	2/31/20								
						Wei	ghted Av	erage:		

				Weighted Average:								
Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V			
176	3,209,629	6,500	\$34.63	92.894	1.02071	0.499	0.932	1.100	-0.168			

Joint Density - Recap by Grading/Year/Region, VA

Criteria: Projects with Start Dates from 1/1/2000 to 12/31/2004.

Processes with less than 3 tests not included.

g S						We	ighted Av	erage:			
	Processes	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev - V
2003											
Region:	2 12	311,196	170	88.773	0.99986	92.00	90.175	2.009	1.500	1.60	-0.100
Region:	4 9	242,139	131	96.133	1.04205	92.00	91.185	0.995	1.571	1.60	-0.029
Region:	6 4	74,936	41	71.952	0.91940	92.00	89.437	2.563	1.991	1.60	0.391
Totals 2003	25	628,271	342	89.603	1.00652	92.00	90.476	1.684	1.586	1.60	-0.014
2004											
Region:	<i>1</i> 1	34,798	19	64.423	0.83893	92.00	88.910	3.090	2.422	1.60	0.822
Region:	2 6	188,581	105	93.199	1.03979	92.00	90.671	1.329	1.679	1.60	0.079
Region:	4 5	146,531	83	93.212	1.02467	92.00	91.160	1.561	1.492	1.60	-0.108
Region:	6 7	115,567	95	71.597	0.89247	92.00	89.308	2.692	1.830	1.60	0.230
Totals 2004	19	485,477	302	85.998	0.98576	92.00	90.368	1.850	1.712	1.60	0.112
Grading S	44	1,113,748	644	88.032	0.99747	92.00	90.429	1.756	1.641	1.60	0.041

Grading	SX						We	ighted Av	erage:			
		Processes	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev - V
	2003											
	Region: 2	? 1	23,604	18	89.075	1.01484	92.00	90.150	1.850	1.759	1.60	0.159
	Region: 3	2	78,685	38	95.028	1.03214	92.00	91.359	0.641	1.670	1.60	0.070
	Totals 2003	3	102,289	56	93.654	1.02815	92.00	91.080	0.920	1.690	1.60	0.090
	2004											
	Region: 1	! 3	136,061	73	94.729	1.03483	92.00	90.763	1.237	1.331	1.60	-0.269
	Region: 3	3	159,343	142	72.323	0.86084	92.00	89.277	2.723	2.169	1.60	0.569
	Region: 4	1	33,796	28	69.981	0.86694	92.00	88.670	3.330	1.265	1.60	-0.335
	Region: (5 1	21,456	7	73.509	0.95908	92.00	88.970	3.030	1.483	1.60	-0.117
	Totals 2004	8	350,656	250	80.864	0.93495	92.00	89.776	2.224	1.715	1.60	0.115
Totals C	Grading SX	11	452,945	306	83.752	0.95600	92.00	90.071	1.929	1.709	1.60	0.109
Joint D	ensity Totals	1/1/20	00 to 12/3	1/2004			Wei	ghted Ave	erage:			
		Processes	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
		55	1,566,693	950	86.795	0.98548	92.00	90.325	1.806	1.661	1.60	0.061

Appendix C

Detailed Reports for 2004 Projects

Report 11	Project Listing by Start Date/Region/Subaccount
Report 12	Project Data C - 3
Report 13	Calculated Pay Factor Composite and I/DP by Region C - 32
Report 14	Asphalt Content – Process Information
Report 15	VMA – Process Information
Report 16	Air Voids – Process Information C - 43
Report 17	Mat Density Process Information C - 47
Report 18	Joint Density Process Information

Project Listing by Start Date/Region/Subaccount - Voids Acceptance

Projects with Start Dates from 1/1/2004 to 12/31/2004.

Region: 1				Bid	Start		
Subacci	t. Project Code	Location	Supplier	Date	Date	Total Bid	Plan Quant
13818	STA 0405-030	SH 40 Kit Carson East	19	03/04/04	8/30/2004	\$4,873,435.70	84,282
14560	IM 0704-203	I-70, Genoa - East	14	01/15/04	5/4/2004	\$2,671,609.00	55,809
14657	STA C470-026	SH 83/86 Resurfacing	19	03/18/04	5/18/2004	\$5,191,685.47	72,845
	Number of Pro	ojects 3	Total	Plan Qu	uantity 212	2,936	
Region: 2				Did	Ctout		
Subacci	t. Project Code	Location	Supplier	Bid Date	Start Date	Total Bid	Plan Quant
14146	STA 1604-008	Pritchett East to	11	02/05/04	3/29/2004	\$2,480,778.27	55,467
14209	NH 0504-046	US 50 Troy to SH 233	19	03/18/04	6/14/2004	\$2,300,381.95	46,216
14212	STA 165A-010	SH 165 overlay I-25 to W of R	32	05/20/04	8/2/2004	\$2,557,928.70	66,323
14463	STU M240-080	Powers Blvd	49	11/13/03	9/15/2004	\$1,798,406.62	37,435
	Number of Pro	ojects 4	Total	Plan Qu	uantity 205	5,441	
Region: 3							
Subacci	t. Project Code	Location	Supplier	Bid Date	Start Date	Total Bid	Plan Quant
13535	IM 0701-157	Fruita to Clifton	12	02/26/04	5/10/2004	\$7,817,860.78	106,305
14483	IM 0701-164	Parachute East & West	17	02/12/04	7/21/2004	\$7,163,679.84	112,079
	Number of Pro	ojects 2	Total	Plan Qu	uantity 218	3,384	
Region: 4					- ·		
Subacci	t. Project Code	Location	Supplier	Bid Date	Start Date	Total Bid	Plan Quant
13528	STA 0343-021	E/O Brush to Akron	60	07/10/03	4/13/2004	\$5,399,161.60	70,085
13977	IM 0761-185	I-76 Lochbuie to Hudson	10	06/24/04	8/9/2004	\$3,183,834.35	72,754
14706	NH 2873-134	US 287 Virginiadale	14	04/01/04	8/4/2004	\$4,582,362.55	111,715
	Number of Pro	ojects 3	Total	Plan Ou	uantity 254	4,554	

n: 6				Bid	Start		
Subacct.	Project Code	Location	Supplier		Date	Total Bid	Plan Quant.
13957	STA 1211-057	SH 121 Belliview to Hampden	33	02/12/04	5/17/2004	\$1,112,323.90	14,514
14237	STA 1211-058	SH 121, 90th to 104th	37	01/29/04	7/26/2004	\$1,022,091.35	15,323
14238	STA 1211-059	SH 121 from 6th to Grandview	13	01/29/04	5/24/2004	\$2,083,604.60	29,367
14239	STA 0853-052	Sante Fe Dr I-25 to Florida Av	41	02/05/04	6/24/2004	\$1,269,980.46	16,154
14240	STA 0404-040	Colfax, Sheridan to Viaduct	37	02/12/04	6/29/2004	\$1,831,904.50	8,683
14241	STA 0062-015	6th Ave @ Federal	33	01/08/04	7/21/2004	\$1,586,248.25	20,555
14613	IM 0253-186	I-25/120th to SH 7	33	06/17/04	8/26/2004	\$4,034,586.35	72,866

Totals: Projects with Start Dates from 1/1/2004 to 12/31/2004.

Number of Projects 19

Total Plan Quantity 1,068,777

Subacco	unt: 13	3528	STA 0	343-021	E/O Brus	h to Akr	on		Regio	n: 4	Su	ıpplier:	60
Bid Date	e: 7/10	/2003	Start	Date: 4/13/2	004							••	
Mix Desi	gn No	149926		Process No 1	Gra	ding S	(100)	PG 64-2	2 P r	ice Per	Ton \$35.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	ner
AC	7	7,423	82.610	1.00548	\$142.45	5.500	5.581	0.081	0.214	0.200	0.014	CTS Tons	1,000
Density	2	1,313			\$0.00	94.000				1.100			\$428.74
VMA	. 7	7,423	98.675	1.03500	\$909.32	14.800	14.943	0.143	0.574	0.600	-0.026	PF 1.0	ψ·20
Air Voids	7	7,423	85.440	1.01759	\$1,370.81	3.300	3.657	0.357	0.783	0.600	0.183	Tons	5,110
				I/DP:	\$2,851.32						2V	Adj.	\$0.00
Mix Desi	gn No	149926A		Process No 1	Gra	ding S	(100)	PG 64-2	2 P r	ice Per	Fon \$35.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	ner
AC	29	28,036	89.279	1.00908	\$891.21	5.400	5.322	0.078	0.171	0.200	-0.029	CTS	0
Density	54	26,875	92.338	1.02005	\$6,600.38	94.000	93.556	0.444	1.049	1.100	-0.051	Tons I/DP	\$0.00
VMA	29	28,036	97.560	1.05500	\$5,396.93	14.000	13.739	0.261	0.488	0.600	-0.112	PF 1.0	ψ0.00
Air Voids	29	28,036	98.356	1.05500	\$16,190.76	3.000	2.629	0.371	0.402	0.600	-0.198	Tons	1,161
				I/DP:	\$29,079.28						2 V	Adj.	\$0.00
Mix Desi	gn No	150009	ı	Process No 1	Gra	ding S	(100)	PG 64-2	8 P r	ice Per T	Fon \$38.8	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC		27,632	81.887		(\$4,464.12)	5.000	5.075	0.075		0.200	0.013	CTS	500
Density		27,132	91.100	1.01090	\$4,016.28		93.361	0.639		1.100	-0.100	Tons	500
VMA		27,632	99.820	1.05500	\$5,896.67	14.000	14.189	0.189		0.600	-0.227		\$237.65
Air Voids	28	27,632	90.285	1.01563	\$5,025.73	3.100	3.557	0.457	0.574	0.600	-0.026	PF 1.0 Tons	0
				I/DP:	\$10,712.21						2V	Adj.	\$0.00
Mix Desi	gn No	150009A		Process No 1	Gra	ding S	(100)	PG 64-2	8 P r	ice Per T	Ton \$38.8	80	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ner
40											•	CTS	
AC Density		9,610	98.317 99.901	1.04500 1.05000	\$1,677.91 \$6,525.19	5.300	5.364 94.070			0.200 1.100		Tons	0
VMA	_	9,610 9,610	100.000	1.04500	\$1,677.91		14.740			0.600	-0.412	I/DP	\$0.00
Air Voids		9,610	99.651	1.04500	\$5,033.72		3.560			0.600		PF 1.0 Tons	0
All Volus	10	3,010	99.001			0.100	3.300	0.400	0.551	0.000		' Adj.	\$0.00
				I/DP:	\$14,914.73							Auj.	Ψ0.00
Joint De	ensity	Proc.		Quality	/ Pay					Mean			St Dev.
Grad. P	Price	No Te	sts To			I/D	P	TV	Mean	to TV	Std Dev	V	- V
S \$3	35.00	1	1 5,	133		\$0	0.00	92.000				1.600	
S \$3	35.00	2	7 19,	127 99.938	1.03500	\$3,569	9.71	92.000	91.300	0.700	1.537	1.600	-0.063
S \$3	35.00	3	1 10,8	399		\$0	0.00	92.000				1.600	
S \$3	38.80	4	14 37,	242 98.817	1.04500	\$9,753	3.68	92.000	91.630	0.370	1.715	1.600	0.115

Totals: 13528		Tests	Tons	I/DP			
	AC	74	72,701	(\$1,752.55)	CTS I/DP		
	Density	130	72,701	\$17,141.85	\$666.39		
	VMA	74	72,701	\$13,880.83	2V Adj		
	Air Voids	74	72,701	\$27,621.02	\$0.00		
	Joint Density	23	72,701	\$13,323.39			
	Plar	n Quant	70.085	Project I/DP	\$70.880.93	CPFC	1.02639

Subaccount: 13535 IM 0701-157 Fruita to Clifton Region: 3 Supplier: 12

Bid Date: 2/26/2004 Start Date: 5/10/2004

Mix Design	gn No	64-22	1	Process No 1	Grad	ding SX	(100)	PG 64-22	Pri	ce Per 1	Ton \$31.9)1	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	-	3,950	79.167	1.02500	\$315.08	5.600	5.677	0.077	0.244	0.200	0.044	CTS Tons	0
Density		0			\$0.00	94.000				1.100		I/DP	\$0.00
VMA	3	3,950	62.338	0.96617	(\$426.35)		14.067	1.133	0.153	0.600	-0.447	PF 1.0	
Air Voids	3	3,950	50.000	0.88900	(\$4,196.73)	3.700	2.500	1.200	0.436	0.600	-0.164	Tons	3,950
				I/DP:	(\$4,308.00)						2V	Adj.	\$0.00
Mix Desig	gn No	64-22 #2	1	Process No 1	Grad	ding SX	(100)	PG 64-22	Pri	ce Per 1	Ton \$31.6	8	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	7	5,878	100.000	1.03500	\$651.73	5.500	5.496	0.004	0.081	0.200	-0.119	CTS Tons	0
Density		0			\$0.00	94.000				1.100		I/DP	\$0.00
VMA	7	5,878	100.000	1.03500	\$651.73	15.200	14.857	0.343	0.140	0.600	-0.460	PF 1.0	ψ0.00
Air Voids	7	5,878	100.000	1.03500	\$1,955.19	3.700	3.871	0.171	0.325	0.600	-0.275	Tons	5,878
				I/DP:	\$3,258.65						2V	Adj.	\$0.00
Mix Desig	gn No	64-22 #3		Process No 1	Grad	ding SX	(100)	PG 64-22	Pri	ce Per 1	Ton \$31.3	80	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC		8,378	88.268	1.02166	\$567.91	5.400	5.268	0.132	0.143	0.200	-0.057	CTS	_
Density	-	0	00.200		\$0.00	94.000	0.200	002	011.10	1.100	0.00.	Tons	0
VMA	9	8,378	100.000	1.04000	\$1,048.92	14.700	14.367	0.333	0.224	0.600	-0.376	I/DP	\$0.00
Air Voids	9	8,378	99.826	1.04000	\$3,146.75	3.700	3.567	0.133	0.469	0.600	-0.131	PF 1.0 Tons	8,378
		2,212		I/DP:	\$4,763.58							Adj.	\$0.00
Mix Desig	gn No	64-22 #4		Process No 1	Grad	ding SX	(100)	PG 64-22	Pric	ce Per 1	Ton \$31.3	9	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	21	20.773	96.573	1.05000	\$3,259.93	5.300	5.304	0.004	0.148	0.200	-0.052	CTS	0
Density		0			\$0.00	94.000				1.100		Tons	0
VMA	21	20,773	99.988	1.05000	\$3,259.93	14.700	14.410	0.290	0.290	0.600	-0.310	I/DP	\$0.00
Air Voids	21	20,773	99.991	1.05000	\$9,779.78	3.700	3.529	0.171	0.324	0.600	-0.276	PF 1.0 Tons	20,773
		,		I/DP:	\$16,299.64						2 V	Adj.	\$0.00
		76-28		Process No 1	Grad	ding SX	(100)	PG 76-28	Pric	ce Per 1	Ton \$32.0	12	
Mix Desig	gn No							Mean			St Dev.		
Mix Desig	gn No Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean		St Dev.	V	- V	Oth	er
	Tests	Tons	Level	Factor	I/DP (\$5.674.71)		Mean 5.230	to TV			- V	CTS	
Mix Design AC Density	Tests 5	Tons 4,622			I/DP (\$5,674.71) \$1,847.56	5.600	5.230		St Dev. 0.110 0.910	V 0.200 1.100		CTS Tons	500
Density	Tests 5 8	Tons 4,622 4,122	32.000 92.828	Factor 0.61651 1.04000	(\$5,674.71)	5.600 94.000	5.230 93.275	0.370 0.725	0.110 0.910	0.200 1.100	- V -0.090 -0.190	CTS Tons I/DP 2	500
AC	Tests 5 8 5	Tons 4,622	Level 32.000	Factor 0.61651	(\$5,674.71) \$1,847.56	5.600 94.000	5.230	to TV 0.370	0.110	0.200	- V -0.090	CTS Tons	

Mix Design	gn No	76-28 #2	ı	Process No	1 Grad	ding SX	(100) I	PG 76-28	Pri	ce Per	Ton \$32.:	29	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	2	2,151			\$0.00	5.500				0.200		CTS	500
Density	4	2,151	52.904	0.87438	(\$3,054.06)	94.000	92.175	1.825	2.009	1.100	0.909	Tons I/DP	
VMA	2	2,151		0.97917	(\$144.71)	14.700				0.600		PF 1.0	\$197.79
Air Voids	2	2,151		0.75000	(\$5,209.59)	3.500				0.600		Tons	0
				I/DP:	(\$8,210.57)						21	V Adj.	\$0.00
Mix Desi	gn No	76-28 #2	ı	Process No	2 Gra c	ding SX	(100) I	PG 76-28	. Pri	ce Per	Ton \$32.	29	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	1	500			\$0.00	5.500				0.200		CTS	0
Density		0			\$0.00	94.000				1.100		Tons I/DP	\$0.00
VMA	1	500			\$0.00	14.700				0.600		PF 1.0	\$0.00
Air Voids	1	500			\$0.00	3.500				0.600		Tons	0
				I/DP:	\$0.00						21	V Adj.	\$0.00
Mix Desig	gn No	76-28 #3		Process No	1 Grad	ding SX	(100) I	PG 76-28	Pri	ce Per	Ton \$32.	26	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ner
AC	12	11,833	93.378	1.04067	\$1,552.40	5.400	5.352	0.048	0.165	0.200		CTS	500
Density	22	11,333	94.636	1.04426	\$5,663.65		94.495	0.495	0.943	1.100		Tons	500
VMA	12	11,833	100.000	1.04500	\$1,717.88		14.250	0.450	0.207	0.600			\$197.60
Air Voids	12	11,833	92.055	1.03507	\$4,016.30	3.700	3.208	0.492	0.514	0.600		PF 1.0 Tons	0
		,		I/DP:	\$13,147.83							V Adj.	\$0.00
Mix Desig	gn No	76-28 #4		Process No	1 Grad	ding SX	(100) I	PG 76-28	. Pri	ce Per	Ton \$32.	01	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ner
AC	52	51,318	97.663	1.05500	\$9,035.11	5.300	5.243	0.057	0.123	0.200	-0.077	CTS	0
Density	103	50,318	94.324	1.03001	\$16,916.49	94.000	94.060	0.060	1.055	1.100	-0.045	Tons I/DP	0
VMA	52	51,318	98.795	1.05500	\$9,035.11	14.700	14.342	0.358	0.381	0.600	-0.219	PF 1.0	\$0.00
Air Voids	52	51,318	98.737	1.05500	\$27,105.34	3.700	3.446	0.254	0.430	0.600	-0.170	Tons	0
		•		I/DP:	\$62,092.05						2	V Adj.	\$0.00
Mix Desig	gn No	76-28 #4	ı	Process No	2 Gra c	ding SX	(100) I	PG 76-28	. Pri	ce Per	Ton \$32.	01	
	Tests	Tons	Quality Level	Pay	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ner
AC	10313	10113	LEVEI	Factor	\$0.00	1 4	mean	10 1 4	OL DEV.		- v	CTS	
Density	1	E00		0.17000	(\$5,601.95)	94.000				0.200 1.100		Tons	0
VMA	'	500		0.17000	\$0.00	57.000				0.600		I/DP	\$0.00
Air Voids					\$0.00					0.600		PF 1.0	0
All Volus										0.000		Tons	0 00
				I/DP:	(\$5,601.95)						2	V Adj.	\$0.00

Mix D	esign No	76-28	3 #4	Pr	ocess	No 3	Gra	nding SX (100)	PG 76-2	8 P r	ice Per	Ton \$32.0)1	
	Tests	Ton		luality Level	Pay Facto	r	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
Dens	AC		00		0.4545		\$0.00 \$3,055.58)	94.000				0.200		CTS Tons	0
V	MA					`	\$0.00					0.600		I/DP PF 1.0	\$0.00
Air Vo	ids						\$0.00	-				0.600		Tons	0 \$0.00
					I/DP:	(\$3,055.58)						20	/ Adj.	φ0.00
<i>Joint</i> Grad.	Density Price	Proc. No	Tests	Tons		Quality Level	Pay Factor	I/DP		TV	Mean	Mean to TV	Std Dev	v	St Dev.
SX	\$32.67	1	10	11,03	1 5	57.524	0.82461	(\$9,481.	30)	92.000	88.610	3.390	3.061	1.600	1.461
SX	\$32.67	2	1	1,12	3		0.48438	(\$2,837.	59)	92.000				1.600	
SX	\$32.67	3	1	1,11	9		0.68750	(\$1,713.	64)	92.000				1.600	
SX	\$32.67	4	1	1,12	3		0.28125	(\$3,955.	47)	92.000				1.600	
SX	\$32.67	5	53	53,73	8 7	79.978	0.92584	(\$19,529.	80)	92.000	89.690	2.310	2.006	1.600	0.406
SX	\$32.67	8	1	38,97	9			\$0.	00	92.000				1.600	
SX	\$32.67	9	1	2,29	0			\$0.	00	92.000				1.600	
To	tals: 1353	35			Tests	Tor		I/DP			0.1/0.0				
			De	AC nsity	112 139	109,4 109,4		\$9,707 \$12,716			S I/DP 192.16)				
				VMA	112	109,4		\$15,586		(, ,	/ Adj				
			Air V		112	109,4		\$28,035			\$0.00				
		Jo	oint De	nsity	68	109,4	103	(\$37,517	.80)						
				Plan C	Quant	106,3	305	Project I/D	P :	\$26,035.9	99	CPFC	1.00747		

Suba	ccoi	unt: 1.	3818		STA (0405-03	0	SH 40 K	it Carson	East		Regio	on: 1	Si	upplier:	19
Bid D	ate	: 3/4/2	2004		Start	Date: 8	3/30/20	04								
Mix D	esig	gn No	1364	88		Process	N o 1	Gr	ading SX	(75)	PG 64-2	2 P r	ice Per	Ton \$33.0	00	
		Tests	Tor	าร	Quality Level	Pay Facto		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Ot	her
	AC	34	33,2	89	98.085	1.0550	00 9	66,041.95	5.500	5.470	0.030		0.200	-0.071	CTS	0
Dens	sity		,	0				\$0.00	94.000				1.100		Tons I/DP	0 \$0.00
V	MA	34	33,2	89	99.999	1.0550	00 9	6,041.95	14.800	14.76	3 0.032	0.313	0.600	-0.287	PF 1.0	
Air Vo	ids	34	33,2	89	97.844	1.0550	00 \$	18,125.86	3.800	4.018	3 0.218	0.493	0.600	-0.107	Tons	33,289
						I/DP	\$:	30,209.76	<u> </u>					2\	/ Adj.	\$0.00
Mix D	esig	n No	1364	88-2		Process	No 1	Gr	ading SX	(75)	PG 64-2	8 P r	ice Per	Ton \$38.6	60	
		Tests	Tor	าร	Quality Level	Pay Facto		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Ot	her
	AC	52	51,3		94.591	1.0368		57,303.21	5.700	5.65			0.200	-0.050	CTS	500
Dens		103	50,8		94.772	1.0335		23,076.20					1.100	-0.075	Tons	500
V	MA	52	51,3		98.805	1.0550	00 \$	10,903.94	15.100	14.613	3 0.487	0.322	0.600	-0.278	I/DP PF 1.0	\$236.42
Air Vo	ids	52	51,3	61	97.358	1.0550	00 \$3	32,711.82	3.500	3.604	4 0.104	0.541	0.600	-0.059	Tons	0
						I/DP	\$	74,231.59)					2\	/ Adj.	\$0.00
Joint	De	nsity														
Grad.		rice	Proc. No	Test	s To	ons	Quality Level	Pay Factor	I/D	P	TV	Mean	Mean to TV	Std Dev	٧	St Dev.
SX		3.00	1			289	20101	7 40107		0.00	92.000	ou	10 7 7	Old Dov	1.600	•
	·						05.004	4.05000				00.000	0.040	0.070		0.004
SX	\$ 3	8.60	2	23	3 51,	,361	95.884	1.05000	\$14,869	9.01	92.000	89.660	2.340	0.979	1.600	-0.621
To	tals	: 1381	18			Tests	Ton		I/DP							
				п	AC ensity	86 103	84,6 84,6		\$13,34 \$23,07			S I/DP 236.42				
					VMA	86	84,6		\$23,07 \$16,94			/ Adj				
				Air	Voids	86	84,6		\$50,83		_	\$0.00				
			J	oint D	ensity	24	84,6	50	\$14,86	9.01						
					Plai	n Quant	84,2	82	Project I/	DP \$	119,310.3	36	CPFC	1.03872		
	_	7														

Subacco Bid Dat				211-057 Date: 5/.		1 Belliview	to Han	npden	Regio	n: 6	Si	ıpplier:	33
Mix Desi	ign No	147059-1		Process N	<i>l</i> o 1	Grading S	(100)	PG 76-28	Pri	ce Per 1	Fon \$30.3	30	
	Tests	Tons	Quality Level	Pay Factor	I/DP	. TV	Mean	Mean to TV	St Dev.	V	St Dev.	0	ther
AC Density VMA	28	14,115 13,615 14,115	99.400 98.378 99.481	1.05000 1.05500 1.05000	\$2,138. \$7,941.	42 4.700 29 94.000	93.804	0.011 0.196	0.123 0.845 0.458	0.200 1.100 0.600	-0.077 -0.255 -0.142	CTS Tons I/DP PF 1.0	500 (\$127.42)
Air Voids	_	14,115	99.997	1.05000 I/DP:	* /	27 3.200			0.383	0.600	-0.217	Tons / Adj.	~
Joint Do	ensity Price	Proc. No Tes	sts To		uality Pay evel Fact	•	P	TV I		Mean to TV	Std Dev	v	St Dev. - V
S \$	30.30	1	12 14,	115 61	.678 0.846	93 (\$9,81	9.77)	92.000 8	38.670	3.330	2.212	1.600	0.612
Total	's: 1395	Ai	AC Density VMA ir Voids Density	Tests 15 28 15 15 15	Tons 14,115 14,115 14,115 14,115 14,115	I/DP \$2,13 \$7,94 \$2,13 \$6,41 (\$9,81	11.29 38.42 5.27	(\$12 2V	5 I/DP 27.42) Adj \$0.00				
			Plan	Quant	14,514	Project I	/DP	\$8,686.2	1	CPFC	1.02031		

Subaccount: 13977 IM 0761-185 I-76 Lochbuie to Hudson Region: 4 Supplier: 10

Bid Date: 6/24/2004 Start Date: 8/9/2004

WIIX Desig	gn No	154122	F	Process No	1 Grad	ding SX	(100) F	PG 64-28	Pric	e Per 1	on \$41.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	4	4,000	100.000	1.03000	\$501.00	5.300	5.343	0.043	0.131	0.200	-0.069	CTS	500
Density	7	3,500	100.000	1.03500	\$1,790.03	94.000	93.257	0.743	0.486	1.100	-0.614	Tons I/DP	300 \$255.72
VMA	4	4,000	100.000	1.03000	\$501.00	15.400	15.475	0.075	0.222	0.600	-0.378	PF 1.0	φ233.72
Air Voids	4	4,000	50.000	0.85237	(\$7,396.14)	3.400	4.600	1.200	0.258	0.600	-0.342	Tons	0
				I/DP:	(\$4,348.39)						2\	/ Adj.	\$0.00
Mix Desi	gn No	154122B	ı	Process No	1 Grad	ding SX	(100) F	PG 64-28	Pric	e Per 1	Ton \$41.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	14	13,978	87.696	1.01209	\$705.66	5.700	5.606	0.094	0.174	0.200	-0.026	CTS	0
Density	28	13,978	97.551	1.05500	\$11,233.94	94.000	93.321	0.679	0.690	1.100	-0.410	Tons I/DP	\$0.00
VMA	14	13,978	90.484	1.02603	\$1,519.10	15.500	15.086	0.414	0.606	0.600	0.006	PF 1.0	φυ.υυ
Air Voids	14	13,978	96.535	1.04500	\$7,878.35	3.900	4.050	0.150	0.587	0.600	-0.013	Tons	0
				I/DP:	\$21,337.05						2\	/ Adj.	\$0.00
Mix Desi	gn No	162103	ı	Process No	1 Grad	ding SX	(100) F	PG 64-22	Pric	e Per 1	on \$36.6	60	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	7	7,000	99.310	1.03500	\$896.70	5.300	5.304	0.004	0.148	0.200	-0.052	CTS	0
Density		0			\$0.00	94.000				1.100		Tons I/DP	\$0.00
VMA	7	7,000	100.000	1.03500	\$896.70	15.000	14.871	0.129	0.221	0.600	-0.379	PF 1.0	φυ.υυ
Air Voids	7	7,000	90.528	1.03500	\$2,690.10	3.800	3.186	0.614	0.460	0.600	-0.140	Tons	7,000
				I/DP:	\$4,483.50						2\	/ Adj.	\$0.00
Mix Desig	gn No	162103A	ı	Process No	1 Grad	ding SX	(100) F	PG 64-22	Pric	e Per 1	on \$36.6	60	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
												CTS	0
AC	8	7,904	77.292	0.97258	(\$793.17)	5.200	5.191	0.009	0.252	0.200	0.052	Tons	
AC Density	8	7,904 0	77.292	0.97258	(\$793.17) \$0.00	5.200 94.000	5.191	0.009	0.252	0.200 1.100	0.052	Tons I/DP	_
_	8	,	77.292 99.008	0.97258	,	94.000	5.191 14.787	0.009	0.252		-0.094	I/DP	\$0.00
Density		0			\$0.00	94.000				1.100			_
Density VMA	8	0 7,904	99.008	1.04000	\$0.00 \$1,157.15	94.000 15.000	14.787	0.213	0.506	1.100 0.600	-0.094 0.274	I/DP PF 1.0	\$0.00
Density VMA Air Voids	8	7,904 7,904	99.008 84.405	1.04000 1.00781	\$0.00 \$1,157.15 \$677.88 \$1,041.86	94.000 15.000	14.787 3.588	0.213	0.506 0.874	1.100 0.600 0.600	-0.094 0.274	I/DP PF 1.0 Tons / Adj.	\$0.00 7,904
Density VMA Air Voids	8	7,904 7,904	99.008 84.405	1.04000 1.00781 I/DP:	\$0.00 \$1,157.15 \$677.88 \$1,041.86	94.000 15.000 3.500	14.787 3.588	0.213 0.088	0.506 0.874	1.100 0.600 0.600	-0.094 0.274 2 V	I/DP PF 1.0 Tons / Adj. 40 Oth	\$0.00 7,904 \$0.00
Density VMA Air Voids	8 8 gn No	0 7,904 7,904 162105	99.008 84.405	1.04000 1.00781 I/DP: Process No	\$0.00 \$1,157.15 \$677.88 \$1,041.86	94.000 15.000 3.500	14.787 3.588 (100) F	0.213 0.088 PG 64-22 Mean	0.506 0.874	1.100 0.600 0.600	-0.094 0.274 2V Fon \$35.4 St Dev.	I/DP PF 1.0 Tons / Adj. 40 Oth	\$0.00 7,904 \$0.00
Density VMA Air Voids Mix Design	8 8 gn No Tests	0 7,904 7,904 162105 Tons	99.008 84.405 Quality Level	1.04000 1.00781 I/DP: Process No Pay Factor	\$0.00 \$1,157.15 \$677.88 \$1,041.86 1 <i>Grad</i>	94.000 15.000 3.500 ding S TV 5.200	14.787 3.588 (100) F	0.213 0.088 PG 64-22 Mean to TV	0.506 0.874 <i>Prio</i> St Dev.	1.100 0.600 0.600 V	-0.094 0.274 2V Fon \$35.4 St Dev.	I/DP PF 1.0 Tons / Adj. Oth CTS Tons	\$0.00 7,904 \$0.00
Density VMA Air Voids Mix Design	8 8 8 gn No Tests 6	0 7,904 7,904 162105 Tons 6,000	99.008 84.405 Quality Level 64.292	1.04000 1.00781 I/DP: Process No Pay Factor 0.91199	\$0.00 \$1,157.15 \$677.88 \$1,041.86 1 <i>Grad</i> I/DP (\$1,869.23)	94.000 15.000 3.500 3.500 TV 5.200 94.000	14.787 3.588 (100) F Mean 5.002	0.213 0.088 PG 64-22 Mean to TV 0.198	0.506 0.874 <i>Prio</i> St Dev. 0.255	1.100 0.600 0.600 v	-0.094 0.274 2V Con \$35.4 St Dev. - V 0.055	I/DP PF 1.0 Tons / Adj. Oth CTS Tons I/DP	\$0.00 7,904 \$0.00
Density VMA Air Voids Mix Design AC Density	8 8 8 gn No Tests 6 11	0 7,904 7,904 162105 Tons 6,000 5,500	99.008 84.405 Quality Level 64.292 95.291	1.04000 1.00781 I/DP: Process No Pay Factor 0.91199 1.04500	\$0.00 \$1,157.15 \$677.88 \$1,041.86 1 Grac I/DP (\$1,869.23) \$3,066.52	94.000 15.000 3.500 3.500 TV 5.200 94.000	14.787 3.588 (100) F Mean 5.002 93.236	0.213 0.088 PG 64-22 Mean to TV 0.198 0.764	0.506 0.874 Prio St Dev. 0.255 0.775	1.100 0.600 0.600 vee Per 1 v	-0.094 0.274 2V Fon \$35.4 St Dev. - V 0.055 -0.325	I/DP PF 1.0 Tons / Adj. Oth CTS Tons	\$0.00 7,904 \$0.00

Mix Design	gn No	162105A	ı	Process No 1	Gra	ding S	(100)	PG 64-2	2 P r	ice Per	Ton \$35.4	10	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC	6	6,000	84.616	1.01796	\$381.37	5.200	5.037	0.163	0.133	0.200	-0.067	CTS Tons	0
Density	12	6,000	97.258	1.04500	\$3,345.30	94.000	93.892	0.108	0.989	1.100	-0.111	I/DP	\$0.00
VMA	6	6,000	100.000	1.03500	\$743.40	15.100	14.883	0.217	0.479	0.600	-0.121	PF 1.0	
Air Voids	6	6,000	67.906	0.93508	(\$4,136.76)	3.700	2.817	0.883	0.637	0.600	0.037	Tons	0
				I/DP:	\$333.31						2\	/ Adj.	\$0.00
Mix Design	gn No	162105B	ı	Process No 1	Gra	ding S	(100)	PG 64-2	2 P r	ice Per	Ton \$35.4	10	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V		her
AC	12	11,862	67.463	0.89157	(\$4,553.07)	5.100	4.949	0.151	0.264	0.200	0.064	CTS Tons	0
Density	24	11,862	98.437	1.05000	\$7,348.51	94.000	93.558	0.442	0.753	1.100	-0.347	I/DP	\$0.00
VMA	12	11,862	98.803	1.04500	\$1,889.62	15.100	15.308	0.208	0.485	0.600	-0.115	PF 1.0	
Air Voids	12	11,862	82.196	0.98654	(\$1,695.28)	3.500	4.075	0.575	0.672	0.600	0.072	Tons	0
				I/DP:	\$2,989.78						2\	/ Adj.	\$0.00
Mix Design	gn No	162107		Process No 1	Gra	ding SX	(100)	PG 64-2	8 P r	ice Per	Ton \$41.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V		her
AC	6	6,000	58.286	0.86957	(\$3,267.19)	5.400	5.120	0.280	0.088	0.200	-0.112	CTS Tons	500
Density	11	5,500	97.615	1.04500	\$3,616.59	94.000	94.400	0.400	0.874	1.100	-0.226	I/DP	\$255.72
VMA	6	6,000	100.000	1.03500	\$876.75	15.100	14.683	0.417	0.306	0.600	-0.294	PF 1.0	
Air Voids	6	6,000	100.000	1.03500	\$2,630.25	3.500	3.217	0.283	0.387	0.600	-0.213	Tons	0
				I/DP:	\$4,112.12						2\	/ Adj.	\$0.00
Mix Design	gn No	162107A		Process No 1	Gra	ding SX	(100)	PG 64-2	8 P r	ice Per	Ton \$41.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
AC	5	5,000	40.604	0.74560	(\$5,310.53)	5.400	5.058	0.342	0.158	0.200	-0.042	CTS	0
Density	10	5,000	99.695	1.04500	\$3,287.81	94.000	94.920	0.920	0.478	1.100	-0.622	Tons I/DP	0
VMA	5	5,000	100.000	1.03000	\$626.25	14.800	14.420	0.380	0.363	0.600	-0.237	PF 1.0	\$0.00
Air Voids	5	5,000	100.000	1.03000	\$1,878.75	3.500	3.600	0.100	0.418	0.600	-0.182	Tons	0
				I/DP:	\$482.28						2\	/ Adj.	\$0.00
Mix Design	gn No	162107B		Process No 1	Gra	ding SX	(100)	PG 64-2	8 P r	ice Per	Ton \$41.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
AC	5	4,818	99.892	1.03000	\$603.45	5.400	5.406	0.006	0.167	0.200	-0.033	CTS	0
Density	10	4,818	87.954	1.01919	\$1,351.10	94.000	93.960			1.100	0.242	Tons	0
VMA	5	4,818	100.000	1.03000	\$603.45	14.800	14.700	0.100	0.561	0.600	-0.039	I/DP PF 1.0	\$0.00
Air Voids	5	4,818	100.000	1.03000	\$1,810.36	3.500	3.440	0.060	0.568	0.600	-0.032	Tons	0
				I/DP:	\$4,368.36						2\	/ Adj.	\$0.00
Joint De	nsitv												
	rice	Proc. No Tes	sts To	Qualit ns Leve		I/D	P	TV	Mean	Mean to TV	Std Dev	V	St Dev.
	86.60	1			, raciol				Mean	.0 / V	Sta Dev	1.600	- v
			,	904				92.000	00.00-	0.05			0.5:=
S \$3	35.40	2	28 23,	862 94.78	4 1.04385	\$5,55	5.87	92.000	90.000	2.000	1.253	1.600	-0.347

SX	\$4	1.75	3	28	33,	796	69.981	0.86694	(\$28,16	0.98)	92.000	88.670	3.330	1.265	1.600	-0.335
To		: 1397 :omme	J		-	73 113 73 73 73 57 1 Quan	72, 72, 72, 72, 72,	562 562 562 562 562	1/DP (\$12,70 \$35,03 \$9,23 \$1,02 (\$22,60 Project I/	9.80 9.73 27.95 95.11)	\$	75 I/DP 728.26 V Adj \$0.00	CPFC	1.00383		
		int: 14			-	1604-00 Date:	08 3/29/20	Pritchett	t East to			Regio	on: 2	Sı	upplier:	11
Mix D	esig	n No	1414	6		Process	No 1	Gı	rading S	(100)	PG 64-2	2 P i	rice Per	Ton \$32.6	35	
		Tests	Tor		Quality Level	Pay Fact		I/DP	TV	Mea	Mean n to TV	St Dev	. v	St Dev. - V	Ot	her
Den: V Air Vo	MA	56 110 56 56	55,4 54,9 55,4 55,4	82 82	95.848 91.804 99.975 98.556	1.045 1.008 1.055 1.055	96 00 00 \$	\$8,205.64 \$5,631.89 \$9,963.18 29,889.54	94.000 14.600	14.71	0 0.770 8 0.118	0.883 0.326	0.200 1.100 0.600 0.600	-0.063 -0.217 -0.274 -0.180	CTS Tons I/DP PF 1.0 Tons	0
						I/DF) : \$	53,890.23	3					2V	/ Adj.	\$0.00
Joint Grad.	Pr	nsity ice 0.00	Proc. No	Tests		o ns 482	Quality Level 95.354	Pay Factor 1.04700			TV 92.000	Mean 91.450	Mean to TV 0.550	Std Dev 1.985	V 1.600	St Dev. - V 0.385
To	otals	: 1414			•	Tests	55,4 55,4 55,4 55,4	482 482 482 482 482	1/DP \$8,20 \$5,63 \$9,96 \$29,88 \$19,55	31.89 33.18 39.54 57.95	\$	S I/DP 199.98 V Adj \$0.00	CPFC	1.04055		

Comments: Unit price for joint density?

Subacco	unt: 14	1209	NH 0:	504-046	US 50 Tr	oy to SH	233		Regio	on: 2	Sı	ıpplier:	19
Bid Date	e: 3/18	/2004	Start	Date: 6/1	4/2004								
Mix Desi	gn No	14209 R	AP	Process No	o 1 Gra	ding S	(100)	PG 64-22	2 P r	ice Per	Fon \$30.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC	22	21,062	93.241	1.03639	\$2,299.09	5.300	5.205	0.095	0.138	0.200	-0.062	CTS	500
Density	42	20,562	86.620	0.98222	(\$3,837.86)	94.000	94.107	7 0.107	1.340	1.100	0.240	Tons I/DP	\$183.75
VMA	22	21,062	99.933	1.05000	\$3,159.30	13.800	13.436	0.364	0.292	0.600	-0.308	PF 1.0	
Air Voids	22	21,062	84.135	0.98044	(\$3,708.54)	3.500	2.836	0.664	0.536	0.600	-0.064	Tons	0
				I/DP:	(\$1,904.26)	•					2\	/ Adj.	\$0.00
Mix Desig	gn No	14209 To	ор	Process No	o 1 Gra	ding S	(100)	PG 76-28	3 Pr	ice Per	Ton \$36.2	20	
			Quality	Pay			,	Mean			St Dev.	Ot	her
	Tests	Tons	Level	Factor	I/DP	TV	Mean	to TV	St Dev	. v	- V		1101
AC	25	24,150	90.438	1.01831	\$1,600.38	5.400	5.373	0.027	0.181	0.200	-0.019	CTS Tons	0
Density	49	24,150	96.229	1.04884	\$14,943.66	94.000	94.047	7 0.047	0.978	1.100	-0.122	I/DP	\$0.00
VMA	25	24,150	100.000	1.05000	\$4,371.15	14.200	14.100	0.100	0.173	0.600	-0.427	PF 1.0	
Air Voids	25	24,150	95.837	1.05000	\$13,113.45	3.900	3.628	3 0.272	0.542	0.600	-0.058	Tons	0
				I/DP:	\$34,028.64	•					2 V	/ Adj.	\$0.00
Mix Desi	gn No	14209Tc	pR	Process No	o 1 Gra	ding S	(100)	PG 76-28	3 Pr	ice Per	Fon \$36.2	20	
	Tests	Tons	Quality	Pay	I/DP	TV	Mean	Mean	St Dev	. v	St Dev.	Ot	her
AC			Level	Factor			Wear	to TV	St Dev		- V	CTS	
Density	1 2	864			\$0.00 \$0.00	5.600 94.000				0.200 1.100		Tons	0
VMA		864				14.800				0.600		I/DP	\$0.00
	1	864		0.00007	\$0.00	3.900						PF 1.0	
Air Voids	1	864		0.66667	(\$3,127.68)	•				0.600		Tons	0
				I/DP:	(\$3,127.68)						2\	/ Adj.	\$0.00
Joint De	nsity	Proc.		Qu	ality Pay					Mean			St Dev.
Grad. P	rice		sts To		evel Factor	I/D	Р	TV	Mean	to TV	Std Dev	V	- V
S \$3	30.00	1	8 15,	854 90.	.975 1.03449	\$2,46	0.38	92.000	90.630	1.370	2.016	1.600	0.416
S \$3	36.20	2	8 23,	519 85.	.319 1.01186	\$1,51	4.64	92.000	88.900	3.100	0.855	1.600	-0.745
				Tooto	Tono	I/DP							
Totals	s: 1420	19	AC	Tests 48	Tons 46,076	\$3,89	0 47	CTS	S I/DP				
			Density	93	46,076	\$11,10			83.75				
			VMA	48	46,076	\$7,53			Adj				
			Air Voids	48	46,076	\$6,27			\$0.00				
		Joint	Density	16	39,373	\$3,97	5.02						
			Plar	Quant	46,216	Project I	DP :	\$32,971.7	2	CPFC	1.02145		
	Comme	<i>nts:</i> Joir	nt density	guantity									

Report 12

Subacco	unt: 14	4212	STA 1	65A-010	SH 165 d	overlay I-	25 to V	V of Rye	Regio	n: 2	Sı	ıpplier:	32
Bid Date	e: 5/20	/2004	Start 1	Date: 8/2/.	2004								
Mix Desiç	gn No	14212A	ı	Process No	1 Gra	ading S	(75)	PG 58-28	Pri	ice Per ī	Ton \$29.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	ner
AC	6	6,000	100.000	1.03500	\$614.25	5.500	5.513	0.013	0.121	0.200	-0.079	CTS Tons	0
Density	12	6,000	96.907	1.04500	\$2,764.12	94.000	92.958	1.042	0.545	1.100	-0.555	I/DP	\$0.00
VMA	6	6,000	100.000	1.03500	\$614.25	13.700	14.033	0.333	0.372	0.600	-0.228	PF 1.0	ψ0.00
Air Voids	6	6,000	99.025	1.03500	\$1,842.75	3.500	3.683	0.183	0.564	0.600	-0.036	Tons	0
				I/DP:	\$5,835.37	-					2 V	/ Adj.	\$0.00
Mix Desig	gn No	14212B		Process No	1 Gr a	ading S	(75)	PG 58-28	Pri	ice Per i	Ton \$29.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.		St Dev.	Oth	ner
AC	9	9,000	95.705	1.04000	\$1,053.00	5.800	5.777		0.163	0.200	-0.037	CTS	
Density	18	9,000	99.980	1.04000	\$4,606.88	94.000			0.103	1.100	-0.03 <i>1</i> -0.454	Tons	0
VMA	9	9,000	66.348	0.89632	(\$2,729.38)				0.381	0.600	-0.219	I/DP	\$0.00
Air Voids	9	9,000	90.443	1.03049	\$2,407.88	3.500	3.922		0.608	0.600	0.008	PF 1.0 Tons	0
All Volus	9	9,000	90.443	1.03049 I/DP:	\$5,338.38	_	3.922	0.422	0.000	0.000		/ Adj.	\$0.00
Mix Desig	gn No	14212C		Process No	1 Gra	ading S	(75)	PG 58-28	Pri	ice Per i	Ton \$29.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	48	47,761	95.329	1.04270	\$5,964.81	5.800	5.778	0.022	0.152	0.200	-0.048	CTS	0
Density	96	47,761	95.541	1.04008	\$19,599.10	94.000	93.495	0.505	0.874	1.100	-0.226	Tons I/DP	\$0.00
VMA	48	47,761	89.534	1.00127	\$177.33	14.800	14.444	0.356	0.653	0.600	0.053	PF 1.0	φυ.υυ
Air Voids	48	47,761	84.868	0.96648	(\$14,048.21)	3.500	3.354	0.146	0.828	0.600	0.228	Tons	0
				I/DP:	\$11,693.03	_					2\	Adj.	\$0.00
Joint De	nsity	_											
Grad. P	rice	Proc. No Te	sts To	<i>Qua</i> ns <i>Le</i> v		I/D	Р	TV I	Mean	Mean to TV	Std Dev	V	St Dev. - V
	29.25	1	37 62,			\$14,64			90.890	1.110	1.599	1.600	-0.001
				Tools	T	L/DD							
Totals	s: 1421	'2	AC		Tons 62,761	I/DP \$7,63	2 06	СТО	I/DP				
			Density		62,761	\$26,97			\$0.00				
			VMA		62,761	(\$1,93			Adj				
		A	Air Voids		62,761	(\$9,79	,		\$0.00				
		Joint	Density	37	62,761	\$14,64	18.97						
			Plan	Quant	66,323	Project I	/DP §	\$37,515.75	5	CPFC	1.02044		
(Comme	nts:											

Subaccount: 14237 Bid Date: 1/29/2004			-	211-058 Date: 7/2	Í	SH 121, 90th to 104th			Region: 6			Supplier: 37			
Mix Design									PG 76-28 <i>Price Per</i> 1			25			
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	01	her		
AC Density VMA	15 30 14	15,341 14,841 15,341	94.045 90.104 100.000	1.04197 1.01329 1.04500	\$2,076.34 \$2,226.87 \$2,226.36	94.000 14.800	93.940 14.807	0.060 0.007	0.102 1.229 0.300	0.200 1.100 0.600	-0.098 0.129 -0.300	CTS Tons I/DP PF 1.0			
Air Voids	14	15,341	95.366	1.04500 I/DP:	\$6,679.09		3.357	0.357	0.520	0.600	-0.080 2\	Tons / Adj.	0 \$0.00		
	nsity rice 32.25	Proc. No Te	ests To 12 15,3	ns <i>L</i>	eality Pay evel Factor .141 1.02659	_				Mean to TV 2.230	Std Dev 1.396	V 1.600	St Dev. - V -0.204		
Totals: 14237		A	AC Density VMA Air Voids t Density	Tests 15 30 14 14 12 1 Quant	Tons 15,341 15,341 15,341 15,341 15,341 15,323	1/DP \$2,07 \$2,22 \$2,22 \$6,67 \$1,97	26.87 26.36 79.09 73.48	\$1 2V	S I/DP 97.53 'Adj \$0.00	CPFC	1.03109				

Subaccount: 14238			STA 1211-059 SH 121 from 6th to Grandview Region								on: 6 Supplier: 13					
Bid D	ate:	1/29	/2004		Start .	Date:	5/24/20	004								
Mix De	sig	n No	14701	14		Proces	s No 1	Gı	rading S	(100)	PG 76-2	8 P I	rice Per	Ton \$31.0	60	
		Tests	Ton		Quality Level	Pa Fac	•	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
	AC	18	18,00	00	88.943	1.014	110	\$801.86	5.100	5.175	5 0.075	0.176	0.200	-0.024	CTS	0
Dens	ity	36	18,00		95.693	1.047	711	\$9,378.18		93.636			1.100	-0.159	Tons I/DP	0
VI	ΛA	18	18,00	00	99.998	1.050	000	\$2,844.00		14.106		0.337	0.600	-0.263	PF 1.0	\$0.00
Air Voi	ds	18	18,00	00	98.993	1.050	000	\$8,532.00	3.000	2.983	3 0.017	0.508	0.600	-0.092	Tons	0
						I/D	P: - 5	\$21,556.04	4					2\	√ Adj.	\$0.00
Mix De	sig	n No	14701	14-1		Proces	s No 1	Gı	rading S	(100)	PG 76-2	8 P I	rice Per	Ton \$31.0	60	
		Tests	Ton		Quality Level	Pa Fac	•	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
	AC	8	7,48		98.263	1.040		\$946.36					0.200	-0.089	CTS	
Dens		14	7.48		95.558	1.04		\$3,726.28		93.471				-0.203	Tons	0
	ΛA	8	7,48		00.000	1.040		\$946.36		13.688				-0.364	I/DP	\$0.00
Air Voi	ds	8	7,48		00.000	1.040		\$2,839.07						-0.204	PF 1.0 Tons	0
			, -			I/D	_	\$8,458.07	_						V Adj.	\$0.00
Joint I	Der	ısitv														
Grad.		ice	Proc. No	Tests	s To	ns	Quality Level	Pay Factor	· //D	Р	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
S	\$3	1.60	1	5	5,	631	39.958	0.73955	(\$6,95	1.55)	92.000	87.580	4.420	1.482	1.600	-0.118
S	\$3	1.60	2	19	19,	856	93.688	1.03985	\$3,75	0.64	92.000	89.880	2.120	1.257	1.600	-0.343
Tot	als	1423	3.8			Tests	з То	ns	I/DP							
10.	uis.	1123	,0		AC	26	25,	487	\$1,74	8.22	СТ	S I/DP				
				D	ensity	50	25,	487	\$13,10)4.46		\$0.00				
					VMA	26	,	487	\$3,79		2\	/ Adj				
			lo.		Voids ensity	26 24	- ,	487 487	\$11,37 (\$3,20			\$0.00				
			30	יוונ טו			- ,	487			100 040 0	20	0050	4 00000		
					Piar	n Quar	ιτ 29,	367	Project I/	ישרי :	\$26,813.2	20	CPFC	1.03329		
	\boldsymbol{C}	omme	nts:													

Subacco Bid Date			-					Si	upplier:	41			
Mix Design No 1		147057	-	Process I	Vo 1	Grading S	(100)	PG 76-28	. Pri	ce Per	Ton \$31.:	37	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	0	ther
AC Density		13,745 13,245	95.401 92.586	1.04804 1.03072	+ /				0.159 1.144	0.200 1.100	-0.041 0.044	CTS Tons I/DP	500 (\$250.68)
VMA Air Voids		13,745 13,745	99.960 92.485	1.05000					0.402 0.691	0.600		PF 1.0	o``´
7 7	10	10,7 10	02.100	I/DP:	\$12,935.0		0.200	0.120	0.001	0.000		/ Adj.	\$0.00
Joint De	ensity Price	Proc. No Te	ests To		uality Pay .evel Facto		P	TV		Mean to TV	Std Dev	V	St Dev. - V
S \$	31.37	1	9 13,	745 8	5.059 1.0074	4 \$48	1.20	92.000	91.990	0.010	2.873	1.600	1.273
Total	ls: 1423	,	AC Density VMA Air Voids	Tests 15 27 15 15 9	Tons 13,745 13,745 13,745 13,745 13,745	I/DP \$2,07 \$4,46 \$2,15 \$4,49 \$48	67.92 55.90	(\$2 2V	6 I/DP 50.68) Adj \$0.00				
	00		Plan	Quant	16,154	Project I	/DP s	\$13,416.2	2	CPFC	1.03112		

	Subaccount: 14240 Bid Date: 2/12/2004)404-040 Date: 6/		Colfax, Sheridan to Viaduct 004					Region: 6		Supplier: 37			
Mix Design No 1		146999-1		Process No 1		Gr	ading S	(100)	PG 76-28	Pr	ice Per	Ton \$33.0	00			
	Tests	Tons	Quality Level	Pay Factor		I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev.	Otl	ner		
AC	3	3,095	100.000	1.02500)	\$255.34	5.100	4.813	0.287	0.006	0.200	-0.194	CTS Tons	0		
Density	7	3,095	97.972	1.03500) \$	\$1,251.15	94.000	94.700	0.700	0.739	1.100	-0.361	I/DP	\$0.00		
VMA	3	3,095	100.000	1.02500)	\$255.34	14.800	14.400	0.400	0.520	0.600	-0.080	PF 1.0	ψ0.00		
Air Voids	3	3,095	100.000	1.02500)	\$766.01	3.000	2.767	0.233	0.321	0.600	-0.279	Tons	0		
				I/DP:	5	\$2,527.84	<u> </u>					2\	/ Adj.	\$0.00		
Mix Desig	gn No	146999-2		Process I	Vo 1	Gr	ading S	(100)	PG 76-28	Pr	ice Per	Ton \$33.0	00			
	Tests	Tons	Quality Tons Level			I/DP	TV	Mean Mean to TV		St Dev.	. v	St Dev.	Otl	ner		
AC	6	5,883	95.522	1.03500		\$679.49		4.967		0.110	0.200	-0.090	CTS	0		
Density	13	5,883	98.832	1.04500) \$	3,057.69	94.000	93.915	0.085	0.887	1.100	-0.213	Tons I/DP	\$0.00		
VMA	6	5,883	100.000	1.03500)	\$679.49	14.400	14.500	0.100	0.477	0.600	-0.123	PF 1.0	φυ.υυ		
Air Voids	6	5,883	90.596	1.03500) \$	\$2,038.46	3.000	2.583	0.417	0.618	0.600	0.018	Tons	0		
				I/DP:		\$6,455.13	3					2\	/ Adj.	\$0.00		
Joint De	<i>nsity</i> rice	Proc. No Tes	sts To		uality .evel	Pay Factor	I/D	P	TV	Mean	Mean to TV	Std Dev	v	St Dev. - V		
S \$3	33.00	1	5 8,	978 6	7.605	0.94797	(\$2,31	2.38)	92.000	89.620	2.380	3.231	1.600	1.631		
Totals	: 1424	10		Tests	Ton	s	I/DP									
			AC			78	\$93	84.83	СТ	S I/DP						
			Density	20	8,9		\$4,30			\$0.00						
			VMA	9	8,9			34.83		Adj						
			ir Voids	9	8,9		\$2,80		;	\$0.00						
		Joint	Density	5	8,9		(\$2,31									
			Plar	Quant	8,6	83	Project I/	אטי	\$6,670.5	9	CPFC	1.02251				

Subacco	unt: 14	1241	STA 0	062-015	6th Ave	@ Federa	ıl		Regio	on: 6	Sı	ıpplier:	33
Bid Date	: 1/8/2	2004	Start 1	Date: 7/2	21/2004								
Mix Desig	gn No	147063	ı	Process N	o 1 Gr	ading SX	(100)	PG 76-28	Pr	ice Per	Fon \$38.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC	16	15,628	55.990	0.77658	(\$13,267.93	5.400	5.129	0.271	0.191	0.200	-0.009	CTS	0
Density	28	15,628	99.227	1.05500	\$11,431.88	94.000	93.746	0.254	0.749	1.100	-0.351	Tons I/DP	-
VMA	16	15,628	98.682	1.05000	\$2,969.32	15.400	15.069	0.331	0.419	0.600	-0.181	PF 1.0	\$0.00
Air Voids	16	15,628	95.110	1.04687	\$8,350.48		2.669		0.478	0.600	-0.122	Tons	0
		•		I/DP:	\$9,483.75	_ 5					2\	/ Adj.	\$0.00
Mix Desig	gn No	147063-	1 /	Process N	o 2 Gr	ading SX	(100)	PG 76-28	. Pr	ice Per	Fon \$38.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
AC	6	5,828	96.699	1.03500	\$775.12	5.200	5.083	0.117	0.115	0.200	-0.085	CTS	0
Density	16	5,828	98.077	1.05000	\$3,875.62	94.000	93.256	0.744	0.643	1.100	-0.457	Tons I/DP	\$0.00
VMA	6	5,828	100.000	1.03500	\$775.12	15.400	15.817	0.417	0.279	0.600	-0.321	PF 1.0	
Air Voids	6	5,828	100.000	1.03500	\$2,325.37	3.100	3.200	0.100	0.303	0.600	-0.297	Tons	0
				I/DP:	\$7,751.23	3					2V	/ Adj.	\$0.00
	nsity	Proc. No Te	ests To 7 21,4	ns L	uality Pay evel Factor	I/D (\$5,004			Mean 88.970	Mean to TV 3.030	Std Dev 1.483	V	St Dev. - V
Ο Λ ψο	0.00	•	, 21,-	70		(ψο,σο-	1.10)	02.000	30.070	0.000	1.400	1.000	0.117
Totals	: 1424	1		Tests	Tons	I/DP							
			AC	22	21,456	(\$12,49	,		S I/DP				
			Density	44	21,456	\$15,30			\$0.00				
		,	VMA Air Voids	22 22	21,456	\$3,74 \$10.67			Adj				
			Density	22 7	21,456 21,456	\$10,67 (\$5,00			\$0.00				
			•	Quant	20,555	Project I/		\$12,230.8	5	CPFC	1.01500		
(Comme	nts:											

Subacc Bid Da				-			9/15		Powers E 04	Blvd			Regio	on: 2	Si	upplier:	49
Mix Des	ign No	144	63		ı	Proce	ss No	1	Gra	nding S	(100)	PG 64-2	22 P I	rice Per	Ton \$31.9	94	
	Tests	To	ons		ality		ay ctor		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Ot	her
A Densit		,	759 759		5.759 3.303		5000 3062		\$2,995.81 \$6,420.90	5.500 94.000	5.527 93.195			0.200 1.100		CTS Tons I/DP	0
VM/ Air Void	_		759 759		0.966 7.979		5000 5000		\$2,995.81 \$8,987.44		15.200	0.100		0.600 0.600		PF 1.0 Tons	\$0.00
		•				I/I	OP:	\$	21,399.96	-					2\	/ Adj.	\$0.00
Mix Des	ign No	144	63B			Proce	ss No	2	Gra	nding S	(100)	PG 64-2	22 P I	rice Per	Ton \$31.9	94	
	Tests	To	ons		ality		ay ctor		I/DP	TV	Mear	Mean to TV		. v	St Dev. - V	Ot	her
A Densit VM	y 25	12,	206 206 206	97	0.058 7.524 0.163	1.0	7173 5000 4500		\$1,102.04) \$6,822.54 \$1,754.37		5.374 93.192 15.008	2 0.808	0.626	0.200 1.100 0.600	-0.474	CTS Tons I/DP	0 \$0.00
Air Void	_		206		5.120	1.0	4500		\$5,263.11	3.900				0.600	-0.005	PF 1.0 Tons	0
						1/1	OP:	\$	12,737.98						21	/ Adj.	\$0.00
<i>Joint D</i> Grad.	<i>ensity</i> Price	Proc No		ests	То	ns	Qua Lev	•	Pay Factor	I/D	P	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
	\$31.94 \$31.94	1 2		12 11	18, ¹		91.1 86.7		1.03121 1.01193	\$2,80 \$69	4.80 7.53	92.000 92.000	90.630 89.530	1.370 2.470	1.983 1.377	1.600 1.600	0.383
Tota	ls: 1440			Dens V Air Vo t Dens	MA ids	6 3 3	2 3 2 2	Tor 30,9 30,9 30,9 30,9	965 965 965 965	1/DP \$1,89 \$13,24 \$4,75 \$14,25 \$3,50	3.44 50.18 50.55		*S I/DP \$0.00 V Adj \$0.00				
					Plan	Qua	ant	37,4	135	Project I	/DP	\$37,640.	27	CPFC	1.03806		

Comments: SMA tested under gradation acceptance.

Subacco	unt: 14	1483	IM 02	701-164	Para	chute East	& West	•	Regio	on: 3	Si	upplier:	<i>17</i>
Bid Date	: 2/12	/2004	Start	Date: 7/	21/2004								
Mix Desi	gn No	5-17		Process I	Vo 1	Grading S	X (100)	PG 76-2	28 P r	ice Per	Ton \$36.0)1	
	Tests	Tons	Quality Level	Pay Factor	1/1	OP TV	Mea	Mean n to TV		. v	St Dev. - V	Otl	ner
AC	5	4,377	65.513	0.93582	(\$1,01	1.67) 6.40	0 6.16	2 0.238	3 0.141	0.200	-0.059	CTS	500
Density	8	3,877	95.061	1.04000	\$1,95	4.70 94.00	00 93.66	3 0.337	7 1.069	1.100	-0.031	Tons I/DP	\$220.58
VMA	5	4,377	100.000	1.03000	\$47	2.88 14.80	00 14.80	0.000	0.141	0.600	-0.459	PF 1.0	ψΖΖ0.30
Air Voids	5	4,377	100.000	1.03000	\$1,41	8.65 3.50	00 2.98	0.520	0.370	0.600	-0.230	Tons	0
				I/DP:	\$3,05	55.14					2\	/ Adj.	\$0.00
Mix Desi	gn No	7-23		Process I	Vo 1	Grading S	X (100)	PG 76-2	28 P r	ice Per	Ton \$35.9	95	
	Tests	Tons	Quality	-	1/1	DP TV	Mea	Mean		. v	St Dev.	Otl	ner
40				Factor							- V	СТЅ	
AC	34	34,408		1.02689 0.98875)0 6.10)0 93.28			0.200 1.100	-0.029 -0.065	Tons	0
Density VMA	69	34,408				,				0.600	-0.250	I/DP	\$0.00
Air Voids	34	34,408										PF 1.0	0
All Volus	34	34,408	98.893				00 3.72	9 0.229	9 0.437	0.600		Tons	0 \$0.00
				I/DP:	\$25,66	57.71						/ Adj.	φυ.υυ
Mix Desi	gn No	8-11		Process I	Vo 1	Grading S	X (100)	PG 76-2	28 P r	ice Per	Ton \$36.2	27	
	Tests	Tons	Quality Level	Pay Factor	1/1	OP TV	Mea	Mean n to TV		. v	St Dev. - V	Otl	ner
AC	59	58,111	87.844	0.98454	(\$3,25	8.52) 6.20	0 6.24	4 0.044	4 0.190	0.200	-0.010	CTS	0
Density	117	58,111	89.796	0.99183		,	00 93.82	25 0.175	5 1.215	1.100	0.115	Tons I/DP	0
VMA	59	58,111	91.410	1.01179	\$2,48	4.38 14.60	00 15.19	0.592	2 0.447	0.600	-0.153	PF 1.0	\$0.00
Air Voids	59	58,111		1.03389			00 3.73	31 0.23°	1 0.593	0.600	-0.007	Tons	0
		,		I/DP:	\$14,62						2\	/ Adj.	\$0.00
Joint De	nsitv												
	rice	Proc. No 1	Tests To		•	Pay ctor I	/DP	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
SX \$3	35.44	1	79 94	,574 6	9.700 0.82	2813 (\$86,4	110.06)	92.000	89.120	2.880	2.158	1.600	0.558
SX \$3	35.44	2	1 1	,008	0.25	5000 (\$4,0)18.90)	92.000				1.600	
	35.44	3	1 1	,314	0.34		584.05)	92.000				1.600	
T. 4.1	1 / / (12		Tests	Tons	I/D	D						
1 otats	: 1448	3	AC	98	96,896		944.01)	СТ	S I/DP				
			Density	194	96,896	(\$8,	941.80)		220.58				
			VMA	98	96,896	\$9,	759.72	2	V Adj				
			Air Voids	98	96,896		252.29		\$0.00				
		Joi	nt Density	81 n Quant	96,896		013.01)						
					112,079	Project		(\$51,666.		CPFC	0.98525		

Report 12

Subaccoo Bid Date				04-203 Date: 5/4	I-70, Gei 1/2004	noa - Eas	t		Regio	n: 1	Si	upplier:	14
Mix Desig	gn No	95804		Process N	o 1 Gra	ading SX	(100)	PG 64-22	Pr	ice Per	Ton \$37.5	50	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	0	her
AC Density	56 2	55,260 1,000	96.130	1.04735	\$9,811.28 \$0.00	5.300 94.000	5.346	0.046	0.140	0.200 1.100	-0.060	CTS Tons I/DP	500 (\$723.89
VMA Air Voids	56 56	55,260 55,260	99.915 90.433	1.05500 1.00532 I/DP :	\$11,397.37 \$3,306.89 \$23,791.65	15.000 3.800	14.955 4.207		0.374 0.601	0.600 0.600	-0.226 0.001	PF 1.0 Tons / Adj.	` .
Mix Desig	gn No Tests	95804 Tons	Quality	Process N	o 2 Gra	ading SX	` ,	PG 64-22			Ton \$37.5 St Dev.		her
AC Density VMA Air Voids	107	53,260	Level 91.940	1.01029	\$0.00 \$7,195.13 \$0.00 \$0.00	94.000	Mean 93.471		1.022	0.200 1.100 0.600 0.600	- V -0.078	CTS Tons I/DP PF 1.0 Tons	500 \$229.69 0
	nsity rice	Proc. No Te	ests To 26 55,7	ns <i>L</i> e	\$7,424.82 Pality Pay Factor .000 1.05500	I/DI \$17,096			Mean 91.800	Mean to TV 0.200	2V Std Dev 0.950	V 1.600	\$0.00 St Dev. - V -0.650
Totals	:: 1456	,	AC Density VMA Air Voids t Density	Tests 56 109 56 56 26	Tons 55,260 55,260 55,260 55,260 55,260	I/DP \$9,81 \$7,19 \$11,39 \$3,30 \$17,09	5.13 7.37 6.89	(\$49 2V	5 I/DP 94.20) Adj \$0.00				
			Plan	Quant	55,809	Project I/	DP S	\$48,312.5	3	CPFC	1.02331		

Comments:

Subacco	unt: 14	4613	IM 02	53-186	I-25/120th	to SH 7	7		Regio	n: 6	Su	pplier:	33
Bid Date	e: 6/17	//2004	Start 1	Date: 8/2	6/2004								
Mix Desi	gn No	147075	ı	Process No	1 Grad	ding S	(100)	PG 76-28	3 Pr	ice Per 1	Ton \$32.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev. - V	Otl	her
AC	44	37,901	85.245	0.97117	(\$3,496.88)	5.300	5.286	0.014	0.208	0.200	0.008	CTS	0
Density	75	36,916	81.236	0.92590	(\$30,639.38)	94.000	93.193	0.807	1.275	1.100	0.175	Tons I/DP	\$0.00
VMA	44	37,901	99.719	1.05500	\$6,670.58	13.300	13.250	0.050	0.417	0.600	-0.183	PF 1.0	ψ0.00
Air Voids	44	37,901	93.663	1.03181	\$11,574.14	3.100	3.102	0.002	0.656	0.600	0.056	Tons	0
				I/DP:	(\$15,891.54)						2V	Adj.	\$0.00
Mix Desig	gn No	147075	ı	Process No	2 Grad	ding S	(100)	PG 76-28	3 Pr	ice Per 1	Ton \$32.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev.	Otl	her
AC		10113	Level	ractor	\$0.00		Wican	10 1 4	Ot Dev.	0.200	- v	стѕ	
Density		492		0.36364	(\$3,506.60)	94.000				1.100		Tons	0
VMA		492		0.30304	\$0.00	34.000				0.600		I/DP	\$0.00
Air Voids												PF 1.0	0
All Volus					\$0.00					0.600	0)/	Tons	0 \$0.00
				I/DP:	(\$3,506.60)						24	Adj.	Ψ0.00
Mix Desi	gn No	147075		Process No	,	ding S	(100)	PG 76-28	3 Pr	ice Per 1	Ton \$32.0		
Mix Desi	gn No Tests	147075 Tons	Quality Level		,	ding S	(100) Mean	Mean	St Dev.			0	her
Mix Desiç	Tests		Quality	Process No	3 Grad		` ,	Mean			Ton \$32.0 St Dev.	Otl	her
	Tests		Quality	Process No	3 Grad		` ,	Mean		. v	Ton \$32.0 St Dev.	Otl CTS Tons	her 0
AC	Tests	Tons	Quality	Process No Pay Factor	9 3 Grad 1/DP \$0.00	TV	` ,	Mean		. V 0.200	Ton \$32.0 St Dev.	Otl CTS Tons I/DP	her 0
AC Density	Tests	Tons	Quality	Process No Pay Factor	9 3 Grad 1/DP \$0.00 (\$5,521.60)	TV	` ,	Mean		. V 0.200 1.100	Ton \$32.0 St Dev.	Otl CTS Tons I/DP PF 1.0	her 0
AC Density VMA	Tests	Tons	Quality	Process No Pay Factor	5 3 Grad 1/DP \$0.00 (\$5,521.60) \$0.00	TV	` ,	Mean		. V 0.200 1.100 0.600	Fon \$32.0 St Dev. - V	Otl CTS Tons I/DP	h er 0 \$0.00
AC Density VMA	Tests 1	Tons 493	Quality	Process No Pay Factor 0.17000	\$0.00 (\$5,521.60) \$0.00 (\$5,521.60)	TV	` ,	Mean		. V 0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons	0 \$0.00 0 \$0.00
AC Density VMA Air Voids	Tests 1	Tons 493 Proc.	Quality Level	Process No Pay Factor 0.17000 I/DP:	\$0.00 (\$5,521.60) \$0.00 (\$5,521.60) \$0.00 (\$5,521.60)	TV 94.000	Mean	Mean to TV	St Dev.	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00
AC Density VMA Air Voids Joint De	Tests 1	Tons 493 Proc.	Quality	Process No Pay Factor 0.17000 I/DP:	\$0.00 (\$5,521.60) \$0.00 (\$5,521.60) \$0.00 (\$5,521.60)	TV	Mean	Mean to TV		. V 0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons	0 \$0.00 0 \$0.00
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity Price 32.00	Tons 493 Proc. No Te	Quality Level	Process No Pay Factor 0.17000 V/DP: Qua ns Le	I/DP \$0.00 \$5,521.60 \$0.00 \$0.00 \$5,521.60 \$0.00	TV 94.000 I/DF (\$46,243	Mean	Mean to TV	St Dev.	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00 St Dev V
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity	Tons 493 Proc. No Te	Quality Level	Process No Pay Factor 0.17000 I/DP: Qua ns Le 901 56.	Solution	TV 94.000 //DF (\$46,243	Mean	Mean to TV TV 92.000	Mean 88.270	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00 St Dev V
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity Price 32.00	Tons 493 Proc. No Te	Quality Level ests To: 33 37,9	Process No Pay Factor 0.17000 I/DP: Qua ns Le 901 56.	Solution	TV 94.000 //DF (\$46,243	Mean 3.10) 9	TV 92.000	Mean 88.270	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00 St Dev V
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity Price 32.00	Tons 493 Proc. No Te	Quality Level Pests Too 33 37,6 AC Density	Process No Pay Factor 0.17000 I/DP: Qua ns Le 901 56: Tests 44 77	Solution	I/DF (\$46,243 I/DP (\$3,496 (\$39,667	Mean 5.10) 9 5.88) 7.58)	TV 92.000	Mean 88.270	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00 St Dev V
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity Price 32.00	Proc. No Te	Quality Level ests To: 33 37,9	Process No Pay Factor 0.17000 I/DP: Qua ns Le 901 56: Tests 44 77 44	Solution	I/DF (\$46,243 I/DP (\$3,496 (\$39,667 \$6,670	Mean 5.10) 9 6.88) 7.58) 0.58	TV 92.000	Mean 88.270 S I/DP \$0.00	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00 St Dev V
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity Price 32.00	Tons 493 Proc. No Te	Quality Level Pests Too 33 37,9 AC Density VMA	Process No Pay Factor 0.17000 I/DP: Qua ns Le 901 56: Tests 44 77	Solution	I/DF (\$46,243 I/DP (\$3,496 (\$39,667	Mean 3.10) 9 6.88) 7.58) 0.58 4.14	TV 92.000	Mean 88.270	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	\$0.00 \$0.00 \$0.00
AC Density VMA Air Voids Joint De Grad. P	Tests 1 ensity Price 32.00	Tons 493 Proc. No Te	Quality Level 23 37,5 AC Density VMA Air Voids t Density	Process No. Pay Factor 0.17000 I/DP: Qua ns Le 901 56. Tests 44 77 44 44	Solution	I/DF (\$46,243 I/DP (\$3,496 (\$39,667 (\$11,574	Mean 6.88) 7.58) 0.58 4.14 3.10)	TV 92.000	Mean 88.270 6 I/DP \$0.00 7 Adj \$0.00	0.200 1.100 0.600 0.600	Fon \$32.0 St Dev. - V	Ottl CTS Tons I/DP PF 1.0 Tons Adj.	0 \$0.00 0 \$0.00 St Dev V

Report 12

Subacco	unt: 14	1657	S	STA C	470-026	5	SH 83/86	Resurfa	cing		Regio	n: 1	Si	ıpplier:	19
Bid Date	: 3/18	/2004	S	Start L	Date: 5/18	8/200	04								
Mix Desig	gn No	15822	29	P	Process No	1	Grad	ding S	(100)	PG 58-2	8 P ri	ice Per	Ton \$30.0	00	
	Tests	Ton		uality evel	Pay Factor		I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	ner
AC	40	39,91	0 95	5.002	1.04167	\$	4,989.48	4.800	4.768	0.032	0.152	0.200	-0.048	CTS	0
Density	80	39,91	0 88	3.765	0.98671	(\$	5,570.60)	94.000	93.619	0.381	1.206	1.100	0.106	Tons I/DP	\$0.00
VMA	40	39,91	0 83	3.176	0.95759	(\$	5,078.05)	14.900	14.430	0.470	0.731	0.600	0.131	PF 1.0	φυ.υυ
Air Voids	40	39,91	0 92	2.372	1.02380	\$	8,548.96	3.600	3.302	0.298	0.617	0.600	0.017	Tons	0
					I/DP:	\$	52,889.79						2\	/ Adj.	\$0.00
Mix Desig	gn No	15824	10	P	Process No	1	Grad	ding SX	(100)	PG 58-2	8 P ri	ice Per	Ton \$52.1	2	
	Tests	Ton		uality evel	Pay Factor		I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	3	1,73		5.508	0.92665		(\$663.31)	5.200	5.250			0.200	0.146	CTS	_
Density	J	1,70	0	3.000	0.02000		\$0.00	94.000	0.200	0.000	0.040	1.100		Tons	0
VMA	3	1,73	-	7.118	0.93668		(\$572.60)	15.100	14.100	1.000	0.781	0.600		I/DP	\$0.00
Air Voids	3	1,73		5.443	0.85397		3,961.65)	4.000	2.633	3 1.367	1.012	0.600	0.412	PF 1.0 Tons	0
		,			I/DP:		55,197.56)						2\	/ Adj.	\$0.00
Mix Desig	gn No	15824	14	P	Process No	1	Grad	ding SX	(100)	PG 64-2	8 P ri	ice Per	Ton \$36.2	25	
	Tests	Ton		uality evel	Pay Factor		I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	31	30.50	_	1.350	1.02091	Φ	2,312.57	5.500	5.398			0.200	-	CTS	
Density	61	30,00		7.722	0.98281		6,542.38)	94.000				1.100		Tons	0
VMA	31	30,50	_	5.992	0.99169		(\$918.50)	14.900				0.600		I/DP	\$0.00
Air Voids	31	30,50		4.720	0.90119		2,780.72)	3.600	2.861			0.600	0.085	PF 1.0 Tons	0
7 7.0.00	01	00,00		20	I/DP:		37,929.03)		2.00	0.700	0.000	0.000		/ Adj.	\$0.00
Mix Design	an No	15824	14	P	Process No	2	Grad	ding SX	(100)	PG 64-2	8 P ri	ice Per	Ton \$36.2	25	
			Qι	uality	Pay	-			,	Mean			St Dev.	Oth	ner
	Tests	Ton	s L	evel	Factor		I/DP	TV	Mean	to TV	St Dev.	V	- V	CTS	
AC							\$0.00					0.200		Tons	0
Density	1	50	00		0.47727	(\$	3,316.07)	94.000				1.100		I/DP	\$0.00
VMA							\$0.00					0.600		PF 1.0	
Air Voids							\$0.00					0.600		Tons	0
					I/DP:	(\$	3,316.07)						2\	/ Adj.	\$0.00
Joint De	nsity	Proc.			Qua	ditv	Pay					Mean			St Dev.
Grad. P	rice		Tests	Ton			Factor	I/D	P	TV		to TV	Std Dev	V	- V
S \$3	0.00	1	19	34,7	98 64.4	423	0.83893	(\$25,22	1.34)	92.000	88.910	3.090	2.422	1.600	0.822
SX \$3	6.25	2	24	29,4	40 82.8	322	0.97050	(\$4,722	2.17)	92.000	90.740	1.260	2.662	1.600	1.062
S \$3	0.00	3	1	1,6	10		0.67188	(\$2,37	,	92.000				1.600	
SX \$3	6.25	4	1	1,0	65		0.43750	(\$3,25	7.40)	92.000				1.600	
	0.00	5	1	1,6			0.43750	(\$4,07		92.000				1.600	
ა	0.00	J	'	1,0	10		0.40700	(ψ4,073).J I)	JZ.000				1.000	

Totals: 14657		Tests	Tons	I/DP			
	AC	74	72,150	\$6,638.74	CTS I/DP		
	Density	142	70,415	(\$15,429.05)	\$0.00		
	VMA	74	72,150	(\$6,569.15)	2V Adj		
	Air Voids	74	72,150	(\$28,193.41)	\$0.00		
	Joint Density	46	68,523	(\$39,653.49)			
	Plai	n Quant	72.845	Project I/DP	(\$83,206,36)	CPFC	0.96524

Comments: Final quantities. 2V out tests. SMA gradation tested.

Subaccount: 14706 NH 2873-134 US 287 Virginiadale Region: 4 Supplier: 14

Bid Date: 4/1/2004 Start Date: 8/4/2004

Mix Desig	gn No	104104L		Process No 1	Grad	ding S	(100) I	PG 58-34	Prio	e Per 1	Ton \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	ner
AC	1	1,000		1.00000	\$0.00	5.000				0.200		CTS Tons	0
Density		0			\$0.00	94.000				1.100		I/DP	\$0.00
VMA	1	1,000		1.00000	\$0.00	14.400				0.600		PF 1.0	ψ0.00
Air Voids	1	1,000		1.00000	\$0.00	3.500				0.600		Tons	0
				I/DP:	\$0.00						2 V	/ Adj.	\$0.00
Mix Desig	gn No	104104L_	_M	Process No 1	Grad	ding S	(100) I	PG 58-34	Prio	e Per 1	Fon \$45.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	2	1,316		0.91875	(\$481.16)	5.000	5.125	0.125		0.200		CTS Tons	0
Density	2	620			\$0.00	94.000				1.100		I/DP	\$0.00
VMA	2	1,316			\$0.00	13.600				0.600		PF 1.0	φυ.υυ
Air Voids	2	1,316			\$0.00	3.500				0.600		Tons	0
				I/DP:	(\$481.16)						2 V	/ Adj.	\$0.00
Mix Desig	gn No	104104L-	1	Process No 1	Grad	ding S	(100) I	PG 58-34	Pric	e Per 1	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	32	32,225	83.665	0.96748	(\$3,385.63)	5.000	4.873	0.127	0.173	0.200	-0.027	CTS	
Density	02	0	00.000	0.001 10	\$0.00	94.000	1.070	0.121	0.170	1.100	0.021	Tons	0
VMA	32	32,225	84.505	0.97350	(\$2,759.41)	14.400	13.813	0.587	0.601	0.600	0.001	I/DP	\$0.00
Air Voids	32	32,225	94.437	1.04033	\$12,598.28	3.500	3.434	0.066	0.637	0.600	0.037	PF 1.0 Tons	0
		, -		I/DP:	\$6,453.24							/ Adj.	\$0.00
Mix Desig	gn No	104104L-	1T	Process No 1	Grad	ding S	(100) I	PG 58-34	Pric	e Per 1	Ton \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	15	15,000	88.764	1.01621	\$785.69	5.000	4.954	0.046	0.189	0.200	-0.011	CTS	500
Density	33	16,500	90.345	1.01318	\$2,459.23	94.000	93.624	0.376	1.159	1.100	0.059	Tons I/DP	300 \$168.87
VMA	15	15,000	93.069	1.03746	\$1,815.68	14.400	14.360	0.040	0.688	0.600	0.088	PF 1.0	ψ100.07
Air Voids	15	15,000	76.333	0.94219	(\$8,405.35)	3.500	4.007	0.507	0.879	0.600	0.279	Tons	0
				I/DP:	(\$3,175.88)						2 V	/ Adj.	\$0.00
Mix Desig	gn No	104104L-	1T	Process No 1	Grad	ding S	(100) I	PG 58-34	Prio	e Per 1	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ner
AC	4	4,000	72.192	0.98907	(\$141.31)	5.000	5.215	0.215	0.128	0.200	-0.072	CTS	0
Density	10	5,000	93.310	1.04120	\$2,329.66		93.350	0.650	0.934	1.100	-0.166	Tons	0 00
VMA	4	4,000	84.620	1.03000	\$387.72		14.150	0.250	0.915	0.600	0.315	I/DP PF 1.0	\$0.00
	4	4,000	64.000	0.94704	(\$0.0E0.04)	3.500		0.275			0.650		0
Air Voids	4	4,000	04.000	0.94704	(\$2,053.31)	3.500	3.225	0.275	1.250	0.600	0.050	Tons	0

Mix Desig	gn No	104104L	-1T	Process No	1 Grad	ding S	(100)	PG 58-34	4 P ri	ice Per T	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Otl	her
AC	3	3,000	81.284	1.02500	\$242.32	5.000	5.163	0.163	0.142	0.200	-0.058	CTS	0
Density	6	3,000	83.803	1.01483	\$503.16	94.000	93.000	1.000	1.000	1.100	-0.100	Tons I/DP	\$0.00
VMA	3	3,000	30.000	0.31177	(\$6,671.01)	13.200	15.067	1.867	0.153	0.600	-0.447	PF 1.0	φυ.υυ
Air Voids	3	3,000	100.000	1.02500	\$726.97	3.500	4.500	1.000	0.100	0.600	-0.500	Tons	0
				I/DP:	(\$5,198.56)						2\	/ Adj.	\$0.00
Mix Desig	gn No	152066		Process No	1 Gra o	ding S	(100)	PG 58-3	4 P ri	ice Per T	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V		her
AC	7	7,000	81.544	1.00064	\$14.36	5.300	5.111	0.189	0.122	0.200	-0.078	CTS Tons	500
Density	12	6,000	94.001	1.04323	\$2,932.86	94.000	93.325	0.675	0.881	1.100	-0.219		\$197.90
VMA	7	7,000	100.000	1.03500	\$791.59	13.600	13.071	0.529	0.189	0.600	-0.411	PF 1.0	Ψ137.30
Air Voids	7	7,000	51.873	0.80309	(\$13,360.84)	3.600	2.414	1.186	0.285	0.600	-0.315	Tons	0
				I/DP:	(\$9,424.13)						2\	/ Adj.	\$0.00
Mix Desig	gn No	152066-1	l .	Process No	1 Grad	ding S	(100)	PG 58-3	4 P ri	ice Per T	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Otl	her
AC	3	3,000	100.000	1.02500	\$242.32	5.200	5.267	0.067	0.090	0.200	-0.110	CTS	0
Density	5	2,500	100.000	1.03000	\$848.14	94.000	94.020	0.020	0.722	1.100	-0.378	Tons I/DP	\$0.00
VMA	3	3,000	40.809	0.81473	(\$1,795.85)	14.300	12.900	1.400	0.608	0.600	0.008	PF 1.0	
Air Voids	3	3,000	48.786	0.88002	(\$3,488.99)	3.400	2.167	1.233	0.757	0.600	0.157	Tons	0
				I/DP:	(\$4,194.38)						2\	/ Adj.	\$0.00
Mix Desig	gn No	152066-2	2	Process No	1 Grad	ding S	(100)	PG 58-3	4 P ri	ice Per ī	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Otl	her
AC	24	24,000	89.085	1.01045	\$810.59	5.200	5.080	0.120	0.147	0.200	-0.053	CTS	0
Density	46	23,000	95.937	1.04717	\$12,269.80	94.000	93.026			1.100	-0.505	Tons I/DP	0
VMA	24	24,000	99.995	1.05000	\$3,877.20	13.400	13.538	0.138	0.317	0.600	-0.283	PF 1.0	\$0.00
Air Voids	24	24,000	99.098	1.05000	\$11,631.60	3.400	3.171	0.229	0.432	0.600	-0.168	Tons	0
				I/DP:	\$28,589.19						2\	/ Adj.	\$0.00
Mix Design	gn No	152066-3	3	Process No	1 Grad	ding S	(100)	PG 58-3	4 P ri	ice Per T	Fon \$32.3	31	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Otl	her
AC	25	25,219	81.437	0.95838	(\$3,391.71)	5.200	5.040	0.160	0.156	0.200	-0.044	CTS	0
Density	51	25,915	95.734	1.04512	\$13,224.25	94.000	93.273	0.727	0.747	1.100	-0.353	Tons I/DP	\$0.00
VMA	25	25,219	99.999	1.05000	\$4,074.13	13.400	13.412	0.012	0.330	0.600	-0.270	PF 1.0	ψυ.υυ
Air Voids	25	25,219	91.479	1.02477	\$6,055.10	3.400	2.924	0.476	0.533	0.600	-0.067	Tons	0
				I/DP:	\$19,961.77						2\	/ Adj.	\$0.00
Joint De	nsity	Proc.		0	lity Dov					Moon			C4 Day
Grad. P	rice		sts To	<i>Qua</i> ns <i>Lev</i>		I/D	P	TV	Mean	Mean to TV	Std Dev	٧	St Dev. - V
	2.31			000 83.4		(\$4,192			89.480	2.520	1.513	1.600	-0.087
	2.31		,		05 1.04148	\$5,22	,		94.030	2.030	1.324	1.600	-0.276
_ ψ0		-				¥0,22							

Totals: 14706	Tests	Tons	I/DP			
	AC 116	115,760	(\$5,304.53)	CTS I/DP		
Dens	sity 165	83,535	\$34,567.10	\$366.77		
V	MA 116	115,760	(\$279.95)	2V Adj		
Air Vo	ids 116	115,760	\$3,703.46	\$0.00		
Joint Dens	sity 34	66,000	\$1,034.41			
	Plan Quant	111,715	Project I/DP	\$34,087.26	CPFC	1.00907

Comments: Quantities

Totals for all Projects Projects with Start Dates from 1/1/2004 to 12/31/2004.

Number of Projects: 19	Tests	Tons	I/DP	
AC	1034	1,011,689	\$33,406.89	CTS I/DP
Density	1763	977,729	\$170,005.87	(\$564.78)
VMA	1033	1,011,689	\$111,927.78	2V Adj
Air Voids	1033	1,011,689	\$224,222.04	\$0.00
Joint Density	566	951,599	(\$170,907.88)	

Plan Quant 1,068,777 *Total I/DP* \$368,089.92

Calculated Pay Factor Composite and I/DP by Region, Voids

Criteria: Projects with Start Dates from 1/1/2004 to 12/31/2004.

PFC is back calculated from the Project's I/DP.

A Calculated Average Unit Price is used in the calculation.

	ı 1								
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
13818	03/04/04	STA 0405-030	1	SX	84,650	\$36.40	1.03872	\$119,310.36	19
14560	01/15/04	IM 0704-203	1	SX	55,260	\$37.50	1.02331	\$48,312.53	14
14657	03/18/04	STA C470-02	1	S	72,150	\$33.17	0.96524	(\$83,206.36)	19
Region	1	Number of Pro	jects:	3	CPFC:	Maximum:	1.03872		
		Total 1	Tons:	212,060		Minimum:	0.96524		
						Average:	1.00909		
		Incentiv	/e/Disi	ncentive P	ayments		Sum I/DPs:	\$84,416.53	
		F	Positive	e I/DPs:	2		Maximum:	\$119,310.36	
		N	egative	e I/DPs:	1		Minimum:	(\$83,206.36)	
						A	Average IDP:	\$28,138.84	
	_								
Region	ı 2								
Ü	$i \ 2$ Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
Ü		Project Code STA 1604-008	Reg.	Grading				Project I/DP \$73,448.18	Supplier
Subacct.	Bid Date				Tons	Price	Composite	-	
Subacct. 14146	Bid Date 02/05/04	STA 1604-008	2	S	Tons 55,482	Price \$32.65	1.04055	\$73,448.18	11
Subacct. 14146 14463	02/05/04 11/13/03 03/18/04	STA 1604-008 STU M240-08	2	s s	Tons 55,482 30,965	\$32.65 \$31.94	1.04055 1.03806	\$73,448.18 \$37,640.27	11 49
Subacct. 14146 14463 14209 14212	Bid Date 02/05/04 11/13/03 03/18/04 05/20/04	STA 1604-008 STU M240-08 NH 0504-046	2 2 2 2	S S S	55,482 30,965 46,076	\$32.65 \$31.94 \$33.37 \$29.25	1.04055 1.03806 1.02145 1.02044	\$73,448.18 \$37,640.27 \$32,971.72	11 49 19
14463 14209	Bid Date 02/05/04 11/13/03 03/18/04 05/20/04	STA 1604-008 STU M240-08 NH 0504-046 STA 165A-01	2 2 2 2 2 jects:	\$ \$ \$ \$	Tons 55,482 30,965 46,076 62,761	\$32.65 \$31.94 \$33.37 \$29.25	1.04055 1.03806 1.02145 1.02044 1.04055	\$73,448.18 \$37,640.27 \$32,971.72	11 49 19
Subacct. 14146 14463 14209 14212	Bid Date 02/05/04 11/13/03 03/18/04 05/20/04	STA 1604-008 STU M240-08 NH 0504-046 STA 165A-01	2 2 2 2 2 jects:	\$ \$ \$ \$	Tons 55,482 30,965 46,076 62,761	\$32.65 \$31.94 \$33.37 \$29.25 Maximum:	1.04055 1.03806 1.02145 1.02044 1.04055 1.02044	\$73,448.18 \$37,640.27 \$32,971.72	11 49 19
Subacct. 14146 14463 14209 14212	Bid Date 02/05/04 11/13/03 03/18/04 05/20/04	STA 1604-008 STU M240-08 NH 0504-046 STA 165A-01 Number of Pro	2 2 2 2 jects:	\$ \$ \$ \$	Tons 55,482 30,965 46,076 62,761 CPFC:	\$32.65 \$31.94 \$33.37 \$29.25 Maximum: Minimum:	1.04055 1.03806 1.02145 1.02044 1.04055 1.02044	\$73,448.18 \$37,640.27 \$32,971.72	11 49 19
Subacct. 14146 14463 14209 14212	Bid Date 02/05/04 11/13/03 03/18/04 05/20/04	STA 1604-008 STU M240-08 NH 0504-046 STA 165A-01 Number of Pro Total 1	2 2 2 2 jects:	S S S S 4 195,284	Tons 55,482 30,965 46,076 62,761 CPFC:	\$32.65 \$31.94 \$33.37 \$29.25 Maximum: Minimum:	1.04055 1.03806 1.02145 1.02044 1.04055 1.02044 1.03012	\$73,448.18 \$37,640.27 \$32,971.72 \$37,515.75	11 49 19
Subacct. 14146 14463 14209 14212	Bid Date 02/05/04 11/13/03 03/18/04 05/20/04	STA 1604-008 STU M240-08 NH 0504-046 STA 165A-01 Number of Pro Total 1	2 2 2 2 jects: rons:	S S S 4 195,284	Tons 55,482 30,965 46,076 62,761 CPFC:	\$32.65 \$31.94 \$33.37 \$29.25 Maximum: Minimum:	1.04055 1.03806 1.02145 1.02044 1.04055 1.02044 1.03012 Sum I/DPs:	\$73,448.18 \$37,640.27 \$32,971.72 \$37,515.75	11 49 19

Region	<i>i</i> 3								
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
13535	02/26/04	IM 0701-157	3	SX	109,403	\$31.85	1.00747	\$26,035.99	12
14483	02/12/04	IM 0701-164	3	SX	96,896	\$36.14	0.98525	(\$51,666.23)	17
Region	3	Number of Pro	jects:	2	CPFC:	Maximum:	1.00747		
		Total 1	Tons:	206,299		Minimum:	0.98525		
						Average:	0.99636		
		Incentiv	/e/Disi	ncentive F	Payments		Sum I/DPs:	(\$25,630.24)	
		F	e I/DPs:	1		Maximum:	\$26,035.99		
	Positive I/DPs: 1 Negative I/DPs: 1						Minimum:	(\$51,666.23)	
		N	egative	e I/DPs:	1		wiiiiiiiiiiii.	(\$51,000.23)	
		N	egative	e I/DPs:	1	A	wiriinium. Average IDP:	(\$12,815.12)	
Regioi	ı 4	N	egative	e I/DPs:			Average IDP:	,	
Region	<i>1 4</i> Bid Date	N Project Code			Total Tons	Average Price		,	Supplier
Ü					Total	Average	Average IDP:	(\$12,815.12)	Supplier 60
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	(\$12,815.12)	
Subacct. 13528	Bid Date 07/10/03	Project Code STA 0343-021	Reg.	Grading S	Total Tons	Average Price \$36.95	Pay Factor Composite	(\$12,815.12) Project I/DP \$70,880.93	60
13528 14706	07/10/03 04/01/04 06/24/04	Project Code STA 0343-021 NH 2873-134	Reg. 4 4 4	Grading S S	Total Tons 72,701 115,760	Average Price \$36.95 \$32.45 \$38.60	Pay Factor Composite 1.02639 1.00907	(\$12,815.12) Project I/DP \$70,880.93 \$34,087.26	60
13528 14706 13977	07/10/03 04/01/04 06/24/04	Project Code STA 0343-021 NH 2873-134 IM 0761-185 Number of Pro	Reg. 4 4 4	Grading S S S	Total Tons 72,701 115,760 72,562	Average Price \$36.95 \$32.45 \$38.60	Pay Factor Composite 1.02639 1.00907 1.00383	(\$12,815.12) Project I/DP \$70,880.93 \$34,087.26	60
13528 14706 13977	07/10/03 04/01/04 06/24/04	Project Code STA 0343-021 NH 2873-134 IM 0761-185 Number of Pro	Reg. 4 4 4	Grading S S S 3	Total Tons 72,701 115,760 72,562	Average Price \$36.95 \$32.45 \$38.60 Maximum:	Pay Factor Composite 1.02639 1.00383 1.02639 1.00383	(\$12,815.12) Project I/DP \$70,880.93 \$34,087.26	60
13528 14706 13977	07/10/03 04/01/04 06/24/04	Project Code STA 0343-021 NH 2873-134 IM 0761-185 Number of Pro	Reg. 4 4 4 fjects:	Grading S S S 3	Total Tons 72,701 115,760 72,562 CPFC:	Average Price \$36.95 \$32.45 \$38.60 Maximum: Minimum:	Pay Factor Composite 1.02639 1.00383 1.02639 1.00383	(\$12,815.12) Project I/DP \$70,880.93 \$34,087.26	60
13528 14706 13977	07/10/03 04/01/04 06/24/04	Project Code STA 0343-021 NH 2873-134 IM 0761-185 Number of Pro Total 1	Reg. 4 4 4 ijects:	Grading	Total Tons 72,701 115,760 72,562 CPFC:	Average Price \$36.95 \$32.45 \$38.60 Maximum: Minimum:	Pay Factor Composite 1.02639 1.00907 1.00383 1.02639 1.00383 1.01310	(\$12,815.12) Project I/DP \$70,880.93 \$34,087.26 \$10,725.62	60
13528 14706 13977	07/10/03 04/01/04 06/24/04	Project Code STA 0343-021 NH 2873-134 IM 0761-185 Number of Pro Total 1	Reg. 4 4 4 ijects: Fons:	S S S 3 261,023	Total Tons 72,701 115,760 72,562 CPFC:	Average Price \$36.95 \$32.45 \$38.60 Maximum: Minimum:	Pay Factor Composite 1.02639 1.00907 1.00383 1.00383 1.01310 Sum I/DPs:	(\$12,815.12) Project I/DP \$70,880.93 \$34,087.26 \$10,725.62	60

Region	ı 6				Total	Average	Pay Factor		
Subacct.	Bid Date	Project Code	Reg.	Grading	Tons	Price	Composite	Project I/DP	Supplier
14238	01/29/04	STA 1211-059	6	S	25,487	\$31.60	1.03329	\$26,813.20	13
14239	02/05/04	STA 0853-052	6	S	13,745	\$31.37	1.03112	\$13,416.22	41
14237	01/29/04	STA 1211-058	6	S	15,341	\$32.25	1.03109	\$15,379.67	37
14240	02/12/04	STA 0404-040	6	S	8,978	\$33.00	1.02251	\$6,670.59	37
13957	02/12/04	STA 1211-057	6	S	14,115	\$30.30	1.02031	\$8,686.21	33
14241	01/08/04	STA 0062-015	6	SX	21,456	\$38.00	1.01500	\$12,230.85	33
14613	06/17/04	IM 0253-186	6	S	37,901	\$32.00	0.94133	(\$71,162.84)	33
Region	6	Number of Pro	jects:	7	CPFC:	Maximum:	1.03329		
		Total 1	ons:	137,023		Minimum:	0.94133		
						Average:	1.01352		
		Incentiv	/e/Disi	ncentive P	ayments		Sum I/DPs:	\$12,033.90	
		F	Positive	e I/DPs:	6		Maximum:	\$26,813.20	
		N	egative	e I/DPs:	1		Minimum:	(\$71,162.84)	
						A	lverage IDP:	\$1,719.13	
Statewio	de Total	/s: 1/1/2004	to 12/	31/2004.					
		Number of Proj	ects:	19	CPFC	Maximum:	1.04055		
		Total To	ons: 1	,011,689		Minimum:	0.94133		
						Average:	1.01444		
		Incentiv	e/Disir	ncentive P	ayments		Sum I/DPs:	\$368,089.92	
		P	ositive	I/DPs:	16		Maximum:	\$119,310.36	
		Ne	egative	l/DPs:	3		Minimum:	(\$83,206.36)	
				A	verage IDP:	\$19,373.15			

Asphalt Content - Process Information, Voids

Criteria: Projects with Start Dates from 1/1/2004 to 12/31/2004.

Processes with less than 3 tests not included.

Graung. 5															
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	TV	Mean:	Mean to TV	St. Dev.	v	StDev - V
14212	2	66,323	14212A	\$29.25	1	6,000	6	100.000	1.03500	5.50	5.51	0.01	0.121	0.20	-0.08
14240	6	8,683	146999-1	\$33.00	1	3,095	3	100.000	1.02500	5.10	4.81	0.29	0.006	0.20	-0.19
14706	4	111,715	152066-1	\$32.31	1	3,000	3	100.000	1.02500	5.20	5.27	0.07	0.090	0.20	-0.11
13957	6	14,514	147059-1	\$30.30	1	14,115	15	99.400	1.05000	4.70	4.71	0.01	0.123	0.20	-0.08
13528	4	70,085	150009A	\$38.80	1	9,610	10	98.317	1.04500	5.30	5.36	0.06	0.124	0.20	-0.08
14238	6	29,367	147014-1	\$31.60	1	7,487	8	98.263	1.04000	5.10	5.20	0.10	0.111	0.20	-0.09
14463	2	37,435	14463	\$31.94	1	18,759	19	96.759	1.05000	5.50	5.53	0.03	0.145	0.20	-0.06
14146	2	55,467	14146	\$32.65	1	55,482	56	95.848	1.04530	5.30	5.24	0.06	0.137	0.20	-0.06
14212	2	66,323	14212B	\$29.25	1	9,000	9	95.705	1.04000	5.80	5.78	0.02	0.163	0.20	-0.04
14240	6	8,683	146999-2	\$33.00	1	5,883	6	95.522	1.03500	5.10	4.97	0.13	0.110	0.20	-0.09
14239	6	16,154	147057	\$31.37	1	13,745	15	95.401	1.04804	5.50	5.50	0.00	0.159	0.20	-0.04
14212	2	66,323	14212C	\$29.25	1	47,761	48	95.329	1.04270	5.80	5.78	0.02	0.152	0.20	-0.05
14657	1	72,845	158229	\$30.00	1	39,910	40	95.002	1.04167	4.80	4.77	0.03	0.152	0.20	-0.05
14237	6	15,323	146999-1	\$32.25	1	15,341	15	94.045	1.04197	5.10	4.95	0.15	0.102	0.20	-0.10
14209	2	46,216	209 RAP	\$30.00	1	21,062	22	93.241	1.03639	5.30	5.20	0.10	0.138	0.20	-0.06
14209	2	46,216	4209 Top	\$36.20	1	24,150	25	90.438	1.01831	5.40	5.37	0.03	0.181	0.20	-0.02
13528	4	70,085	149926A	\$35.00	1	28,036	29	89.279	1.00908	5.40	5.32	0.08	0.171	0.20	-0.03
14706	4	111,715	152066-2	\$32.31	1	24,000	24	89.085	1.01045	5.20	5.08	0.12	0.147	0.20	-0.05
14238	6	29,367	147014	\$31.60	1	18,000	18	88.943	1.01410	5.10	5.18	0.07	0.176	0.20	-0.02
14706	4	111,715	04L-1TM	\$32.31	1	15,000	15	88.764	1.01621	5.00	4.95	0.05	0.189	0.20	-0.01
14613	6	72,866	147075	\$32.00	1	37,901	44	85.245	0.97117	5.30	5.29	0.01	0.208	0.20	0.01
13977	4	72,754	162105A	\$35.40	1	6,000	6	84.616	1.01796	5.20	5.04	0.16	0.133	0.20	-0.07
14706	4	111,715	04104L-1	\$32.31	1	32,225	32	83.665	0.96748	5.00	4.87	0.13	0.173	0.20	-0.03
13528	4	70,085	149926	\$35.00	1	7,423	7	82.610	1.00548	5.50	5.58	0.08	0.214	0.20	0.01
13528	4	70,085	150009	\$38.80	1	27,632	28	81.887	0.95836	5.00	5.07	0.07	0.213	0.20	0.01
14706	4	111,715	152066	\$32.31	1	7,000	7	81.544	1.00064	5.30	5.11	0.19	0.122	0.20	-0.08
14706	4	111,715	152066-3	\$32.31	1	25,219	25	81.437	0.95838	5.20	5.04	0.16	0.156	0.20	-0.04
14706	4	111,715	4L-1TM3	\$32.31	1	3,000	3	81.284	1.02500	5.00	5.16	0.16	0.142	0.20	-0.06
14463	2	37,435	14463B	\$31.94	2	12,206	13	80.058	0.97173	5.50	5.37	0.13	0.197	0.20	0.00
14706	4	111,715	4L-1TM2	\$32.31	1	4,000	4	72.192	0.98907	5.00	5.22	0.22	0.128	0.20	-0.07
13977	4	72,754	162105B	\$35.40	1	11,862	12	67.463	0.89157	5.10	4.95	0.15	0.264	0.20	0.06
13977	4	72,754	162105	\$35.40	1	6,000	6	64.292	0.91199	5.20	5.00	0.20	0.255	0.20	0.05

Grading: S															
Subacct.	Reg.	Plan Quant.	Mix Desigi	n Price	Process No.	Tons	Tests	Quality Level	Pay Factor	TV	Mean:	Mean to TV	St. Dev.	V	StDev - V
Totals	Totals Grading: S								Pay Factor			Mean to TV	St. Dev.	V	StDev - V
		То	ns:	559,904			Best:	100.000	1.05000			0.00	0.006	0.20	-0.19
		Proce	sses:	32		V	Vorst:	64.292	0.89157			0.29	0.264	0.20	0.06
			Tests:	573											

Grading:	SX
----------	----

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.		Tests	Quality Level	Pay Factor	ΤV	Mean:	Mean to TV	St. Dev.	v	StDev - V
13535	3	106,305	64-22 #2	\$31.68	1	5,878	7	100.000	1.03500	5.50	5.50	0.00	0.081	0.20	-0.12
13977	4	72,754	154122	\$41.75	1	4,000	4	100.000	1.03000	5.30	5.34	0.04	0.131	0.20	-0.07
13977	4	72,754	162107B	\$41.75	1	4,818	5	99.892	1.03000	5.40	5.41	0.01	0.167	0.20	-0.03
13977	4	72,754	162103	\$36.60	1	7,000	7	99.310	1.03500	5.30	5.30	0.00	0.148	0.20	-0.05
13818	1	84,282	136488	\$33.00	1	33,289	34	98.085	1.05500	5.50	5.47	0.03	0.129	0.20	-0.07
13535	3	106,305	76-28 #4	\$32.01	1	51,318	52	97.663	1.05500	5.30	5.24	0.06	0.123	0.20	-0.08
14241	6	20,555	147063-1	\$38.00	2	5,828	6	96.699	1.03500	5.20	5.08	0.12	0.115	0.20	-0.09
13535	3	106,305	64-22 #4	\$31.39	1	20,773	21	96.573	1.05000	5.30	5.30	0.00	0.148	0.20	-0.05
14560	1	55,809	95804	\$37.50	1	55,260	56	96.130	1.04735	5.30	5.35	0.05	0.140	0.20	-0.06
13818	1	84,282	136488-2	\$38.60	1	51,361	52	94.591	1.03684	5.70	5.65	0.05	0.150	0.20	-0.05
13535	3	106,305	76-28 #3	\$32.26	1	11,833	12	93.378	1.04067	5.40	5.35	0.05	0.165	0.20	-0.03
14483	3	112,079	7-23	\$35.95	1	34,408	34	92.484	1.02689	6.10	6.11	0.01	0.171	0.20	-0.03
14657	1	72,845	158244	\$36.25	1	30,505	31	91.350	1.02091	5.50	5.40	0.10	0.146	0.20	-0.05
13535	3	106,305	64-22 #3	\$31.30	1	8,378	9	88.268	1.02166	5.40	5.27	0.13	0.143	0.20	-0.06
14483	3	112,079	8-11	\$36.27	1	58,111	59	87.844	0.98454	6.20	6.24	0.04	0.190	0.20	-0.01
13977	4	72,754	154122B	\$41.75	1	13,978	14	87.696	1.01209	5.70	5.61	0.09	0.174	0.20	-0.03
13535	3	106,305	64-22	\$31.91	1	3,950	3	79.167	1.02500	5.60	5.68	0.08	0.244	0.20	0.04
13977	4	72,754	162103A	\$36.60	1	7,904	8	77.292	0.97258	5.20	5.19	0.01	0.252	0.20	0.05
14483	3	112,079	5-17	\$36.01	1	4,377	5	65.513	0.93582	6.40	6.16	0.24	0.141	0.20	-0.06
13977	4	72,754	162107	\$41.75	1	6,000	6	58.286	0.86957	5.40	5.12	0.28	0.088	0.20	-0.11
14241	6	20,555	147063	\$38.00	1	15,628	16	55.990	0.77658	5.40	5.13	0.27	0.191	0.20	-0.01
14657	1	72,845	158240	\$52.12	1	1,735	3	55.508	0.92665	5.20	5.25	0.05	0.346	0.20	0.15
13977	4	72,754	162107A	\$41.75	1	5,000	5	40.604	0.74560	5.40	5.06	0.34	0.158	0.20	-0.04
13535	3	106,305	76-28	\$32.02	1	4,622	5	32.000	0.61651	5.60	5.23	0.37	0.110	0.20	-0.09
Totals	Totals Grading: SX						Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V	
			Tons: 44	5,954			Best:	100.000	1.05500			0.00	0.081	0.20	-0.12
		Pro	cesses:	24		1	Norst:	32.000	0.61651			0.37	0.346	0.20	0.15
			Tests:	454	Weig	ghted Av	erage:	90.161	1.01070			0.07	0.154	0.20	-0.05

Asphalt Content - Totals 1/1/2004 to 12/31/2004.

			Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
Tons: 1,	005,858	Best:	100.000	1.05500	0.00	0.006	0.20	-0.19
Processes:	56	Worst:	32.000	0.61651	0.37	0.346	0.20	0.15
Tests:	1,027	Weighted Average:	89.981	1.01142	0.07	0.158	0.20	-0.04

VMA - Process Information

Criteria: Projects with Start Dates from 1/1/2004 to 12/31/2004.

Processes with less than 3 tests not included.

Subacct.	Reg.	Plan . Quant.	Mix Design	I Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	ΤV	Mean	Mean to TV	St. Dev.	٧	StDev - V
Subacci.	iveg.	. Quant.	Design	TIICE	140.	10113	16313	Level	1 actor		Wicaii	10 1 7	St. Dev.		
14209	2	46,216	4209 Top	\$36.20	1	24,150	25	100.000	1.05000	14.20	14.10	0.10	0.173	0.60	-0.427
13528	4	70,085	150009A	\$38.80	1	9,610	10	100.000	1.04500	14.70	14.74	0.04	0.272	0.60	-0.328
14237	6	15,323	146999-1	\$32.25	1	15,341	14	100.000	1.04500	14.80	14.81	0.01	0.300	0.60	-0.300
14238	6	29,367	147014-1	\$31.60	1	7,487	8	100.000	1.04000	14.20	13.69	0.51	0.236	0.60	-0.364
14706	4	111,715	152066	\$32.31	1	7,000	7	100.000	1.03500	13.60	13.07	0.53	0.189	0.60	-0.411
14212	2	66,323	14212A	\$29.25	1	6,000	6	100.000	1.03500	13.70	14.03	0.33	0.372	0.60	-0.228
14240	6	8,683	146999-2	\$33.00	1	5,883	6	100.000	1.03500	14.40	14.50	0.10	0.477	0.60	-0.123
13977	4	72,754	162105A	\$35.40	1	6,000	6	100.000	1.03500	15.10	14.88	0.22	0.479	0.60	-0.121
14240	6	8,683	146999-1	\$33.00	1	3,095	3	100.000	1.02500	14.80	14.40	0.40	0.520	0.60	-0.080
14706	4	111,715	152066-3	\$32.31	1	25,219	25	99.999	1.05000	13.40	13.41	0.01	0.330	0.60	-0.270
14238	6	29,367	147014	\$31.60	1	18,000	18	99.998	1.05000	14.20	14.11	0.09	0.337	0.60	-0.263
14706	4	111,715	152066-2	\$32.31	1	24,000	24	99.995	1.05000	13.40	13.54	0.14	0.317	0.60	-0.283
14146	2	55,467	14146	\$32.65	1	55,482	56	99.975	1.05500	14.60	14.72	0.12	0.326	0.60	-0.274
14463	2	37,435	14463	\$31.94	1	18,759	19	99.966	1.05000	15.30	15.20	0.10	0.376	0.60	-0.224
14239	6	16,154	147057	\$31.37	1	13,745	15	99.960	1.05000	15.20	15.12	0.08	0.402	0.60	-0.198
14209	2	46,216	209 RAP	\$30.00	1	21,062	22	99.933	1.05000	13.80	13.44	0.36	0.292	0.60	-0.308
13528	4	70,085	150009	\$38.80	1	27,632	28	99.820	1.05500	14.00	14.19	0.19	0.373	0.60	-0.227
14613	6	72,866	147075	\$32.00	1	37,901	44	99.719	1.05500	13.30	13.25	0.05	0.417	0.60	-0.183
13957	6	14,514	147059-1	\$30.30	1	14,115	15	99.481	1.05000	14.70	14.56	0.14	0.458	0.60	-0.142
14463	2	37,435	14463B	\$31.94	2	12,206	13	99.163	1.04500	15.30	15.01	0.29	0.421	0.60	-0.179
13977	4	72,754	162105B	\$35.40	1	11,862	12	98.803	1.04500	15.10	15.31	0.21	0.485	0.60	-0.115
13528	4	70,085	149926	\$35.00	1	7,423	7	98.675	1.03500	14.80	14.94	0.14	0.574	0.60	-0.026
13528	4	70,085	149926A	\$35.00	1	28,036	29	97.560	1.05500	14.00	13.74	0.26	0.488	0.60	-0.112
14706	4	111,715	04L-1TM	\$32.31	1	15,000	15	93.069	1.03746	14.40	14.36	0.04	0.688	0.60	0.088
14212	2	66,323	14212C	\$29.25	1	47,761	48	89.534	1.00127	14.80	14.44	0.36	0.653	0.60	0.053
13977	4	72,754	162105	\$35.40	1	6,000	6	85.180	1.02007	15.10	14.73	0.37	0.792	0.60	0.192
14706	4	111,715	4L-1TM2	\$32.31	1	4,000	4	84.620	1.03000	14.40	14.15	0.25	0.915	0.60	0.315
14706	4	111,715	04104L-1	\$32.31	1	32,225	32	84.505	0.97350	14.40	13.81	0.59	0.601	0.60	0.001
14657	1	72,845	158229	\$30.00	1	39,910	40	83.176	0.95759	14.90	14.43	0.47	0.731	0.60	0.131
14212	2	66,323	14212B	\$29.25	1	9,000	9	66.348	0.89632	13.70	14.73	1.03	0.381	0.60	-0.219
		•		•		, -									

Subacct.	Reg	Plan . Quant.	Mix Desigr	n Price	Process No.	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
14706	4	111,715	152066-	1 \$32.31	1	3,000	3	40.809	0.81473	14.30	12.90	1.40	0.608	0.60	0.008
14706	4	111,715	4L-1TM	3 \$32.31	1	3,000	3	30.000	0.31177	13.20	15.07	1.87	0.153	0.60	-0.447
Totals Grading: S									Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
			Tons:	559,904			Best:	100.000	1.05500			0.01	0.153	0.60	-0.447
		Pro	ocesses:	32		V	Norst:	30.000	0.31177			1.87	0.915	0.60	0.315
			Tests:	572	Weigh	nted Ave	erage:	95.097	1.02612			0.25	0.444	0.60	-0.156

Grading: SX

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces: No.	-	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
13535	3	106,305	76-28 #3	\$32.26	1	11,833	12	100.000	1.04500	14.70	14.25	0.45	0.207	0.60	-0.393
13535	3	106,305	64-22 #3	\$31.30	1	8,378	9	100.000	1.04000	14.70	14.37	0.33	0.224	0.60	-0.376
13535	3	106,305	64-22 #2	\$31.68	1	5,878	7	100.000	1.03500	15.20	14.86	0.34	0.140	0.60	-0.460
13977	4	72,754	162103	\$36.60	1	7,000	7	100.000	1.03500	15.00	14.87	0.13	0.221	0.60	-0.379
14241	6	20,555	147063-1	\$38.00	2	5,828	6	100.000	1.03500	15.40	15.82	0.42	0.279	0.60	-0.321
13977	4	72,754	162107	\$41.75	1	6,000	6	100.000	1.03500	15.10	14.68	0.42	0.306	0.60	-0.294
14483	3	112,079	5-17	\$36.01	1	4,377	5	100.000	1.03000	14.80	14.80	0.00	0.141	0.60	-0.459
13977	4	72,754	154122	\$41.75	1	4,000	4	100.000	1.03000	15.40	15.48	0.08	0.222	0.60	-0.378
13977	4	72,754	162107A	\$41.75	1	5,000	5	100.000	1.03000	14.80	14.42	0.38	0.363	0.60	-0.237
13535	3	106,305	76-28	\$32.02	1	4,622	5	100.000	1.03000	15.00	15.08	0.08	0.512	0.60	-0.088
13977	4	72,754	162107B	\$41.75	1	4,818	5	100.000	1.03000	14.80	14.70	0.10	0.561	0.60	-0.039
13818	1	84,282	136488	\$33.00	1	33,289	34	99.999	1.05500	14.80	14.77	0.03	0.313	0.60	-0.287
13535	3	106,305	64-22 #4	\$31.39	1	20,773	21	99.988	1.05000	14.70	14.41	0.29	0.290	0.60	-0.310
14560	1	55,809	95804	\$37.50	1	55,260	56	99.915	1.05500	15.00	14.95	0.05	0.374	0.60	-0.226
13977	4	72,754	162103A	\$36.60	1	7,904	8	99.008	1.04000	15.00	14.79	0.21	0.506	0.60	-0.094
13818	1	84,282	136488-2	\$38.60	1	51,361	52	98.805	1.05500	15.10	14.61	0.49	0.322	0.60	-0.278
13535	3	106,305	76-28 #4	\$32.01	1	51,318	52	98.795	1.05500	14.70	14.34	0.36	0.381	0.60	-0.219
14241	6	20,555	147063	\$38.00	1	15,628	16	98.682	1.05000	15.40	15.07	0.33	0.419	0.60	-0.181
14483	3	112,079	7-23	\$35.95	1	34,408	34	98.636	1.05500	14.60	15.05	0.45	0.350	0.60	-0.250
14483	3	112,079	8-11	\$36.27	1	58,111	59	91.410	1.01179	14.60	15.19	0.59	0.447	0.60	-0.153
13977	4	72,754	154122B	\$41.75	1	13,978	14	90.484	1.02603	15.50	15.09	0.41	0.606	0.60	0.006
14657	1	72,845	158244	\$36.25	1	30,505	31	86.992	0.99169	14.90	14.56	0.34	0.720	0.60	0.120
13535	3	106,305	64-22	\$31.91	1	3,950	3	62.338	0.96617	15.20	14.07	1.13	0.153	0.60	-0.447
14657	1	72,845	158240	\$52.12	1	1,735	3	57.118	0.93668	15.10	14.10	1.00	0.781	0.60	0.181
Totals	Totals Grading: SX					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V		
	Tons : 445,954					Best:	100.000	1.05500			0.00	0.140	0.60	-0.460	
		Pro	ocesses:	24		V	Vorst:	57.118	0.93668			1.13	0.781	0.60	0.181
			Tests:	454	Weig	hted Ave	erage:	96.736	1.03928			0.34	0.387	0.60	-0.213

VMA - Totals 1/1/2004 to 12/31/2004.

			Quality Level	Pay Factor	Mean to TV St. Dev.	StDev V - V
Tons: 1,0	05,858	Best:	100.000	1.05500	0.00 0.140	0.60 -0.460
Processes:	56	Worst:	30.000	0.31177	1.87 0.915	0.60 0.315
Tests:	1,026	Weighted Average:	95.823	1.03195	0.29 0.419	0.60 -0.181

Air Voids - Process Information

Criteria: Projects with Start Dates from 1/1/2004 to 12/31/2004.

Processes with less than 3 tests not included.

	-	Plan	Mix		Proces			Quality	Pay			Mean			StDev
Sub.	Reg.	Quant.	Design	Price	No	Tons	Tests	Level	Factor	TV	Mean	to TV	St. Dev.	V	-V
14240	6	8,683	146999-1	\$33.00	1	3,095	3	100.000	1.02500	3.00	2.77	0.23	0.321	0.60	-0.279
14706	4	111,715	14L-1TM3	\$32.31	1	3,000	3	100.000	1.02500	3.50	4.50	1.00	0.100	0.60	-0.500
14238	6	29,367	147014-1	\$31.60	1	7,487	8	100.000	1.04000	3.00	2.83	0.17	0.396	0.60	-0.204
13957	6	14,514	147059-1	\$30.30	1	14,115	15	99.997	1.05000	3.20	3.21	0.01	0.383	0.60	-0.217
13528	4	70,085	150009A	\$38.80	1	9,610	10	99.651	1.04500	3.10	3.56	0.46	0.331	0.60	-0.269
14706	4	111,715	152066-2	\$32.31	1	24,000	24	99.098	1.05000	3.40	3.17	0.23	0.432	0.60	-0.168
14212	2	66,323	14212A	\$29.25	1	6,000	6	99.025	1.03500	3.50	3.68	0.18	0.564	0.60	-0.036
14238	6	29,367	147014	\$31.60	1	18,000	18	98.993	1.05000	3.00	2.98	0.02	0.508	0.60	-0.092
14146	2	55,467	14146	\$32.65	1	55,482	56	98.556	1.05500	3.50	3.80	0.30	0.420	0.60	-0.180
13528	4	70,085	149926A	\$35.00	1	28,036	29	98.356	1.05500	3.00	2.63	0.37	0.402	0.60	-0.198
14463	2	37,435	14463	\$31.94	1	18,759	19	97.979	1.05000	3.90	4.00	0.10	0.540	0.60	-0.060
14209	2	46,216	4209 Top	\$36.20	1	24,150	25	95.837	1.05000	3.90	3.63	0.27	0.542	0.60	-0.058
14237	6	15,323	146999-1	\$32.25	1	15,341	14	95.366	1.04500	3.00	3.36	0.36	0.520	0.60	-0.080
14463	2	37,435	14463B	\$31.94	2	12,206	13	95.120	1.04500	3.90	4.14	0.24	0.595	0.60	-0.005
14706	4	111,715	04104L-1	\$32.31	1	32,225	32	94.437	1.04033	3.50	3.43	0.07	0.637	0.60	0.037
14613	6	72,866	147075	\$32.00	1	37,901	44	93.663	1.03181	3.10	3.10	0.00	0.656	0.60	0.056
14239	6	16,154	147057	\$31.37	1	13,745	15	92.485	1.03472	3.40	3.28	0.12	0.691	0.60	0.091
14657	1	72,845	158229	\$30.00	1	39,910	40	92.372	1.02380	3.60	3.30	0.30	0.617	0.60	0.017
14706	4	111,715	152066-3	\$32.31	1	25,219	25	91.479	1.02477	3.40	2.92	0.48	0.533	0.60	-0.067
14240	6	8,683	146999-2	\$33.00	1	5,883	6	90.596	1.03500	3.00	2.58	0.42	0.618	0.60	0.018
14212	2	66,323	14212B	\$29.25	1	9,000	9	90.443	1.03049	3.50	3.92	0.42	0.608	0.60	0.008
13528	4	70,085	150009	\$38.80	1	27,632	28	90.285	1.01563	3.10	3.56	0.46	0.574	0.60	-0.026
13528	4	70,085	149926	\$35.00	1	7,423	7	85.440	1.01759	3.30	3.66	0.36	0.783	0.60	0.183
14212	2	66,323	14212C	\$29.25	1	47,761	48	84.868	0.96648	3.50	3.35	0.15	0.828	0.60	0.228
14209	2	46,216	-209 RAP	\$30.00	1	21,062	22	84.135	0.98044	3.50	2.84	0.66	0.536	0.60	-0.064
13977	4	72,754	162105B	\$35.40	1	11,862	12	82.196	0.98654	3.50	4.07	0.57	0.672	0.60	0.072
14706	4	111,715	04L-1TM	\$32.31	1	15,000	15	76.333	0.94219	3.50	4.01	0.51	0.879	0.60	0.279
13977	4	72,754	162105	\$35.40	1	6,000	6	70.077	0.94806	3.70	3.02	0.68	0.922	0.60	0.322
13977	4	72,754	162105A	\$35.40	1	6,000	6	67.906	0.93508	3.70	2.82	0.88	0.637	0.60	0.037
14706	4	111,715	14L-1TM2	\$32.31	1	4,000	4	64.000	0.94704	3.50	3.22	0.28	1.250	0.60	0.650
14706	4	111,715	152066	\$32.31	1	7,000	7	51.873	0.80309	3.60	2.41	1.19	0.285	0.60	-0.315
14706	4	111,715	152066-1	\$32.31	1	3,000	3	48.786	0.88002	3.40	2.17	1.23	0.757	0.60	0.157

Totals Grading: S			Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
Tons:	559,904	Best:	100.000	1.05500	0.00	0.100	0.60	-0.500
Processes:	32	Worst:	48.786	0.80309	1.23	1.250	0.60	0.650
Tests:	572	Weighted Average:	91.724	1.02105	0.30	0.577	0.60	-0.023

Gra	ding:	SX													
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce: No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev -V
14241	6	20,555	147063-1	\$38.00	2	5,828	6	100.000	1.03500	3.10	3.20	0.10	0.303	0.60	-0.297
14483	3	112,079	5-17	\$36.01	1	4,377	5	100.000	1.03000	3.50	2.98	0.52	0.370	0.60	-0.230
13977	4	72,754	162107B	\$41.75	1	4,818	5	100.000	1.03000	3.50	3.44	0.06	0.568	0.60	-0.032
13977	4	72,754	162107	\$41.75	1	6,000	6	100.000	1.03500	3.50	3.22	0.28	0.387	0.60	-0.213
13977	4	72,754	162107A	\$41.75	1	5,000	5	100.000	1.03000	3.50	3.60	0.10	0.418	0.60	-0.182
13535	3	106,305	64-22 #2	\$31.68	1	5,878	7	100.000	1.03500	3.70	3.87	0.17	0.325	0.60	-0.275
13535	3	106,305	64-22 #4	\$31.39	1	20,773	21	99.991	1.05000	3.70	3.53	0.17	0.324	0.60	-0.276
13535	3	106,305	64-22 #3	\$31.30	1	8,378	9	99.826	1.04000	3.70	3.57	0.13	0.469	0.60	-0.131
14483	3	112,079	7-23	\$35.95	1	34,408	34	98.893	1.05500	3.50	3.73	0.23	0.437	0.60	-0.163
13535	3	106,305	76-28 #4	\$32.01	1	51,318	52	98.737	1.05500	3.70	3.45	0.25	0.430	0.60	-0.170
13818	1	84,282	136488	\$33.00	1	33,289	34	97.844	1.05500	3.80	4.02	0.22	0.493	0.60	-0.107
13818	1	84,282	136488-2	\$38.60	1	51,361	52	97.358	1.05500	3.50	3.60	0.10	0.541	0.60	-0.059
13977	4	72,754	154122B	\$41.75	1	13,978	14	96.535	1.04500	3.90	4.05	0.15	0.587	0.60	-0.013
14241	6	20,555	147063	\$38.00	1	15,628	16	95.110	1.04687	3.10	2.67	0.43	0.478	0.60	-0.122
14483	3	112,079	8-11	\$36.27	1	58,111	59	94.357	1.03389	3.50	3.73	0.23	0.593	0.60	-0.007
13535	3	106,305	76-28 #3	\$32.26	1	11,833	12	92.055	1.03507	3.70	3.21	0.49	0.514	0.60	-0.086
13977	4	72,754	162103	\$36.60	1	7,000	7	90.528	1.03500	3.80	3.19	0.61	0.460	0.60	-0.140
14560	1	55,809	95804	\$37.50	1	55,260	56	90.433	1.00532	3.80	4.21	0.41	0.601	0.60	0.001
13977	4	72,754	162103A	\$36.60	1	7,904	8	84.405	1.00781	3.50	3.59	0.09	0.874	0.60	0.274
14657	1	72,845	158244	\$36.25	1	30,505	31	74.720	0.90119	3.60	2.86	0.74	0.685	0.60	0.085
13535	3	106,305	64-22	\$31.91	1	3,950	3	50.000	0.88900	3.70	2.50	1.20	0.436	0.60	-0.164
13977	4	72,754	154122	\$41.75	1	4,000	4	50.000	0.85237	3.40	4.60	1.20	0.258	0.60	-0.342
13535	3	106,305	76-28	\$32.02	1	4,622	5	47.556	0.80715	3.50	4.76	1.26	0.873	0.60	0.273
14657	1	72,845	158240	\$52.12	1	1,735	3	45.443	0.85397	4.00	2.63	1.37	1.012	0.60	0.412
Total	s Gra	ding: S	SX					Quality Level	Pay Factor			Mean to TV	St. Dev.	V	StDev - V
		7	Γons: 44!	5 954			Best:	100.000	1.05500			0.06	0.258	0.60	-0.342

			Level	Factor	to TV	St. Dev.	V	- V	
Tons:	445,954	Best:	100.000	1.05500	0.06	0.258	0.60	-0.342	
Processes:	24	Worst:	45.443	0.80715	1.37	1.012	0.60	0.412	
Tests:	454	Weighted Average:	93.087	1.02455	0.31	0.523	0.60	-0.077	

Air Voids - Totals 1/1/2004 to 12/31/2004.

		Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
Tons: 1,005,858	Best:	100.000	1.05500	0.00	0.100	0.60	-0.500
Processes: 56	Worst:	45.443	0.80309	1.37	1.250	0.60	0.650
Tests: 1,026	Weighted Average:	92.328	1.02260	0.31	0.553	0.60	-0.047

Mat Density - Process Information, Voids Acceptance

Criteria: Projects with Bid Dates from 1/1/2004 to 12/31/2004.

Processes with less than 3 tests not included.

Compaction Test Sections not included

			Compact	tion Tes	t Sec	tions not	t inclu	ded.							
Gradi	ng:	\boldsymbol{S}													
Subacct.	Reg	Plan . Quant.	Mix Design	Price	Proc No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev - V
14706	4	111,715	52066-1	\$32.31	1	2,500	5	100.000	1.03000	94.000	94.020	0.020	0.722	1.100	-0.378
14212	2	66,323	14212B	\$29.25	1	9,000	18	99.980	1.05000	94.000	94.056	0.056	0.646	1.100	-0.454
13528	4	70,085	50009A	\$38.80	1	9,610	20	99.901	1.05000	94.000	94.070	0.070	0.688	1.100	-0.412
14240	6	8,683	46999-2	\$33.00	1	5,883	13	98.832	1.04500	94.000	93.915	0.085	0.887	1.100	-0.213
13977	4	72,754	62105B	\$35.40	1	11,862	24	98.437	1.05000	94.000	93.558	0.442	0.753	1.100	-0.347
13957	6	14,514	47059-1	\$30.30	1	13,615	28	98.378	1.05500	94.000	93.804	0.196	0.845	1.100	-0.255
14240	6	8,683	46999-1	\$33.00	1	3,095	7	97.972	1.03500	94.000	94.700	0.700	0.739	1.100	-0.361
14463	2	37,435	14463B	\$31.94	2	12,206	25	97.524	1.05000	94.000	93.192	0.808	0.626	1.100	-0.474
13977	4	72,754	62105A	\$35.40	1	6,000	12	97.258	1.04500	94.000	93.892	0.108	0.989	1.100	-0.111
14212	2	66,323	14212A	\$29.25	1	6,000	12	96.907	1.04500	94.000	92.958	1.042	0.545	1.100	-0.555
14209	2	46,216	209 Top	\$36.20	1	24,150	49	96.229	1.04884	94.000	94.047	0.047	0.978	1.100	-0.122
14706	4	111,715	52066-2	\$32.31	1	23,000	46	95.937	1.04717	94.000	93.026	0.974	0.595	1.100	-0.505
14706	4	111,715	52066-3	\$32.31	1	25,915	51	95.734	1.04512	94.000	93.273	0.727	0.747	1.100	-0.353
14238	6	29,367	147014	\$31.60	1	18,000	36	95.693	1.04711	94.000	93.636	0.364	0.941	1.100	-0.159
14238	6	29,367	47014-1	\$31.60	1	7,487	14	95.558	1.04500	94.000	93.471	0.529	0.897	1.100	-0.203
14212	2	66,323	14212C	\$29.25	1	47,761	96	95.541	1.04008	94.000	93.495	0.505	0.874	1.100	-0.226
13977	4	72,754	162105	\$35.40	1	5,500	11	95.291	1.04500	94.000	93.236	0.764	0.775	1.100	-0.325
14706	4	111,715	152066	\$32.31	1	6,000	12	94.001	1.04323	94.000	93.325	0.675	0.881	1.100	-0.219
14706	4	111,715	IL-1TM2	\$32.31	1	5,000	10	93.310	1.04120	94.000	93.350	0.650	0.934	1.100	-0.166
14463	2	37,435	14463	\$31.94	1	18,759	38	93.303	1.03062	94.000	93.195	0.805	0.804	1.100	-0.296
14239	6	16,154	147057	\$31.37	1	13,245	27	92.586	1.03072	94.000	94.026	0.026	1.144	1.100	0.044
13528	4	70,085	49926A	\$35.00	1	26,875	54	92.338	1.02005	94.000	93.556	0.444	1.049	1.100	-0.051
14146	2	55,467	14146	\$32.65	1	54,982	110	91.804	1.00896	94.000	93.230	0.770	0.883	1.100	-0.217
13528	4	70,085	150009	\$38.80	1	27,132	54	91.100	1.01090	94.000	93.361	0.639	1.000	1.100	-0.100
14706	4	111,715)4L-1TM	\$32.31	1	16,500	33	90.345	1.01318	94.000	93.624	0.376	1.159	1.100	0.059
14237	6	15,323	46999-1	\$32.25	1	14,841	30	90.104	1.01329	94.000	93.940	0.060	1.229	1.100	0.129
14657	1	72,845	158229	\$30.00	1	39,910	80	88.765	0.98671	94.000	93.619	0.381	1.206	1.100	0.106
14209	2	46,216	209 RAP	\$30.00	1	20,562	42	86.620	0.98222	94.000	94.107	0.107	1.340	1.100	0.240
14706	4	111,715	IL-1TM3	\$32.31	1	3,000	6	83.803	1.01483	94.000	93.000	1.000	1.000	1.100	-0.100
14613	6	72,866	147075	\$32.00	1	36,916	75	81.236	0.92590	94.000	93.193	0.807	1.275	1.100	0.175

<i>Gradii</i> Subacct.		S Plan g. Quant.	Mix Design	Price	Proce No	ess . Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	V	StDev - V
Totals	- (Grading	: S					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
		Ton	,			I	Best:	100.000	1.05500			0.020	0.545	1.100	-0.555
		Proces	ses: ests: 1,0	30 38		W	orst:	81.236	0.92590			1.042	1.340	1.100	0.240
		10	. 3.3. 1,0		Weigh	ted Aver	age:	92.767	1.01990			0.507	0.956	1.100	-0.144
Gradi	ng:	SX													
Subacct.	Reg	Plan g. Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
13977	4	72,754	154122	\$41.75	1	3,500	7	100.000	1.03500	94.000	93.257	0.743	0.486	1.100	-0.614
13977	4	72,754	62107A	\$41.75	1	5,000	10	99.695	1.04500	94.000	94.920	0.920	0.478	1.100	-0.622
14241	6	20,555	147063	\$38.00	1	15,628	28	99.227	1.05500	94.000	93.746	0.254	0.749	1.100	-0.351
14241	6	20,555	47063-1	\$38.00	2	5,828	16	98.077	1.05000	94.000	93.256	0.744	0.643	1.100	-0.457
13977	4	72,754	162107	\$41.75	1	5,500	11	97.615	1.04500	94.000	94.400	0.400	0.874	1.100	-0.226
13977	4	72,754	54122B	\$41.75	1	13,978	28	97.551	1.05500	94.000	93.321	0.679	0.690	1.100	-0.410
14483	3	112,079	5-17	\$36.01	1	3,877	8	95.061	1.04000	94.000	93.663	0.337	1.069	1.100	-0.031
13818	1	84,282	36488-2	\$38.60	1	50,861	103	94.772	1.03358	94.000	94.158	0.158	1.025	1.100	-0.075
13535	3	106,305	′ 6-28 #3	\$32.26	1	11,333	22	94.636	1.04426	94.000	94.495	0.495	0.943	1.100	-0.157
13535	3	106,305	′6-28 #4	\$32.01	1	50,318	103	94.324	1.03001	94.000	94.060	0.060	1.055	1.100	-0.045
13535	3	106,305	76-28	\$32.02	1	4,122	8	92.828	1.04000	94.000	93.275	0.725	0.910	1.100	-0.190
14560	1	55,809	95804	\$37.50	2	53,260	107	91.940	1.01029	94.000	93.471	0.529	1.022	1.100	-0.078
14483	3	112,079	8-11	\$36.27	1	58,111	117	89.796	0.99183	94.000	93.825	0.175	1.215	1.100	0.115
14483	3	112,079	7-23	\$35.95	1	34,408	69	88.860	0.98875	94.000	93.280	0.720	1.035	1.100	-0.065
13977	4	72,754	62107B	\$41.75	1	4,818	10	87.954	1.01919	94.000	93.960	0.040	1.342	1.100	0.242
14657	1	72,845	158244	\$36.25	1	30,005	61	87.722	0.98281	94.000	93.518	0.482	1.209	1.100	0.109
13535	3	106,305	7 6-28 #2	\$32.29	1	2,151	4	52.904	0.87438	94.000	92.175	1.825	2.009	1.100	0.909
Totals - Grading: SX							Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V	
Tons: 352,698 Best:						Best:	100.000	1.05500			0.040	0.478	1.100	-0.622	
		Proces		17		w	orst:	52.904	0.87438			1.825	2.009	1.100	0.909
		16	ests: 7	12 \	Weigh	ted Aver	age:	92.440	1.01573			0.368	1.036	1.100	-0.064

Mat Density - Totals 1/1/2004 to 12/31/2004.

			Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
Tons:	868,004	Best:	100.000	1.05500	0.020	0.478	1.100	-0.622
Processes:	47 1,750	Worst:	52.904	0.87438	1.825	2.009	1.100	0.909
16363.	1,730	Weighted Average:	92.634	1.01820	0.451	0.989	1.100	-0.111

Joint Density - Process Information by Grading, Voids

Criteria: Projects with Start Dates from 1/1/2004 to 12/31/2004.

Processes with less than 3 tests not included.

Gradir	ig S												
Sub.	Reg.	Price	Proc. No	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
13528	4	\$35.00	2	19,427	7	99.938	1.03500	92.00	91.300	0.700	1.537	1.60	-0.063
13528	4	\$38.80	4	37,242	14	98.817	1.04500	92.00	91.630	0.370	1.715	1.60	0.115
14212	2	\$29.25	1	62,761	37	96.675	1.05320	92.00	90.890	1.110	1.599	1.60	-0.001
14146	2	\$50.00	1	55,482	29	95.354	1.04700	92.00	91.450	0.550	1.985	1.60	0.385
13977	4	\$35.40	2	23,862	28	94.784	1.04385	92.00	90.000	2.000	1.253	1.60	-0.347
14706	4	\$32.31	2	26,000	13	93.705	1.04148	92.00	94.030	2.030	1.324	1.60	-0.276
14238	6	\$31.60	2	19,856	19	93.688	1.03985	92.00	89.880	2.120	1.257	1.60	-0.343
14463	2	\$31.94	1	18,759	12	91.171	1.03121	92.00	90.630	1.370	1.983	1.60	0.383
14209	2	\$30.00	1	15,854	8	90.975	1.03449	92.00	90.630	1.370	2.016	1.60	0.416
14237	6	\$32.25	1	15,341	12	90.141	1.02659	92.00	89.770	2.230	1.396	1.60	-0.204
14463	2	\$31.94	2	12,206	11	86.715	1.01193	92.00	89.530	2.470	1.377	1.60	-0.223
14209	2	\$36.20	2	23,519	8	85.319	1.01186	92.00	88.900	3.100	0.855	1.60	-0.745
14239	6	\$31.37	1	13,745	9	85.059	1.00744	92.00	91.990	0.010	2.873	1.60	1.273
14706	4	\$32.31	1	40,000	21	83.470	0.97837	92.00	89.480	2.520	1.513	1.60	-0.087
14240	6	\$33.00	1	8,978	5	67.605	0.94797	92.00	89.620	2.380	3.231	1.60	1.631
14657	1	\$30.00	1	34,798	19	64.423	0.83893	92.00	88.910	3.090	2.422	1.60	0.822
13957	6	\$30.30	1	14,115	12	61.678	0.84693	92.00	88.670	3.330	2.212	1.60	0.612
14613	6	\$32.00	1	37,901	33	56.977	0.74581	92.00	88.270	3.730	1.505	1.60	-0.095
14238	6	\$31.60	1	5,631	5	39.958	0.73955	92.00	87.580	4.420	1.482	1.60	-0.118
Totals	Grad	ling: S											
1 omis	Jiu	uig. D				Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	٧	StDev - V
Proc	esses:	19		1	Best:	99.938	1.05320	92.00		0.010	0.855	1.60	-0.745
	Tests:	302		W	orst:	39.958	0.73955	92.00		4.420	3.231	1.60	1.631
Total	Tons:	485,477	Weig	hted Ave	rage:	85.998	0.98576	92.00	90.368	1.850	1.712	1.60	0.112

Joint Density

Gradin	ig Si	X											
Sub.	Reg.	Price	Proc. No	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	Std Dev	٧	St Dev. - V
14560	1	\$37.50	1	55,260	26	100.000	1.05500	92.00	91.800	0.200	0.950	1.60	-0.650
13818	1	\$38.60	2	51,361	23	95.884	1.05000	92.00	89.660	2.340	0.979	1.60	-0.621
14657	1	\$36.25	2	29,440	24	82.822	0.97050	92.00	90.740	1.260	2.662	1.60	1.062
13535	3	\$32.67	5	53,738	53	79.978	0.92584	92.00	89.690	2.310	2.006	1.60	0.406
14241	6	\$38.00	1	21,456	7	73.509	0.95908	92.00	88.970	3.030	1.483	1.60	-0.117
13977	4	\$41.75	3	33,796	28	69.981	0.86694	92.00	88.670	3.330	1.265	1.60	-0.335
14483	3	\$35.44	1	94,574	79	69.700	0.82813	92.00	89.120	2.880	2.158	1.60	0.558
13535	3	\$32.67	1	11,031	10	57.524	0.82461	92.00	88.610	3.390	3.061	1.60	1.461
Totals	Grad	ling: S2	K			Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
Proce	esses:	8		ı	Best:	100.000	1.05500	92.00		0.200	0.950	1.60	-0.650
	Tests:	250		w	orst:	57.524	0.82461	92.00		3.390	3.061	1.60	1.461
Total	Tons:	350,656	Weig	hted Aver	age:	80.864	0.93495	92.00	89.776	2.224	1.715	1.60	0.115
Joint 1	Densi	ty Total:	5	1/	1/2004	to 12/31/20	004						
						Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev - V
Proc	esses:	27			Best:	100.000	1.05500	92.00		0.010	0.855	1.60	-0.745
	Tests:	552		W	orst:	39.958	0.73955	92.00		4.420	3.231	1.60	1.631
Total	Tons:	836,133	Weig	hted Ave	rage:	83.845	0.96445	92.00	90.120	2.007	1.713	1.60	0.113