Report No. CDOT-2007-15 Final Report

STUDY ON THE EFFECTS OF MIXTURE PROPORTIONING ON THE STRENGTH AND CRACKING TENDENCY OF S50 STRUCTURAL CONCRETE

Panos D. Kiousis Brent Whitcomb Brian O'Connor Kaitlin Schmidt Chiaan (Abe) Chen Gregory Reindl Justin Jones

November 2007

COLORADO DEPARTMENT OF TRANSPORTATION RESEARCH BRANCH

The contents of this report reflect the views of the author(s), who is (are) responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

		rechnical Report Documentation Page		
1. Report No. CDOT-2007-15	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle		5. Report Date November 2007		
STUDY ON THE EFFECTS	OF MIXIURE STRENGTH AND CRACKING			
TENDENCY OF S50 STRUC	CTURAL CONCRETE	6. Performing Organization Code		
7. Author(s)		8. Performing Organization Report No.		
Panos D. Kiousis, Brent Whit	comb, Brian O'Connor, Kaitlin	CDOT-2007-15		
Schmidt, Abe Chen, Greg Rei	ndl, Justin Jones			
9. Performing Organization Name and A Colorado School of Mines	ddress	10. Work Unit No. (TRAIS)		
1600 Illinois Street		11. Contract or Grant No.		
Golden, CO 80401				
12. Sponsoring Agency Name and Addre	255	13. Type of Report and Period Covered		
Colorado Department of Tran	sportation - Research			
4201 E. Arkansas Ave.				
Denver, CO 80222		14. Sponsoring Agency Code		
		84.13		
45 Cumplementer Nietee				

ale in ta al Da

^{15.} Supplementary Notes Prepared in cooperation with the US Department of Transportation, Federal Highway Administration

16. Abstract

Based on the study presented in this report, it was determined that S50 structural concrete can be produced to meet the requirements of the CDOT Standard Specification for Road and Bridge Construction, Section 601. S50 mixes using cement as well as cement/fly ash blends can be successfully produced with the aid of proper high-range water-reducing (HRWR) admixtures. The low w/cm ratios used in this study allow the development of a high-strength structural concrete and low drying shrinkage, while retaining air content between 5% and 8% for freeze/thaw durability.

Implementation:

Production of S50 structural concrete as defined by the CDOT specifications is feasible. The five successful mixes presented here should not be considered as the only possible approach to S50 development. Instead, they should be a starting point for professional mix designers to use to develop reliable and economical mixes that meet CDOT requirements.

^{17. Keywords}		18. Distribution Statement		
high-strength structural concrete, drying shrinkage,		No restrictions. This document is available to		
high-range water-reducing (HRWR) admixtures, fly		the public through the National Technical		
ash, ring tests		Information Service, Springfield, VA 22161		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this pa Unclassified	ge)	21. No. of Pages 22	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Study on the Effects of Mixture Proportioning on the Strength and Cracking Tendency of S50 Structural Concrete

By Panos D. Kiousis Brent Whitcomb Brian O'Connor Kaitlin Schmidt Abe Chen Greg Reindl Justin Jones

Colorado School of Mines

Report No. 2007-15 Final Report

Prepared for The Colorado Department of Transportation Research Branch

November 2007

Colorado Department of Transportation Research Branch 4201 E. Arkansas Ave. Denver, CO 80222 (303) 757-9506

Acknowledgements

The Colorado School of Mines would like to express their utmost gratitude to the Colorado Department of Transportation for the opportunity to both contribute to the improved construction in Colorado, as well as create a learning environment for its students. Sincere appreciation must also be given to BASF – The Chemical Company for their donation of the all chemical admixtures used in this study, to Ready Mixed Concrete for their donation of the coarse and fine aggregates used in the mixes, to Boral Fly Ash for donating Class F and Class C fly ash, and finally to Holcim Cement for their donation of Type I/II cement. The success of this project could not have been achieved without the generosity and commitment to research of all the above organizations. The writers would like to express their thanks to the CDOT Research Branch for their continuous support throughout this study, and specifically to Eric Prieve, Glenn Frieler, Rex Goodrich, Andrew Pott, Michael Gallegos, and Dr. Aziz Khan.

Executive Summary

In December 2007, the Colorado Department of Transportation awarded the Colorado School of Mines a research grant to develop feasible mix proportioning of the S50 concrete. The CDOT Standard Specification for Road and Bridge Construction, Section 601, details the requirements of the S50 structural concrete. Among the requirements in this specification is that the S50 concrete "must not exhibit a crack at or before 14 days in the cracking tendency test (AASHTO PP 34)."

Due to the high-strength requirements of the S50 concrete, large amounts of cementitious materials are required (up to 800 lbs per cubic yard). However, replacement of cement with up to 30% of Class F or 20% of Class C fly ash by weight is acceptable. The use of fly ash may reduce the shrinkage and, therefore, the cracking tendency of concrete. Section 601 also requires the use of an approved water-reducing admixture. The use of a water reducer allows for sufficiently low water to cementitious ratio, which in turn leads to greater compressive strength and reduced drying shrinkage, although autogenous shrinkage may be a concern. The specification also requires a minimum of 55% by weight of total aggregate of AASHTO M 43 size No. 67 coarse aggregate and air content between 5 and 8 percent.

This report presents the mixture proportions of a high-strength, low-shrinkage concrete that satisfies the S50 specification. For the purposes of this study, the proportions of fine and coarse aggregate, as well as cementitious materials were kept constant, leaving the water content and high-range water-reducing (HRWR) admixtures the driving variables for the mix designs.

It was found that the use of HRWR admixtures and fly ash created workable concrete mixes that met both the strength requirements and the cracking tendency test. During the experimental program, two batches of each design were mixed, where each batch created a single ring and compressive cylinder samples. In some cases, small adjustments in water content and HRWR were made to the second batch to adjust workability. Results from the experiments performed confirmed that S50 structural concrete as described in the CDOT specifications is practically feasible.

Table of Contents

Introduction	. 1
I. Aggregate Description	. 2
II. Sieve Analysis	. 2
III. Mix Design Summary	. 3
Mix 13 (Did not satisfy requirements)	. 4
Mix 14 (Did not satisfy requirements)	. 5
Mix 15 (Satisfied requirements)	. 6
Mix 16 (Satisfied requirements)	. 7
Mix 17 (Did not satisfy requirements)	. 8
Mix 18 (Satisfied requirements)	. 9
Mix 19 (Satisfied requirements)	10
Mix 20 (Satisfied requirements)	11
SUMMARY OF SUCCESSFUL MIXES	13
IV. Conclusions and Recommendations	14
References	16

List of Tables & Figures

Table 1: Sieve Analysis for Fine Aggregate	3
Table 2: Sieve Analysis for Coarse Aggregate	3
Table 3: Mix 13 (30% FA-F) Batch Design (1 yd ³)	4
Table 4: Mix 13 (30% FA-F) Strength Results	5
Table 5: Mix 14 (20% FA-F) Batch Design (1 yd ³)	5
Table 6: Mix 14 (20% FA-F) Strength Results	6
Table 7: Mix 15 (20% FA-C) Batch Design (1 yd ³)	6
Table 8: Mix 15 (20% FA-C) Strength Results	7
Table 9: Mix 16 (10% FA-C) Batch Design (1 yd ³)	7
Table 10: Mix 16 (10% FA-C) Strength Results	8
Table 11: Mix 17 (20% FA-C) Batch Design (1 yd ³)	8
Table 12: Mix 17 (20% FA-C) Strength Results	9
Table 13: Mix 18 (Only Cement) Batch Design (1 yd ³)	9
Table 14: Mix 18 (Only Cement) Design & Strength Results 1	0
Table 15: Mix 19 (30% FA-F) Batch Design (1 yd ³) 1	0
Table 16: Mix 19 (30% FA-F) Design & Strength Results 1	1
Table 17: Mix 20 (20% FA-F) Batch Design (1 yd ³) 1	1
Table 18: Mix 20 (20% FA-F) Design & Strength Results 1	12

Introduction

Class S50 concrete is a dense high-strength structural concrete [1]. The S50 concrete must attain 28-day compressive strength of 7250 psi in the field and 8340 psi in a laboratory (115% increase compared to the field value as required by 601-specification [1]). The S50 concrete must also be resistant to cracking as evaluated by the requirement that it must not exhibit a crack at or before 14 days in a constrained shrinkage test (AASHTO PP 34). The high-strength/low-shrinkage requirements are counteracting to some extent, because to achieve high strength, large amounts of cementitious materials are typically required (615 to 800 lbs/yd³), which unfortunately tend to increase shrinkage. Partial replacement of cement with fly ash as well as a low water to cementitious materials ratio (w/cm <0.38) are known to reduce the drying shrinkage. Unfortunately, their effects on autogenous shrinkage are not favorable.

Up to 20% replacement of Class C fly ash or 30% replacement of Class F fly ash is allowed. The performance-enhancing effects of fly ash on workability, pumpability, strength, shrinkage, and permeability have been discussed in the literature [2]. However, the effects of fly ash on shrinkage are not universally accepted. Both positive effects [3] and negative effects [4] have been reported. Cement replacement for Class S50 concrete is allowed with either Class C or Class F fly ash.

This report presents the findings of a research study on the development of five concrete mix types that satisfy the S50 concrete definition. These five mix types have the following characteristics:

Mix Type 1:	100% Cement
Mix Type 2:	80% Cement, 20% Class F fly ash
Mix Type 3:	70% Cement, 30% Class F fly ash
Mix Type 4:	90% Cement, 10% Class C fly ash
Mix Type 5:	80% Cement, 20% Class C fly ash

Each mix was developed to satisfy reasonable workability (slump test), be within an acceptable range of entrained air content (5 to 8%), develop sufficient compressive strength, and finally not crack under restrained shrinkage (ring test) where the temperature was kept between 18°C - 24°C (65°F - 75°F) and relative humidity not exceeding 40%. More than 20 different mixes were tried in a methodically improving/correcting way, which eventually resulted in the successful mixes presented here.

I. Aggregate Description

Both coarse and fine aggregates were obtained locally from a CDOT approved supplier (Ready Mixed Concrete). Whereas the supplier provided the measured water content of the aggregates, additional tests were performed at the structural laboratory of the Colorado School of Mines to verify their water content (ASTM D4959). In addition, gradation tests were performed for both fine and coarse aggregates to verify compliance with stated CDOT requirement: *When placed in a bridge deck, the concrete mix shall consist of a minimum 55 percent AASHTO M 43 size No. 67 coarse aggregate by weight of total aggregate* [1].

II. Sieve Analysis

The sieve analysis was performed for both sand and coarse aggregate. According to the ASTM standard C 136 (AASHTO M6) the sieves required for the sand are No. 4, 8, 16, 30, 50, 100, and 200. After the sieve analysis was completed, the fineness modulus (FM) was 2.77. The required sieves for the coarse aggregate are 1'', 0.75'', 0.5'', 0.3'', No. 4, and No. 8. The ASTM standard C33-03 (AASHTO M43) required 90% to 100% to pass though 0.75'', 20% to 50% at 0.375'', and 0% to 10% at No. 4 sieve. The coarse aggregate that was used all passed the ASTM standard. The detailed analysis was as followed:

Fine Aggregate, total sample weight, 1002 g. The fineness modulus was calculated as follows: FM = (3.30+29.67+58.35+87.22+98.11)/100 = 2.77

				Cumulative	
		Cumulative	Cumulative %	Passing	Cumulative %
Sieve No.	Weight (g)	Retained weight (g)	Retained	Weight (g)	Passing
4	0	0	0	1000.9	100%
8	33	33	3.30	967.9	97%
16	263	297	29.67	704.9	70%
30	287	584	58.35	417.9	42%
50	289	873	87.22	128.9	13%
100	109	982	98.11	19.9	2%
200	15.2	997.3	99.64	4.7	0.4%
Pan	4.7	1002	100		

Table 1: Sieve Analysis for Fine Aggregate

Coarse Aggregate, total sample weight, 2001.7g.

		Cumulative	Cumulative		
		Retaining	Passing		AASHTO
Sieve No.	Weight (g)	Weight (g)	weight (g)	% Passing	M43
1"	0	0	2001.7	100%	100%
0.75"	96.9	96.9	1904.8	95%	90-100%
0.5"	817.1	914	1087.7	54%	
0.375"	614	1528	473.7	24%	20-55%
No. 4	467	1995	6.7	0.3%	0-10%
No. 8	4	1999	2.7	0.1%	0-5%
Pan	2.7	2001.7			

Table 2: Sieve Analysis for Coarse Aggregate

III. Mix Design Summary

The following section summarizes the strength and shrinkage tests of the final eight mix designs (not all of which were successful). Mix designs were identified with numerals 1 though 20 indicating the order in which they were produced. Mixes 1 though 12 were mostly based on ACI recommendations for high strength concrete mix designs [5]. These mixes were only marginally successful in approaching the required performance, and are not listed here. Nevertheless, they were used as a starting point and were gradually adjusted to produce mixes 13 through 20 which are listed here as mixes that succeeded or *almost* succeeded in producing the required quality. With the exception of Mix 14, all mix designs were tested using two batches, in order to have sufficient material for two ring tests and an adequate number of compressive cylinders. Note that the water contribution of the fine aggregate and the HRWR is included within the water

given in the proportion tables. For example, in Table 3, the total water in the mix is 216 lbs, where 34.9 lbs of water was contributed by the fine aggregate, 5.5 lbs from the HRWR and 175.6 lbs of free water was added. It is also noted, that when time and space allowed, the rings stayed in their drying environment for more than 14 days to see if failure could be achieved within a reasonable (available) time. We found it necessary to include the water contribution of the HRWR, because there exist HRWR agents that are mostly water, and others that have very little water. It may be misleading to any designer if this is excluded. The HRWR used in this study (Glenium 3030) is 80% water, which contributes between 2% and 5% of the total water.

Mix 13 (Did not satisfy requirements)

Mix 13 was proportioned with 30% replacement of Type F Fly Ash. This was a very workable mix with a high slump. The first batch, 13A, had a slump of almost 8 inches. The second batch, 13B, was slightly adjusted in HRWR and water to reduce the slump without significant change in workability. Both batches of Mix 13 satisfied the 14-day shrinkage test, but neither batch was able to achieve the required 28-day compressive strength. **Thus, mix 13 was rejected.**

Mix 13A – Proportions	Lbs/cy	Water Contribution
Type I/II Cement	560	
Class F Fly Ash	240	
3/4" Aggregate	1789	0.0
Fine Aggregate	1162	34.9
Total Water	216	
Admixtures	mL/cy	
Glenium 3030	3086	5.5
Micro Air (AE 90)	49.0	
w/cem =	0.27	
Air = Slump =	6.6 7.9 in	

Water Mix 13B - Proportions lbs/cy Contribution Type I/II Cement 560 Class F Fly Ash 240 3/4" Aggregate 1789 0.0 34.9 Fine Aggregate 1162 **Total Water** 216 Admixtures mL/cy Glenium 3030 2604 4.7 Micro Air (AE 90) 44.4 w/cem = 0.27 Air = 6.4 Slump = 4.3 in

$\mathbf{I} \mathbf{A} \mathbf{D} \mathbf{C} \mathbf{J} \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{J} \mathbf{I} \mathbf{J} \mathbf{U} \mathbf{I} \mathbf{A} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{D} \mathbf{C} \mathbf{A} \mathbf{U} \mathbf{I} \mathbf{D} \mathbf{C} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$
--

Mix 13 A/B							
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)
	Mix 13A-1	5976.5			42.1		
	Mix 13A-2	5974.8	5769.2	69.2 412.6	42.1	40.5	3.3
7 days	Mix 13A-3	5975.2			42.1		
	Mix 13A-4	5150.3			35.5		
	Mix 13B-1	6487.7	5864.7	5864.7 1045.7	44.7		
	Mix 13B-2	4991.8			34.4	40.4	7.2
	Mix 13B-3	4965.1			34.2		
	Mix 13B-4	7014			48.4		
	Mix 13A-5	7363			50.8		
20 dovo	Mix 13A-6	6715	7023.8	7022 0 247 2	46.3	48.4	2.4
	Mix 13A-7	7283		347.2	50.2		
20 uays	Mix 13A-8	6734			46.4		
	Mix 13B-5	7062	7147.0	120.2	48.7	40.2	0.8
	Mix 13B-6	7232	/ 14/.0	120.2	49.9	49.3	0.8
Rings did not cr	ack before 14 d	ays					

 Table 4: Mix 13 (30% FA-F) Strength Results

Mix 14 (Did not satisfy requirements)

Mix 14 was proportioned with 20% replacement of Type F Fly Ash. Only one batch of this mix design was made due to procedural changes attempting to create two rings from a single batch. The mix did not have desirable workability and had a low slump. The mix did pass the 14-day shrinkage test, and was not able to pass the 28-day compressive strength test. **Thus, mix 14 was rejected.**

Mix 14 – Proportions	Lbs/cy	Water Contribution
Type I/II Cement	640	
Class F Fly Ash	160	
¾" Aggregate	1789	0.0
Fine Aggregate	1182	35.5
Total Water	216	
Admixtures	mL/cy	
Glenium 3030	3086	5.5
Micro Air (AE 90)	44.4	
w/cem	= 0.27	
Air	= 4.5	
Slump	= 2.0 in	

Table 5: Mix 14 (20% FA-F) Batch Design (1 yd³)

Mix 14							
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)
	Mix 14-1	5256	- 5574 258.9 -	36.2			
7 days	Mix 14-R1	5890		258.9	40.6	38.4	1.8
	Mix 14-R2	5568			38.4		
	Mix 14-R3	5582			38.5		
	Mix 14-11	8132	8200	62.6	56.1	56.6	0.4
28 days	Mix 14-18	8165			56.3		
	Mix 14-19	8232			56.8		
	Mix 14-20	8270			57.0		
Rings did not c	rack before 14 o	days					

 Table 6: Mix 14 (20% FA-F) Strength Results

Mix 15 (Satisfied requirements)

Mix 15 was proportioned with 20% replacement of Type C Fly Ash. This was the first mix in which we used Type C Fly Ash. Two batches were made for Mix 15. Mix 15A had a low slump and was not very workable. For the second batch, 15B, an adjustment in the amount of HRWR resulted in sufficient workability. Each of the Mix 15 batches satisfied the shrinkage and the 28-day compressive strength test requirements. **Thus, mix 15 is considered successful.**

	Table 7. WIX 13 (2070			
Mix 15A - Proportions	lbs/cy	Water Contribution		
Type I/II Cement	640			
Class C Fly Ash	160			
3/4" Aggregate	1790	0.0		
Fine Aggregate	1182	35.5		
Total Water	222			
Admixtures	mL/cy			
Glenium 3030	3085	5.5		
Micro Air (AE 90)	46.3			
w/cem =	0.28			
Air =	4.9			
Slump =	1.25 in			

Table 7: Mix 15	(20% FA-C) Batch	Design (1 vd ³	"
			,

Mix 15B - Proportions	lbs/cy	Water Contribution
Type I/II Cement	640	
Class C Fly Ash	160	
3/4" Aggregate	1790	0.0
Fine Aggregate	1182	35.5
Total Water	218	
Admixtures	mL/cy	
Glenium 3030	4050	7.3
Micro Air (AE 90)	44.4	
w/cem =	0.27	
Air =	7.9	
Slump =	7.0 in	

Mix 15 A/B										
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)			
	Mix 15A-1	5761			39.7					
	Mix 15A-2	8006	6551 3	1053.0	55.2	15.2	73			
	Mix 15A-3	6646	0351.5	1055.0	45.8	45.2	7.5			
	Mix 15A-R1	5792			39.9					
7 Days	Mix 15B-1	5021	6371.5		34.6					
	Mix 15B-2	7002		6271 5	6274 5	6274 5	1197.0	48.3	44.0	8.2
	Mix 15B-3	5797		1107.0	40.0		0.2			
	Mix 15B-4	7666			52.9					
	Mix 15A-4	9916			68.4					
	Mix 15A-5	9692	0119 5	1414.2	66.8	62.9	9.7			
	Mix 15A-6	7002	9110.5	1414.2	48.3					
28 days	Mix 15A-R2	9864			68.0					
20 uays	Mix 15B-5	9253			63.8					
	Mix 15B-6	9058	0622.0	602.0	62.5	66 4	10			
	Mix 15B-7	10396	9633.0	003.9	71.7	00.4	4.2			
	Mix 15B-8	9825			67.7					
Rings did not crack before 14 days. After 14 days the specimens were removed without achieving crack.										

Table 8: Mix 15 (20% FA-C) Strength Results

Mix 16 (Satisfied requirements)

Mix 16 was proportioned with 10% replacement of Type C Fly Ash. Mix 15A, the first batch using Class C fly ash, had a low slump, and was not very workable. A minor adjustment in HRWR was sufficient to improve the workability (expressed by the slump). For Mix 16, the HRWR was increased, compared to Mix 15, to account for the lower replacement of fly ash. Both strength and shrinkage requirements were met for Mix 16. **Thus, mix 16 is considered successful.**

Mix 16A – Proportions	lbs/cy	Water Contribution
Type I/II Cement	720	
Class C Fly Ash	80	
3/4" Aggregate	1789	0.0
Fine Aggregate	1202	36.1
Total Water	218	
Admixtures	mL/cy	
Glenium 3030	4050	7.3
Micro Air (AE 90)	48.2	
w/cem =	0.27	
Air =	7.0	
Slump =	2.5 in	

Table 9: Mix 16 (10% FA-C) Batch Design (1 yd³)

Mix 16B – Proportions	lbs/cy	Water Contribution
Type I/II Cement	720	
Class C Fly Ash	80	
3/4" Aggregate	1789	0.0
Fine Aggregate	1202	36.1
Total Water	220	
Admixtures	mL/cy	
Glenium 3030	5014	9.0
Micro Air (AE 90)	44.4	
w/cem =	0.28	
Air =	6.6	
Slump =	4.0 in	

Mix 16 A/B							
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)
	Mix 16A-1	8502			58.6		
	Mix 16A-2	7415	8169 5	506 3	51.1	56 3	3.5
	Mix 16A-3	8379	0103.5	500.5	57.8	50.5	3.5
7 days	Mix 16A-4	8382			57.8		
7 days	Mix 16B-1	6685	7416.5		46.1		
	Mix 16B-2	6652		873.2	45.9	51.2	6.0
	Mix 16B-3	8008			55.2		
	Mix 16B-4	8321			57.4		
	Mix 16A-5	10444			72.0		
	Mix 16A-6	10574	10051 3	580 4	72.9	69.3	4.0
	Mix 16A-7	9307	10051.5	500.4	64.2		
28 days	Mix 16A-8	9880			68.1		
20 uays	Mix 16B-5	9118			62.9		
	Mix 16B-6	9942	0664.2	414 7	68.5	66.6	2.0
	Mix 16B-7	9570	9004.3 414.7	414.7	66.0		2.0
	Mix 16B-8	10027			69.1		
Rings did not cr	ack before 14 c	lays. After 14 da	ays the specime	ns were remo	ved without ach	nieving crack.	

 Table 10: Mix 16 (10% FA-C) Strength Results

Mix 17 (Did not satisfy requirements)

Mix 17 was proportioned with 20% replacement of Class C Fly Ash. Two batches of Mix 17 were made, and no adjustments were made between batches. Mix 17B was less workable than Mix 17A despite identical proportioning of the materials. One of the two rings cracked at 9 days, and thus the test is considered a failure. A technical difficulty forced us to remove these outer ring-molds at 16 hours rather than 24 hours as is required by the AASHTO specification. It is believed that this may have influenced adversely the capacity of the ring to resist cracking. The test is considered a failure, and as a result, the 28 day compressive strength tests were not performed. **Thus, mix 17 was rejected.**

Mix 17A – Proportions	lbs/cy	Water Contribution
Type I/II Cement	640	
Class C Fly Ash	160	
3/4" Aggregate	1790	0.0
Fine Aggregate	1182	35.5
Total Water	208	
Admixtures	mL/cy	
Glenium 3030	4435	8.0
Micro Air (AE 90)	44.3	
w/cem =	0.26	
Air =	7.2	
Slump =	4.75 in	

Table 11: Mix 17 (20% FA-C) Batch Design (1 yd³)

Mix 17B – Proportions	lbs/cy	Water Contribution
Type I/II Cement	640	
Class C Fly Ash	160	
3/4" Aggregate	1790	0.0
Fine Aggregate	1182	35.5
Total Water	208	
Admixtures	mL/cy	
Glenium 3030	4435	8.0
Micro Air (AE 90)	44.4	
w/cem Air Slump	0.26 5.5 2.50 in	

Mix 17 A/B							
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)
	Mix 17A-1	8041			55.4		
	Mix 17A-2	6360	7756 5	1107.0	43.9	53 5	76
	Mix 17A-3	9029	1150.5	1107.0	62.3	55.5	7.0
7 davs	Mix 17A-4	7596			52.4		
r uays	Mix 17B-1	7686			53		
	Mix 17B-2	8647	8106 5	/13.7	59.6	55 0	28
	Mix 17B-3	8183	0100.5	413.7	56.4	55.5	2.0
	Mix 17B-4	7910]		54.5		
	Mix 17A-5	N/A			N/A		
	Mix 17A-6	N/A	N/A	N/A	N/A	N/A	NI/A
	Mix 17A-7	N/A	IN/A	N/A	N/A	IN/A	IN/A
28 days	Mix 17A-8	N/A			N/A		
20 uays	Mix 17B-5	N/A			N/A		
	Mix 17B-6	N/A	N/A	N/A	N/A	N/A	NI/A
	Mix 17B-7	N/A	IN/A	N/A	N/A	IN/A	IN/A
	Mix 17B-8	N/A	l		N/A		
Outer Rings removed after 16 hours of curing							
* Ring 17B cra *Ring 17A did cracked before	acked after 9 day not crack before 1 e 14 days.	s 4 days, and ther	n was removed fo	or further testing	, as we conside	red failure if any o	f the two rings

 Table 12: Mix 17 (20% FA-C) Strength Results

Mix 18 (Satisfied requirements)

Mix 18 was proportioned without fly ash. As expected, the lack of the lubricating action of the fly-ash spheres resulted in an increased demand of HRWR for the mix to achieve sufficient workability for the formation of the first batch. Small adjustments in water (increase) and HRWR (decrease) were attempted successfully in the second batch. Not surprising, this *all-cement* mix produced a 7-day strength that approached 90% of the required 28-day strength. **Mix 18 is considered successful.**

		· · · ·
Mix 18A – Proportions	lbs/cy	Water Contribution
Type I/II Cement	800	
Class F Fly Ash	0	
3/4" Aggregate	1789	0.0
Fine Aggregate	1222	36.7
Total Water	219	
Admixtures	mL/cy	
Glenium 3030	5979	10.7
Micro Air (AE 90)	44.4	
w/cem =	0.27	
Air =	5.4	
Slump =	2.4 in	

 Table 13: Mix 18 (Only Cement) Batch Design (1 yd³)

Mix 18B – Proportions	lbs/cv	Water Contribution
Type I/II Cement	800	Contribution
Class F Fly Ash	0	
3/4" Aggregate	1789	0.0
Fine Aggregate	1222	36.7
Total Water	235	
Admixtures	mL/cy	
Glenium 3030	4436	8.0
Micro Air (AE 90)	44.4	
w/cem =	0.29	
Air =	4.8	
Slump =	1.125 in	

Mix 18 A/B								
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)	
	Mix 18A-1	8568	8321.3	977.6	59.1			
	Mix 18A-2	7956			54.9	57 A	67	
	Mix 18A-3	7226			49.8	57.4	0.7	
7 days	Mix 18A-4	9535			65.7			
7 uays	Mix 18B-1	8196			56.5	52.1		
	Mix 18B-2	6783	7550.0	723.3	46.8		5.0	
	Mix 18B-3	8138			56.1		3.0	
	Mix 18B-4	7083			48.8			
	Mix 18A-5	10777		325.1	74.3	72.3		
	Mix 18A-6	10521	40400.0		72.5		2.2	
	Mix 18A-7	10642	10492.0		73.4			
28 days	Mix 18A-8	10031			69.2			
20 uays	Mix 18B-5	8960			61.8			
	Mix 18B-6	9775	0662 5	9662.5 515.4	67.4	66.6	2.6	
	Mix 18B-7	9716	9662.5		67.0		3.0	
	Mix 18B-8	10199			70.3			
Rings did not o	crack before 14 d	ays. After 14	days, the speci	mens were rer	moved without	achieving crack		

 Table 14: Mix 18 (Only Cement) Design & Strength Results

Mix 19 (Satisfied requirements)

Mix 19 was proportioned with 30% replacement of Class F Fly Ash. The main difference between Mix 19 and Mix 13 is an increase in HRWR, accompanied by a decrease in water content with the intent of increasing the compressive strength. Note that the increase in compressive strength did not affect the results of the ring tests. **Mix 19 is considered successful.**

	Table 15.	WIIX 19 (30 /0 1
Mix 19A – Proportions	lbs/cy	Water Contribution
Type I/II Cement	559	
Class F Fly Ash	240	
3/4" Aggregate	1790	0.0
Fine Aggregate	1182	35.5
Total Water	233	
Admixtures	mL/cy	
Glenium 3030	4050	7.3
Micro Air (AE 90)	44.3	
w/cem =	0.29	
Air =	6.5	
Slump =	7.25 in	

 Table 15: Mix 19 (30% FA-F) Batch Design (1 yd³)

lbs/cy	Water Contribution
559	
240	
1790	0.0
1182	35.5
216	
mL/cy	
4050	7.3
44.4	
• 0.27	
6.8	
- 7.00 in	
	Ibs/cy 559 240 1790 1182 216 mL/cy 4050 44.4 0.27 6.8 7.00 in

Mix 19 A/B								
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)	
	Mix 19A-1	4763		005 F	32.8			
7 days	Mix 19A-2	6942	5752.0		47.9	39.7	6.0	
	Mix 19A-3	6180		995.5	42.6		0.9	
	Mix 19A-4	5123			35.3			
	Mix 19B-1	6553			45.2	44.5		
	Mix 19B-2	6758	6456.3	802.5	46.6		5.5	
	Mix 19B-3	7193			49.6			
	Mix 19B-4	5321			36.7			
	Mix 19A-5	10070		401.4	69.4	68.1	2.8	
	Mix 19A-6	9274	9874.0		63.9			
	Mix 19A-7	10035			69.2			
28 days	Mix 19A-8	10117			69.8			
20 uays	Mix 19B-5	8508			58.7	61.6		
	Mix 19B-6	8864	8030 8	491.0	61.1		3.3	
	Mix 19B-7	8760	0555.0	401.5	60.4			
	Mix 19B-8	9627			66.4			
Ring 19A did no	ot crack after 21	days.						
Ring 19B crack	ed after 16 days							

Table 16: Mix 19 (30% FA-F) Design & Strength Results

Mix 20 (Satisfied requirements)

Mix 20 was proportioned with 20% replacement of Class F Fly Ash. The recipe is similar to mix 14, with exception of the water quantity. **Mix 20 is considered successful.**

		• ======= (=• ;
Mix 20A – Proportions	lbs/cy	Water Contribution
Type I/II Cement	640	
Class F Fly Ash	160	
3/4" Aggregate	1789	89.5
Fine Aggregate	1182	35.5
Total Water	202	70.3
Admixtures	mL/cy	
Glenium 3030	3857	6.9
Micro Air (AE 90)	48.2	
w/cem =	0.25	
Air =	5.6	
Slump =	2.75 in	

 Table 17: Mix 20 (20% FA-F) Batch Design (1 yd³)

	<u> </u>	
Mix 20B – Proportions	lbs/cy	Water Contribution
Type I/II Cement	640	
Class F Fly Ash	160	
3/4" Aggregate	1789	89.5
Fine Aggregate	1182	35.5
Total Water	202	69.9
Admixtures	mL/cy	
Glenium 3030	4050	7.3
Micro Air (AE 90)	44.4	
w/cem =	0.25	
Air =	5.0	
Slump =	1.375 in	

Mix 20 A/B							
Time of Break	Sample #	Strength (psi)	Avg. Strength (psi)	Std. Dev. (psi)	Strength (MPa)	Avg. Strength (MPa)	Std. Dev. (MPa)
	Mix 20A-1	5469		1074.9	37.7		
	Mix 20A-2	6378	6760 5		44.0	47.5	8.1
	Mix 20A-3	7924	0709.5		54.6	47.5	0.1
7 dave	Mix 20A-4	7307			53.8		
7 days	Mix 20B-1	7658			52.8		
	Mix 20B-2	7770	7651.5	574.7	53.6	52.8	4.0
	Mix 20B-3	8285			57.1		4.0
	Mix 20B-4	6893			47.5		
	Mix 20A-5	9239		375.1	63.7	67.2	
	Mix 20A-6	10018	9749.5		69.1		26
	Mix 20A-7	9697			66.9		2.0
28 days	Mix 20A-8	10044			69.3		
20 0895	Mix 20B-5	10614			73.2		
	Mix 20B-6	10318	10227.0	246.2	71.1	71.2	24
	Mix 20B-7	9855	10337.0	540.2	68.0	71.3	2.4
	Mix 20B-8	10561		72.8			
Ring 20A did not	crack after 20 da	iys.					
Ring 20B cracke	d after 15 days.						

Table 18: Mix 20 (20% FA-F) Design & Strength Results

A GENERNAL NOTE ON THE RING TESTS

Strain versus age for the ring tests was impossible to record, given the time constraints of this project. A pair of rings requires eight simultaneous strain gage recordings. At least 20 mixes were examined during the course of this research study, where typically two different mixes were created per week. This means that at any time, there were eight rings in our temperature and humidity control room. Such testing requires thirty two simultaneous strain gage recordings. Unfortunately, such requirement could not be met by the available hardware in our laboratory, and the cost of expanding our capabilities to this level was prohibitive for the available project budget. As a result, a very detailed visible inspection performed by at least two separate inspectors (in most cases more) was used to detect if a crack was developed.

SUMMARY OF SUCCESSFUL MIXES

Mix A – Proportions	lbs/cy	Water Contribution	Mix B – Proportions	lbs/cy	Water Contribution
Type I/II Cement	800		Type I/II Cement	800	
Class F Fly Ash	0		Class F Fly Ash	0	
34" Aggregate	1789	0.0	3/4" Aggregate	1789	0.0
Fine Aggregate	1222	36.7	Fine Aggregate	1222	36.7
Water	219		Water	235	
Admixtures	mL/cy		Admixtures	mL/cy	
Glenium 3030	5979	10.7	Glenium 3030	4436	8.0
Micro Air (AE 90)	44.4		Micro Air (AE 90)	44.4	
w/cem =	0.27		w/cem =	0.29	
Air =	5.4		Air =	4.8	
Slump =	2.4 in		Slump =	1.125 in	

Batch Design for S50 concrete with no fly ash (1 yd³)

Ratch Design for \$50 concrete with	100/ Fly Ash type C replacement (1 yd ³)
Datch Design for 550 concrete with	10 /o Fly Ash type C replacement (1 yu)

		Water
Mix A – Proportions	lbs/cy	Contribution
Type I/II Cement	720	
Class C Fly Ash	80	
34" Aggregate	1789	0.0
Fine Aggregate	1202	36.1
Water	218	
Admixtures	mL/cy	
Glenium 3030	4050	7.3
Micro Air (AE 90)	48.2	
w/cem =	0.27	
Air =	7.0	
Slump =	2.5 in	

Mix B – Proportions	lbs/cv	Water Contribution
	720	Contribution
	80	
	00	0.0
³ Aggregate	1789	0.0
Fine Aggregate	1202	36.1
Water	220	
Admixtures	mL/cy	
Glenium 3030	5014	9.0
Micro Air (AE 90)	44.4	
w/cem =	0.28	
Air =	6.6	
Slump =	4.0 in	

Batch Design for S50 concrete with 20% Fly Ash type C replacement (1 yd³)

		Water
Mix A - Proportions	lbs/cy	Contribution
Type I/II Cement	640	
Class C Fly Ash	160	
34" Aggregate	1790	0.0
Fine Aggregate	1182	35.5
Water	222	
Admixtures	mL/cy	
Glenium 3030	3085	5.5
Micro Air (AE 90)	46.3	
w/cem =	0.28	
Air =	4.9	
Slump =	1.25 in	

Mix B - Proportions	lbs/cy	Water Contribution
Type I/II Cement	640	
Class C Fly Ash	160	
3/4" Aggregate	1790	0.0
Fine Aggregate	1182	35.5
Water	218	
Admixtures	mL/cy	
Glenium 3030	4050	7.3
Micro Air (AE 90)	44.4	
w/cem =	0.27	
Air =	7.9	
Slump =	7.0 in	

		Water]			Water
Mix A - Proportions	lbs/cy	Contribution		Mix B – Proportions	lbs/cy	Contribution
Type I/II Cement	640			Type I/II Cement	640	
Class F Fly Ash	160			Class F Fly Ash	160	
34" Aggregate	1789	89.5		3/4" Aggregate	1789	89.5
Fine Aggregate	1182	35.5		Fine Aggregate	1182	35.5
Water	202	70.3		Water	202	69.9
Admixtures	mL/cy			Admixtures	mL/cy	
Glenium 3030	3857	6.9		Glenium 3030	4050	7.3
Micro Air (AE 90)	48.2			Micro Air (AE 90)	44.4	
w/cem =	0.25	•		w/cem =	0.25	
Air =	5.6			Air =	5.0	
Slump =	2.75 in			Slump =	1.375 in	

Batch Design for S50 Concrete with 20% Fly Ash type F replacement (1 yd³)

Dutch Design for bee concrete with 5070 rightsh type r replacement (r yu)

		Water			Water
Mix A - Proportions	lbs/cy	Contribution	Mix B – Proportions	lbs/cy	Contribution
Type I/II Cement	559		Type I/II Cement	559	
Class F Fly Ash	240		Class F Fly Ash	240	
34" Aggregate	1790	0.0	3/4" Aggregate	1790	0.0
Fine Aggregate	1182	35.5	Fine Aggregate	1182	35.5
Water	233		Water	216	
Admixtures	mL/cy		Admixtures	mL/cy	
Glenium 3030	4050	7.3	Glenium 3030	4050	7.3
Micro Air (AE 90)	44.3		Micro Air (AE 90)	44.4	
w/cem =	0.29		w/cem =	0.27	
Air =	6.5		Air =	6.8	
Slump =	7.25 in		Slump =	7.00 in	

IV. Conclusions and Recommendations

Based on the study presented in this report, it was determined that S50 structural concrete can be produced to meet the requirements of the CDOT Standard Specification for Road and Bridge Construction, Section 601. S50 mixes using cement as well as cement/fly ash blends can be successfully produced with the aid of proper HRWR admixtures. The low w/cm ratios used in this study allow the development of a high-strength structural concrete and low drying shrinkage, while retaining air content between 5% and 8% for freeze/thaw durability.

It was also found here that mixes with higher quantities of fly ash (cement replacement) can produce workable mixes with lower amounts of HRWR admixtures. This is attributed to the lubricating nature of fly ash. It should be pointed out however, that the increased amounts of fly ash as a concrete replacement also result in lower early strength. These are significant points to consider when economy of mix design and needs for early strength is considered.

References

[1] Colorado Department of Transportation (2006), *Revision of Sections 601 And 701 Structural Concrete*, October 19, 2006.

- [2] A. M. Neville (1996), *Properties of Concrete*, Fourth Edition, John Wiley and Sons Inc., p. 844.
- [3] P. J. Tikalsky, P. M. Carrasquillo, and R. L. Carrasquillo, (1988), "Strength and Ductility Considerations Affecting Mix Proportioning of Concrete Containing Fly Ash," ACI Materials Journal, Vol. 49, No. 6, pp. 505-511.
- [4]. J. J. Brooks, and A. Neville, (1992), "Creep and Shrinkage of Concrete as affected by Admixtures and Cement Replacement Materials," *Creep and Shrinkage of Concrete: Effect* of Materials and Environment, ACI SP-135, pp. 19-36.
- [5] ACI 211.4R-93 Guide for Selecting Proportions for High-Strength Concrete with Portland Cement and Fly Ash.