

DEVELOPMENT OF STEEL DESIGN DETAILS AND SELECTION CRITERIA FOR COST-EFFECTIVE AND INNOVATIVE STEEL BRIDGES IN COLORADO

John W. van de Lindt, Alexander J. Stone, and Suren Chen

December 2008

COLORADO DEPARTMENT OF TRANSPORTATION DTD APPLIED RESEARCH AND INNOVATION BRANCH The contents of this report reflect the views of the author(s), who is(are) responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

		reci	inicai Kepon Do	cumentation rage	
1. Report No. 2. C CDOT-2008-12	Government Accession No.	3. Rec	ipient's Catalog No.		
4. Title and Subtitle DEVELOPMENT OF STEEL DESIGN I CRITERIA FOR COST-EFFECTIVE AN			ort Date mber 2008		
BRIDGES IN COLORADO		6. Per	6. Performing Organization Code		
7. Author(s)			orming Organization	n Report No.	
John W. van de Lindt, Alexander J. Stone, and Suren Chen		CDO'	Γ-2008-12		
9. Performing Organization Name and Address Colorado State University Department of Civil Engineering Campus Mail Stop 1372		10. Wo	ork Unit No. (TRAIS)		
			11. Contract or Grant No.		
Fort Collins, CO 80523-1372		81.30			
12. Sponsoring Agency Name and Address	D 1	13. Ty	pe of Report and Pe	riod Covered	
Colorado Department of Transportation - 4201 E. Arkansas Ave.	Research				
Denver, CO 80222		14 Sn	onsoring Agency Co	nde	
		1 0			
15. Supplementary Notes Prepared in cooperation with the US Department of the US Department o	artment of Transportation, Fed	eral Highway A	dministration		
In recent years, prestressed concrete bridge to a lack of steel mills combined with a steconomical and innovative procedures to Colorado. During this research it was ide continuous for composite dead loads and using this design procedure. The softward other design inputs, and displays the light Specifications. Using the girder selection length and number of girders. Implementation: The design charts will aid the bridge type requirements for numerous one, two, and Transportation (CDOT) and others who we steel girder bridges.	rong presence of precast fabric design and construct steel brid ntified that designing steel gird live loads would provide econe takes user inputted data, such est wide flange beam size that a software, design charts and take selection process by giving dethree span steel bridges. This	actors in the reg ges has hindereders as simply somy. A prelimit as span length would support bles were created signers an accuresearch has pre-	ion. In addition, a d the industry in o upported for the n nary girder select , width, number o the loads using A ed to outline struc rate measurement ovided the Colora	a lack of readily available certain areas such as son composite dead loads and ion software was created f girders along with various ASHTO LRFD Design tural steel weight to span of minimum steel do Department of	
17. Keywords steel girders, simple made continuous steel bridges, wide flange beams, composites, dead loads, live loads		18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service Springfield, VA 22161; www.ntis.gov			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page Unclassified	9)	21. No. of Pages 165	22. Price	
			1	1	

DEVELOPMENT OF STEEL DESIGN DETAILS AND SELECTION CRITERIA FOR COST-EFFECTIVE AND INNOVATIVE STEEL BRIDGES IN COLORADO

by

John W. van de Lindt, Associate Professor Alexander J. Stone Suren Chen, Assistant Professor Colorado State University

Report No. CDOT-2008-12

Sponsored by the Colorado Department of Transportation

December 2008

Colorado Department of Transportation
DTD Applied Research and Innovation Branch
4201 E. Arkansas Ave.
Denver, CO 80222

ACKNOWLEDGEMENTS

The authors would like to thank all study panel members including Aziz Khan (Project Manager), Mahmood Hasan, Trever Wang, An Tran, Matt Greer, and Teddy Meshesha for their support and advice during the project. The second author would also like to thank the American Institute of Steel Construction (AISC) – Rocky Mountain Region, for providing a Graduate Fellowship, which provided funding for the latter portion of his participation in this study.

Opinions expressed in this report are those of the writers and do not necessarily reflect those of CDOT.

EXECUTIVE SUMMARY

This research focused on finding a method for creating cost-effective and innovative steel bridges in Colorado. The design method that was discovered to create this cost efficiency was designing the beams as simply supported for non composite dead loads, beam weight and wet concrete, and then making the beams continuous at the pier for composite dead loads and live loads. This method eliminates the need for an expensive field spice and simplifies design details at the interior support, creating cost savings. During the research, a software package was created at Colorado State University that takes user inputted data such as span lengths, out to out width, number of girders, and overhang along with various other inputs and outputs the lightest wide flange shape that will satisfy the loading. The girders were designed using appropriate provisions from the AASHTO LRFD Bridge Design Specifications 4th edition 2007.

Once the program was completed, design charts and design tables were created for several one, two and three span steel bridges. Each span arrangement for the design charts and tables was made using full widths of 39 ft, 44 ft, and 60 ft. Each chart and table depicted how the structural steel weight per square foot changes as the number of girders was increased as well as providing the lightest wide flange shape required to support the deck and traffic loads. These charts and tables also illustrate how the amount of structural steel needed changes when different spans were used.

Implementation Statement

The design charts will aid the bridge type selection process by giving designers an accurate measurement of minimum steel requirements for numerous one, two, and three span steel bridges. Steel fabrication and erection cost were gathered from regional steel

fabricators and bridge contractors. This cost information led to an accurate measurement of the cost per square foot for the structural steel of a bridge to be built in the state of Colorado. Overall, this research has provided CDOT and others who will use the software or design charts a tool that will facilitate the construction of innovative steel girder bridges.

TABLE OF CONTENTS

1.	Introduction	1
	1.1. Background	1
	1.2. Research Motivation	1
	1.3. Literature Review	
	1.3.1. Nebraska	. 3
	1.3.2. Tennessee	5
	1.3.3. Ohio	
	1.3.4. New Mexico	
	1.3.5. Colorado	10
	1.3.6. Comparison Between States	
	1.4. Selection of Design Method	
	1.5. Objectives	
	1.6. Report Organization	
	1.0. Report Organization	15
2.	Design of a Simple Made Continuous Steel Bridge Girder System	16
	2.1. Introduction.	
	2.2. Design Background	
	2.3. Assumptions.	
	2.4. Design Steps.	
	2.5. Loads.	
	2.5.1. Live Load Moment and Shear Distribution	
	2.6. Flexure.	
	2.6.1. Positive Moment Flexure (Composite Only)	
	2.6.2. Negative Moment Flexure (At Pier Bearing Location Only)	
	2.7. Shear	
	2.8. Stress.	
	2.9. Summary	
	2.7. Summary	20
3.	Development of Design Software	27
•	3.1. Introduction.	
	3.2. Assumptions.	
	3.3. Data Input	
	3.4. Girder Sizing.	
	3.5. Global Stiffness Analysis Program	
	3.6. Excel Macro.	
	3.7. Excel Design Calculations	
	3.7.1. Flexure	
	3.7.2. Shear	
	3.7.3. Stress	
	3.8. Summary	
	5.6. Summary	30
4	Design Charts	30
₹.	4.1. Introduction.	
	4.1. Introduction	30

	4.2.1. Assumptions	42
	4.3. Design Tables	44
	4.4. Updating the Steel Costs	45
	1.5. Summary	46
5.	Conclusions and Recommendations	
	5.1. Report Summary	
	5.2. Conclusions	
	5.3. Recommendations for Future Research	
Re	erences	52
_	endix A - Sample Calculations	
	endix B - Design Charts	
	endix C - Design Tables	
_	endix D - Design Detailsendix E - CSU-CBA User's Manual and Examples	
_	endix F - Colorado Permit Truck Analysis User's Manual	
_	endix G - Girder Selection Design Software Logic	
_		
LI	T OF FIGURES	
Fig	re 1-1: Detail of Connection Designed by the University of Nebraska	. 4
Fig	re 1-2: Making a Continuous Beam with Concrete Diaphragm	. 5
Fig	re 1-3: Initial Tennessee Beam Connection	6
Fig	re 1-4: Tennessee Design Detail for Continuity at Pier	7
Fig	re 1-5: Concrete Diaphragm Details at Pier on Scioto River Bridge	. 9
Fig	re 1-6: Detail of Connection Plate on Top Flanges on NM 187 Bridge	10
Fig	re 1-7: Colorado Beam Continuity Connection above Pier Cap	. 11
Fig	re 3-1: Data Input in Girder Selection Design Software	29
Fig	re 3-2: Global Stiffness Analysis Program CSU-CBA	30
Fig	re 3-3: Live Loads into Global Stiffness Analysis Program	31
Fig	re 3-4: Shear and Moment Diagrams with Traffic and Dead Load Two Loads	32
Fig	re 3-5: Output of Lightest Girders from Girder Selection Design Software	33
Fig	re 3-6: Extreme Results Data	34
_	re 3-7: Positive and Negative Flexural Check in Spreadsheet	
Fig	re 3-8: Shear Check in Spreadsheet	36
Fig	re 3-9: Elastic Section Properties for Long/Short Term and Negative Section	37
Fig	re 3-10: Flange Stresses in Positive and Negative Sections	37

Figure 4-1: Example of a 2 Span Design Chart	40
Figure 4-2: Linear Interpolation Between a 90 ft and 100 ft Two Span Bridge	41
Figure 4-3: Example of a 2 Span Design Table	44
LIST OF TABLES	
Table 1-1: Rolled Girder Cost Chart	13

1.0 INTRODUCTION

1.1 Background

Within the last 50 years in the mid western United States construction of short to medium span steel bridges has remained constant or declined, while prestressed concrete bridge construction has dominated the market [Azizinamini, 2003]. In Colorado the ratio of concrete to steel bridges is currently 20:1 [Wang, 2006]. One reason for this discrepancy is the lack of steel mills in the region combined with the strong presence of precast concrete companies in the state. In addition, a lack of readily available economical and innovative procedures to design and construct steel bridges has hindered the industry in certain areas such as Colorado.

During the bidding process for design and construction of bridges, Federal requirements mandate accurate bidding of both steel and concrete during the initial bidding process. The precast concrete industry has worked to develop tools to make this process easier and subsequently dominated the market in Colorado. These types of tools are not available for bidding steel bridges, thus the outcomes of type selection studies are routinely predominated by prestressed concrete.

1.2 Research Motivation

As previously stated, there has been a dearth of research on economical and rapid procedures to design short to medium span steel bridges. The purpose of this research was to provide the Colorado Department of Transportation (CDOT) with the most cost-effective way to design and construct steel bridges using standard rolled steel sections readily available. With this result, CDOT will be able to choose the best alternative in the bridge type selection process.

1.3 Literature Review

An extensive literature review was conducted as part of this project in order to determine the most feasible options for the design of cost-effective steel bridges in Colorado. Many publications were reviewed, including Transportation Research Board (TRB) annual meeting papers, National Cooperative Highway Research Program (NCHRP) reports, state Department of Transportation (DOT) structural design manuals, previous steel bridge studies, journal papers and various websites outlining steel bridge design and construction. The resource that proved to be most useful was Steel Bridge News journal reports from the National Steel Bridge Alliance. During the literature review it was noted that the current method of constructing multi-span steel bridges is to build as continuous girders to distribute the load over all members. In this method the rolled girders are fabricated and shipped to the job site. There they are assembled by the contractor using a bolted or welded field splice, usually in between piers. In a recently developed method, simply supported beams are specified by the designer and beams are then made continuous at the piers by a concrete diaphragm or connection plate [Azizinamini, 2005]. In this setup, once the slab and diaphragm are poured the simply supported beam accounts for its weight along with the wet concrete deck. As the concrete diaphragm hardens, making the girders continuous, all other loads (live, superimposed dead) are shared through the system of beams. This latter concept is called simple for dead load, continuous for live load, or simple made continuous [Azizinamini, 2005]. Some of the major advantages of the simple made continuous method over the field splice method (the field splice method is hereafter referred to as the "conventional method") are as follows [Azizinamini, 2004]:

- Eliminates the need for expensive field splices
- Reduces the negative moment at the pier, while increasing the positive moment at mid span
- Maintains a uniform cross section throughout span to reduce fabrication effort
- Minimum detailing of the steel beam
- Smaller cranes required to assemble beam system
- Erection time reduced without the need for field spices
- Minimal traffic interruption compared to conventional method

Several states have begun to implement this type of construction for some of their steel bridges. The list of states that have built simple made continuous steel bridges includes Colorado, New Mexico, Nebraska, Ohio and Tennessee.

1.3.1 Nebraska

The Nebraska Department of Roads recently teamed with the University of Nebraska to identify/develop an economical solution for short span (80 – 110 ft.) steel bridges [Azizinamini, 2003]. The two alternatives were to make the beam act as simple for the dead load and continuous for the live load, or to have the beam behave as continuous for both dead and live loading. After tests were conducted for both alternatives, it was shown that the beam acting as continuous for the live load only produced a lower negative moment at the pier, while also generating a higher positive moment at mid-span [Azizinamini, 2003]. This was attractive because a uniform cross section could be specified throughout the length of the girder. After comparing the alternatives, the University of Nebraska recommended the development of simply

supported beams for the dead load and continuous for live load. The initial detail they designed for the connection at the pier can be seen in Figure 1-1.

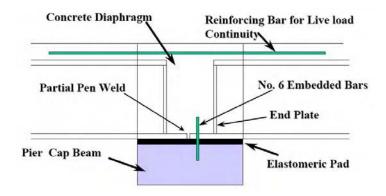


Figure 1-1: Detail of Connection Designed by the University of Nebraska [3]

A research bridge was constructed in Omaha, Nebraska using the principles developed by the University of Nebraska and National Bridge Research Organization. The new steel bridge replaced a four-span bridge over Interstate 680, with two 97 foot spans [Azizinamini, 2004]. The rolled girder bridge, completed in August of 2004, uses four W40 x 249 grade 50W girders on its 32 foot width, plus a 7 foot cantilevered sidewalk. Girders are spaced at 10 ft 4 in. on center. The bridge contains integral abutments, which allows for no bearings or expansion joints in the deck. On the pier, the girders sit on a 1.75 in. bearing pad surrounded by a sponge rubber joint filler. Simple bent plate cross frames are attached to the bearing stiffeners on the girders. The negative moment at the pier creates large compressive forces in the bottom flanges that could crush the concrete diaphragm. A 2 in. plate is welded to each bottom flange with no gaps to transfer the compressive forces through the steel instead of concrete. Reinforcing rods are also run laterally through the girders to give extra support for the concrete diaphragm cast around them [Azizinamini, 2004]. This bridge design calls for the concrete

diaphragm to be poured two thirds full, making the beams partially continuous. The other third is filled in when the deck is poured, making the girders fully continuous. This process led to stability in the deck during the pouring phase. Reinforcing rods are also placed in the deck slab above the piers to provided extra continuity. For this steel bridge, it was estimated that the simple made continuous design cut costs by a third compared to using field splices to connect the girders, i.e. the conventional method. The cost for inplace erected steel for this bridge amounted to only \$0.52/lb, compared to a rule of thumb estimate of \$0.75/lb for rolled steel bridges having field splices [Azizinamini, 2004]. Figure 2 shows basic connection details for the research bridge spanning Interstate 680 in Omaha.

Figure 1-2: Making a Continuous Beam with Concrete Diaphragm [2]

1.3.2 Tennessee

The Tennessee Department of Transportation (TDOT) has also developed design details for steel girders with simple span for dead loads and continuous for all other loads. In one of their initial designs (Figure 1-3), continuity was achieved by a cast in place 3000 psi concrete diaphragm with steel reinforcement at the interior supports [Talbot, 2005]. A ½ in. plate welded at the end of the girder distributed the compression forces in the flanges.

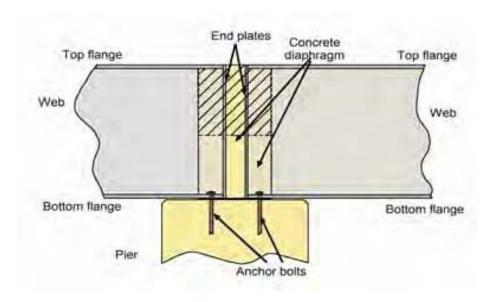


Figure 1-3: Initial Tennessee Beam Connection [17]

The trial bridge in Tennessee was built with four spans (65, 71, 71, 45 ft) of W36 x 150 grade 50W steel with eight girders spaced between 9.3 and 11.5 ft. The varied spacing was due to the deck width changing from 75 ft to 87 ft over the length. The unit weight of structural steel was 18.3 pounds per square foot at an in-place cost of \$0.72 per pound. While the concrete diaphragm was a technical success, the economics still did not compete well with precast concrete bridges at other sites in Tennessee [Talbot, 2005]. TDOT developed another method to create a full length beam with the same cross section (prismatic) throughout the span to meet the demands of the maximum positive moment. This was done by using a single shear bolted connection in the top flange. The bottom compression flange was fitted with a welded cover plate. Two trapezoidal wedges were tightly fit in the gap between the bottom flanges, similar to the Nebraska detail. A 12 in. steel channel frame was run from exterior beam to exterior beam along with a concrete diaphragm. This design was used in a two span, (87', 76') 40 ft. wide steel bridge in New Johnsonville, TN. Six W33 x 240 grade 50W beams were constructed at 7.5 ft on

center. The unit weight of structural steel was 37.7 pounds per square foot. The price of the steel from the low bidder was \$0.56/lb in place, significantly lower than the previous design. Construction of the total bridge took only 90 days, without incentives. TDOT also designed two similar bridges, which contained integral abutments. Advantages of the integral abutments include being jointless, reduced maintenance and dampened seismic motion. The first is a five span bridge, taking State Road 210 over Pond Creek. The substructure is skewed at 35 degrees carrying spans of 94, 103, 132, 132, and 118 ft. Five W40 x 248 grade 50W girders support the 42 ft wide deck. The steel beams were set in 30 days. The second of the two was another large rolled beam bridge set for construction in 2006, carrying Church Ave. over Route 158 and 71. It consisted of six spans measuring 80, 100, 100, 100, 93, and 90 ft. The 56 ft wide deck is supported by seven lines of W30 x 173 grade 50W girders, spaced at 8 ft 2 in. The engineers estimate for the bridge was \$80/sq ft, totaling \$2.82 million. The low contractor bid came in at \$72.93/sq ft, or \$2.55 million [Talbot, 2005]. Details of the connection at the pier along with the span of the concrete diaphragm can be seen in Figure 1-4.

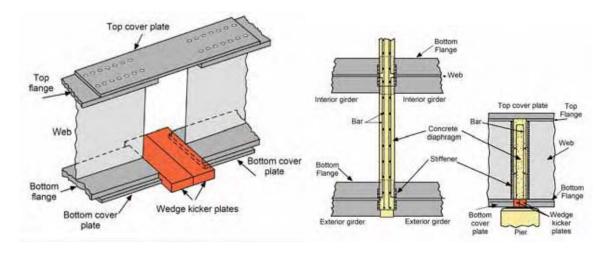


Figure 1-4: Tennessee Design Detail for Continuity at Pier [17]

1.3.3 Ohio

The Ohio Department of Transportation (ODOT) implemented a simple made continuous steel bridge as a replacement bridge in the summer of 2003. The existing structure was a six span (90' approaches with 112'6" main spans) 29 foot wide steel stringer bridge crossing the Scioto River in Circleville on US 22 [Ohio DOT, 2003]. Because of time constraints, the state decided to make the project a design build fast track job. Five girders, spaced at 9 ft, were required to support the bridge, widened to 44 feet. High performance steel girders, M270 grade 50W, were designed as simply supported and were made continuous in the field by integral concrete diaphragms. The concrete diaphragm was 3' wide and was cast across the pier comparable to the Nebraska and Tennessee diaphragms. The beams and diaphragm also sat on an elastomeric bearing pad and load plate. The beams were constructed as plate girders with a 54" web depth and 18" flanges. The total construction time of the US 22 Bridge, from demolition to the completed construction of the new bridge, was 48 days [Ohio DOT, 2003]. The bridge unit cost was \$2.11 million, which equated to \$75.6/sq ft. Design details obtained from the state of Ohio can be seen in Figure 1-5.

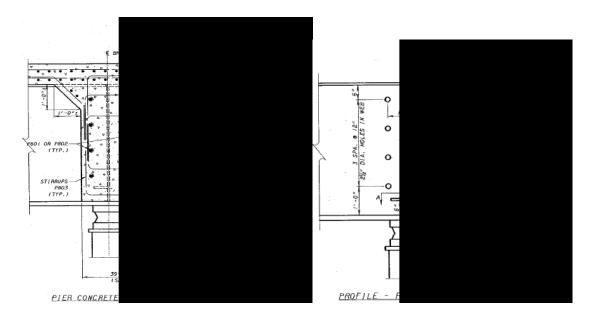


Figure 1-5: Concrete Diaphragm Details at Pier on Scioto River Bridge [13]

1.3.4 New Mexico

New Mexico DOT used the simple for dead continuous for live method to design a five span 525 foot (105 ft/span), 34.5 ft wide replacement steel plate girder bridge [Barber, 2006]. The superstructure contained 4 lines of plate girders spaced at 7'6". The plate girder dimensions were a 54" web depth, 13.8" top flange and 17.3" bottom flange [Barber, 2006]. That bridge crosses the Rio Grande River on NM 187 and was completed in the summer of 2005. On an earlier project, the simple-made continuous concept served in a dual-design analysis (steel vs. pre-stressed concrete) for a bridge on US 70 in southern New Mexico. A design consultant for the US 70 project, Parsons Brinckerhoff, Inc. bid the two alternatives at a difference of only 0.2 percent out of a total project construction cost of \$21 million [Barber, 2006]. An innovative feature on this project was bolts being placed outside of the concrete diaphragm to allow for tightening after the deck and diaphragms were poured. Reinforcing bars were added to the concrete

diaphragm to achieve the required negative moment capacity. Bars were also added above the pier to alleviate stresses on the continuity connection plate and are shown in Figure 1-6. The cost of the bridge was \$75 per sq. ft. Bids for precast concrete girder bridges of comparable square footage were \$68 and \$88 per sq. ft. each [Barber, 2006].

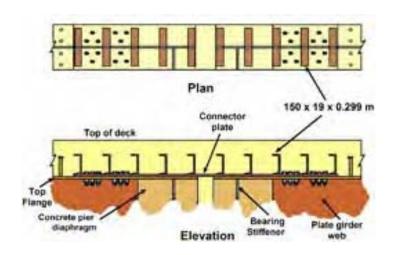


Figure 1-6: Detail of Connection Plate on Top Flanges on NM 187 Bridge [5]

1.3.5 Colorado

The Colorado Department of Transportation (CDOT) recently designed and completed its first simple made continuous steel bridge. The steel bridge, which was completed in July of 2006, replaced an old bridge on US 36 that crossed Box Elder Creek outside of Denver [Modern Steel Construction, 2006]. The new superstructure was 470 feet long with six equal spans, 77 ft/span. The 44 ft wide concrete deck was supported by six lines of W33 x 152 grade 50W rolled beam girders spaced at 7 ft 4 in. The beams were supplied to the site in pairs with W27 x 84 diaphragms connected to the bearing stiffeners. These cross frames were spaced at 19 ft on the interior girders and 12 ft 4 in on the exterior girders and provided stability during erection. Similar steel diaphragms

also run over the pier cap from exterior to exterior girder. The girders sit six inches apart on a ¾ inch elastometric pad along with a 30x14x1 compression plate. The bottom flanges of each girder were welded to the compression plate to make the system continuous. A reinforcing rod was placed within the deck above the pier to handle the tension of the negative moment. The total cost of the superstructure amounted to \$1.1 million. This equates to just \$53 per square foot, or \$.97 per pound of erected steel [Modern Steel Construction, 2006]. Details of the pier cap connections can be seen in Figure 1-7.

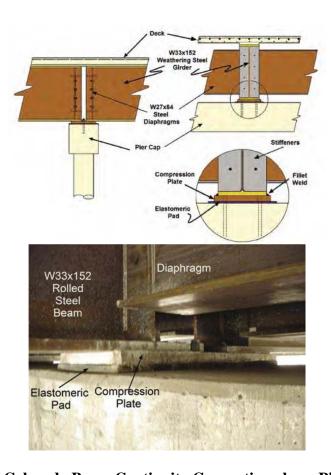


Figure 1-7: Colorado Beam Continuity Connection above Pier Cap [16]

1.3.6 Comparison Between States

The following table (Table 1-1) outlines information about steel bridges constructed in different states using the simple made continuous method with rolled beams. General information on the bridge, along with beam size and cost is included.

Table 1-1: Rolled Girder Cost Chart

General Bridge				
Location	Information	Beam Used	Cost	
	4 spans			
Tennessee	(65, 71, 71, 45 ft)	W36 x 150	18.3 lbs/ft ²	
State Route 35	width varies from 75 to 87 ft		\$.72/lb in place	
Maryville, TN	8 girders			
Dupont Rd	2 spans (87, 76 ft)	W33 x 240	$37.7 lbs/ft^2$	
New Johnsonville, TN	40 ft wide		\$.56/lb in place	
	6 girders			
	6 spans			
Church Ave	(80, 3@100, 2@90 ft)	W30 x 173	\$73/sq ft	
over Route 158	56 ft wide			
Knox County	7 girders			
 Nebraska	2 Spans (07, 07 ft)	W 40 x 249	\$ 52/lb in place	
Sprague St.	2 Spans (97, 97 ft) 32 ft wide	W 40 X 249	\$.52/lb in place	
Over I 680	4 girders			
Omaha,NE	4 gilders			
Omana, ive				
Colorado	6 spans (6@78 ft)	W 33 x 152	\$1.1 million	
Box Elder Creek	44 ft wide		\$53/sq ft deck	
US 36 E. of Denver	6 girders		\$.97/lb erected	

Similarities

Although each of these steel bridges were constructed using the simple for dead load, continuous for live load method, there are similarities and differences between each state.

- All use grade 50 weathering steel
- Concrete diaphragms are cast from exterior to exterior beams to connect girders sitting on the pier cap, except in Colorado (steel diaphragm/welded connection plate)
- Integral abutments integrated in all bridges except initial designs in Tennessee
- No expansion joints due to integral abutments
- Sufficient reinforcement is placed in the deck above the pier in the negative
 moment section to provide extra continuity and take some of the tension force
- Each state places an elastomeric pad along with a bearing plate between the pier cap and girders, except Tennessee.
- All designed used AASHTO LRFD Bridge Design Specifications.

Differences

- The bridges in Tennessee and Nebraska both utilized a plate between the girders to transfer the compressive forces, whereas the Ohio, New Mexico and Colorado bridges did not.
- The cross frames varied from a wide flange section, to a bent plate, to a k-type cross frame.

- Tennessee used a single shear bolted connection to connect the top flanges with a
 cover plate, along with a bottom plate, while New Mexico used a continuity
 connection plate on the top flanges.
- Colorado welded the bottom flanges to the compression plate to create a continuous beam instead of using a concrete diaphragm.
- The concrete diaphragm in the Nebraska bridge was poured two thirds full to
 make the beams partially continuous. The other third was filled when the deck
 was poured. This procedure was used to maintain the stability of the deck while
 it was cast.

1.4 Selection of Design Method

Based on the benefits of the simple made continuous method, this project focused on this method as opposed to the conventional method. In addition, because cost is a major deciding factor in the selection process, the preferred material was standard size rolled steel beams. For short to medium spans, the rolled girders proved to be more cost-effective than plate girders.

1.5 Objectives

The major objectives of this study were as follows:

- To establish/select a design detail for constructing simple span steel girders made continuous over piers.
- To create design charts which will aid in the optimal selection of rolled girders.

- To design a computer spreadsheet that will allow a user to input bridge data (spans, lengths, width, etc.) and automatically size a rolled girder system for applied loads.
- To produce costs associated with steel fabrication, transportation and erection.
 This includes a cost per unit area of deck.
- To establish a procedure to update the design tables for changes in unit cost.

1.6 Report Organization

Chapter 1 includes background information on the current state of bridges in Colorado along with an extensive literature review. Project objectives are also included in Chapter 1. A review of different steel bridge design methods is contained Chapter 2. Also, an overview of the simple made continuous design with detailed procedures of the design process can be found in Chapter 2. Chapter 3 contains the development of the software package. Creation of the design charts and descriptions of how they are used is in Chapter 4. A summary of the report along with recommendations makes up Chapter 5. Additionally, Appendix A includes sample calculations of a bridge design using the girder design software. Appendix B includes the design charts, while Appendix C contains the design tables. Appendix D illustrates design details for a simple made continuous bridge. Appendix E contains a User's Manual and Users Guide Examples for the software package. Finally, Appendix F includes a User's Manual for the software used to analyze a Colorado Permit Truck.

2.0 DESIGN OF A SIMPLE MADE CONTINUOUS STEEL BRIDGE GIRDER SYSTEM

2.1 Introduction

In this chapter, the girder design of a simple made continuous steel bridge is summarized. This problem is a continuous beam problem which requires designing simple spans to be continuous across the negative moment. This includes references to the AASHTO LRFD Bridge Design Specifications 4th Edition 2007 and the steps taken to insure a given beam will support the applied loads. Throughout the chapter article numbers or tables are assumed to be referenced by the AASHTO LRFD Bridge Design Specifications. [AASHTO, 2007]

2.2 Design Background

As was previously discussed in Chapter One, historically steel bridge girders have been designed as a continuous beam with field spices at low stress points. Because of the labor involved in creating a field splice, the conventional method often was not cost-effective when compared to precast concrete [Azizinamini, 2003]. Due to this cost inefficiency, a new design philosophy was developed to eliminate the costly field splices and minimize structural steel required.

2.3 Assumptions

Some of the major assumptions in the research project were that each designed bridge would satisfy the following:

- Standard size AISC rolled steel beams used
- Spans are between 50 and 120 feet
- Pedestrian loads were negligible

- Prismatic (same cross section) throughout length of bridge
- Beam weight greater than 124 lbs/ft and less than 331 lbs/ft for cost estimations
- Minimum of 4 girders and maximum of 12 girders
- For the span ranges considered in this project, the use of the Colorado
 Permit Vehicle was excluded for both single and multiple lanes during
 the analysis and subsequent girder selection process.
- A deck pour analysis was not included in this study because the results
 of the study, i.e. preliminary girder selection, are intended at this stage.
- Fatigue stresses were not checked in the connection plates at the top and bottom when required.
- Load and resistance factor rating (LRFR) was not considered in the analysis.
- Optimized shear stud spacing was not considered in the analysis. The shear stud spacing was assumed or user specified since this was intended as a preliminary engineering procedure for cost estimation.
- Variable internal diaphragm spacing was not considered in the analysis to obtain the optimized girder section.
- Shear lag at the simple made continuous connection, i.e. the interior supports, were not considered due to the limited scope of work.

2.4 Design Steps

The first step in the steel bridge design process was defining basic data. These parameters included number of spans, span lengths, roadway width, slab thickness, number of girders, etc. Following inputted data, bridge loads were generated. Given the provided data and applied loads, flexure, shear and subsequent stresses were all calculated to insure the selected beam will support the bridge.

2.5 Loads

Because the beams were designed as simple for dead load one and continuous for all other loads, it was important to distinguish between each. Dead load one includes the weight of the slab and self weight of the beam. The self weight was calculated from the volume of the girder multiplied by the density of steel, 490 lbs/ft³ along with shear studs. Likewise, the slab weight was found by multiplying the volume of deck by 150 lbs/ft³. The 150 lbs/ft³ does not include the effect of reinforcement, but the reinforcement weight was added to the dead load one. This was done due to the great amount of reinforcement put into bridge decks. The slab area was computed from the thickness multiplied by the centerline spacing of each girder. The long term composite dead load two included barriers, a future wearing surface and any additional items that may be added after the deck had cured. It was assumed that the each barrier weighed 482 lbs/ft and the composite dead load was spread equally over all girders, but values were able to be modified in the design spreadsheet discussed in Chapter 3. The most critical load imposed on a steel bridge is the live load. All live load forces were calculated according to Section 3.6. The live load includes the design lane load and the larger of the design truck or design tandem. The design lane load is represented as a distributed load at 640

lbs/ft. It was determined that a HL-93 design truck would cause the greatest extreme forces that were under consideration in this research. According to Article 3.6.1.3 the extreme force effect is taken as the largest of one design truck with variable axle spacing combined with the lane load, or two design trucks spaced at least 50 feet apart combined with the lane load with a 10% reduction allowed in the negative moment region. For this design, Strength I and Service II load factors were applied to the appropriate loads (Table 3.4.1-1). Once all loads were defined, a software package created at Colorado State University was used to determine the extreme forces and critical sections.

In addition, it is important to understand the properties that were used for each part of the design, i.e. section and related stiffness. For the positive moment capacity, for DL-1 the I_x of the selected beam was used; for DL-2 the long term composite section I_x from the elastic section properties was used; and for the LL+I the short term composite section I_x from the elastic section properties was used. The long term composite section carries a factor of 3n (modular ratio) and the short term section has a factor of n. For the negative moment capacity, for DL-1 the I_x of the selected beam was used as it was for the positive moment; for both DL-2 and LL+I the I_x of the selected beam plus the top and bottom reinforcement in the slab was used.

2.5.1 Live Load Moment and Shear Distribution

The next step in the design process was reducing the live load moments and shears according to the tables in Section 4.6.2.2. First, the distribution of live loads per lane for moments in interior beams (Table 4.6.2.2.2b-1) was calculated for one lane loaded and two or more lanes loaded.

One Design Lane Loaded:
$$DF = 0.06 + \left(\frac{S}{14 ft}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12 L t_s^3}\right)^{0.1}$$

Two or More Design Lanes Loaded:
$$DF = 0.075 + \left(\frac{S}{9.5 \, ft}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12Lt_s^3}\right)^{0.1}$$

Where:
$$K_g = n(I_x + Ae_g^2)$$
 and $e_g = \frac{D}{2} + \frac{t_s}{2} + t_h$

After the interior moment distribution was calculated, the exterior moment distribution was found using Table 4.6.2.2.2d-1.

One Design Lane Loaded: Lever Rule

Two or More Design Lanes Loaded: $g = eg_{interior}$

Where:
$$e = .77 + \frac{d_e}{9.1}$$

Special analysis on the exterior girder was also considered following C4.6.2.2.2d. This distribution factor was important because the other reductions do not factor in diaphragms or cross frames

$$R = \frac{N_L}{N_b} + \frac{N_{ext} \sum e}{\sum x^2}$$

Where:

R = reaction on exterior beam

 N_L = number of loaded lanes

e = eccentricity of a design truck from the center of gravity of the girders

x = horizontal distance from the center of gravity of the pattern of girders to each girder

 N_{ext} = horizontal distance from the center of gravity of the pattern of girders to the exterior girder

 N_b = number of beams

The shear distribution factors were calculated next for both interior and exterior girders according to Tables 4.6.2.2.3a-1 and 4.2.2.3b-1, respectively

Interior:

One Design Lane Loaded:
$$VDF = 0.36 + \left(\frac{S}{25 ft}\right)$$

Two or More Design Lanes Loaded:
$$VDF = 0.075 + \left(\frac{S}{12 ft}\right) - \left(\frac{S}{35 ft}\right)$$

Exterior:

One Design Lane Loaded: Lever Rule

Two or More Design Lanes Loaded: $g = eg_{interior}$

Where:
$$e = 0.6 + \frac{d_e}{10}$$

Once each distribution factor was calculated, the appropriate factor was applied to the maximum calculated moment in both positive and negative sections. Also, multiple lane presence factors were considered according Article 3.6.1.1.2-1.

2.6 Flexure

Once the distribution factors were determined, the first design step was to determine if the selected beam could support the loads. When checking to see if the beam flexure criteria was satisfied, it was necessary to find the neutral axis location and plastic moment. In the positive flexure region, there were three possibilities for neutral

axis location; in the concrete deck, in the top flange, or in the web. Each of these cases was checked according to equations found in Appendix D.

2.6.1 Positive Moment Flexure (Composite Only)

Case 1 (Neutral Axis in the web): If $P_t + P_w \ge P_c + P_s$

Then:
$$Y = \left(\frac{D_w}{2}\right) * \left[\frac{P_t - P_c - P_s}{P_w} + 1\right]$$
 from bottom of top flange

And:
$$M_p = \left(\frac{P_c}{2D_w}\right) * \left[Y^2 + (D_w - Y)^2\right] + \left[P_s d_s + P_c d_c + P_t d_t\right]$$

Case 2 (Neutral Axis in the top flange): If $P_t + P_w + P_c \ge P_s$

Then:
$$Y = \left(\frac{t_c}{2}\right) * \left[\frac{P_w + P_t - P_s}{P_c} + 1\right]$$
 from top of top flange

And:
$$M_p = \left(\frac{P_c}{2t_c}\right) * \left[Y^2 + (t_c - Y)^2\right] + \left[P_s d_s + P_w d_w + P_t d_t\right]$$

Case 3 (Neutral Axis in the deck): If
$$P_t + P_w + P_c \ge \left(\frac{c_{rb}}{t_s}\right) P_s$$

Then:
$$Y = (t_c) * \left[\frac{P_c + P_w + P_t}{P_s} \right]$$
 from top of deck

And:
$$M_p = \left(\frac{Y^2 P_s}{2t_s}\right) + \left[P_c d_c + P_w d_w + P_t d_t\right]$$

Where:
$$P_s = 0.85 f_c' b_s t_s$$

$$P_c = f_{yc}b_ct_c$$

$$P_{w} = f_{yw} D t_{w}$$

$$P_{t} = f_{yt}b_{t}t_{t}$$

Longitudinal reinforcement in the positive region was conservatively neglected.

Once the neutral axis and plastic moment were determined, the nominal flexural resistance was found using Article 6.10.7.1.2.

Nominal Positive Moment Resistance:

$$M_n = M_p$$
 if $D_p \le .1(D + t_s + t_h)$

Otherwise:
$$M_n = M_p \left(1.07 - \frac{.7D_p}{D + t_s + t_h} \right)$$

The yield moment was then calculated following Appendix D6.2

Yield Moment:

$$M_{y} = \left[f_{y} - \frac{M_{DL1}}{S_{x}} + \frac{M_{DL2}}{S_{Bot_III}} \right] S_{Bot_III} + M_{DL1} + M_{DL2}$$

$$m_n \le 1.3 m_y$$
 Article 6.10.7.1.2

After the beam resistance was found, it was compared to the maximum factored moment created by the applied loads using Strength I load factors. Recall that the moment M_{DC1} was from the simply supported dead load one and all others were calculated as a continuous beam.

$$M_u = 1.25 M_{DC1} + 1.25 M_{DC2} + 1.5 M_{DW} + 1.75 M_{LL}$$

$$M_u < \phi M_n$$

Where:
$$\Phi = 1.0$$

If the nominal moment was greater than the imposed ultimate moment, the beam satisfied positive moment flexure.

2.6.2 Negative Moment Flexure (At Pier Bearing Location Only)

The negative flexure check was very similar to the positive region check. Again, the location of the neutral axis was found to determine the plastic moment capacity, and therefore nominal moment resistance. There were two cases for the location of the neutral axis; in the top flange or in the web. Case 1 (Neutral Axis in the web): If $P_c + P_w \ge P_t + P_{rb} + P_{rt}$

Then:
$$Y = \left(\frac{D_w}{2}\right) * \left[\frac{P_c - P_t - P_{rt} - P_{rb}}{P_w} + 1\right]$$
 from bottom of top flange

And:
$$M_p = \left(\frac{P_w}{2D_w}\right) * \left[Y^2 + (D_w - Y)^2\right] + \left[P_{rt}d_{rt} + P_{rb}d_{rb} + P_td_t + P_cd_c\right]$$

Case 2 (Neutral Axis in the top flange): If $P_c + P_w + P_t \ge P_{rb} + P_{rt}$

Then:
$$Y = \left(\frac{t_t}{2}\right) * \left[\frac{P_w + P_c - P_{rt} - P_{rb}}{P_t} + 1\right]$$
 from top of top flange

And:
$$M_p = \left(\frac{P_t}{2t_t}\right) * \left[Y^2 + (t_t - Y)^2\right] + \left[P_{rt}d_{rt} + P_wd_w + P_cd_c\right]$$

Nominal Negative Moment Resistance:

$$M_n = M_p$$

$$M_u < \phi M_n$$

Where:
$$\Phi = 1.0$$

Again, the nominal resistance was compared to the maximum factored (negative) moment generated by the applied loads using Strength I load factors, to determine if the beam was satisfactory. In the negative section there was no flexure from dead load one.

2.7 Shear

The next design step was to check the shear capacity of the girder compared to the shear created by the applied loads. When looking at the shear capacity of the web, it was concluded that all logical rolled beam sections within the specified span lengths were compact, and therefore C_{ν} in the following equation would equal 1.

Nominal Shear Strength of an Unstiffened Web: (Article 6.10.9.2)

$$V_n = 0.58 F_v A_w C_v$$

The nominal shear strength was then compared to the shear of the live, composite and non composite dead loads with Strength I load factors to verify the beam would pass the shear check.

$$V_u < \phi V_n$$
 Where: $\Phi = 1.0$

In order to assure the web would be satisfactory, various web properties were checked. These follow Appendix B6.2.1, respectively.

Web Proportions:

$$\frac{2D_p}{t_w} \le 6.8 \sqrt{\frac{E}{f_{yc}}}$$

$$\frac{D}{t_w} \le 150$$

$$D_{cp} \leq .75D$$

Compression Flange Properties

$$\frac{b_f}{2t_f} \le 0.38 \sqrt{\frac{E}{F_y}}$$

$$b_f \leq \frac{D}{4.25}$$

2.8 Stress

The final limit states evaluated were the stresses in the compression and tension flanges in both the positive and negative moment regions. Following Article 6.10.4.2, the permanent deflections of each flange were calculated. In order to calculate the resulting stresses, it was necessary to find elastic section properties for the selected beam. A sample calculation for finding elastic section properties can be found in Appendix A, Sample Calculations. The following equations hold true for both the positive and negative stress regions.

Tension Flange:

$$f_{DL1} = \frac{M_{Dl1}}{S_x}$$
 $f_{DL2} = \frac{M_{DL2}}{S_{LongTerm}}$ $f_{LL} = \frac{M_{LL}}{S_{ShortTerm}}$

Compression Flange:

$$f_{DL1} = \frac{M_{Dl1}}{S_x}$$
 $f_{DL2} = \frac{M_{DL2}}{S_{LongTerm}}$ $f_{LL} = \frac{M_{LL}}{S_{ShortTerm}}$

After all flange stresses were determined, they were compared to 95% of the yield strength, 47.5 ksi. In most cases, the bottom flange controlled the design in either the positive or negative moment region.

2.9 Summary

During the design process, three main limit states were checked: flexure, shear, and stress. Each limit state was calculated to verify that a given rolled steel girder would carry its self weight, deck, composite dead loads, and traffic loads. The lightest beam, measured by weight per linear foot, which satisfied all conditions, was selected.

3.0 DEVELOPMENT OF DESIGN SOFTWARE

3.1 Introduction

This chapter outlines how the rolled girder design software package was created. An Excel spreadsheet was developed to take a users input of bridge data, span length, width, number of girders, slab thickness, etc, and output the lightest shape required to support the loads. The girder selected from the automated process was subjected to all design steps outlined in Chapter Two.

3.2 Assumptions

As mentioned in the simple made continuous design summary in Chapter 2 of this report, due to the limited scope of this project and report, the following issues were not able to be considered/included:

- For the span ranges considered in this project, the use of the Colorado Permit Vehicle was excluded for both single and multiple lanes during the analysis and subsequent girder selection process.
- A deck pour analysis was not included in this study because the results of the study, i.e. girder selection, are intended at this stage, for preliminary engineering.
- Fatigue stresses were not checked in the connection plates at the top and bottom when required.
- Load and resistance factor rating (LRFR) was not considered in the analysis.
- Optimized shear stud spacing was not considered in the analysis. The shear stud spacing was assumed or user specified since this was intended as a preliminary engineering procedure for cost estimation.

- Variable internal diaphragm spacing was not considered in the analysis to obtain the optimized girder section.
- Shear lag at the simple made continuous connection, i.e. the interior supports, were not considered due to the limited scope of work.

•

3.3 Data Input

The first step in the design of the girder selection design software was gathering general information on the bridge. Some of the major design criteria needed includes: the longest span length, full width, number of lanes available to traffic, slab thickness, overhang length and the number of girders. Refer to Figure 3-1 for an example of the basic input data.

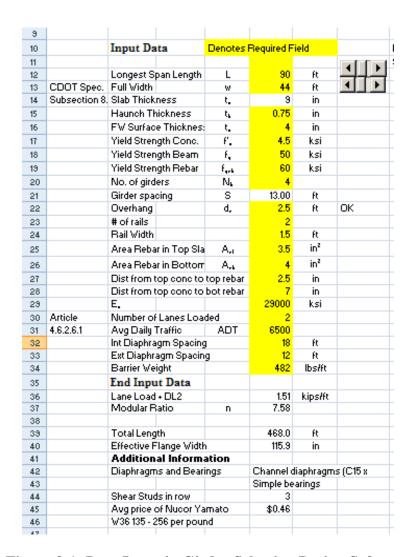


Figure 3-1: Data Input in Girder Selection Design Software

The additional information section in the spreadsheet allowed the user to select information that could affect cost, such as diaphragm type.

3.4 Girder Sizing

It was important to incorporate each AISC (American Institute of Steel Construction) wide flange beam into the software. This was true because every time the program was run, each cross section was subjected to all the design parameters described in Chapter Two.

3.5 Global Stiffness Analysis Program

After the bridge data was entered, the maximum and minimum shears and moments needed to be found using the extreme force effects stated in Article 3.6.1.3. An executable file, CSU-CBA.exe, was written using Delphi 7, to create a global stiffness analysis engine which was linked to the spreadsheet. The global stiffness program was written by Thang Nguyen Dao, a PhD candidate in the Department of Civil Engineering at Colorado State University. This program enabled a user to freely create any number of spans and span lengths for the superstructure as displayed in Figure 3-2.

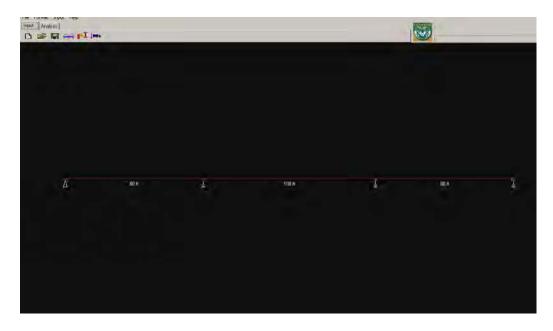


Figure 3-2: Global Stiffness Analysis Program CSU-CBA

The program was designed to be as user friendly as possible, while still allowing field professionals to find it useful. Some examples of this were, different material choices, a variable distributed load (lane load plus composite dead loads), and point loads that were able to be changed based on HL-93 truck data. This included input for multiple trucks to be run across with user specified spacing. For example, if the user wanted 50 foot

spacing between the rear and front axels of two 28 foot trucks, 78 feet would be entered into the second truck position box.

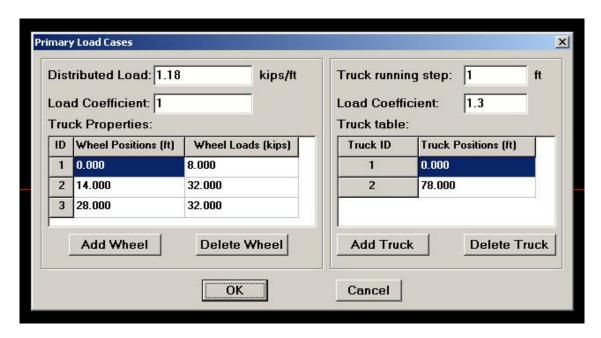


Figure 3-3: Live Loads into Global Stiffness Analysis Program

Another advantage built into the program was the ability to change from US units to SI units, if desired by the user. The program defaults to US units, but any unit can be changed. For example, moments could be changed from kip-ft to kip-in to kN-m. It is important to note that the Excel program will only handle the default units of the global stiffness analysis program. However, the global stiffness routine is a stand-alone program also and can be used without the spreadsheet.

Once all data is entered into the program, the user executes the program and the maximum moments and shears are calculated for the loading conditions provided. Figure 3-4 shows what the moment and shear diagrams looked like with simulated composite dead and live loads.

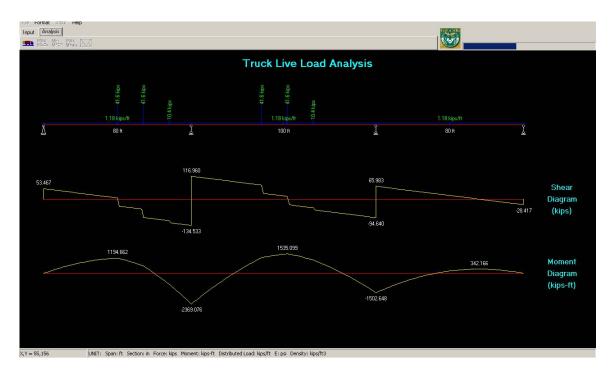


Figure 3-4: Shear and Moment Diagrams with Traffic and Dead Load Two Loads

After the maximum and minimum moments and shears are determined, the user is able to save the data, and a file called "Results.txt" is also automatically updated in the same directory. This text file is later imported into the Excel spreadsheet.

3.6 Excel Macro

It was decided that the most efficient way to write a program to minimize bridge girder sizes in Excel, would be to create a macro. The macro is called when the image in the Beam Analysis tab is clicked. Once the macro is executed, it first opens the global stiffness analysis program. The user inputs the data into the program and extreme values are found, as described in Section 3.4. After the CSU-CBA.exe file is closed, an import file textbox automatically appears in Excel. The user then selects the "Results.txt" file, from the directory where the CSU-CBA.exe file is located. Once the extreme force results are imported, the macro cycles through each AISC wide flange shape. Each shape

is checked using all of the design parameters specified in Chapter Two. Every time a new shape is run through the macro, values such as nominal resistance moments, moment distribution factors and neutral axis locations are recalculated. If the shape passes all design checks, it is saved on the spreadsheet. Conversely, if it fails one of the design parameters, it is discarded. Finally, after all shapes are tested, the macro sorts out all passing shapes based on the lightest weight, as seen in Figure 3-5.

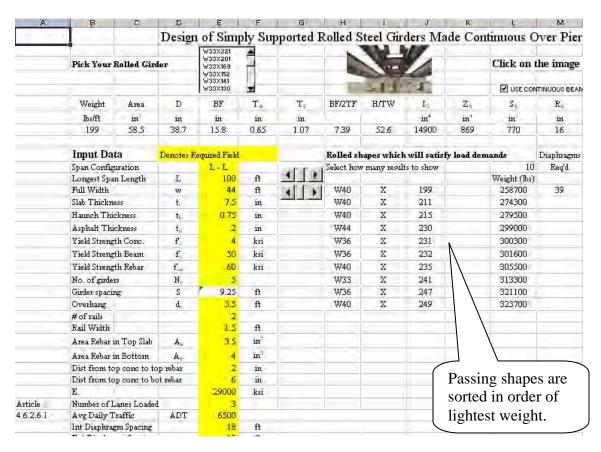


Figure 3-5: Output of Lightest Girders from Girder Selection Design Software

3.7 Excel Design Calculations

As was mentioned above, for a given bridge design, each AISC wide flange rolled beam section is put through the design parameters described in Chapter Two. In the Excel spreadsheet, the design is broken down in to three basic categories; Flexure, Shear, and Stress. The following figures depict what the design section of the spreadsheet looks like upon completion.

The calculations were based on the imported data from the global stiffness analysis program. This data was imported into the 'analysis results' section of the spreadsheet and broken down into DL1, DL2 and LL components. Because the global stiffness analysis program took the distributed load input as one parameter, when the distributed load moments and shears were imported they were broken down by ratios to the total continuity distributed load. In the following Figure 3-6, the factored moment seen in the right column was not necessarily the moment used in the flexure, shear or stress calculations. This table was provided for the user to see the unfactored moments and the load factors that could be applied.

Article						
3.6.1.2.2		✓ Use IM Factor ✓	Use Service II F	actors	✓ Use Strength I	Factors
	Unfactored Moment	IM	Service II	Strength	Moment Distribution Factor	Factored Moment
Positive Moment	kip ft					kip ft
Truck Live Load	1084.87	1.33	1.3	1.75	0.704	2309.4
Live Lane Load	362.88	1	1.3	1.75	0.704	580.8
Dead Load II	89.62	1	1	1.25		112.0
Future Wearing Surface	199.55	1	1	1.5		299.3
Dead Load I	1277.36	1	1	1.25		1596.7
Shear						
Truck Live Load	72.51	1.33	1.3	1.75	0.704	154.4
Live Lane Load	36.00	1	1.3	1.75	0.704	57.6
Dead Load II	9.04	1	1	1.25		11.3
Future Wearing Surface	19.80	1	1	1.5		29.7
Dead Load I	56.77	1	1	1.25		70.96
Negative Moment						
Truck Live Load	-1187.13	1.33	1.3	1.75	0.704	-2527.1
Live Lane Load	-648.00	1	1.3	1.75	0.704	-1037.1
Dead Load II	-160.04	1	1	1.25		-200.0
Future Wearing Surface	-356.34	1	1	1.5		-534.5
Dead Load I	0.00	1	1	1.25		0.0

Figure 3-6: Extreme Results Data

3.7.1 Flexure

100	Appendix	Flexure																		
	D6.1		n of Positiv	Dlastic T	Jamant ar	ιŸ			-		Case 1	D	+ P ≥	P + i	, +			_		
164	20.1	Canculatio	W 01 L 021IIA	c riasuc P	winent an							_ 2	F =	2 + 2				+		
165		P. =	2496.5	kips	$P_{c} = 0.85$	f 'h f	d. =	3.99	in		$v = 1^2$	$D_{\mathbf{w}}$	$*\left[\frac{P_t - \frac{P_t}{T}}{T}\right]$	$P_c - I$	3 <u>1</u> 1			_		
166		P _c =	845.3	kips	$P_c = f_{sc}b_c$		d _c =	0.29	in		1 - [-	2 /	+-	Р	- 1 1			_		
167		P _w =	1188.2	kips	$P_{w} = f_{w} L$		d _v =	18.52	in			P	1 .	- w		-		_	,	
		P _v =	845.3		$P_i = f_i b_i t$						M , =	20	* Y -	+(D,	- Y)²]+	[P,d, +	$P_c d_c$	+ P,d,	1	
68		P ₁ =	843.3	kips	$F_i = f_{\gamma i} o_i c$	1	d, =	37.92	in		\	22/ 2	/	D >	D			-		
169							D _p =	8.49	in		Case 2	2	, + P _w +	F . 2	r,			_		
170		Case 2					D ₁ =	46.95	in		(t	7 [P + P	- P.	1					
171						Ductility	Pass				$Y = \left \frac{1}{2} \right $	- *	$P_w + P_r$		-1			_		
172		Ÿ =	0.24	in														_		
173			f Top Flange								r = =	c *	$Y^{2} + (t)$	- Y)	+[P,d]	$+P_{n}d_{n}$	$+P_{i}c$	i,]		
174		M _p =	64324								1 (2	t_c				- (1		
175		M _p =	5360.3	kip ft							Case 3			j	$P_{\mu} + P_{\mu} +$	$P_c \ge Y_c $	1b P,			
	Article											F	, ₊ p .	L P T		$P_{c} \ge \left(\frac{c}{t}\right)$	1)			
	6.10.7.1.2		lexural Res	istance							$r = (t_{-})$)* -	- w							
78		Φ=	1.0			$M_{n}=M_{p}$	if $D_{\mu} \leq 1$	(D+t, +t)	h)									_		
79		ΦMn =	5056.9	kip ft		otherwise	$\left(1.07 - \frac{1}{D}\right)$	7D.			M =	II	- + [P	d + i	$d_x + I$,d ,		-		
180		*** ***				M = M	1.07 - D-	-t +t.				2t,)	-				-		
	Appendix	Yield Mom		lii- e	-	M - M	1 34	1 '17				-		+	-			-	-	
	D6.2	M _y =	4392.0	kip ft	-	202 , = 202	_{0/1} + M _{D/2} +	202 _{[.].}				_		-				_		
183 184		Using Streng	gin I factors			M = f	M DEL +	M DE2 C	ы + М р.	+ M		-		-				-	-	
	Table					, - J	S, +	S Bat II B	let_III F 202 D.L.	1 - 272 DL		-		+				-		
	3.4.12	_	Using Streng	+h T						-		+		+	-			-	-	
186	0.9.12	Docision III	osing Streng exure Regio	in i								+						+	-	
188		M _{III+IM} =	2314.1	kip ft								-		+				-	-	
188			2036.2		-							-		+				-		
		M _{DL1} =		kip ft								-		-				-	_	
190		$M_{DL2} =$	335.4	kip ft								-		-				_		
191							* 1 4 0			7536		_						_		
192		M _u =	4685.7	kip ft		IM _n = 1.2	$0.100_{DC1} + 1.2$	D IM _{DC 2} +.	$1.5M_{DW} + 1$.13 M CI.		_						_		
193												_						_		
194																				
195		Pass Posi	tive Flexu	re Chec	k	$M_a < \phi N_a$	4													
6 A	ppendix						*							0.7						
6 A		Pass Posi									Case 1		$P_{w} + P_{w} \ge$							
6 A 7 D								1610			_									
6 A 7 D 8		Calculation	ı of Negativ	e Plastic l	Moment ar	- · nd Ÿ	d, =	16.18	in		Y = (-	D)*	$P_c - P_r$	- P -	$\frac{P_{rb}}{+1}$					
6 A 7 D 8		Calculation $P_a =$	of Negativ 845.3	e Plastic l kips	Moment as $P_c = f_{yc}b_c$	- · · · · · · · · · · · · · · · · · · ·	d, = d, =	25.74	in		Y = (-	D)*	$P_c - P_r$	- P -	$\frac{P_{rb}}{+1}$					
6 A 7 D 8 9		Calculation $P_{u} = P_{w} = P_{w}$	845.3 1188.2	e Plastic l	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	d _s = d _c = d _w =	25.74 N/A			Y = (-	D)*	$P_c - P_r$	- P -	$\frac{P_{rb}}{+1}$, + P,	odro+	- P _i d _i +	$P_{c}d_{c}$
6 A 7 D 8 9		Calculation $P_{c} = P_{w} = P_{b} = P_{c} = $	845.3 1188.2 845.3	e Plastic l kips	Moment as $P_c = f_{yc}b_c$	nd Ÿ	d, = d, = d, = d, =	25.74	in		Y = (-	D)*	$P_c - P_r$	- P -	$\frac{P_{rb}}{+1}$		$p_x + P_x$	edre+	- <i>P_id_i</i> +	$P_{c}d_{c}$
A A D D D D D D D D D D D D D D D D D D		Calculation $P_{u} = P_{w} = P_{w}$	845.3 1188.2	e Plastic l	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	d _s = d _c = d _w =	25.74 N/A	in in		Y = (-	D)*	$P_c - P_r$	- P -	$\frac{P_{rb}}{+1}$]+[P,d,	$r_{n} + P_{r}$	edre+	- <i>P_id_i</i> +	$P_{c}d_{c}$
A D D D D D D D D D D D D D D D D D D D		Calculation $P_{c} = P_{w} = P_{b} = P_{c} = $	845.3 1188.2 845.3	kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	d, = d, = d, = d, =	25.74 N/A 11.89	in in in		$Y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $M_p = $ Case 2	$\left(\frac{P_{\star}}{2}\right)^{*}$ $\left(\frac{F}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ W \end{bmatrix} * \begin{bmatrix} Y \\ P_c + P_w \end{bmatrix}$	$\frac{-P_{w}-P_{w}}{P_{w}}$ $^{2}+(I+P_{e})$	$\frac{P_{rb}}{+1} + 1$ $P_{w} - Y)^{2}$ $P_{rb} + P_{rc}$			edro+	- <i>P_id_i</i> +	$P_{c}d_{c}$
A A A B A B A B A B A B A B A B A B A B		Calculation $P_{c} = P_{w} = P_{t} = $	845.3 1188.2 845.3 240	kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{c} = d_{c} = d_{c} = d_{w} = d_{d} = d_{d$	25.74 N/A 11.89 14.68	in in in in		$Y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $M_p = $ Case 2	$\left(\frac{P_{\star}}{2}\right)^{*}$ $\left(\frac{F}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ W \end{bmatrix} * \begin{bmatrix} Y \\ P_c + P_w \end{bmatrix}$	$\frac{-P_{w}-P_{w}}{P_{w}}$ $^{2}+(I+P_{e})$	$\frac{P_{rb}}{+1} + 1$ $P_{w} - Y)^{2}$ $P_{rb} + P_{rc}$		$r_{st} + P_{st}$	odro+	<i>P,d,</i> +	$P_{c}d_{c}$
6 A 7 D 8 9 0 11 2 3 4 4 5 A	of.1	$\begin{aligned} & \mathbf{Calculation} \\ & \mathbf{P}_u = \\ & \mathbf{P}_w = \\ & \mathbf{P}_t = \\ & \mathbf{P}_{tt} = \\ & \mathbf{P}_{tt} = \\ & \mathbf{Case} \ 1 \end{aligned}$	845.3 1188.2 845.3 240 210	kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			<i>P,d,</i> +	$P_c d_c$
3 A A B A B A B A B A B A B A B A B A B	6.1	$\begin{array}{c} \textbf{Calculation} \\ \\ P_u = \\ P_w = \\ P_t = \\ P_{tt} = \\ P_{tt} = \\ \\ Case \ 1 \\ \hline Y = \\ \end{array}$	845.3 1188.2 845.3 240 210	kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	d _e =	25.74 N/A 11.89 14.68 18.68	in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _i d _i +	$P_{i}d_{c}$
3 A A A A A A A A A A A A A A A A A A A	of.1	$\begin{aligned} &\mathbf{Calculation} \\ &\mathbf{P}_{u} = \\ &\mathbf{P}_{w} = \\ &\mathbf{P}_{t} = \\ &\mathbf{P}_{tt} = \\ &\mathbf{P}_{st} = \\ &\mathbf{Case 1} \\ &\mathbf{\tilde{Y}} = \\ &\mathbf{From Bottom} \end{aligned}$	845.3 1188.2 845.3 240 210 11.36 nof Top Fla	kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$				- P,d, +	$P_{c}d_{c}$
8 A 7 D 8 9 0 1 1 2 3 3 4 4 4 6 6 6	of.1	$\begin{aligned} &\mathbf{Calculation} \\ &\mathbf{P}_{u} = \\ &\mathbf{P}_{w} = \\ &\mathbf{P}_{t} = \\ &\mathbf{P}_{tt} = \\ &\mathbf{P}_{tt} = \\ &\mathbf{Case} \ 1 \\ &\mathbf{\tilde{Y}} = \\ &\mathbf{From Botton} \\ &\mathbf{M}_{p} = \end{aligned}$	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403	kips kips kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _i d _i +	$P_{c}d_{c}$
3 A A A A A A A A A A A A A A A A A A A	orticle	$\begin{aligned} &\mathbf{Calculation} \\ &\mathbf{P}_{u} = \\ &\mathbf{P}_{w} = \\ &\mathbf{P}_{t} = \\ &\mathbf{P}_{tt} = \\ &\mathbf{P}_{st} = \\ &\mathbf{Case 1} \\ &\mathbf{\tilde{Y}} = \\ &\mathbf{From Bottom} \end{aligned}$	845.3 1188.2 845.3 240 210 11.36 nof Top Fla	kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P,d, +	P.d.
3 A 3 B 0 C 1 C 2 C 3 C 3 C 4 C 6 C 6 C 7 C 8 B 9 A 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C	of.1	$\begin{array}{c} \textbf{Calculation} \\ P_c = \\ P_w = \\ P_t = \\ P_{e,0} = \\ P_{e,0} = \\ P_{e,0} = \\ Case 1 \\ \hline \vec{Y} = \\ \hline From Botton \\ M_p = \\ M_p = \\ \end{array}$	845.3 1188.2 845.3 240 210 11.36 nof Top Fla 48403 4033.6	kips kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _i d _i +	$P_{c}d_{c}$
3 4 5 A 6 6 6 7 7 8 8 9 A 6 1	orticle	Calculation $P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = Case 1 \frac{\pi}{2} = From Botton M_{p} = M_{p} = Nominal Fla$	845.3 1188.2 845.3 240 210 11.36 at of Top Fla 48403 4033.6	kips kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- <i>P_id_i</i> +	$P_{e}d_{e}$
3 A A B A A B A B A B A B A B A B A B A	orticle	Calculation $P_{c} = P_{w} = P_{e} = P_{e} = P_{e} = P_{e} = Case 1$ $\overline{Y} = From Botton M_{v} = M_{p} = Nominal Flo$	845.3 1188.2 845.3 240 210 11.36 n of Top Fla 48403 4033.6 exural Resi	kips kips kips kips kips in inge kip in kip ft	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			$-P_{i}d_{i}+$	$P_{e}d_{e}$
3 A A B B B B B B B B B B B B B B B B B	orticle	Calculation $P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = Case 1 \frac{\pi}{2} = From Botton M_{p} = M_{p} = Nominal Fla$	845.3 1188.2 845.3 240 210 11.36 at of Top Fla 48403 4033.6	kips kips kips kips kips kips kips kips	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _i d _i +	P _e d _e]
3 A B B B B B B B B B B B B B B B B B B	uticle10.7.3	$\begin{array}{c} \textbf{Calculation} \\ P_{c} = \\ P_{w} = \\ P_{d} = \\ P_{d} = \\ \textbf{Case 1} \\ \overline{Y} = \\ \textbf{Toom Botton} \\ M_{p} = \\ \textbf{M}_{w} = \\ \\ \textbf{Nominal Fit} \\ \Phi = \\ \Phi \textbf{M}_{m} = \\ \end{array}$	845.3 1188.2 845.3 240 210 11.36 0 of Top Fla 48403 4033.6 exural Resi 1.0 4033.6	kips kips kips kips kips in inge kip in kip ft	Moment as $P_c = f_{_{\mathcal{H}}}b_c$ $P_w = f_{_{\mathcal{H}}}$	nd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _i d _i +	P.d.
3 A A B B B B B B B B B B B B B B B B B	rticle .10.7.3 rticle .10.7.1.2	Calculation $P_{+} = P_{+} = $	845.3 1188.2 845.3 240 210 11.36 n of Top Fla 48403 4033.6 exural Resi	kips kips kips kips kips kips kips kips	Moment ar $P_{} = f_{}b_{}$ $P_{} = f_{}b_{}$ $P_{} = f_{}b_{}$	vd Ÿ	$d_{i} = d_{i} =$	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _t d _t +	P.d.
: A D D D D D D D D D D D D D D D D D D	uticle10.7.3	Calculation $P_{c} = P_{w} = P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = Case 1$ $\vec{Y} = From Botton M_{y} = M_{y} = Nominal Flow P = M_{y} = M_{$	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403 4033.6 exural Resi 1.0 4033.6	kips kips kips kips kips kips kips kips	Moment ar $P_{} = f_{}b_{}$ $P_{} = f_{}b_{}$ $P_{} = f_{}b_{}$	vd Ÿ	$d_{u} = d_{u} =$	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in in in in in in		$Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} $	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P ₁ A ₁ +	P.d.
22 2 3 3 4 4 5 A 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	rticle .10.7.3 rticle .10.7.1.2	Calculation $P_{+} = P_{+} = $	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403 4033.6 exural Resi 1.0 4033.6	kips kips kips kips kips kips kips kips	Moment as $P_{c} = f_{w}b_{c}$ $P_{w} = f_{w}E$ $P_{c} = f_{w}B_{c}$	ad $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{M}}_{y} = \mathbf{M}$	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in		$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P _t d _t +	$P_{e}d_{e}$
A A A A A A A A A A A A A A A A A A A	rticle .10.7.3	Calculation $P_{c} = P_{w} = P_{c} = P_{c} = P_{c} = P_{c} = P_{c} = Case 1$ $\vec{Y} = From Botton M_{y} = M_{y} = Nominal Flow P = M_{y} = M_{$	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403 4033.6 exural Resi 1.0 4033.6	kips kips kips kips kips kips kips kips	Moment as $P_{c} = f_{w}b_{c}$ $P_{w} = f_{w}E$ $P_{c} = f_{w}B_{c}$	ad $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{Y}}$ $\tilde{\mathbf{M}}_{y} = \mathbf{M}$	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	+ M = -	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- F,d, +	$P_{c}d_{c}$
3 A A B A B A A B A B A B A B A B A B A	rticle .10.7.3 rticle .10.7.1.2	Calculation P _a = P _y = Case 1	845.3 1188.2 845.3 240 210 11.36 at of Top Fla 48403 4033.6 exural Resi 1.0 4033.6 exural Resi	kips kips kips kips kips kips kips kips	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in in in in in in	1 + M M	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P,d, +	P.d.
3 A A B B B B B B B B B B B B B B B B B	rticle .10.7.3 rticle .10.7.1.2 ppendix 6.2.3	Calculation $P_{c} = P_{w} = P_{e} = P_{e} = P_{e} = P_{e} = P_{e} = Case 1$ $\vec{Y} = Case 1$ $\vec{W}_{p} = M_{p} = Nominal Fit \Phi = \Phi M_{p} = Vield Mom M_{p} = Using Strengt$	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403 4033.6 exural Resi 1.0 4033.6 unt 4089.0 th I factors	kips kips kips kips kips kips kips in nge kip in kip ft stance kip ft	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	1 + M DE	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P,d, +	P _e d _e .
22 2 2 3 3 4 4 5 A 6 7 7 3 3 A 9 A 6 5 A 6 5 A 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	rticle .10.7.3	Calculation $P_{+} = P_{+} =$	845.3 1188.2 845.3 240 210 11.36 4033.6 4033.6 exural Resistant 4089.0 th I factors	kips kips kips kips kips kips kips kips	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	1 + M RZ	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- Rd, +	P.d.
3 A A B A B A B A B A B A B A B A B A B	rticle .10.7.3 rticle .10.7.1.2 ppendix 6.2.3	Calculation $P_{c} = P_{w} = P_{e} =$	845.3 1188.2 845.3 240 210 11.36 at of Top Flat 48403 4033.6 exural Resi 1.0 4033.6 ent 4089.0 th I factors	kips kips kips kips kips kips in nge kip in kip ft kip ft kip ft kip ft kip ft	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	, + M ₁₀	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			-P ₁ d ₁ +	P _e d _e]
3 A B B B B B B B B B B B B B B B B B B	rticle .10.7.3	Calculation $P_{+} = P_{+} =$	845.3 1188.2 845.3 240 210 11.36 4033.6 4033.6 exural Resistant 4089.0 th I factors	kips kips kips kips kips kips kips kips	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	1 + M M	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- F.d. +	P.d.
3 A A D D D D D D D D D D D D D D D D D	rticle .10.7.3	Calculation $P_{c} = P_{w} = P_{e} =$	845.3 1188.2 845.3 240 210 11.36 at of Top Flat 48403 4033.6 exural Resi 1.0 4033.6 ent 4089.0 th I factors	kips kips kips kips kips kips in nge kip in kip ft kip ft kip ft kip ft kip ft	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	1 + M N	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} = \\ -P_{ii} =$	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- P,d, +	$P_{i}d_{e}$
66 A A A A A A A A A A A A A A A A A A	rticle .10.7.3	Calculation $P_{c} = P_{w} = P_{e} = P_{e} = P_{e} = P_{e} = P_{e} = Case 1$ $\vec{Y} = From Botton$ $M_{\mu} = M_{\mu} = M_{\mu} = M_{\mu} = M_{\mu} = M_{\mu}$ Nominal Fit $\Phi = 0$ $M_{\mu} = M_{\mu} = M_{\mu}$	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403 4033.6 exural Resi 1.0 4033.6 exural Resi 200 th I factors	kips kips kips kips kips kips kips in nge kip in kip ft stance kip ft kip ft	Moment as $P_{\omega} = f_{\omega}b,$ $P_{\omega} = f_{\omega}L$ $P_{\omega} = f_{\omega}L$	ad $\tilde{\mathbf{Y}}$ t t t t t t t	d = d = d = d = d = d = d = d = d = d =	25.74 N/A 11.89 14.68 18.68 20.68 46.95	in	1 + M R	$Y = \begin{pmatrix} \frac{1}{2} \\ M_p = \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ M_p = \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} \end{array} $	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			-F,d, +	$P_{e}d_{e}$
6 A A 7 D 8 9 9 10 0 11 1 12 13 3 14 15 A 6 D 7 7 8 9 T 7 10 0 11 A	rticle .10.7.3	Calculation $P_{c} = P_{w} = P_{e} = P_{e} = P_{e} = P_{e} = P_{e} = Case 1$ $\vec{Y} = From Botton$ $M_{\mu} = M_{\mu} = M_{\mu} = M_{\mu} = M_{\mu} = M_{\mu}$ Nominal Fit $\Phi = 0$ $M_{\mu} = M_{\mu} = M_{\mu}$	845.3 1188.2 845.3 240 210 11.36 a of Top Fla 48403 4033.6 exural Resi 1.0 4033.6 exural Resi 200 th I factors	kips kips kips kips kips kips kips in nge kip in kip ft stance kip ft kip ft	Moment ar P_ = f_b_b P_ = f_k_l P_ = f_k_l P_ = f_k_l P_ = f_k_l R % LL Reduce	$M_y = M$ Ay = f_y	$d_{i} = d_{i} = D_{i$	25.74 N/A 11.89 14.68 18.68 20.68 46.95 + M _{IL} M _{ILL} S _{RAL} II	in		$Y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $M_p = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $Case 2$ $Y = \begin{pmatrix} \frac{t}{2} \\ -1 \end{pmatrix}$ $M_p = \begin{pmatrix} \frac{t}{2} \\ -1 \end{pmatrix}$	$\left(\frac{\frac{D_{*}}{2}}{2I}\right)^{*}$ $\left(\frac{\frac{I}{2I}}{2I}\right)^{*}$	$\begin{bmatrix} P_c - P_c \\ \Psi \\ W \end{bmatrix} * \begin{bmatrix} Y \\ Y \\ P_c + P_w \end{bmatrix}$	$ \begin{array}{c} -P_{w} \\ P_{w} \end{array} $ $ \begin{array}{c} +P_{i} \geq \\ -P_{ii} \end{array} $	$\frac{P_{rb}}{P_{rb}} + 1$ $P_{rb} + P_{rc}$ $P_{rb} + P_{rc}$ $P_{rb} + 1$]+[<i>P,d</i> ,			- F.d. +	P.d.

Figure 3-7: Positive and Negative Flexural Check in Spreadsheet

When looking at both the positive and negative flexure sections in Figure 3-7, notice that when the nominal flexural resistance is greater than the maximum factored

moment, the spreadsheet reads "Pass Positive Flexure Check" and "Pass Negative Flexural Check". The column on the left side of the spreadsheet referenced the appropriate section of the AASHTO LRFD Bridge Design Specifications. Supporting equations are also listed to the right side of each calculation.

3.7.2 Shear

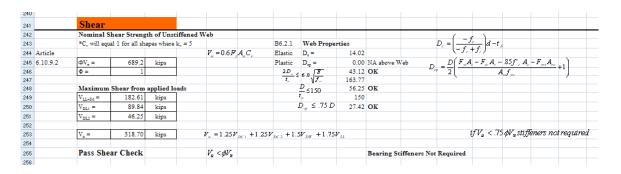


Figure 3-8: Shear Check in Spreadsheet

The shear design took the point of largest shear created by applied loads and compared it to the properties of the unstiffened web. As the macro cycles through each rolled shape, the nominal shear resistance changes. The spreadsheet will output "Pass Shear Check" until the nominal shear resistance drops below the maximum factored shear. Web properties, such as web slenderness, are confirmed as "ok" according to Appendix B6.2.1. It is also determined if bearing stiffeners are required.

3.7.3 Stress

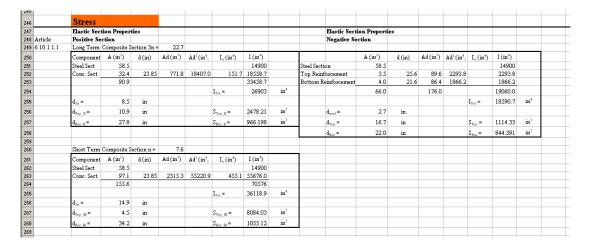


Figure 3-9: Elastic Section Properties for Long/Short Term and Negative Section

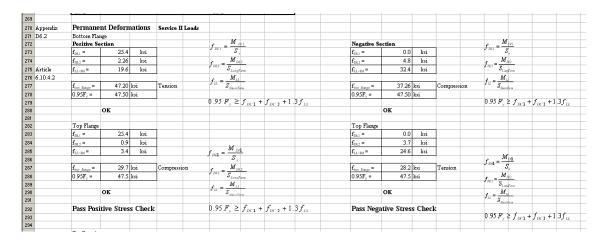


Figure 3-10: Flange Stresses in Positive and Negative Sections

In order to calculate the generated stresses, it is necessary to first find elastic section properties for the selected beam. A sample calculation for finding elastic section properties can be found in Appendix A, Sample Calculations. As seen in Figure 3-9, the elastic section properties were calculated for the short term composite, long term composite and negative sections. From the elastic section properties, the permanent deformations (flange stresses) were determined (Figure 3-10). The spreadsheet first

determines the stress in the top and bottom flanges in both the positive and negative maximum moment sections. Each of these stresses are then compared to 95% of the steel yield stress, 47.5 ksi. If each flange stress is below 95% of the yield stress, a "Pass Positive Stress Check" and "Pass Negative Stress Check" appears on the spreadsheet.

3.8 Summary

During this project, a software package for the design of simple made continuous steel bridges was developed. The program was created in Microsoft Excel and utilized a macro to output AISC wide flange shapes that satisfied the AASHTO LRFD Bridge Design Specification, based on user inputted bridge data. For a complete design, the user may also utilize a separate program to check if a selected rolled beam will support a Colorado Permit Vehicle. Appendix F contains a user's manual for this program.

4.0 DESIGN CHARTS

4.1 Introduction

This chapter describes how the design charts and design tables were created and how they are used to rapidly determine the rolled steel section type and erected cost of the bridge in Colorado. The design charts required assumptions that affected the results. It was also important to find a way to update the steel cost data so the design chart could be updated routinely and not become obsolete.

4.2 Design Charts

Several different design charts were created to outline the structural steel weight compared to number of girders used. The charts were made using a variety of span arrangements. These spans lengths ranged from 50 to 120 ft with different ratios. Charts were created for simply supported, two span and three span bridges. The longest span of 120 ft was decided upon because the simple for dead load, continuous for live load method using rolled sections becomes financially ineffective above this length, in large part because field splicing is required because of shipping limitations. Also, shipping a girder longer than 120 ft may not be feasible in many parts of Colorado. The CDOT bridge design manual subsection 10.2 states that the maximum preferred length of a steel girder without a field splice is 100 ft, but several steel girders up to 122 ft have been shipped [CDOT, 2002]. With this requirement in mind, any span longer than 100 ft would most likely call for a costly field splice. Because this project sought the design resulting in the least expensive alternative, sections exceeding 100 ft should be selected on a case-by-case basis because of their potential to be financially viable. Three different out to out widths were used for each of the span arrangements in the design charts. These

widths were 39 ft, 44 ft and 60 ft, based on recommendations from CDOT project study panel members. Each line on the chart depicts how the weight per sq. ft. changes as the number of girders increases. Span lengths can also be compared to determine if and how weight per square foot escalates as the span length is increased. An example of a 2 span design chart can be seen in Figure 4-1. All other design charts can be seen in Appendix B.

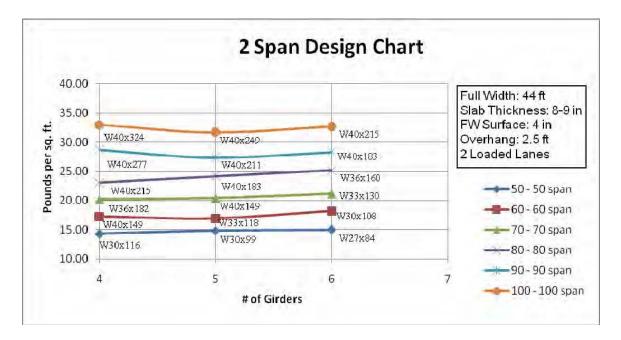


Figure 4-1: Example of a 2 Span Design Chart

The rolled beam sizes under each point represent the lowest size girder that was adequate to support the imposed loads, using the assumptions listed below.

Analysis was also conducted to determine if the results in the design charts were able to be interpolated in any way. After examination, results were inconclusive. In some cases, weight per square foot was able to be interpolated between span lengths. In other cases, the minimum girder size in between two points was very close to being the same as one of the bounds. Consider the case of a 95 ft - 95 ft two span bridge with the

same properties as the design chart in Figure 17. Results for the weight per square foot using 4 and 6 girders were very close to being linear interpolations between the 90 ft and 100 ft two spans. But when using 5 girders, the minimum girder size is only 2 lbs/ft less than the 100 ft span and therefore the weight per square foot is almost the same. The near intersection between the spans is shown in Figure 4-2.

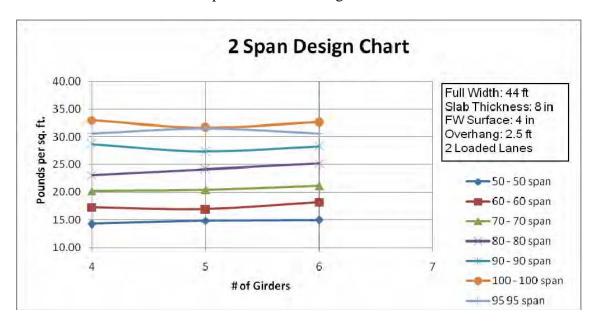


Figure 4-2: Linear Interpolation Between a 90 ft and 100 ft Two Span Bridge

The same analysis was performed to see if interpolation could be done between full widths and the results were similar to what was mentioned above. In some cases linear interpolation between widths was very close, but in others the minimum girder size was either the same or very close to the same. Because the interpolation does not hold true for all cases, it was recommended that interpolation not be used for design, but could be used to bound a bid, if needed.

4.2.1 Assumptions

- 8" 9" slab with 4.5 ksi concrete along with a 4" future wearing surface based on CDOT bridge design manual subsection 8.2 [CDOT, 2002]
- 2 2.5 ft overhang, where possible based on CDOT subsection 8.2 policy of an overhang less than the centerline to centerline girder spacing divided by 3 (S/3)
- 2-486 lbs/ft barriers with 1.5 ft width
- C15 x 33.9 diaphragms
- 18 ft interior and 12 ft exterior diaphragm spacing
- 5" x 7/8" shear studs with 3 studs in a row using minimum spacing throughout the length (6*dia. = 5.25"). In the field, spacing will vary depending on the shear force range.
- 2 design lanes when out to out width was 44 ft or less, 3 design lanes for widths greater than 44 ft
- Exterior girder controls design for future bridge widening if necessary
- Diaphragm and diaphragm erection costs and weights gathered from NSBA (National Steel Bridge Alliance) [Schrage, 2007]
- Beam weight greater than 124 lbs/ft and less than 331 lbs/ft for cost per square foot estimations
- Girder cost per pound varies by weight (Roscoe Steel and Culvert Quote Billings,
 MT) [Ranum, 2007]
- Cost of erection \$.065 per pound (Structures Inc. Quote Denver, CO) [Jackson,
 2008] with \$.03 per pound contingency

It was determined during a meeting with members of the CDOT bridge research study panel that an in depth analysis of the shear stud spacing would not be necessary. A shear stud spacing plan would be done in a more detailed design. Because of this, it was conservatively estimated that shear studs would be spaced at the minimum of six times the diameter of the stud. In the analysis of a two 90' span composite I beam steel bridge by HDR Engineering and AISC, [HDR Engr, AISC, 1997] shear studs were designed with an average spacing of 8.4." Using the same dimensions as the example, 4 girders with a 37' out to out width, it was determined that the structural steel weight was 28.97 lbs/ft² using a minimum stud spacing of 5.25". When this value is compared to that when using an average spacing of 8.4" from the example, 28.73 lbs/ft², one can see that using minimum shear stud spacing compared to average spacing is only nominally different.

Two design lanes were specified in the charts because two lanes carry a higher moment distribution factor than three design lanes. This was true because of specifying that the exterior girder controls the design and the special analysis of C.4.6.2.2.2d for each of the cases examined was the controlling moment distribution factor. Using the two lane moment distribution factor allowed for a slightly more conservative estimation of the girders required, but in some cases did not make a difference because the moment capacity of the girder was greater than maximum factored moment created by the loading for both lane sizes. For more information on the special analysis procedure see Ch. 2.5.1.

For the design charts and tables, a variable slab depth was used depending on the spacing of the girders. According to the CDOT bridge design manual subsection 8.2, the minimum thickness of the deck is 8 inches [CDOT, 2002]. This is due to thicker slabs showing higher performance and longevity compared to a thinner slab [CDOT, 2002].

CDOT also requires that the minimum thickness of the slab increases with girder spacing. An 8 inch deck can be used until the girder spacing reaches 9 feet. At this point, deck thickness changes by a ¼ inch until a 9 in slab thickness is required with girders spacing greater than 11.5 feet [CDOT, 2002].

4.3 Design Tables

The design tables were made using the same span ratios used in the design charts. The tables show the different span lengths, along with bridge width, number of girders, girder spacing, slab depth and overhang length. They then provide the five lightest shapes for the given span arrangement and their size and weight. A cost per square foot and the weight of the structural steel per square foot was also listed in the tables. The tables were organized by span arrangement and each contained four to eight girders similar to the design charts. Figure 4-3 depicts the design tables.

				T	wo E	qual S	Span D	esign	Table –	44 1	ft w	id	th				
50 - 50 ft span									70 – 70 ft spa	an							
			Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)						Nominal Depth		Weight per linear foot		P ounds per S quare Foot (Steel)
Full Width v			ft W30	X	116	\$1330	14.28		Full Width	w	44	ft	W36	Х	182	\$18.61	20.22
Longest Span L			ft W33	X	118	\$13.46	14.46		Longest Span	L	70	ft	W 40	Х	183	\$18.69	20.32
No. of girders N	ъ	4	W30	X	124	\$13.96	15.01		No. of girders	Nb	4		W36	Х	194	\$1955	21.32
Girder spacing S	_	_	ft W27	X	129	\$1438	15.46		Girder spacing	S	13	ft	W 40	Х	199	\$1993	21.77
Overhang d	e 2	5	ft W33	X	130	\$14.46	15.55		Overhang	de	2.5	ft	W33	Х	201	\$20.09	21.95
					Weight	Erected Cost per Square	P ounds per								Weight	Erected Cost per Square	P ounds per
			Nominal		per linear	Foot	Square Foot						Nominal		per linear	Foot	Square Foot
			Depth		foot	(Steel)	(Steel)						Depth		foot	(Steel)	(Steel)
Full Width v	V 4	4	ft W30	X	99	\$1427	14.84		Full Width	w	44	ft	W40	X	149	\$19.41	20.44
Longest Span L		0	ft W27	Х	102	\$1459	15.18		Longest Span	L	70	ft	W36	Х	150	\$1951	20.55
No. of girders N	ъ	5	W24	X	104	\$14.80	15.41		No. of girders	Nb	5		W 33	Х	152	\$19.71	20.78
Girder spacing S			ft W30	X	108	\$15.22	15.87		Girder spacing	S	9.75	ft	W36	Х	160	\$20.52	21.69
Overhang d	e 2	5	ft W27	X	114	\$15.86	16.55		Overhang	de	2.5	ft	W40	Х	167	\$21.22	22.49
					Weight	Erected Cost per Square	P ounds per								Weight	Erected Cost per Square	P ounds per
			Nominal		per linear		Square Foot						Nominal		per linear		Square Foot
			Depth	_	foot	(Steel)	(Steel)		<u> </u>			_	Depth	_	foot	(Stee I)	(Steel)
						22.4.20	15.02		Full Width	w	44	ft	W 33	X	130	\$20.56	21.19
Full Width v			ft W27	Х	84	\$14.80											
Longest Span L		0	ft W30	Х	90	\$1558	15.83		Longest Span	L	70	ft	W36	Х	135	\$21.18	21.87
Longest Span I No. of girders N	b s	5	ft W30 W27	X	90 94	\$15.58 \$16.09	15.83 16.38		No. of girders	Nb	70 6	ft	W36 W33	X	135 141	\$21.18 \$21.92	21.87 22.69
Longest Span L	b :	0 5 8	ft W30	Х	90	\$1558	15.83				70		W36	Х	135	\$21.18	21.87

Figure 4-3: Example of a 2 Span Design Table

4.4 Updating the Steel Costs

The price of steel fluctuates month to month, so it was important to determine a way to keep the cost per square foot provided in the summary report up to date. During this research, several steel fabrication companies close to the Colorado area were contacted for associated costs of fabrication and shipping different size girders to a potential project site. After this data was collected, it was evident that Roscoe Steel and Culvert in Billings, Montana and Big R Manufacturing in Greeley, Colorado had provided the most competitive quotes. To update the cost of the steel every month, it was discovered that Nucor Yamato posts a raw steel price monthly for several shapes and sizes of rolled beam sections [Nucor-Yamato Steel, 2008]. To account for this monthly change, a cell was added to the girder selection design spreadsheet (See Chapter 3) where the Nucor Yamato raw steel price was input. Because Nucor Yamato revises steel cost data for many different sizes and weights, it was determined that the most accurate steel price for this research would be to average the cost of a W36 girder with weights per foot between 135 and 256. The fluctuating steel price was coupled with the cost of fabrication gathered from Roscoe Steel and Culvert to generate the cost of a beam per pound. Fabrication costs included Grade 50 weathering steel, bearings, holes and other general fabrication requirements. Next, erection costs were collected from Structures Inc. out of Denver, Colorado. Structures Inc was the contractor who assembled a simple for dead load continuous for live load rolled steel girder bridge near Watkins, Colorado mentioned in Chapter One. They indicated that it would cost about \$0.065 per pound of steel to erect the structural steel [Jackson, 2008]. A three cent per pound contingency was added onto this cost to bring the total erection costs to \$0.095/lb. Diaphragm costs for both

material and assembly were taken from Calvin Scharge, Regional Director of the National Steel Bridge Alliance. Costs for several types of diaphragms were determined. Specifically, these were cross frames, either k or x, C15 x 33.9 channel diaphragms, and bent plates. Bent plates were only available in lengths less than 10' [Schrage, 2007]. In general, channel diaphragms provided the best economy. The erection cost of a channel diaphragm was \$60 per channel, while the material costs were dependent on the girder spacing [Schrage, 2007]. After all material and erection cost data had been collected, an accurate total cost was given. This data was used for values seen in the design tables. The cost per square foot on the design tables is current as of April 2008 and is based on a Nucor Yamato average base steel price of \$0.46. This equates to a fabricated girder price between \$0.79 - \$0.88 for girder sizes between 331 lbs/ft and 124 lbs/ft, respectively. The total erected cost of the beams, \$0.095, was added onto the fabricated beam costs. These prices do not include diaphragm material or erection costs, which will vary between each design table.

4.5 Summary

Several design charts and tables were created to reflect the structural steel weight per square foot of deck for a rolled steel girder bridge designed as simple for dead load continuous for live load. These charts and tables show how the amount of steel required changes as a function of span length. Each chart and table also provides the minimum wide flange shape required to support the deck and traffic loads such that it meets the AASHTO LRFD Bridge Design Specifications. The price of steel fluctuates month to month, so a method was developed to update the steel price from Nucor Yamato steel price charts.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Report Summary

This research focused on the cost-effectiveness of a rolled steel girder bridge system, using an innovative design method. The girders were designed as simply supported for the self weight and wet concrete. They were then made continuous at the piers using different methods to establish continuity including a concrete diaphragm or welded connection plate to connect the two separate girders. After the girders were made continuous, they shared the superimposed dead loads (rails, future wearing surface etc.) and the traffic live loads. Through an extensive literature review, this method has proved to be a cost-effective solution for steel bridges because of the elimination of field splices. During the project, a software package was created that takes user inputted data such as span lengths, out to out width, number of girders, and overhang along with various other inputs and outputs the lightest wide flange shape that will satisfy the loading. The girders were designed using appropriate provisions from the AASHTO LRFD Bridge Design Specifications 4th edition 2007. Bridge loadings used a standard lane load of 640 lbs/ft and HL-93 design truck(s) following AASHTO design provisions. These loads were input into a global stiffness analysis program Colorado State University – Continuous Beam Analysis (CSU-CBA). The global stiffness analysis program determined the maximum and minimum bending moments and shears, which were imported into an Excel spreadsheet. The results were factored using AASHTO LRFD Bridge Design Specifications and compared to flexural, stress and shear resistance values for all AISC wide flange shapes. Shapes that supported the applied loads were displayed with the lightest shapes first.

Once the program was completed, design charts and design tables were created for several one, two and three span steel bridges. Each span arrangement for the design charts and tables was made using full widths of 39 ft, 44 ft, and 60 ft. Each chart and table depicted how the steel weight per square foot changes as the number of girders was increased as well as providing the lightest wide flange shape required to support the deck and traffic loads. These charts and tables also illustrate how the amount of structural steel needed changes when different spans were used. Finally, steel fabrication and erection cost were gathered from regional steel fabricators and bridge contractors. This cost information led to an accurate measurement of the cost per square foot for the structural steel of a bridge to be built in the state of Colorado.

5.2 Conclusions

Many conclusions can be drawn from this report. First and foremost it can be viewed as successful when results are compared to in field examples. When bridge data from the Box Elder Creek Bridge (Section 1.3.5) was entered into the girder selection design software, a W33 x 152 girder was displayed as the 3rd lightest girder that would support the loads. The two lighter shapes had a larger nominal depth and because of flood restrictions in the area the 33 inch section was selected. A comparison can also be made with the two span 97' bridge in Nebraska (Section 1.3.1) using 4 girders, W40 x 249. Using the assumption that it was designed with a 4" future wearing surface, the girder selection design software outputs the lightest shape as a W36 x 247, followed by a W40 x 249. Through these trials, it can be concluded that the software gives a very accurate representation of minimum girder sizes.

Because the software has been verified, a bridge designer can use it to get an excellent idea of what minimum rolled steel section should be used for a given bridge, given it is designed as simple made continuous. The designer can either pull up the appropriate design chart and size the girders or quickly run the Excel software for a more complete analysis of a bridge system. In less than 10 minutes an experienced user could input the data for a given bridge and have it output the minimum girder sizes with supporting calculations. Next, it serves as a great tool to compare a rolled steel girder bridge to a precast concrete bridge, especially with the competitive market in Colorado. The design charts will aid the bridge type selection process by giving designers an accurate measurement of minimum steel requirements for numerous one, two and three span steel bridges. Overall, this research has provided CDOT and others who will use the software or design charts a tool that will facilitate the construction of innovative steel girder bridges.

5.3 Recommendations for Future Research

There are numerous topics in the simple made continuous design field where research can be expanded. First, the same type of software could be created for a plate girder bridge system. Plate girders allow a designer to optimize a steel section, rather than choosing a standard rolled section size. Plate girders can also utilize much deeper web and flange sizes, therefore allowing for longer spans or fewer girder lines. Other research could focus on a way to make field spices less expensive. If field splicing were economical, longer spans could be called for and designed as continuous throughout, leading to smaller sections. Finally, research could be developed to incorporate skewed pier sections, elevation changes between abutments and curved sections into the simple

made continuous design method. In the future, if these different types of steel girders bridge systems are researched for cost-effectiveness, it will make steel girder bridges a very attractive alternative in bridge design.

5.4 Recommendations for Engineers

After using the software and selecting an appropriate girder size, there are several considerations an engineer should account for to provide a complete design. The following is a list of factors that should be considered for design.

- Before the girders are made continuous, the unbraced length should be short
 enough to satisfy lateral torsional buckling effects. If the limiting unbraced length
 is exceeded, the beam moment capacity is reduced. A girder erection analysis
 should be performed for a selected non-composite I-beam with a given lateraltorsional bracing configuration.
- Construction loads should be monitored to not exceed what was designed for dead
 load one. This could include crane weight, screed weight and other construction
 loads. A deck pour analysis shall be performed to check whether or not a selected
 non-composite I-beam is adequate before concrete cures for unshored
 construction.
- It was assumed that all logical shapes to be used were compact sections. If the shape is a W40x149, W36x135 or W33x108, the designer should recheck the shear design because these shapes are non compact.
- A complete slab design should be completed. This includes rebar sizes and
 placements. Special attention should be paid to at the centerline of the pier.
 Because the top flanges of the two connected girders are not touching, material

needs to be provided to handle the tension of the negative moment. This could include a top cover plate between the girders or sufficient reinforcement in the deck.

- The design of the connection at the pier should provide full continuity. The
 designer should consider the compressive force in the bottom flange and if a
 concrete diaphragm is to be used, that the concrete is not crushed.
- If holes are to be cut in the web, the shear capacity should be checked with the net area of steel. If holes are to be placed in the flanges, they should be at points with low bending moments.

REFERENCES

- [1] AASHTO, LRFD Bridge Design Specifications, Fourth Edition, American Association of State Highway Transportation Officials, Washington D.C., 2007.
- [2] Azizinamini, Atorod, PE and Lynden Vander Veen, PE. "Simple-Made-Continuous." <u>NSBA Steel Bridge News</u> 5 (2004). May 2007 http://www.steelbridges.org/pdfs/Oct04.pdf>.
- [3] Azizinamini,, Atorod, PE, Nick J. Lampe, and Aaron J. Yakel, comps. <u>Toward</u>

 <u>Development of a Steel Bridge System Simple for Dead Load and Continuous</u>

 <u>for Live Load</u>. Vers. Final Report. Oct. 2003. National Bridge Research

 Organization, University of Nebraska Lincoln, Dept. of Civil Engineering. June
 2007 http://www.ne-ltap.unl.edu/ndor/ndor1.html>.
- [4] Azizinamini, Atorod, PE, Reza Farimani, and Nick Lampe. "Comparing Two Construction Methods on the Steel Bridges Economy." University of Nebraka, Lincoln Nebraska. May 2007
 http://www.asceditor.usm.edu/archives/2005/CPR05_3000_Farimani05.htm.
- [5] Barber, Ted L PE. "Simple Made Continuous Bridge Cuts Costs." <u>NSBA Steel Bridge News</u> (2006). May 2007
 http://www.aisc.org/MSCTemplate.cfm?Section=Modern_Steel_Construction2
 &template=/ContentManagement/ContentDisplay.cfm&ContentID=32940>.
- [6] Colorado Department of Transportation. <u>CDOT Bridge Design Manual.</u>, Denver, Co, 2002.
- [7] <u>Committee Research Problem Statements</u>. Transportation Research Board. 2006. May 2007 http://www.trb.org/committees/rps2006/AFF20-RPS06.pdf.
- [8] Construction Marketing. <u>Economical Details for Bridges: Cross Frames and Cross Frame Connections</u>. National Steel Bridge Alliance.
- [9] HDR Engineering Inc., and American Iron And Steel Institute, comps. <u>Four LRFD</u> <u>Design Examples of Steel Highway Bridges</u>. National Steel Bridge Alliance, 1997.
- [10] Iaquinta, Lynn N PE. "Steel Bridges: Continuous for Live Load Only." <u>NSBA Steel Bridge News</u> 3 (2002). May 2007 http://www.steelbridges.org/pdfs/Oct02.pdf>.
- [11] Jackson, Tom. "Structures Inc". Telephone interview. 1 Feb. 2008.
- [12] Nucor-Yamato Steel "Price List.". Apr. 2008. http://www.nucoryamato.com/>.

- [13] Ohio Department Of Transportation. <u>Over Scioto River Project Plans</u>. Bridge No. Pic-22-1703, 2003
- [14] Ranum, Jelena. "Roscoe Steel and Culvert". Telephone interview. 1 Aug. 2007.
- [15] Schrage, Calvin R. "National Steel Bridge Alliance". Telephone interview. 1 Oct. 2007.
- [16] "Steel Bridge Uses Simple-Made-Continuous Construction." Modern Steel

 Construction (2006). June 2007

 ">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentManagement/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentManagement/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentManagement/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentManagement/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentDisplay.cfm&ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentID=32459>">http://www.aisc.org/Template.cfm?Section=Innovative_Ideas&template=/ContentID=32459>">http://www.aisc.org/Template.cfm
- [17] Talbot, Jim. "Simple Made Continuous." <u>NSBA Steel Bridge News</u> 6 (2005). May 2007 http://www.steelbridges.org/pdfs/Oct05.pdf>.
- [18] Wang, Trever. "Colorado Department of Transportation". Personal Communication, 2006.

APPENDIX A: SAMPLE CALCULATIONS

Design of a simple for dead load continuous for live load steel girder bridge

Three Spans: 80 ft - 100 ft - 80 ft

Out to Out Width: 44 ft Number of Girders: 5 Slab Thickness: 8.25 in

Future Wearing Surface Thickness: 4 in

Girder Spacing: 9 ft 6 in

Overhang: 3 ft

Haunch Thickness: 0.75 in Beam Yield Strength: 50 ksi Concrete Yield Strength: 4.5 ksi

Selected Girder: W40 x 215

Interior Effective Flange Width

$$\frac{L}{4} = \frac{100ft*12\frac{fn}{ft}}{4} = 300 \ tn$$

$$12t_s + \frac{BF}{2} = 12 * 8.25tn + \frac{18.8tn}{2} = 106.9 \ tn$$
 Controls
$$S = 9.5 \ ft * 12\frac{fn}{ft} = 114 \ tn$$

Exterior Effective Flange Width

$$\frac{b_{int}}{2} + \frac{b}{8} = \frac{106.9m}{2} + \frac{1006fe+12\frac{in}{ft}}{8} = 203.5 \ tn$$

$$\frac{b_{int}}{2} + 6t_s + \frac{BF}{4} = \frac{106.9m}{2} + 6 * 8.25tn + \frac{18.8m}{4} = 156.4 \ tn$$

$$\frac{b_{int}}{2} + d_s = \frac{106.9m}{2} + 3ft * 12\frac{m}{ft} = 89.5 \ tn$$
Controls

Modular Ratio

$$n = \frac{E_0}{E_0} = \frac{290000 \text{ ks}t}{3924 \text{ ks}t} = 7.58$$

Unfactored Loads

Dead Load One: Wet Concrete + Beam Weight + Haunch + Shear Studs

Dead Load Two: Barriers + Future Wearing Surface

Live Load: Lane Load (640 lbs/ft) + Design Truck (HL-93)

DL1 = .216 + 1.217 + .005 = 1.437 kips/ft

DL2 = .193 + .456 = .649 kips/ft

LL = .640 kips/ft + Design Truck

Moment and Shear Distribution Factors – Exterior Girder Control Two Design Lanes

$$e = 0.77 + \frac{d_e}{9.1} = 0.77 + \frac{1.5ft}{9.1} = 0.935$$

$$g_{\text{interior}} = 0.075 + \left(\frac{S}{9.5 ft}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12 L t_s^3}\right)^{0.1} = .0670$$

$$g = 6g_{\text{interior}} = .935 * .670 = .626$$

Special Analysis

$$R = \frac{N_L}{N_h} + \frac{N_{ext} \sum e}{\sum x^2} = \frac{2}{8} + \frac{18f \cos 18f x}{2 \cos 484.28 f x^2} = 0.80$$
 Controls for both moment and shear

Calculated Maximum Moments and Shears using Strength I and Service II Factors

	Unfactored Moment	IM	Service II	Strength	Moment
Positive Moment	kip ft	IIVI	Service ii	'	Factor
Truck Live Load	945.07	1.33	1.3	1.75	0.800
Live Lane Load	281.15	1	1.3	1.75	0.800
Dead Load II	85.23	1	1	1.25	
Future Wearing Surface	200.32	1	1	1.5	
Dead Load I	1796.83	1	1	1.25	
Shear					
Truck Live Load	74.01	1.33	1.3	1.75	0.800
Live Lane Load	32.00	1	1.3	1.75	0.800
Dead Load II	9.72	1	1	1.25	
Future Wearing Surface	22.80	1	1	1.5	
Dead Load I	71.87	1	1	1.25	
Negative Moment					
Truck Live Load	-1101.01	1.33	1.3	1.75	0.800
Live Lane Load	-525.91	1	1.3	1.75	0.800
Dead Load II	-159.42	1	1	1.25	
Future Wearing Surface	-374.71	1	1	1.5	
Dead Load I	0.00	1	1	1.25	

Flexure Calculations

Positive Plastic Moment and Neutral Axis

$$\begin{array}{l} P_s = .85 f^t_o b_s t_s = .85*4.5 kst*89.5 ln*8.25 ln = 2822.8 \ ktps \\ P_o - P_t - f_y b_o t_o - 50 kst*15.8 ln*1.22 ln - 963.8 \ ktps \\ P_w = f_y b_w t_w = 50 kst*36.56 ln*.65 ln = 1188.2 \ ktps \end{array}$$

Longitudinal Reinforcement in positive flexure was conservatively neglected

Case 2: Neutral Axis in Top Flange

$$\begin{array}{l} P_{c} + P_{w} + P_{o} \geq P_{s} = 3115.8ktps \geq 2822.8ktps \\ \tilde{Y} = \left(\frac{\epsilon_{0}}{2}\right) \left[\frac{P_{W} + P_{c} - P_{s}}{P_{v}} + 1\right] = \left(\frac{1.22tn}{2}\right) \left[\frac{1199.2k + 969.9k - 2922.8k}{969.9k} + 1\right] = 0.19\ tn \end{array}$$

Measured From Top of Top Flange

Distances to the plastic neutral axis

$$d_{s} = 5.06 \text{ in}$$

$$d_{\rm w} = 18.70 \text{ in}$$

$$d_c = 0.42 \text{ in}$$

$$d_t = 38.20 \text{ in}$$

$$D_p = 9.19 \text{ in}$$

$$D_{t} = 48.0 \text{ in}$$

$$M_{p} = \frac{P_{c}}{2t_{o}} [Y^{2} + (t_{o} - Y)^{2}] + [P_{s}d_{s} + P_{w}d_{w} + P_{t}d_{t}]$$

$$M_{p} = \frac{963.8k}{2*4.22tn} [0.19tn^{2} + (1.22tn - 0.19tn)^{2}] + [2822.8k * 5.06tn + 1188.2k * 18.7tn + 963.8k * 38.2tn]$$

$$M_{p} = 73767 \text{ ktp tn} = 6147.2 \text{ ktp ft}$$
If
$$D_{p} \le 0.1D_{c} = 9.19tn \le 4.8tn$$

$$M_{n} = M_{p}$$
Otherwise
$$M_{p} = M_{p} = 4.07 - 0.7 \frac{D_{p}}{2} = 6147.2k \text{ ft} \left(1.07 - 0.7 \frac{9.19tn}{2}\right) = 5754.1ktn \text{ ft}$$

$$M_n = M_p \left(1.07 - 0.7 \frac{D_p}{D_b} \right) = 6147.2k \, ft \left(1.07 - 0.7 \frac{9.19 tn}{48.0 tn} \right) = 5754.1k tp \, ft$$

$$\Phi M_n = 5754.1 \, ktp \, ft$$

Yield Moment (See Elastic Properties for S values)

Yield Moment (See Elastic Properties for S values)
$$M_{y} = \left[F_{y} - \frac{M_{DC1}}{S_{NC}} - \frac{M_{DC2}}{S_{LT}} \right] S_{ST} + M_{DC1} + M_{DC2}$$

$$M_{y} = \left[50kst - \frac{21562 \ k \ tn}{859 \ tn^{3}} - \frac{3426.6 \ k \ tn}{1067.9tn^{3}} \right] 1169.3tn^{3} + 21562 \ k \ tn + 3426.6 \ k \ tn$$

$$M_{y} = 4195.9 \ ktp \ ft$$

$$M_{n} \ge 1.3M_{y} = 5454.7 \ ktp \ ft$$

Factored Moments at Strength I from Table 1

$$M_{w} = 1.25M_{DC1} + 1.25_{DC2} + 1.5M_{DW} + 1.75M_{LL+IM}$$

 $M_{LL+IM} = 2153.3$ kip ft
 $M_{DC1} = 2246$ kip ft
 $M_{DC2+DW} = 407$ kip ft
 $M_{u} = 4806.4$ kip ft

$$M_u \le \Phi M_n$$

4806.4 ktp ft \le 5454.7 ktp ft \le 5754.1 ktp ft OK

Negative Plastic Moment and Neutral Axis

$$\begin{split} P_{s} &= .85 f^{t}_{o} b_{s} t_{s} = .85 * 4.5 kst * 89.5 ln * 8.25 ln = 2822.8 \ ktps \\ P_{o} &= P_{t} = f_{y} b_{o} t_{o} = 50 kst * 15.8 ln * 1.22 ln = 963.8 \ ktps \\ P_{w} &= f_{y} b_{w} t_{w} = 50 kst * 36.56 ln * .65 ln = 1188.2 \ ktps \\ P_{re} &= F_{yre} A_{re} = 60 kst * 3.5 ln^{2} = 210 \ ktps \\ P_{rb} &= F_{yrb} A_{rb} = 60 kst * 4.0 ln^{2} = 240 \ ktps \end{split}$$

Case 1: Neutral Axis in Web

$$\begin{array}{l} P_{c} + P_{w} \geq P_{c} + P_{rb} + P_{rc} = 2152ktps \geq 1413.8ktps \\ P = \left(\frac{p}{2}\right) \left[\frac{P_{c} - P_{c} - P_{rb} - P_{rb}}{P_{w}} + 1\right] = \left(\frac{26.86m}{2}\right) \left[\frac{762.6h - 762.6h - 240h - 240h}{1198.2k} + 1\right] = 11.36~tn \end{array}$$

Measured From Bottom of Top Flange Distances to the plastic neutral axis

```
\begin{aligned} &d_s = 17.45 \text{ in} \\ &d_c = 25.81 \text{ in} \\ &d_w = 6.92 \text{ in} \\ &d_t = 11.97 \text{ in} \\ &d_{rt} = 14.58 \text{ in} \\ &d_{rb} = 19.08 \text{ in} \\ &D_p = 21.58 \text{ in} \\ &D_t = 48.0 \text{ in} \end{aligned}
```

$$\begin{split} M_p &= \frac{P_{tx}}{2D} [\tilde{Y}^2 + (D-\tilde{Y})^2] + [d_{rc}P_{rc} + d_{rb}P_{rb} + d_tP_t + d_oP_o] \\ M_p &= \frac{4188.2k}{2*26.86m} [11.36^2 tn^2 + (36.56tn - 11.36tn)^2] + [210k*14.58tn + 240k*19.08tn + 963.8k*11.97tn + 963.8k*25.8tn] \\ M_n &= \phi M_n = 56334.8ktp \ tn = 4694.6 \ ktp \ ft \end{split}$$

Factored Moments at Strength I from Table 1 Live Load Reduced 10% due to Article 3.6.1.3 $M_{u} = 1.25 M_{DC1} + 1.25_{DC2} + 1.5 M_{DW} + 1.75 M_{LL+IM}$ $M_{LL+IM} = -2584.4$ kip ft $M_{DC1} = 0$ kip ft $M_{DC2+DW} = -761.3$ kip ft $M_{u} = 3342.7$ kip ft

$$M_{m} \le \Phi M_{m}$$

3342.7 kip ft \le 4694.6 kip ft OK

Shear Calculations

Factored Moments at Strength I from Table 1 $V_{LL+IM} = 182.6 \text{ kips}$ $V_{DC1} = 89.8 \text{ kips}$ $V_{DC2+DW} = 46.3 \text{ kips}$ $V_u = 318.7 \text{ kips}$

Nominal Shear Strength of An Unstiffened Web $V_n = .58F_{vw}Dt_wC_v = .58*50kst*36.56tn*0.65tn*1.0 = 689.2ktps$

 $V_u \le \Phi V_n$ 318.7 ktps \(\) 689.2 ktps \(\) OK

If $V_u \leq .75\Phi V_n$ Bearing Stiffeners Not Required

318.7 *ktps* ≤ **516.9** *ktps* Bearing Stiffeners Not Required

Web Properties

$$\frac{D}{v_{tt}} \le 150 = \frac{23.86 \text{ m}}{9.68 \text{ m}} = 56.25 \le 150 \text{ OK}$$
 $\frac{2D_c}{v_{tt}} \le 6.8 \sqrt{\frac{E}{E_p}} = \frac{2.14.0 \text{ m}}{9.68 \text{ m}} \le 6.8 \sqrt{\frac{29300 \text{ keV}}{E0 \text{ keV}}}$
 $43.1 \le 163.8 \text{ OK}$
 $D_{op} \le .75D$
N.A in Flange OK
Compression Flange Properties
$$\frac{bf_0}{2000} \le .38 \frac{E}{E_p} = \frac{18.8 \text{ m}}{244.23 \text{ m}} \le .38 \sqrt{\frac{29000 \text{ keV}}{E0 \text{ keV}}}$$

Permanent Deformations

Elastic Section Properties

Positive Section

6.48 ≤ 9.15 OK

Long Term Composite 3n = 22.8

Component	A(m²)	d(in)	Ad(in1)	Ad ² (in ⁴)	I,(in*)	I(in ⁴)
Steel Sect	63.4					16700
Conc. Sect	32.4	24.375	790.6	19270.2	184.0	19454.1
	95.8			I	NA=	36154.1 29632.38 in ⁴
$d_{3n} = d_{3n} = d_{3n} = d_{3n} = 0$	8.2 in 11.3 in 27.7 in			S _{Tot}	_{டர} = பா=	2633.85 in ³ 1067.857 in ³

$$A_{\tau} = \frac{b_{eff}t_{e}}{3n} = \frac{89.81n \cdot 80.25tn}{22.8} = 32.4 tn^{2}$$

$$S_{Top_{e}H} = S_{LT} = \frac{b_{LR}}{d_{LT}} = \frac{29682.4 tn^{4}}{11.2 tn} = 2633.85 tn^{2}$$

Short Term Composite n = 7.6

Component	A(in²)	d(in)	Ad(in1)	Ad ² (in ⁴)	I,(in*)	I(in ⁴)
Steel Sect	63.4					16700
Conc. Sect	97.30	24.375	2371.7	57810.5	551.9	58362.4
	160.7				I _{NA} =	75062 40059.36 in ⁴
$d_{2n}=$ $d_{T_{OS}\perp T}=$ $d_{Bos\perp T}=$	14.8 in 4.7 in 34.3 in		2371.7124	S _T	_{10−11} =	8448.739 in ³ 1169.325 in ³

Negative Section

		A(in ²)	d(in)	Ad(in³)	Ad ² (in ⁴)	L(in4) I(in4)
Steel Section	on	63.4				16700
Top Reinfo	rcement	3.5	2.6	91.0	2366.0	2366.0
Bottom Rei	inforcement	4.0	21.5	86	1849.0	1849.0
		70.9		177.0	I _{NA} =	20915.0 20473.12 in ⁴
$d_{lo}=$ $d_{lo_{lo}=ll}=$ $d_{loo_{lo}=ll}=$	2.5 in 17.0 in 22.0 in				S _{Top_II} = S _{Rs_II} =	1204.052 in ³ 930.7457 in ³

Flange Stresses from Service II Loads

Positive Section

Bottom Flange

$$\begin{split} f_{DC1} &= \frac{M_{DC_0}}{S_K} = \frac{21862 \ kty \ tm}{889tm^2} = 25.1 kst \\ f_{DC2 \ IDW} &= \frac{M_{DC2 + DW}}{S_{Bot \ II}} = \frac{3426.6 \ kty \ tm}{1067.9 tm^2} = 3.2 kst \\ f_{bL+IM} &= \frac{M_{bL+IM}}{S_{Bot \ II}} - \frac{19196.6 \ kty \ tm}{1169.3 tm^2} - 16.4 kst \\ f_{bot flange} &= 25.1 kst + 3.2 kst + 16.4 kst = 44.73 kst \\ .95 f_y > f_{DC1} + f_{DC2 + DW} + 1.3 f_{bL+IM} \end{split}$$

47.5kst > 44.73kst OK

Top Flange $f_{BC1} = 25.1kst$ $f_{DC2+DW} = 1.3kst$ $f_{LL+LM} = 2.3kst$ $f_{top-flange} = 28.7kst$ 47.5kst > 28.7kst OK

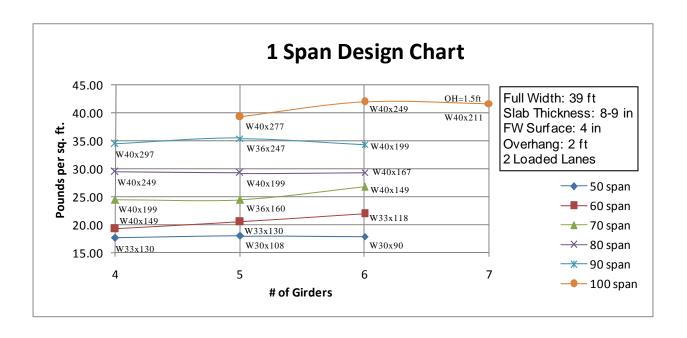
Negative Section
Bottom Flange $f_{DC1} = 0 \text{ kst}$ $f_{DC2+DW} = 6.9 \text{ kst}$ $f_{LL+LM} = 26.7 \text{ kst}$ $f_{Eot_flange} = 33.6 \text{ kst}$ 47.5 kst > 33.6 kst OK

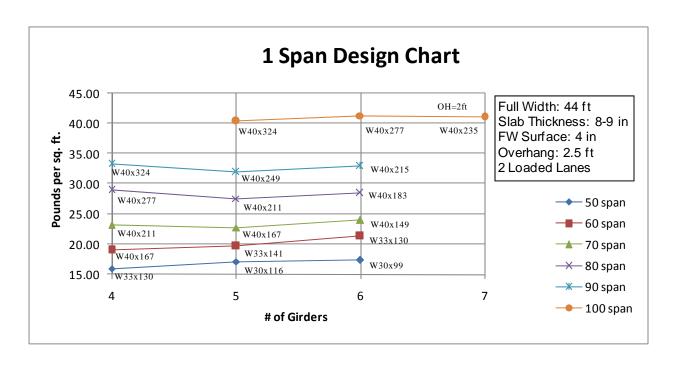
Top Flange $f_{DC1} = 0 \text{ kst}$ $f_{DC2+DW} = 5.3 \text{ kst}$ $f_{LL+LM} = 20.6 \text{ kst}$

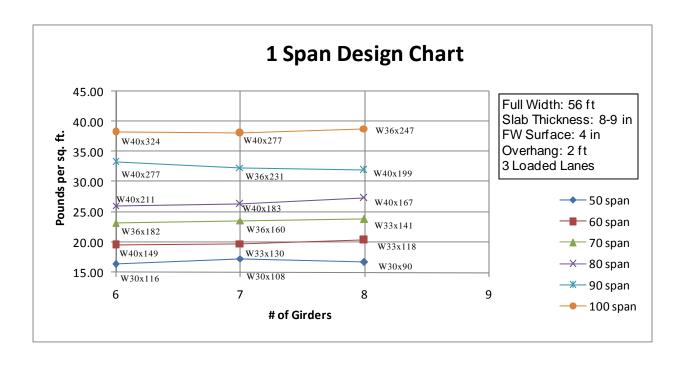
$$f_{top_floangs} - 26.0 \text{ kst}$$

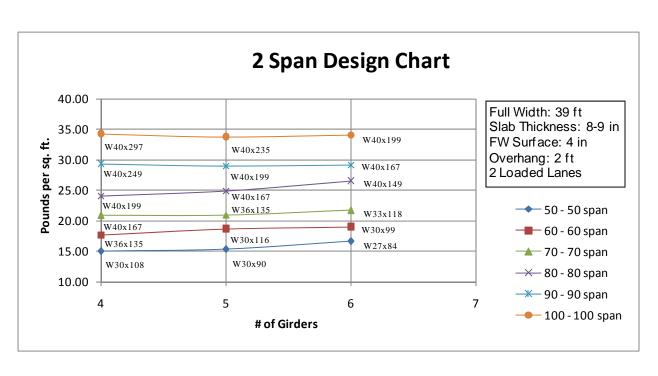
 $47.5 \text{kst} > 26.0 \text{kst}$ OK

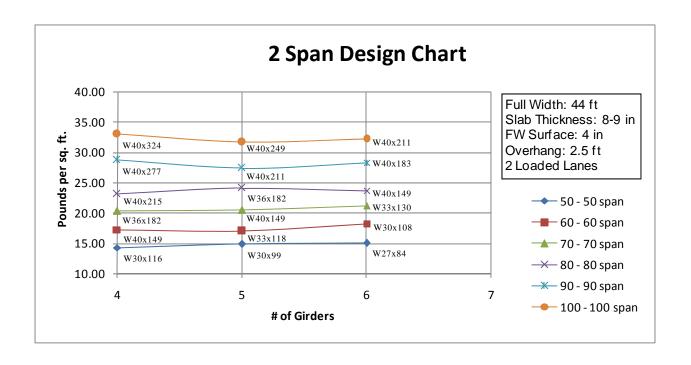
Dead Load One Deflection

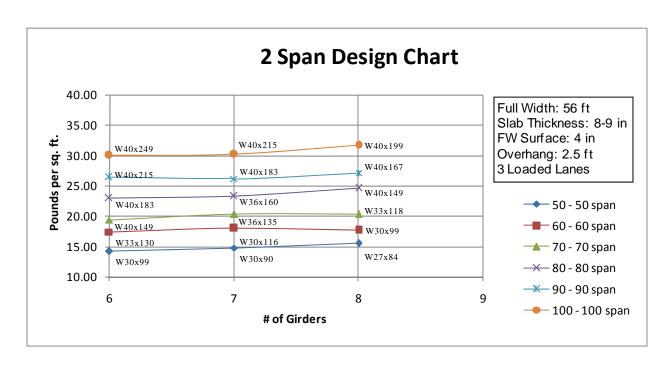

For simply supported beam after concrete has been poured

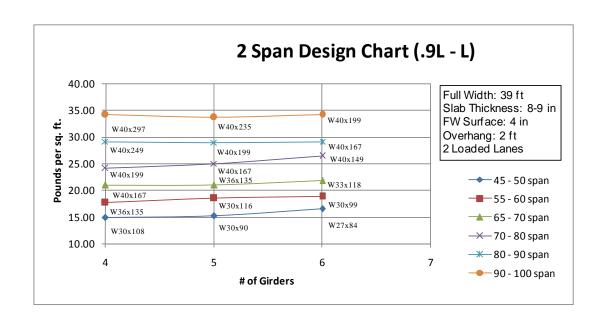

$$\Lambda_{max} = \frac{8\omega L^4}{384 EI} = \frac{8*1.44 \frac{k}{ft} * \frac{sft}{soin} * (100 ft * 12 \frac{in}{ft})^4}{384 * 29000 ksi * 16700 tn^4} = 6.68 \ tm$$

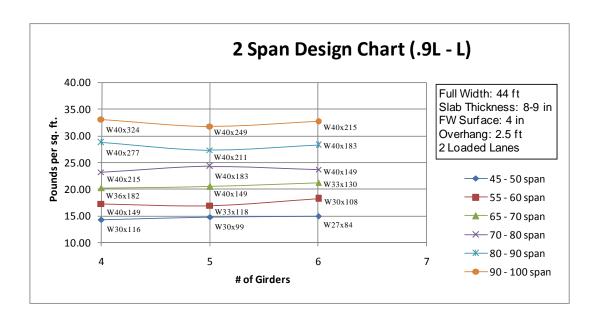

APPENDIX B: DESIGN CHARTS

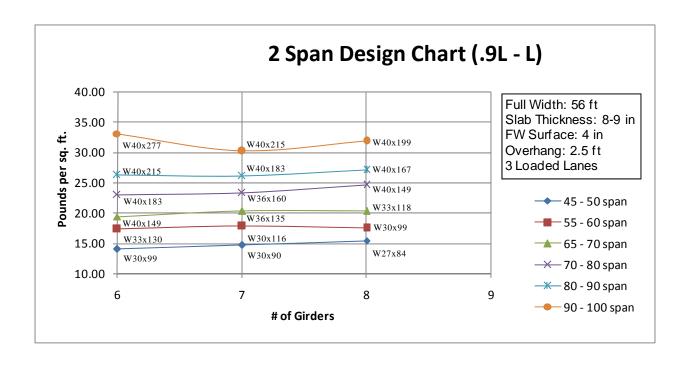

Design Chart Assumptions

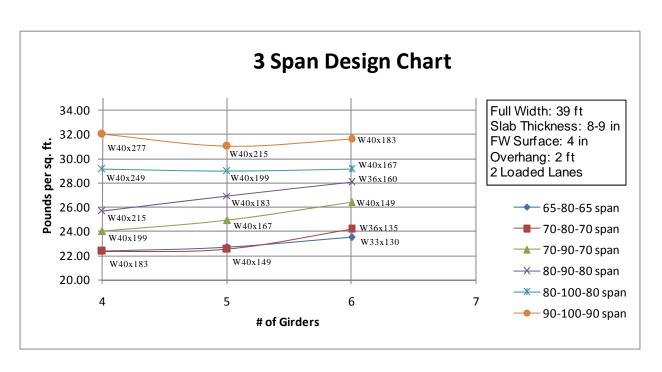

- 8 9" slab depending on girder spacing 4.5 ksi concrete w/ 4" future wearing surface
- 2-2.5 ft Overhang
- C15 x 33.9 Diaphragms
- 18 ft interior and 12 ft exterior diaphragm spacing
- 3 rows of 5" x 7/8" Shear Studs spaced at 5.25" or 6*dia throughout length for conservative estimate
- 2 486 lbs/ft barriers with 1.5 ft width
- 2 design lanes when out to out width was 44 ft or less, 3 design lanes for widths greater than 44 ft
- Weight estimate per square foot includes: Lightest wide flange beam weight,
 shear studs, and diaphragm weight
- All design charts were designed using a HL-93 Design Truck

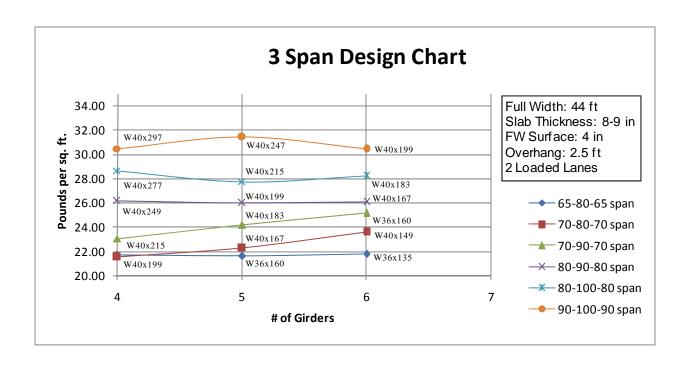


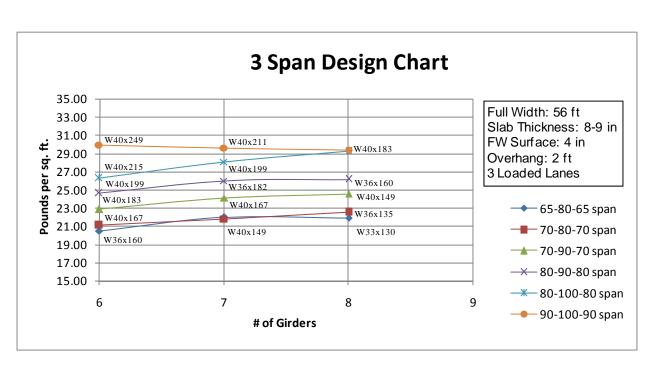


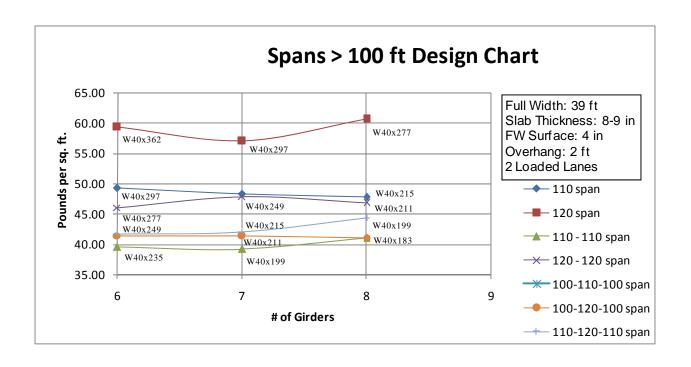


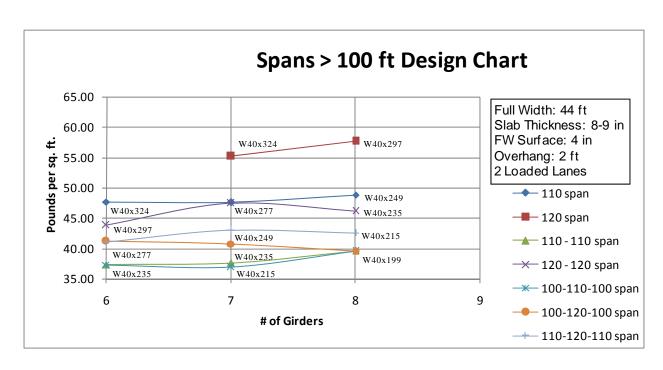


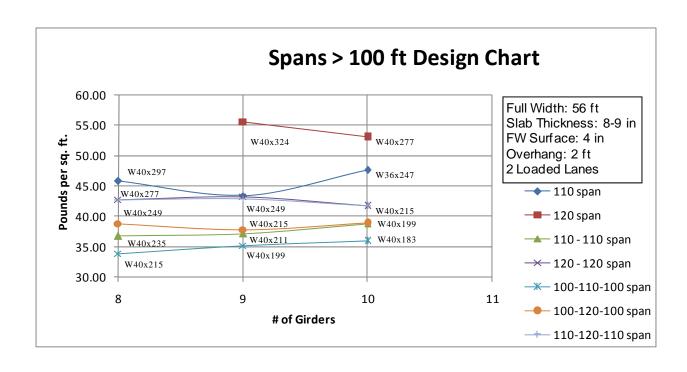












APPENDIX C: DESIGN TABLES

One Span Design Table –39 ft width

50 ft span

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W33	X	130	\$15.96	17.58
Slab Thickness	Ts	9	in	W30	X	132	\$16.15	17.79
No. of girders	Nb	4		W36	X	135	\$16.43	18.10
Girder spacing	S	11.67	ft	W33	X	141	\$16.98	18.71
Overhang		2	ft	W27	X	146	\$17.44	19.22

						Weight	Erected Cost per Square	Pounds per
	_		_	Nominal		per linear	Foot	Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W30	X	108	\$16.72	17.94
Slab Thickness	Ts	8	in	W27	X	114	\$17.44	18.71
No. of girders	Nb	5		W30	X	116	\$17.68	18.97
Girder spacing	S	8.75	ft	W24	X	117	\$17.79	19.10
Overhang		2	ft	W33	X	118	\$17.91	19.22

						Erected	
						Cost per	
					Weight	Square	Pounds per
			Nominal		per linear	Foot	Square Foot
L	50	ft	Depth		foot	(Steel)	(Steel)
W	39	ft	W30	X	90	\$17.03	17.91
Ts	8	in	W27	X	94	\$17.61	18.52
Nb	6		W30	X	99	\$18.33	19.29
S	7	ft	W27	X	102	\$18.77	19.76
	2	ft	W24	X	103	\$18.91	19.91
	w Ts Nb	w 39 Ts 8 Nb 6 S 7	w 39 ft Ts 8 in Nb 6 S 7 ft	L 50 ft Depth w 39 ft W30 Ts 8 in W27 Nb 6 W30 S 7 ft W27	L 50 ft Depth w 39 ft W30 X Ts 8 in W27 X Nb 6 W30 X S 7 ft W27 X	L 50 ft Nominal Depth per linear foot w 39 ft W30 X 90 Ts 8 in W27 X 94 Nb 6 W30 X 99 S 7 ft W27 X 102	L S0 Ft Depth Weight Foot Foot Weight Foot Foot Weight Weight Foot Weight Weight

70 ft span

							Erected Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	199	\$22.07	24.49
Slab Thickness	Ts	9	in	W36	X	210	\$23.03	25.61
No. of girders	Nb	4		W40	X	211	\$23.11	25.72
Girder spacing	S	11.67	ft	W40	X	215	\$23.46	26.13
Overhang		2	ft	W33	X	221	\$23.97	26.74

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W36	X	160	\$22.64	24.41
Slab Thickness	Ts	8	in	W40	X	167	\$23.43	25.31
No. of girders	Nb	5		W33	X	169	\$23.65	25.57
Girder spacing	S	8.75	ft	W36	X	170	\$23.76	25.70
Overhang		2	ft	W36	X	182	\$25.10	27.23

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	149	\$25.23	26.78
Slab Thickness	Ts	8	in	W36	X	150	\$25.36	26.93
No. of girders	Nb	6		W33	X	152	\$25.64	27.24
Girder spacing	S	7	ft	W36	X	160	\$26.73	28.47
Overhang		2	ft	W40	X	167	\$27.68	29.55

60 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	149	\$17.54	19.26
Slab Thickness	Ts	9	in	W36	X	160	\$18.54	20.39
No. of girders	Nb	4		W40	X	167	\$19.18	21.11
Girder spacing	S	11.67	ft	W33	X	169	\$19.36	21.31
Overhang		2	ft	W36	X	170	\$19.45	21.42

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W33	X	130	\$19.11	20.46
Slab Thickness	Ts	8	in	W36	X	135	\$19.69	21.10
No. of girders	Nb	5		W33	X	141	\$20.38	21.87
Girder spacing	S	8.75	ft	W27	X	146	\$20.96	22.51
Overhang		2	ft	W30	X	148	\$21.19	22.77

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Cost per Square Foot	Pounds per Square Foot (Steel)
Longest Span	L	00	п	Deptn		1001	(Steel)	(Steel)
Full Width	w	39	ft	W33	X	118	\$20.81	21.89
Slab Thickness	Ts	8	in	W30	X	124	\$21.65	22.82
No. of girders	Nb	6		W27	X	129	\$22.36	23.59
Girder spacing	S	7	ft	W33	X	130	\$22.50	23.74
Overhang		2	ft	W30	X	132	\$22.78	24.05

oo re spa								
							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	249	\$26.19	29.43
Slab Thickness	Ts	9	in	W36	X	262	\$27.26	30.77
No. of girders	Nb	4		W33	X	263	\$27.34	30.87
Girder spacing	S	11.67	ft	W40	X	264	\$27.42	30.97
Overhang		2	ft	W40	X	277	\$28.47	32.31

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	199	\$26.82	29.21
Slab Thickness	Ts	8	in	W36	X	210	\$28.02	30.62
No. of girders	Nb	5		W40	X	211	\$28.12	30.75
Girder spacing	S	8.75	ft	W40	X	215	\$28.55	31.26
Overhang		2	ft	W33	X	221	\$29.19	32.03

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	167	\$27.51	29.33
Slab Thickness	Ts	8	in	W36	X	182	\$29.52	31.64
No. of girders	Nb	6		W40	X	183	\$29.66	31.79
Girder spacing	S	7	ft	W30	X	191	\$30.71	33.02
Overhang		2	ft	W36	X	194	\$31.11	33.48

One Span Design Table –39 ft width

90 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	297	\$30.10	34.44
Slab Thickness	Ts	9	in	W40	X	324	\$32.18	37.21
No. of girders	Nb	4		W40	X	327	\$32.40	37.52
Girder spacing	S	11.67	ft	W36	X	330	\$32.63	37.83
Overhang		2	ft	W40	X	331	\$32.70	37.93

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W36	X	247	\$31.99	35.46
Slab Thickness	Ts	8	in	W40	X	249	\$32.19	35.71
No. of girders	Nb	5		W36	X	256	\$32.91	36.61
Girder spacing	S	8.75	ft	W36	X	262	\$33.52	37.38
Overhang		2	ft	W33	X	263	\$33.62	37.51

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	199	31.84	34.35
Slab Thickness	Ts	8	in	W40	X	211	33.40	36.20
No. of girders	Nb	6		W40	X	215	33.92	36.82
Girder spacing	S	7	ft	W33	X	221	34.68	37.74
Overhang		2	ft	W36	X	231	35.95	39.28

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	277	\$34.98	39.23
Slab Thickness	Ts	8	in	W40	X	294	\$36.66	41.41
No. of girders	Nb	5		W40	X	297	\$36.95	41.79
Girder spacing	S	8.75	ft	W36	X	302	\$37.44	42.43
Overhang		2	ft	W40	X	324	\$39.55	45.25

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	249	\$38.17	42.01
Slab Thickness	Ts	8	in	W36	X	262	\$39.77	44.01
No. of girders	Nb	6		W40	X	264	\$40.01	44.31
Girder spacing	S	7	ft	W40	X	277	\$41.58	46.31
Overhang		2	ft	W40	X	278	\$41.70	46.47

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	211	\$38.67	41.69
Slab Thickness	Ts	8	in	W40	X	215	\$39.27	42.40
No. of girders	Nb	7		W36	X	231	\$41.65	45.28
Girder spacing	S	6.00	ft	W36	X	232	\$41.79	45.45
Overhang		1.5	ft	W40	X	235	\$42,23	45.99

One Span Design Table –44 ft width

50 ft span

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W33	X	130	\$14.33	15.96
Slab Thickness	Ts	9	in	W36	X	135	\$14.74	16.41
No. of girders	Nb	4		W33	X	141	\$15.24	16.96
Girder spacing	S	13	ft	W27	X	146	\$15.65	17.41
Overhang		2.5	ft	W30	X	148	\$15.81	17.59

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W30	X	116	\$15.84	17.15
Slab Thickness	Ts	8.25	in	W33	X	118	\$16.05	17.38
No. of girders	Nb	5		W30	X	124	\$16.67	18.06
Girder spacing	S	9.75	ft	W27	X	129	\$17.19	18.63
Overhang		2.5	ft	W33	X	130	\$17.30	18.74

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W30	X	99	\$16.41	17.42
Slab Thickness	Ts	8	in	W27	X	102	\$16.80	17.83
No. of girders	Nb	6		W30	X	108	\$17.56	18.65
Girder spacing	S	7.8	ft	W27	X	114	\$18.32	19.47
Overhang		2.5	ft	W30	X	116	\$18.57	19.74

70 ft span

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	211	\$20.66	23.15
Slab Thickness	Ts	9	in	W40	X	215	\$20.97	23.51
No. of girders	Nb	4		W36	X	231	\$22.17	24.97
Girder spacing	S	13	ft	W36	X	232	\$22.25	25.06
Overhang		2.5	ft	W40	X	235	\$22.47	25.33

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	167	\$20.92	22.75
Slab Thickness	Ts	8.25	in	W36	X	182	\$22.41	24.46
No. of girders	Nb	5		W40	X	183	\$22.51	24.57
Girder spacing	S	9.75	ft	W36	X	194	\$23.58	25.82
Overhang		2.5	ft	W40	X	199	\$24.07	26.39

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	149	\$22.51	24.03
Slab Thickness	Ts	8	in	W36	X	150	\$22.63	24.17
No. of girders	Nb	6		W36	X	160	\$23.84	25.53
Girder spacing	S	7.8	ft	W40	X	167	\$24.68	26.49
Overhang		2.5	ft	W33	X	169	\$24.92	26.76

60 ft span

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	167	\$17.17	19.05
Slab Thickness	Ts	9	in	W36	X	170	\$17.41	19.32
No. of girders	Nb	4		W36	X	182	\$18.36	20.42
Girder spacing	S	13	ft	W40	X	183	\$18.43	20.51
Overhang		2.5	ft	W30	X	191	\$19.06	21.23

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W33	X	141	\$18.22	19.69
Slab Thickness	Ts	8.25	in	W40	X	149	\$19.04	20.60
No. of girders	Nb	5		W36	X	150	\$19.14	20.71
Girder spacing	S	9.75	ft	W33	X	152	\$19.34	20.94
Overhang		2.5	ft	W36	X	160	\$20.15	21.85

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W33	X	130	\$20.09	21.33
Slab Thickness	Ts	8	in	W30	X	132	\$20.33	21.60
No. of girders	Nb	6		W36	X	135	\$20.71	22.01
Girder spacing	S	7.8	ft	W33	X	141	\$21.45	22.83
Overhang		2.5	ft	W27	X	146	\$22.06	23.51

OO IC SPC												
							Erected					
							Cost per					
						Weight	Square	Pounds per				
				Nominal		per linear	Foot	Square Foot				
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)				
Full Width	W	44	ft	W40	X	277	\$25.40	28.97				
Slab Thickness	Ts	9	in	W40	X	278	\$25.47	29.06				
No. of girders	Nb	4		W36	X	282	\$25.75	29.42				
Girder spacing	S	13	ft	W33	X	291	\$26.38	30.24				
Overhang		2.5	ft	W40	X	294	\$26.59	30.51				

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	211	\$25.08	27.55
Slab Thickness	Ts	8.25	in	W40	X	215	\$25.46	28.01
No. of girders	Nb	5		W36	X	231	\$26.96	29.83
Girder spacing	S	9.75	ft	W36	X	232	\$27.05	29.94
Overhang		2.5	ft	W40	X	235	\$27.33	30.28

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	183	\$26.43	28.46
Slab Thickness	Ts	8	in	W36	X	194	\$27.71	29.96
No. of girders	Nb	6		W40	X	199	\$28.29	30.64
Girder spacing	S	7.8	ft	W33	X	201	\$28.53	30.91
Overhang		2.5	ft	W36	X	210	\$29.56	32.14

One Span Design Table –44 ft width

90 ft span

Julispe	20 It span											
Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)				
Full Width	w	44	ft	W40	X	324	\$28.69	33.32				
Slab Thickness	Ts	9	in	W36	X	361	\$31.12	36.69				
No. of girders	Nb	4		W40	X	362	\$31.18	36.78				
Girder spacing	S	13	ft	W40	X	372	\$31.81	37.69				
Overhang		2.5	ft	W33	X	387	\$32.75	39.05				

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	249	\$28.69	31.96
Slab Thickness	Ts	8.25	in	W40	X	264	\$30.05	33.67
No. of girders	Nb	5		W40	X	277	\$31.21	35.15
Girder spacing	S	9.75	ft	W40	X	278	\$31.30	35.26
Overhang		2.5	ft	W36	X	282	\$31.65	35.71

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	215	30.21	32.92
Slab Thickness	Ts	8	in	W36	X	231	32.01	35.10
No. of girders	Nb	6		W36	X	232	32.12	35.24
Girder spacing	S	7.8	ft	W40	X	235	32.46	35.65
Overhang		2.5	ft	W33	X	241	33.12	36.47

Y 46	·	100		Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	324	\$35.20	40.41
Slab Thickness	Ts	8.25	in	W40	X	327	\$35.45	40.75
No. of girders	Nb	5		W36	X	330	\$35.70	41.09
Girder spacing	S	9.75	ft	W40	X	331	\$35.79	41.21
Overhang		2.5	ft	W33	X	354	\$37.67	43.82

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	277	\$37.00	41.33
Slab Thickness	Ts	8	in	W40	X	278	\$37.10	41.47
No. of girders	Nb	6		W36	X	282	\$37.53	42.02
Girder spacing	S	7.8	ft	W40	X	294	\$38.79	43.65
Overhang		2.5	ft	W40	X	297	\$39.10	44.06

						Weight	Cost per Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	235	\$37.57	41.04
Slab Thickness	Ts	8	in	W36	X	247	\$39.12	42.95
No. of girders	Nb	7		W40	X	249	\$39.38	43.27
Girder spacing	S	6.67	ft	W36	X	256	\$40.27	44.38
Overhang		2	ft	W36	X	262	\$41.03	45.33

One Span Design Table – 56 ft width

50 ft span

20 It span											
				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot			
	_		_					-			
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)			
Full Width	w	56	ft	W30	X	116	\$15.00	16.33			
Slab Thickness	Ts	8.5	in	W33	X	118	\$15.20	16.54			
No. of girders	Nb	6		W30	X	124	\$15.79	17.19			
Girder spacing	S	10.4	ft	W27	X	129	\$16.28	17.72			
Overhang		2	ft	W33	X	130	\$16.38	17.83			

							Erected Cost per	
	_			Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W30	X	108	\$16.20	17.32
Slab Thickness	Ts	8	in	W27	X	114	\$16.90	18.07
No. of girders	Nb	7		W30	X	116	\$17.13	18.32
Girder spacing	S	8.5	ft	W24	X	117	\$17.24	18.44
Overhang		2.5	ft	W33	X	118	\$17.36	18.57

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W30	X	90	\$15.86	16.75
Slab Thickness	Ts	8	in	W27	X	94	\$16.40	17.32
No. of girders	Nb	8		W30	X	99	\$17.07	18.04
Girder spacing	S	7.43	ft	W27	X	102	\$17.47	18.46
Overhang		2	ft	W24	X	103	\$17.61	18.61

70 ft span

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W36	X	182	\$21.18	23.18
Slab Thickness	Ts	8.5	in	W40	X	183	\$21.27	23.29
No. of girders	Nb	6		W36	X	194	\$22.28	24.47
Girder spacing	S	10.4	ft	W40	X	199	\$22.74	25.01
Overhang		2	ft	W33	X	201	\$22.92	25.22

I 10		70	6	Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	160	\$21.94	23.60
Slab Thickness	Ts	8	in	W40	X	167	\$22.71	24.47
No. of girders	Nb	7		W33	X	169	\$22.93	24.72
Girder spacing	S	8.5	ft	W36	X	170	\$23.04	24.85
Overhang		2.5	ft	W30	X	173	\$23.37	25.22

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W33	X	141	\$22.42	23.80
Slab Thickness	Ts	8	in	W40	X	149	\$23.44	24.95
No. of girders	Nb	8		W36	X	150	\$23.57	25.09
Girder spacing	S	7.43	ft	W33	X	152	\$23.83	25.38
Overhang		2	ft	W36	X	160	\$24.84	26.52

60 ft span

00 10 SP411											
							Erected				
							Cost per				
						Weight	Square	Pounds per			
				Nominal		per linear	Foot	Square Foot			
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)			
Full Width	w	56	ft	W40	X	149	\$17.99	19.53			
Slab Thickness	Ts	8.5	in	W36	X	150	\$18.08	19.64			
No. of girders	Nb	6		W33	X	152	\$18.27	19.85			
Girder spacing	S	10.4	ft	W36	X	160	\$19.04	20.71			
Overhang		2	ft	W27	X	161	\$19.13	20.81			

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W33	X	130	\$18.51	19.78
Slab Thickness	Ts	8	in	W30	X	132	\$18.74	20.03
No. of girders	Nb	7		W36	X	135	\$19.08	20.40
Girder spacing	S	8.667	ft	W33	X	141	\$19.76	21.15
Overhang		2	ft	W27	X	146	\$20.32	21.78

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W33	X	118	\$19.33	20.39
Slab Thickness	Ts	8	in	W30	X	124	\$20.11	21.25
No. of girders	Nb	8		W27	X	129	\$20.77	21.96
Girder spacing	S	7.43	ft	W33	X	130	\$20.90	22.10
Overhang		2	ft	W30	X	132	\$21.16	22.39

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	211	\$23.67	26.07
Slab Thickness	Ts	8.5	in	W40	X	215	\$24.03	26.50
No. of girders	Nb	6		W36	X	231	\$25.45	28.21
Girder spacing	S	10.4	ft	W36	X	232	\$25.54	28.32
Overhang		2	ft	W40	X	235	\$25.80	28.64

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W40	X	183	\$24.31	26.29
Slab Thickness	Ts	8	in	W36	X	194	\$25.50	27.67
No. of girders	Nb	7		W40	X	199	\$26.03	28.29
Girder spacing	S	8.667	ft	W33	X	201	\$26.24	28.54
Overhang		2	ft	W36	X	210	\$27.19	29.67

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	167	\$25.54	27.28
Slab Thickness	Ts	8	in	W36	X	170	\$25.92	27.71
No. of girders	Nb	8		W36	X	182	\$27.41	29.42
Girder spacing	S	7.43	ft	W40	X	183	\$27.53	29.56
Overhang		2	ft	W30	X	191	\$28.51	30.71

One Span Design Table – 56 ft width

90 ft span

7 0 10 Spu							Erected Cost per	
				Nominal		Weight per linear	Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	277	\$29.46	33.24
Slab Thickness	Ts	8.5	in	W40	X	278	\$29.55	33.35
No. of girders	Nb	6		W36	X	282	\$29.88	33.78
Girder spacing	S	10.4	ft	W33	X	291	\$30.62	34.74
Overhang		2	ft	W40	X	294	\$30.87	35.06

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	231	\$29.42	32.35
Slab Thickness	Ts	8	in	W40	X	235	\$29.83	32.85
No. of girders	Nb	7		W36	X	247	\$31.04	34.35
Girder spacing	S	8.5	ft	W40	X	249	\$31.25	34.60
Overhang		2.5	ft	W40	X	256	\$31.95	35.48

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	199	29.57	31.96
Slab Thickness	Ts	8	in	W40	X	211	31.02	33.68
No. of girders	Nb	8		W40	X	215	31.50	34.25
Girder spacing	S	7.43	ft	W33	X	221	32.21	35.10
Overhang		2	ft	W36	X	231	33.39	36.53

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	324	\$33.25	38.24
Slab Thickness	Ts	8.5	in	W36	X	330	\$33.72	38.88
No. of girders	Nb	6		W40	X	331	\$33.80	38.99
Girder spacing	S	10.4	ft	W36	X	361	\$36.11	42.20
Overhang		2	ft	W40	X	362	\$36.18	42.31

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	277	\$34.03	38.14
Slab Thickness	Ts	8	in	W40	X	278	\$34.13	38.26
No. of girders	Nb	7		W36	X	282	\$34.52	38.76
Girder spacing	S	8.667	ft	W40	X	294	\$35.67	40.26
Overhang		2	ft	W40	X	297	\$35.96	40.64

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	247	\$35.25	38.82
Slab Thickness	Ts	8	in	W40	X	249	\$35.48	39.10
No. of girders	Nb	8		W36	X	256	\$36.28	40.10
Girder spacing	S	7.43	ft	W36	X	262	\$36.96	40.96
Overhang		2	ft	W40	X	264	\$37.19	41.25

Two Equal Spans Design Table – 39 ft width

50 – 50 ft span

50 50 it span											
				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot			
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)			
Full Width	w	39	ft	W30	X	108	\$13.61	14.92			
Slab Thickness	Ts	9	in	W27	X	114	\$14.18	15.54			
No. of girders	Nb	4		W30	X	116	\$14.37	15.74			
Girder spacing	S	11.67	ft	W33	X	118	\$14.56	15.95			
Overhang		2	ft	W30	X	124	\$15.13	16.56			

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W30	X	90	\$14.29	15.25
Slab Thickness	Ts	8	in	W27	X	94	\$14.77	15.77
No. of girders	Nb	5		W30	X	99	\$15.37	16.41
Girder spacing	S	8.75	ft	W27	X	102	\$15.73	16.79
Overhang		2	ft	W24	X	103	\$15.85	16.92

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W27	X	84	\$15.87	16.62
Slab Thickness	Ts	8	in	W24	X	84	\$15.87	16.62
No. of girders	Nb	6		W30	X	90	\$16.75	17.54
Girder spacing	S	7	ft	W21	X	93	\$17.19	18.01
Overhang		2	ft	W27	X	94	\$17.33	18.16

70 – 70 ft span

	_			Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	167	\$19.05	20.91
Slab Thickness	Ts	9	in	W36	X	170	\$19.32	21.22
No. of girders	Nb	4		W36	X	182	\$20.39	22.45
Girder spacing	S	11.67	ft	W40	X	183	\$20.48	22.56
Overhang		2	ft	W30	X	191	\$21.18	23.38

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W36	X	135	\$19.57	20.94
Slab Thickness	Ts	8	in	W33	X	141	\$20.27	21.71
No. of girders	Nb	5		W30	X	148	\$21.07	22.60
Girder spacing	S	8.75	ft	W40	X	149	\$21.19	22.73
Overhang		2	ft	W36	X	150	\$21.30	22.86

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W33	X	118	\$20.69	21.75
Slab Thickness	Ts	8	in	W33	X	130	\$22.39	23.59
No. of girders	Nb	6		W30	X	132	\$22.67	23.90
Girder spacing	S	7	ft	W36	X	135	\$23.09	24.36
Overhang		2	ft	W33	X	141	\$23.92	25.29

60 - 60 ft span

	•			Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W36	X	135	\$16.14	17.66
Slab Thickness	Ts	9	in	W33	X	141	\$16.69	18.27
No. of girders	Nb	4		W30	X	148	\$17.34	18.99
Girder spacing	S	11.67	ft	W40	X	149	\$17.43	19.09
Overhang		2	ft	W36	X	150	\$17.52	19.20

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W30	X	116	\$17.37	18.54
Slab Thickness	Ts	8	in	W33	X	118	\$17.60	18.79
No. of girders	Nb	5		W30	X	124	\$18.31	19.56
Girder spacing	S	8.75	ft	W27	X	129	\$18.90	20.20
Overhang		2	ft	W33	X	130	\$19.02	20.33

Longest Span	ī.	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W30	X	99	\$18.01	18.87
Slab Thickness	Ts	8	in	W30	X	108	\$19.30	20.25
No. of girders	Nb	6		W27	X	114	\$20.16	21.18
Girder spacing	S	7	ft	W30	X	116	\$20.44	21.48
Overhang		2	ft	W24	X	117	\$20.59	21.64

80 – 80 ft span

00 - 00 11 span											
							Erected				
							Cost per				
						Weight	Square	Pounds per			
				Nominal		per linear	Foot	Square Foot			
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)			
Full Width	W	39	ft	W40	X	199	\$21.79	24.05			
Slab Thickness	Ts	9	in	W40	X	211	\$22.83	25.28			
No. of girders	Nb	4		W40	X	215	\$23.17	25.69			
Girder spacing	S	11.67	ft	W33	X	221	\$23.68	26.31			
Overhang		2	ft	W36	X	231	\$24.53	27.33			

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	167	\$23.15	24.92
Slab Thickness	Ts	8	in	W36	X	170	\$23.48	25.30
No. of girders	Nb	5		W36	X	182	\$24.82	26.84
Girder spacing	S	8.75	ft	W40	X	183	\$24.93	26.97
Overhang		2	ft	W30	X	191	\$25.81	27.99

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Longest Span	L	80	п	Deptn		1001	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	149	\$24.94	26.41
Slab Thickness	Ts	8	in	W36	X	150	\$25.08	26.56
No. of girders	Nb	6		W33	X	152	\$25.35	26.87
Girder spacing	S	7	ft	W36	X	160	\$26.45	28.10
Overhang		2	ft	W40	X	167	\$27.40	29.18

Two Equal Spans Design Table – 39 ft width

90 – 90 ft span

70 – 70 It span												
							Erected					
							Cost per					
						Weight	Square	Pounds per				
				Nominal		per linear	Foot	Square Foot				
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)				
Full Width	w	39	ft	W40	X	249	\$26.03	29.18				
Slab Thickness	Ts	9	in	W36	X	262	\$27.09	30.51				
No. of girders	Nb	4		W40	X	264	\$27.25	30.72				
Girder spacing	S	11.67	ft	W40	X	277	\$28.30	32.05				
Overhang		2	ft	W40	X	278	\$28.38	32.15				

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	199	\$26.68	29.01
Slab Thickness	Ts	8	in	W36	X	210	\$27.87	30.42
No. of girders	Nb	5		W40	X	211	\$27.98	30.55
Girder spacing	S	8.75	ft	W40	X	215	\$28.41	31.06
Overhang		2	ft	W33	X	221	\$29.05	31.83

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	167	27.38	29.16
Slab Thickness	Ts	8	in	W36	X	182	29.39	31.47
No. of girders	Nb	6		W40	X	183	29.53	31.62
Girder spacing	S	7	ft	W30	X	191	30.59	32.85
Overhang		2	ft	W36	X	194	30.98	33.31

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	297	\$29.88	34.10
Slab Thickness	Ts	9	in	W40	X	324	\$31.95	36.87
No. of girders	Nb	4		W40	X	327	\$32.18	37.18
Girder spacing	S	11.67	ft	W36	X	330	\$32.41	37.49
Overhang		2	ft	W40	X	331	\$32.48	37.59

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	235	\$30.52	33.62
Slab Thickness	Ts	8	in	W36	X	247	\$31.77	35.15
No. of girders	Nb	5		W40	X	249	\$31.97	35.41
Girder spacing	S	8.75	ft	W36	X	256	\$32.69	36.31
Overhang		2	ft	W36	X	262	\$33.31	37.08

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	199	\$31.62	34.07
Slab Thickness	Ts	8	in	W36	X	210	\$33.05	35.76
No. of girders	Nb	6		W40	X	211	\$33.18	35.92
Girder spacing	S	7.00	ft	W40	X	215	\$33.70	36.53
Overhang		2	ft	W33	X	221	\$34.47	37.45

Two Equal Spans Design Table – 44 ft width

50 – 50 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W30	X	116	\$12.91	14.28
Slab Thickness	Ts	9	in	W33	X	118	\$13.07	14.46
No. of girders	Nb	4		W30	X	124	\$13.57	15.01
Girder spacing	S	13	ft	W27	X	129	\$13.99	15.46
Overhang		2.5	ft	W33	X	130	\$14.07	15.55

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W30	X	99	\$13.78	14.84
Slab Thickness	Ts	8.25	in	W27	X	102	\$14.10	15.18
No. of girders	Nb	5		W24	X	104	\$14.31	15.41
Girder spacing	S	9.75	ft	W30	X	108	\$14.73	15.87
Overhang		2.5	ft	W27	X	114	\$15.37	16.55

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W27	X	84	\$14.21	15.02
Slab Thickness	Ts	8	in	W30	X	90	\$14.99	15.83
No. of girders	Nb	6		W27	X	94	\$15.50	16.38
Girder spacing	S	7.8	ft	W24	X	94	\$15.50	16.38
Overhang		2.5	ft	W30	X	99	\$16.15	17.06

70 – 70 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W36	X	182	\$18.23	20.22
Slab Thickness	Ts	9	in	W40	X	183	\$18.31	20.32
No. of girders	Nb	4		W36	X	194	\$19.17	21.32
Girder spacing	S	13	ft	W40	X	199	\$19.56	21.77
Overhang		2.5	ft	W33	X	201	\$19.71	21.95

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	149	\$18.93	20.44
Slab Thickness	Ts	8.25	in	W36	X	150	\$19.03	20.55
No. of girders	Nb	5		W33	X	152	\$19.23	20.78
Girder spacing	S	9.75	ft	W36	X	160	\$20.04	21.69
Overhang		2.5	ft	W40	X	167	\$20.74	22.49

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W33	X	130	\$19.98	21.19
Slab Thickness	Ts	8	in	W36	X	135	\$20.60	21.87
No. of girders	Nb	6		W33	X	141	\$21.34	22.69
Girder spacing	S	7.8	ft	W27	X	146	\$21.95	23.37
Overhang		2.5	ft	W30	X	148	\$22.20	23.64

60 – 60 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	149	\$15.61	17.25
Slab Thickness	Ts	9	in	W36	X	150	\$15.69	17.34
No. of girders	Nb	4		W33	X	152	\$15.85	17.52
Girder spacing	S	13	ft	W36	X	160	\$16.50	18.25
Overhang		2.5	ft	W40	X	167	\$17.06	18.88

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W33	X	118	\$15.75	16.95
Slab Thickness	Ts	8.25	in	W33	X	130	\$17.00	18.32
No. of girders	Nb	5		W30	X	132	\$17.21	18.54
Girder spacing	S	9.75	ft	W36	X	135	\$17.52	18.88
Overhang		2.5	ft	W33	X	141	\$18.14	19.57

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W30	X	108	\$17.25	18.23
Slab Thickness	Ts	8	in	W27	X	114	\$18.01	19.05
No. of girders	Nb	6		W30	X	116	\$18.26	19.32
Girder spacing	S	7.8	ft	W33	X	118	\$18.51	19.59
Overhang		2.5	ft	W30	X	124	\$19.26	20.41

80 - 80 ft span

							Erected	
							Cost per	
				1		Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	215	\$20.69	23.08
Slab Thickness	Ts	9	in	W36	X	231	\$21.89	24.54
No. of girders	Nb	4		W36	X	232	\$21.97	24.63
Girder spacing	S	13	ft	W40	X	235	\$22.19	24.90
Overhang		2.5	ft	W33	X	241	\$22.64	25.45

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W36	X	182	\$22.14	24.07
Slab Thickness	Ts	8.25	in	W40	X	183	\$22.24	24.18
No. of girders	Nb	5		W36	X	194	\$23.31	25.43
Girder spacing	S	9.75	ft	W40	X	199	\$23.80	26.00
Overhang		2.5	ft	W33	X	201	\$23.99	26.23

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	149	\$22.24	23.67
Slab Thickness	Ts	8	in	W36	X	160	\$23.57	25.17
No. of girders	Nb	6		W40	X	167	\$24.41	26.12
Girder spacing	S	7.8	ft	W33	X	169	\$24.65	26.40
Overhang		2.5	ft	W36	X	170	\$24.77	26.53

Two Equal Spans Design Table – 44 ft width

90 – 90 ft span

50 50 It span											
							Erected				
							Cost per				
						Weight	Square	Pounds per			
				Nominal		per linear	Foot	Square Foot			
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)			
Full Width	w	44	ft	W40	X	277	\$25.24	28.72			
Slab Thickness	Ts	9	in	W40	X	278	\$25.31	28.81			
No. of girders	Nb	4		W36	X	282	\$25.59	29.17			
Girder spacing	S	13	ft	W40	X	294	\$26.43	30.26			
Overhang		2.5	ft	W40	X	297	\$26.64	30.54			

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	211	\$24.94	27.35
Slab Thickness	Ts	8.25	in	W40	X	215	\$25.32	27.81
No. of girders	Nb	5		W36	X	231	\$26.82	29.63
Girder spacing	S	9.75	ft	W36	X	232	\$26.92	29.74
Overhang		2.5	ft	W40	X	235	\$27.20	30.08

I amount Course	T	00		Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	183	26.30	28.29
Slab Thickness	Ts	8	in	W36	X	194	27.59	29.79
No. of girders	Nb	6		W40	X	199	28.17	30.47
Girder spacing	S	7.8	ft	W33	X	201	28.40	30.74
Overhang		2.5	ft	W36	X	210	29.44	31.97

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	324	\$28.48	32.99
Slab Thickness	Ts	9	in	W36	X	361	\$30.90	36.35
No. of girders	Nb	4		W40	X	362	\$30.96	36.45
Girder spacing	S	13	ft	W40	X	372	\$31.60	37.35
Overhang		2.5	ft	W33	X	387	\$32.54	38.72

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	249	\$28.48	31.66
Slab Thickness	Ts	8.25	in	W36	X	262	\$29.66	33.14
No. of girders	Nb	5		W40	X	264	\$29.84	33.37
Girder spacing	S	9.75	ft	W40	X	277	\$31.00	34.85
Overhang		2.5	ft	W40	X	278	\$31.09	34.96

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	211	\$29.54	32.09
Slab Thickness	Ts	8	in	W40	X	215	\$30.00	32.64
No. of girders	Nb	6		W36	X	231	\$31.80	34.82
Girder spacing	S	7.80	ft	W36	X	232	\$31.92	34.96
Overhang		2.5	ft	W40	X	235	\$32.25	35.37

Two Equal Spans Design Table – 56 ft width

50 – 50 ft span

						Weight	Erected Cost per Square	Pounds per
Longest Span	L	50	ft	Nominal Depth		per linear foot	Foot (Steel)	Square Foot (Steel)
Full Width	W	56	ft	W30	X	99	\$13.05	14.13
Slab Thickness	Ts	8.5	in	W27	X	102	\$13.35	14.45
No. of girders	Nb	6		W24	X	104	\$13.55	14.67
Girder spacing	S	10.4	ft	W30	X	108	\$13.95	15.09
Overhang		2	ft	W27	X	114	\$14.55	15.74

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W30	X	90	\$13.85	14.76
			-					
Slab Thickness	Ts	8	in	W27	X	94	\$14.33	15.26
No. of girders	Nb	7		W24	X	94	\$14.33	15.26
Girder spacing	S	8.667	ft	W30	X	99	\$14.92	15.89
Overhang		2	ft	W21	X	101	\$15.15	16.14

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W27	X	84	\$14.77	15.53
Slab Thickness	Ts	8	in	W24	X	84	\$14.77	15.53
No. of girders	Nb	8		W30	X	90	\$15.59	16.39
Girder spacing	S	7.43	ft	W21	X	93	\$15.99	16.82
Overhang		2	ft	W27	X	94	\$16.13	16.96

70 – 70 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	149	\$17.89	19.38
Slab Thickness	Ts	8.5	in	W36	X	150	\$17.98	19.49
No. of girders	Nb	6		W36	X	160	\$18.93	20.56
Girder spacing	S	10.4	ft	W40	X	167	\$19.59	21.31
Overhang		2	ft	W33	X	169	\$19.78	21.52

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W36	X	135	\$18.98	20.27
Slab Thickness	Ts	8	in	W33	X	141	\$19.66	21.02
No. of girders	Nb	7		W30	X	148	\$20.45	21.89
Girder spacing	S	8.667	ft	W40	X	149	\$20.56	22.02
Overhang		2	ft	W36	X	150	\$20.67	22.14

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W33	X	118	\$19.23	20.26
Slab Thickness	Ts	8	in	W33	X	130	\$20.80	21.98
No. of girders	Nb	8		W30	X	132	\$21.06	22.26
Girder spacing	S	7.43	ft	W36	X	135	\$21.45	22.69
Overhang		2	ft	W33	X	141	\$22.22	23.55

60 – 60 ft span

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W33	X	130	\$16.08	17.39
Slab Thickness		8.5	in	W30	X	132	\$16.27	17.60
No. of girders	Nb	6		W36	X	135	\$16.57	17.92
Girder spacing	S	10.4	ft	W33	X	141	\$17.15	18.57
Overhang		2	ft	W27	X	146	\$17.63	19.10

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W30	X	116	\$16.85	17.94
Slab Thickness	Ts	8	in	W33	X	118	\$17.08	18.19
No. of girders	Nb	7		W30	X	124	\$17.77	18.94
Girder spacing	S	8.667	ft	W27	X	129	\$18.34	19.57
Overhang		2	ft	W33	X	130	\$18.45	19.69

						Weight	Cost per Square	Pounds per
	_			Nominal		per linear		Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W30	X	99	\$16.74	17.60
Slab Thickness	Ts	8	in	W27	X	102	\$17.15	18.03
No. of girders	Nb	8		W30	X	108	\$17.95	18.89
Girder spacing	S	7.43	ft	W27	X	114	\$18.74	19.74
Overhang		2	ft	W30	X	116	\$19.01	20.03

80 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	183	\$21.01	22.91
Slab Thickness	Ts	8.5	in	W36	X	194	\$22.02	24.09
No. of girders	Nb	6		W40	X	199	\$22.48	24.62
Girder spacing	S	10.4	ft	W33	X	201	\$22.66	24.84
Overhang		2	ft	W36	X	210	\$23.47	25.80

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W36	X	160	\$21.71	23.29
Slab Thickness	Ts	8	in	W40	X	167	\$22.48	24.16
No. of girders	Nb	7		W33	X	169	\$22.70	24.41
Girder spacing	S	8.667	ft	W36	X	170	\$22.81	24.54
Overhang		2	ft	W30	X	173	\$23.14	24.91

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	149	\$23.18	24.59
Slab Thickness	Ts	8	in	W36	X	150	\$23.31	24.74
No. of girders	Nb	8		W33	X	152	\$23.56	25.02
Girder spacing	S	7.43	ft	W36	X	160	\$24.58	26.17
Overhang		2	ft	W40	X	167	\$25.46	27.17

Two Equal Spans Design Table – 56 ft width

90 – 90 ft span

	· sp			Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	215	\$23.91	26.32
Slab Thickness	Ts	8.5	in	W36	X	231	\$25.33	28.03
No. of girders	Nb	6		W36	X	232	\$25.42	28.14
Girder spacing	S	10.4	ft	W40	X	235	\$25.68	28.46
Overhang		2	ft	W33	X	241	\$26.20	29.11

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	183	\$24.21	26.14
Slab Thickness	Ts	8	in	W36	X	194	\$25.39	27.52
No. of girders	Nb	7		W40	X	199	\$25.92	28.14
Girder spacing	S	8.667	ft	W33	X	201	\$26.13	28.39
Overhang		2	ft	W36	X	210	\$27.08	29.52

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W40	X	167	25.44	27.14
Slab Thickness	Ts	8	in	W36	X	170	25.81	27.57
No. of girders	Nb	8		W36	X	182	27.31	29.28
Girder spacing	S	7.43	ft	W40	X	183	27.43	29.43
Overhang		2	ft	W30	X	191	28.41	30.57

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	249	\$26.89	29.95
Slab Thickness	Ts	8.5	in	W40	X	277	\$29.26	32.95
No. of girders	Nb	6		W40	X	278	\$29.35	33.06
Girder spacing	S	10.4	ft	W36	X	282	\$29.68	33.48
Overhang		2	ft	W33	X	291	\$30.42	34.45

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	215	\$27.59	30.12
Slab Thickness	Ts	8	in	W36	X	231	\$29.24	32.12
No. of girders	Nb	7		W40	X	235	\$29.65	32.62
Girder spacing	S	8.667	ft	W36	X	247	\$30.87	34.12
Overhang		2	ft	W40	X	249	\$31.07	34.37

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	199	\$29.37	31.69
Slab Thickness	Ts	8	in	W36	X	210	\$30.70	33.26
No. of girders	Nb	8		W40	X	211	\$30.82	33.41
Girder spacing	S	7.43	ft	W40	X	215	\$31.30	33.98
Overhang		2	ft	W33	X	221	\$32.01	34.83

Two Span .9L - L Design Table – 39 ft width

45 – 50 ft span

ie eo ie spun										
							Erected			
							Cost per			
						Weight	Square	Pounds per		
				Nominal		per linear	Foot	Square Foot		
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)		
Full Width	w	39	ft	W30	X	108	\$13.58	14.88		
Slab Thickness	Ts	9	in	W27	X	114	\$14.16	15.49		
No. of girders	Nb	4		W30	X	116	\$14.35	15.70		
Girder spacing	S	11.67	ft	W33	X	118	\$14.53	15.90		
Overhang		2	ft	W30	X	124	\$15.10	16.52		

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W30	X	90	\$14.23	15.17
Slab Thickness	Ts	8	in	W27	X	94	\$14.71	15.68
No. of girders	Nb	5		W30	X	99	\$15.31	16.32
Girder spacing	S	8.75	ft	W27	X	102	\$15.67	16.71
Overhang		2	ft	W24	X	103	\$15.79	16.84

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W27	X	84	\$15.79	16.51
Slab Thickness	Ts	8	in	W24	X	84	\$15.79	16.51
No. of girders	Nb	6		W30	X	90	\$16.67	17.44
Girder spacing	S	7	ft	W21	X	93	\$17.10	17.90
Overhang		2	ft	W27	X	94	\$17.25	18.05

65 – 70 ft span

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	167	\$19.03	20.88
Slab Thickness	Ts	9	in	W36	X	170	\$19.30	21.19
No. of girders	Nb	4		W36	X	182	\$20.37	22.42
Girder spacing	S	11.67	ft	W40	X	183	\$20.46	22.52
Overhang		2	ft	W30	X	191	\$21.16	23.34

I 45		70	6	Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	135	\$19.57	20.93
Slab Thickness	Ts	8	in	W33	X	141	\$20.26	21.70
No. of girders	Nb	5		W30	X	148	\$21.07	22.60
Girder spacing	S	8.75	ft	W40	X	149	\$21.18	22.73
Overhang		2	ft	W36	X	150	\$21.30	22.85

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W33	X	118	\$20.70	21.76
Slab Thickness	Ts	8	in	W33	X	130	\$22.39	23.60
No. of girders	Nb	6		W30	X	132	\$22.67	23.91
Girder spacing	S	7	ft	W36	X	135	\$23.09	24.37
Overhang		2	ft	W33	X	141	\$23.93	25.30

55 – 60 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	135	\$16.11	17.62
Slab Thickness	Ts	9	in	W33	X	141	\$16.67	18.24
No. of girders	Nb	4		W30	X	148	\$17.31	18.95
Girder spacing	S	11.67	ft	W40	X	149	\$17.40	19.06
Overhang		2	ft	W36	X	150	\$17.50	19.16

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W30	X	116	\$17.32	18.47
Slab Thickness	Ts	8	in	W33	X	118	\$17.55	18.72
No. of girders	Nb	5		W30	X	124	\$18.26	19.49
Girder spacing	S	8.75	ft	W27	X	129	\$18.85	20.13
Overhang		2	ft	W33	X	130	\$18.96	20.26

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W30	X	99	\$17.94	18.78
Slab Thickness	Ts	8	in	W30	X	108	\$19.23	20.16
No. of girders	Nb	6		W27	X	114	\$20.09	21.08
Girder spacing	S	7	ft	W30	X	116	\$20.37	21.39
Overhang		2	ft	W24	X	117	\$20.52	21.54

70 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	199	\$21.83	24.12
Slab Thickness	Ts	9	in	W40	X	211	\$22.87	25.35
No. of girders	Nb	4		W40	X	215	\$23.21	25.76
Girder spacing	S	11.67	ft	W33	X	221	\$23.73	26.38
Overhang		2	ft	W36	X	231	\$24.57	27.40

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	167	\$23.17	24.95
Slab Thickness	Ts	8	in	W36	X	170	\$23.51	25.33
No. of girders	Nb	5		W36	X	182	\$24.84	26.87
Girder spacing	S	8.75	ft	W40	X	183	\$24.95	27.00
Overhang		2	ft	W30	X	191	\$25.84	28.03

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	149	\$24.95	26.42
Slab Thickness	Ts	8	in	W36	X	150	\$25.09	26.57
No. of girders	Nb	6		W33	X	152	\$25.36	26.88
Girder spacing	S	7	ft	W36	X	160	\$26.46	28.11
Overhang		2	ft	W40	X	167	\$27.40	29.19

Two Span .9L - L Design Table – 39 ft width

80 – 90 ft span

00 - 70 1	00 = 90 1t Span												
							Erected						
							Cost per						
						Weight	Square	Pounds per					
				Nominal		per linear	Foot	Square Foot					
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)					
Full Width	w	39	ft	W40	X	249	\$25.99	29.12					
Slab Thickness	Ts	9	in	W36	X	262	\$27.05	30.45					
No. of girders	Nb	4		W40	X	264	\$27.21	30.66					
Girder spacing	S	11.67	ft	W40	X	277	\$28.26	31.99					
Overhang		2	ft	W40	X	278	\$28.34	32.10					

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	199	\$26.64	28.95
Slab Thickness	Ts	8	in	W36	X	210	\$27.83	30.36
No. of girders	Nb	5		W40	X	211	\$27.94	30.49
Girder spacing	S	8.75	ft	W40	X	215	\$28.36	31.00
Overhang		2	ft	W33	X	221	\$29.00	31.77

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	167	27.33	29.10
Slab Thickness	Ts	8	in	W36	X	182	29.35	31.40
No. of girders	Nb	6		W40	X	183	29.48	31.56
Girder spacing	S	7	ft	W36	X	194	30.93	33.25
Overhang		2	ft	W40	X	199	31.59	34.02

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	297	\$29.92	34.16
Slab Thickness	Ts	9	in	W40	X	324	\$31.99	36.93
No. of girders	Nb	4		W40	X	327	\$32.22	37.23
Girder spacing	S	11.67	ft	W36	X	330	\$32.44	37.54
Overhang		2	ft	W40	X	331	\$32.52	37.64

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	235	\$30.57	33.68
Slab Thickness	Ts	8	in	W36	X	247	\$31.81	35.22
No. of girders	Nb	5		W40	X	249	\$32.02	35.47
Girder spacing	S	8.75	ft	W36	X	256	\$32.74	36.37
Overhang		2	ft	W36	X	262	\$33.35	37.14

						Weight	Cost per Square	Pounds per
Longest Span	L	100	ft	Nominal Depth		per linear foot	Foot (Steel)	Square Foot (Steel)
Full Width	w	39	ft	W40	X	199	\$31.68	34.14
Slab Thickness	Ts	8	in	W40	X	211	\$33.24	35.99
No. of girders	Nb	6		W40	X	215	\$33.75	36.60
Girder spacing	S	7.00	ft	W33	X	221	\$34.52	37.53
Overhang		2	ft	W36	X	231	\$35.79	39.06

Two Span .9L - L Design Table – 44 ft width

45 – 50 ft span

10 50 1	UP							
							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W30	X	116	\$12.88	14.24
Slab Thickness	Ts	9	in	W33	X	118	\$13.05	14.42
No. of girders	Nb	4		W30	X	124	\$13.55	14.97
Girder spacing	S	13	ft	W27	X	129	\$13.96	15.42
Overhang		2.5	ft	W33	X	130	\$14.05	15.51

	T	50		Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W30	X	99	\$13.72	14.76
Slab Thickness	Ts	8.25	in	W27	X	102	\$14.04	15.10
No. of girders	Nb	5		W24	X	104	\$14.25	15.33
Girder spacing	S	9.75	ft	W30	X	108	\$14.68	15.78
Overhang		2.5	ft	W27	X	114	\$15.31	16.47

							Erected	
				Nominal		Weight per linear	Cost per Square Foot	Pounds per Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W27	X	84	\$14.13	14.91
Slab Thickness	Ts	8	in	W30	X	90	\$14.91	15.73
No. of girders	Nb	6		W27	X	94	\$15.42	16.27
Girder spacing	S	7.8	ft	W24	X	94	\$15.42	16.27
Overhang		2.5	ft	W30	X	99	\$16.07	16.95

65 – 70 ft span

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W36	X	182	\$18.21	20.19
run widin	W	44	11	W 30	Λ	102	\$10.21	20.19
Slab Thickness	Ts	9	in	W40	X	183	\$18.29	20.28
No. of girders	Nb	4		W36	X	194	\$19.15	21.28
Girder spacing	S	13	ft	W40	X	199	\$19.54	21.74
Overhang		2.5	ft	W33	X	201	\$19.69	21.92

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	149	\$18.92	20.43
Slab Thickness	Ts	8.25	in	W36	X	150	\$19.02	20.55
No. of girders	Nb	5		W33	X	152	\$19.23	20.77
Girder spacing	S	9.75	ft	W36	X	160	\$20.03	21.68
Overhang		2.5	ft	W40	X	167	\$20.73	22.48

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W33	X	130	\$19.99	21.20
Slab Thickness	Ts	8	in	W36	X	135	\$20.61	21.88
No. of girders	Nb	6		W33	X	141	\$21.35	22.70
Girder spacing	S	7.8	ft	W27	X	146	\$21.96	23.38
Overhang		2.5	ft	W30	X	148	\$22.20	23.65

55- 60 ft span

	_			Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	149	\$15.59	17.21
Slab Thickness	Ts	9	in	W36	X	150	\$15.67	17.30
No. of girders	Nb	4		W33	X	152	\$15.83	17.49
Girder spacing	S	13	ft	W36	X	160	\$16.48	18.21
Overhang		2.5	ft	W40	X	167	\$17.04	18.85

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W33	X	118	\$15.70	16.88
Slab Thickness	Ts	8.25	in	W33	X	130	\$16.95	18.25
No. of girders	Nb	5		W30	X	132	\$17.16	18.47
Girder spacing	S	9.75	ft	W36	X	135	\$17.47	18.81
Overhang		2.5	ft	W33	X	141	\$18.09	19.50

Longest Span	L	60	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W30	X	108	\$17.18	18.14
Slab Thickness	Ts	8	in	W27	X	114	\$17.94	18.96
No. of girders	Nb	6		W30	X	116	\$18.19	19.23
Girder spacing	S	7.8	ft	W33	X	118	\$18.44	19.50
Overhang		2.5	ft	W30	X	124	\$19.20	20.32

70 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	215	\$20.73	23.15
Slab Thickness	Ts	9	in	W36	X	231	\$21.94	24.60
No. of girders	Nb	4		W36	X	232	\$22.01	24.69
Girder spacing	S	13	ft	W40	X	235	\$22.23	24.97
Overhang		2.5	ft	W33	X	241	\$22.68	25.51

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	183	\$22.26	24.21
Slab Thickness	Ts	8.25	in	W36	X	194	\$23.33	25.46
No. of girders	Nb	5		W40	X	199	\$23.82	26.03
Girder spacing	S	9.75	ft	W33	X	201	\$24.01	26.26
Overhang		2.5	ft	W36	X	210	\$24.87	27.28

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	149	\$22.25	23.68
Slab Thickness	Ts	8	in	W36	X	160	\$23.58	25.18
No. of girders	Nb	6		W40	X	167	\$24.42	26.13
Girder spacing	S	7.8	ft	W33	X	169	\$24.66	26.41
Overhang		2.5	ft	W36	X	170	\$24.78	26.54

Two Span .9L - L Design Table – 44 ft width

80 – 90 ft span

oo oo it span										
							Erected			
							Cost per			
						Weight	Square	Pounds per		
				Nominal		per linear	Foot	Square Foot		
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)		
Full Width	w	44	ft	W40	X	277	\$25.20	28.66		
Slab Thickness	Ts	9	in	W40	X	278	\$25.27	28.75		
No. of girders	Nb	4		W36	X	282	\$25.55	29.11		
Girder spacing	S	13	ft	W40	X	294	\$26.39	30.20		
Overhang		2.5	ft	W40	X	297	\$26.60	30.48		

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width		44	ft	W40	X	211	\$24.90	27.29
run widin	W	44	11	W40	Λ	211	\$24.90	21.29
Slab Thickness	Ts	8.25	in	W40	X	215	\$25.28	27.75
No. of girders	Nb	5		W36	X	231	\$26.78	29.57
Girder spacing	S	9.75	ft	W36	X	232	\$26.88	29.68
Overhang		2.5	ft	W40	X	235	\$27.15	30.02

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	183	26.26	28.23
Slab Thickness	Ts	8	in	W36	X	194	27.54	29.73
No. of girders	Nb	6		W40	X	199	28.12	30.41
Girder spacing	S	7.8	ft	W33	X	201	28.36	30.68
Overhang		2.5	ft	W36	X	210	29.39	31.91

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	324	\$28.51	33.04
Slab Thickness	Ts	9	in	W36	X	361	\$30.93	36.41
No. of girders	Nb	4		W40	X	362	\$31.00	36.50
Girder spacing	S	13	ft	W40	X	372	\$31.63	37.41
Overhang		2.5	ft	W33	X	387	\$32.57	38.77

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	249	\$28.52	31.73
Slab Thickness	Ts	8.25	in	W40	X	264	\$29.88	33.43
No. of girders	Nb	5		W40	X	277	\$31.04	34.91
Girder spacing	S	9.75	ft	W40	X	278	\$31.13	35.02
Overhang		2.5	ft	W36	X	282	\$31.48	35.48

						Weight	Erected Cost per Square	Pounds per
		400		Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	215	\$30.05	32.71
Slab Thickness	Ts	8	in	W36	X	231	\$31.86	34.89
No. of girders	Nb	6		W36	X	232	\$31.97	35.03
Girder spacing	S	7.80	ft	W40	X	235	\$32.30	35.44
Overhang		2.5	ft	W33	X	241	\$32.97	36.25

Two Span .9L - L Design Table - 56 ft width

45 – 50 ft span

ie eo it span											
							Erected				
							Cost per				
						Weight	Square	Pounds per			
				Nominal		per linear	Foot	Square Foot			
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)			
Full Width	w	56	ft	W30	X	99	\$12.97	14.02			
Slab Thickness	Ts	8.5	in	W27	X	102	\$13.27	14.34			
No. of girders	Nb	6		W30	X	108	\$13.87	14.98			
Girder spacing	S	10.4	ft	W27	X	114	\$14.47	15.62			
Overhang		2	ft	W30	X	116	\$14.67	15.84			

Longest Span	L	50	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W30	X	90	\$13.76	14.63
Slab Thickness	Ts	8	in	W27	X	94	\$14.23	15.13
No. of girders	Nb	7		W24	X	94	\$14.23	15.13
Girder spacing	S	8.667	ft	W30	X	99	\$14.82	15.76
Overhang		2	ft	W21	X	101	\$15.06	16.01

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	50	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W27	X	84	\$14.67	15.39
Slab Thickness	Ts	8	in	W24	X	84	\$14.67	15.39
No. of girders	Nb	8		W30	X	90	\$15.48	16.25
Girder spacing	S	7.43	ft	W21	X	93	\$15.89	16.68
Overhang		2	ft	W27	X	94	\$16.02	16.82

65 – 70 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	70	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	149	\$17.89	19.39
Slab Thickness	Ts	8.5	in	W36	X	150	\$17.99	19.50
No. of girders	Nb	6		W36	X	160	\$18.94	20.57
Girder spacing	S	10.4	ft	W40	X	167	\$19.60	21.32
Overhang		2	ft	W33	X	169	\$19.79	21.53

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W36	X	135	\$19.00	20.29
Slab Thickness	Ts	8	in	W33	X	141	\$19.68	21.04
No. of girders	Nb	7		W30	X	148	\$20.46	21.91
Girder spacing	S	8.667	ft	W40	X	149	\$20.57	22.04
Overhang		2	ft	W36	X	150	\$20.69	22.16

Longest Span	L	70	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W33	X	118	\$19.25	20.29
Slab Thickness	Ts	8	in	W33	X	130	\$20.82	22.00
No. of girders	Nb	8		W30	X	132	\$21.08	22.29
Girder spacing	S	7.43	ft	W36	X	135	\$21.47	22.72
Overhang		2	ft	W33	X	141	\$22.25	23.58

55 – 60 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W33	X	130	\$16.01	17.29
Slab Thickness	Ts	8.5	in	W30	X	132	\$16.21	17.51
No. of girders	Nb	6		W36	X	135	\$16.50	17.83
Girder spacing	S	10.4	ft	W33	X	141	\$17.08	18.47
Overhang		2	ft	W27	X	146	\$17.56	19.01

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W30	X	116	\$16.77	17.83
Slab Thickness	Ts	8	in	W33	X	118	\$17.00	18.08
No. of girders	Nb	7		W30	X	124	\$17.69	18.83
Girder spacing	S	8.667	ft	W27	X	129	\$18.26	19.46
Overhang		2	ft	W33	X	130	\$18.37	19.58

						Weight	Cost per Square	Pounds per
				Nominal		per linear		Square Foot
Longest Span	L	60	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W30	X	99	\$16.65	17.48
Slab Thickness	Ts	8	in	W30	X	108	\$17.86	18.77
No. of girders	Nb	8		W27	X	114	\$18.65	19.62
Girder spacing	S	7.43	ft	W30	X	116	\$18.92	19.91
Overhang		2	ft	W24	X	117	\$19.05	20.05

70 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	183	\$21.02	22.92
Slab Thickness	Ts	8.5	in	W36	X	194	\$22.03	24.10
No. of girders	Nb	6		W40	X	199	\$22.49	24.63
Girder spacing	S	10.4	ft	W33	X	201	\$22.67	24.85
Overhang		2	ft	W36	X	210	\$23.48	25.81

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W36	X	160	\$21.70	23.28
Slab Thickness	Ts	8	in	W40	X	167	\$22.48	24.16
No. of girders	Nb	7		W33	X	169	\$22.70	24.41
Girder spacing	S	8.667	ft	W36	X	170	\$22.80	24.53
Overhang		2	ft	W36	X	182	\$24.11	26.03

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	149	\$23.17	24.58
Slab Thickness	Ts	8	in	W36	X	150	\$23.29	24.72
No. of girders	Nb	8		W33	X	152	\$23.55	25.01
Girder spacing	S	7.43	ft	W36	X	160	\$24.56	26.15
Overhang		2	ft	W40	X	167	\$25.45	27.15

Two Span .9L - L Design Table - 56 ft width

80 – 90 ft span

	•			Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	215	\$23.87	26.25
Slab Thickness	Ts	8.5	in	W36	X	231	\$25.28	27.97
No. of girders	Nb	6		W36	X	232	\$25.37	28.08
Girder spacing	S	10.4	ft	W40	X	235	\$25.64	28.40
Overhang		2	ft	W33	X	241	\$26.16	29.04

I 40		00		Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	183	\$24.16	26.07
Slab Thickness	Ts	8	in	W40	X	199	\$25.87	28.07
No. of girders	Nb	7		W33	X	201	\$26.08	28.32
Girder spacing	S	8.667	ft	W36	X	210	\$27.03	29.45
Overhang		2	ft	W40	X	211	\$27.14	29.57

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	167	25.39	27.07
Slab Thickness	Ts	8	in	W36	X	182	27.25	29.22
No. of girders	Nb	8		W40	X	183	27.38	29.36
Girder spacing	S	7.43	ft	W30	X	191	28.36	30.50
Overhang		2	ft	W36	X	194	28.73	30.93

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	277	\$29.31	33.02
Slab Thickness	Ts	8.5	in	W40	X	278	\$29.39	33.13
No. of girders	Nb	6		W36	X	282	\$29.73	33.56
Girder spacing	S	10.4	ft	W33	X	291	\$30.47	34.52
Overhang		2	ft	W40	X	294	\$30.72	34.84

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	215	\$27.64	30.20
Slab Thickness	Ts	8	in	W36	X	231	\$29.30	32.20
No. of girders	Nb	7		W40	X	235	\$29.71	32.70
Girder spacing	S	8.667	ft	W36	X	247	\$30.93	34.20
Overhang		2	ft	W40	X	249	\$31.13	34.45

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	199	\$29.43	31.77
Slab Thickness	Ts	8	in	W40	X	211	\$30.88	33.49
No. of girders	Nb	8		W40	X	215	\$31.36	34.06
Girder spacing	S	7.43	ft	W33	X	221	\$32.07	34.92
Overhang		2	ft	W36	X	231	\$33.25	36.34

Three Spans Design Table - 39 ft width

65 – 80 – 65 ft span

		1						
						Weight	Erected Cost per Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	182	\$20.32	22.36
Slab Thickness	Ts	9	in	W40	X	183	\$20.41	22.46
No. of girders	Nb	4		W36	X	194	\$21.38	23.59
Girder spacing	S	11.67	ft	W40	X	199	\$21.82	24.10
Overhang		2	ft	W33	X	201	\$21.99	24.31

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	149	\$21.12	22.64
Slab Thickness	Ts	8	in	W36	X	150	\$21.24	22.77
No. of girders	Nb	5		W33	X	152	\$21.47	23.03
Girder spacing	S	8.75	ft	W36	X	160	\$22.38	24.05
Overhang		2	ft	W40	X	167	\$23.17	24.95

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W33	X	130	\$22.32	23.51
Slab Thickness	Ts	8	in	W36	X	135	\$23.02	24.28
No. of girders	Nb	6		W33	X	141	\$23.85	25.20
Girder spacing	S	7	ft	W27	X	146	\$24.55	25.97
Overhang		2	ft	W30	X	148	\$24.82	26.28

70 – 90 – 70 ft span

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	199	\$21.76	24.01
Slab Thickness	Ts	9	in	W40	X	211	\$22.80	25.24
No. of girders	Nb	4		W40	X	215	\$23.14	25.65
Girder spacing	S	11.67	ft	W36	X	231	\$24.50	27.29
Overhang		2	ft	W36	X	232	\$24.58	27.39

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	167	\$23.11	24.87
Slab Thickness	Ts	8	in	W36	X	170	\$23.45	25.26
No. of girders	Nb	5		W36	X	182	\$24.79	26.79
Girder spacing	S	8.75	ft	W40	X	183	\$24.90	26.92
Overhang		2	ft	W30	X	191	\$25.78	27.95

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	149	\$24.91	26.36
Slab Thickness	Ts	8	in	W36	X	150	\$25.04	26.52
No. of girders	Nb	6		W33	X	152	\$25.32	26.82
Girder spacing	S	7	ft	W36	X	160	\$26.41	28.05
Overhang		2	ft	W40	X	167	\$27.36	29.13

70 - 80 – 70 ft span

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	183	\$20.32	22.32
Slab Thickness	Ts	9	in	W36	X	194	\$21.29	23.45
No. of girders	Nb	4		W40	X	199	\$21.73	23.96
Girder spacing	S	11.67	ft	W33	X	201	\$21.90	24.17
Overhang		2	ft	W36	X	210	\$22.68	25.09

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	149	\$21.03	22.51
Slab Thickness	Ts	8	in	W36	X	150	\$21.15	22.64
No. of girders	Nb	5		W36	X	160	\$22.29	23.92
Girder spacing	S	8.75	ft	W40	X	167	\$23.08	24.82
Overhang		2	ft	W33	X	169	\$23.30	25.08

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	135	\$22.93	24.16
Slab Thickness	Ts	8	in	W33	X	141	\$23.76	25.08
No. of girders	Nb	6		W30	X	148	\$24.73	26.16
Girder spacing	S	7	ft	W40	X	149	\$24.87	26.31
Overhang		2	ft	W36	X	150	\$25.01	26.47

80 – 90 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	215	\$23.14	25.65
Slab Thickness	Ts	9	in	W36	X	231	\$24.50	27.29
No. of girders	Nb	4		W40	X	235	\$24.84	27.70
Girder spacing	S	11.67	ft	W36	X	247	\$25.83	28.93
Overhang		2	ft	W40	X	249	\$26.00	29.14

Longest Span	ī.	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	183	\$24.90	26.92
Slab Thickness	Ts	8	in	W36	X	194	\$26.11	28.33
No. of girders	Nb	5		W40	X	199	\$26.65	28.97
Girder spacing	S	8.75	ft	W33	X	201	\$26.87	29.23
Overhang		2	ft	W36	X	210	\$27.84	30.38

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	160	\$26.41	28.05
Slab Thickness	Ts	8	in	W40	X	167	\$27.35	29.12
No. of girders	Nb	6		W33	X	169	\$27.62	29.43
Girder spacing	S	7	ft	W36	X	170	\$27.76	29.58
Overhang		2	ft	W36	X	182	\$29.36	31.43

Three Spans Design Table - 39 ft width

80 - 100 - 80 ft span

00 – 100 – 00 It span											
							Erected				
							Cost per				
						Weight	Square	Pounds per			
				Nominal		per linear	Foot	Square Foot			
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)			
Full Width	w	39	ft	W40	X	249	\$25.97	29.10			
Slab Thickness	Ts	9	in	W36	X	262	\$27.04	30.44			
No. of girders	Nb	4		W40	X	264	\$27.20	30.64			
Girder spacing	S	11.67	ft	W40	X	277	\$28.25	31.97			
Overhang		2	ft	W40	X	278	\$28.33	32.08			

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	199	\$26.62	28.92
Slab Thickness	Ts	8	in	W36	X	210	\$27.81	30.33
No. of girders	Nb	5		W40	X	211	\$27.92	30.46
Girder spacing	S	8.75	ft	W40	X	215	\$28.35	30.98
Overhang		2	ft	W33	X	221	\$28.99	31.74

I 40	T	100		Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	167	27.32	29.07
Slab Thickness	Ts	8	in	W36	X	182	29.33	31.38
No. of girders	Nb	6		W40	X	183	29.46	31.53
Girder spacing	S	7	ft	W36	X	194	30.91	33.23
Overhang		2	ft	W40	X	199	31.57	34.00

90 – 100 – 90 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	277	\$28.25	31.98
Slab Thickness	Ts	9	in	W40	X	294	\$29.60	33.72
No. of girders	Nb	4		W40	X	297	\$29.83	34.03
Girder spacing	S	11.67	ft	W36	X	302	\$30.22	34.54
Overhang		2	ft	W33	X	318	\$31.45	36.18

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	215	\$28.37	31.00
Slab Thickness	Ts	8	in	W36	X	231	\$30.07	33.05
No. of girders	Nb	5		W36	X	232	\$30.17	33.18
Girder spacing	S	8.75	ft	W40	X	235	\$30.49	33.57
Overhang		2	ft	W33	X	241	\$31.11	34.34

						Weight	Erected Cost per Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	183	\$29.49	31.57
Slab Thickness	Ts	8	in	W36	X	194	\$30.94	33.27
No. of girders	Nb	6		W40	X	199	\$31.60	34.04
Girder spacing	S	7.00	ft	W33	X	201	\$31.86	34.34
Overhang		2	ft	W36	X	210	\$33.03	35.73

Three Spans Design Table - 44 ft width

65 – 80 – 65 ft span

			5022							
				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot		
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)		
Full Width	w	44	ft	W40	X	199	\$19.50	21.67		
Slab Thickness	Ts	9	in	W36	X	210	\$20.34	22.67		
No. of girders	Nb	4		W40	X	211	\$20.42	22.77		
Girder spacing	S	13	ft	W40	X	215	\$20.72	23.13		
Overhang		2.5	ft	W33	X	221	\$21.17	23.67		

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W36	X	160	\$19.98	21.60
Slab Thickness	Ts	8.25	in	W40	X	167	\$20.68	22.40
No. of girders	Nb	5		W33	X	169	\$20.88	22.62
Girder spacing	S	9.75	ft	W36	X	170	\$20.98	22.74
Overhang		2.5	ft	W30	X	173	\$21.27	23.08

	_			Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W36	X	135	\$20.54	21.78
Slab Thickness	Ts	8	in	W33	X	141	\$21.28	22.60
No. of girders	Nb	6		W30	X	148	\$22.13	23.55
Girder spacing	S	7.8	ft	W40	X	149	\$22.26	23.69
Overhang		2.5	ft	W36	X	150	\$22.38	23.83

70 – 90 – 70 ft span

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	215	\$20.66	23.04
Slab Thickness	Ts	9	in	W36	X	231	\$21.87	24.49
No. of girders	Nb	4		W40	X	235	\$22.16	24.86
Girder spacing	S	13	ft	W36	X	247	\$23.05	25.95
Overhang		2.5	ft	W40	X	249	\$23.20	26.13

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	183	\$22.21	24.14
Slab Thickness	Ts	8.25	in	W36	X	194	\$23.28	25.39
No. of girders	Nb	5		W40	X	199	\$23.76	25.96
Girder spacing	S	9.75	ft	W33	X	201	\$23.96	26.18
Overhang		2.5	ft	W36	X	210	\$24.82	27.21

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W36	X	160	\$23.54	25.12
Slab Thickness	Ts	8	in	W40	X	167	\$24.38	26.08
No. of girders	Nb	6		W33	X	169	\$24.62	26.35
Girder spacing	S	7.8	ft	W36	X	170	\$24.74	26.49
Overhang		2.5	ft	W30	X	173	\$25.10	26.90

70 – 80 – 70 ft span

I4 S	T	90		Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	199	\$19.41	21.54
Slab Thickness	Ts	9	in	W40	X	211	\$20.33	22.63
No. of girders	Nb	4		W40	X	215	\$20.63	22.99
Girder spacing	S	13	ft	W33	X	221	\$21.09	23.54
Overhang		2.5	ft	W36	X	231	\$21.84	24.45

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	167	\$20.59	22.27
Slab Thickness	Ts	8.25	in	W36	X	170	\$20.89	22.61
No. of girders	Nb	5		W36	X	182	\$22.08	23.98
Girder spacing	S	9.75	ft	W40	X	183	\$22.17	24.09
Overhang		2.5	ft	W30	X	191	\$22.96	25.00

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	149	\$22.17	23.57
Slab Thickness	Ts	8	in	W36	X	150	\$22.29	23.71
No. of girders	Nb	6		W33	X	152	\$22.53	23.98
Girder spacing	S	7.8	ft	W36	X	160	\$23.50	25.07
Overhang		2.5	ft	W40	X	167	\$24.34	26.03

80 – 90 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	249	\$23.20	26.13
Slab Thickness	Ts	9	in	W36	X	262	\$24.14	27.31
No. of girders	Nb	4		W40	X	264	\$24.29	27.50
Girder spacing	S	13	ft	W40	X	277	\$25.21	28.68
Overhang		2.5	ft	W40	X	278	\$25.28	28.77

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	199	\$23.76	25.95
Slab Thickness	Ts	8.25	in	W36	X	210	\$24.82	27.20
No. of girders	Nb	5		W40	X	211	\$24.91	27.32
Girder spacing	S	9.75	ft	W40	X	215	\$25.29	27.77
Overhang		2.5	ft	W33	X	221	\$25.86	28.45

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	167	\$24.37	26.07
Slab Thickness	Ts	8	in	W36	X	182	\$26.16	28.12
No. of girders	Nb	6		W40	X	183	\$26.27	28.25
Girder spacing	S	7.8	ft	W30	X	191	\$27.21	29.34
Overhang		2.5	ft	W36	X	194	\$27.56	29.75

Three Spans Design Table - 44 ft width

80 – 100 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	277	\$25.19	28.64
Slab Thickness	Ts	9	in	W40	X	294	\$26.38	30.19
No. of girders	Nb	4		W40	X	297	\$26.59	30.46
Girder spacing	S	13	ft	W36	X	302	\$26.93	30.91
Overhang		2.5	ft	W33	X	318	\$28.02	32.37

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	215	\$25.26	27.73
Slab Thickness	Ts	8.25	in	W36	X	231	\$26.77	29.54
No. of girders	Nb	5		W36	X	232	\$26.86	29.66
Girder spacing	S	9.75	ft	W40	X	235	\$27.14	30.00
Overhang		2.5	ft	W33	X	241	\$27.69	30.68

		100		Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	183	26.24	28.20
Slab Thickness	Ts	8	in	W36	X	194	27.53	29.70
No. of girders	Nb	6		W40	X	199	28.11	30.38
Girder spacing	S	7.8	ft	W33	X	201	28.34	30.66
Overhang		2.5	ft	W36	X	210	29.37	31.88

90 – 100 – 90 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	297	\$26.59	30.46
Slab Thickness	Ts	9	in	W40	X	324	\$28.43	32.92
No. of girders	Nb	4		W40	X	327	\$28.63	33.19
Girder spacing	S	13	ft	W36	X	330	\$28.83	33.46
Overhang		2.5	ft	W40	X	331	\$28.90	33.56

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W36	X	247	\$28.26	31.39
Slab Thickness	Ts	8.25	in	W40	X	249	\$28.45	31.62
No. of girders	Nb	5		W36	X	256	\$29.08	32.41
Girder spacing	S	9.75	ft	W36	X	262	\$29.63	33.09
Overhang		2.5	ft	W33	X	263	\$29.72	33.21

						Weight	Cost per Square	Pounds per
Longest Span	L	100	ft	Nominal Depth		per linear foot	Foot (Steel)	Square Foot (Steel)
Full Width	w	44	ft	W40	X	199	\$28.14	30.42
Slab Thickness	Ts	8	in	W40	X	211	\$29.52	32.06
No. of girders	Nb	6		W40	X	215	\$29.97	32.61
Girder spacing	S	7.80	ft	W33	X	221	\$30.65	33.42
Overhang		2.5	ft	W36	X	231	\$31.78	34.79

Three Spans Design Table - 56 ft width

65 - 80 - 65 ft span

00	~			-				
							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	160	\$18.87	20.47
Slab Thickness	Ts	8.5	in	W40	X	167	\$19.53	21.22
No. of girders	Nb	6		W33	X	169	\$19.72	21.43
Girder spacing	S	10.4	ft	W36	X	170	\$19.82	21.54
Overhang		2	ft	W36	X	182	\$20.93	22.82

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	149	\$20.50	21.93
Slab Thickness	Ts	8	in	W36	X	150	\$20.61	22.05
No. of girders	Nb	7		W33	X	152	\$20.83	22.30
Girder spacing	S	8.667	ft	W36	X	160	\$21.72	23.30
Overhang		2	ft	W40	X	167	\$22.49	24.18

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W33	X	130	\$20.74	21.89
Slab Thickness	Ts	8	in	W36	X	135	\$21.39	22.60
No. of girders	Nb	8		W33	X	141	\$22.16	23.46
Girder spacing	S	7.43	ft	W27	X	146	\$22.80	24.18
Overhang		2	ft	W30	X	148	\$23.06	24.46

70 - 90 - 70 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	183	\$20.98	22.86
Slab Thickness	Ts	8.5	in	W36	X	194	\$21.99	24.04
No. of girders	Nb	6		W40	X	199	\$22.45	24.58
Girder spacing	S	10.4	ft	W33	X	201	\$22.63	24.79
Overhang		2	ft	W36	X	210	\$23.44	25.75

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	167	\$22.44	24.11
Slab Thickness	Ts	8	in	W36	X	170	\$22.77	24.49
No. of girders	Nb	7		W36	X	182	\$24.08	25.99
Girder spacing	S	8.667	ft	W40	X	183	\$24.19	26.11
Overhang		2	ft	W30	X	191	\$25.05	27.11

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	149	\$23.14	24.55
Slab Thickness	Ts	8	in	W36	X	150	\$23.27	24.69
No. of girders	Nb	8		W33	X	152	\$23.52	24.97
Girder spacing	S	7.43	ft	W36	X	160	\$24.54	26.12
Overhang		2	ft	W40	X	167	\$25.42	27.12

70 - 80 - 70 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	167	\$19.45	21.09
Slab Thickness	Ts	8.5	in	W36	X	170	\$19.73	21.42
No. of girders	Nb	6		W36	X	182	\$20.85	22.70
Girder spacing	S	10.4	ft	W40	X	183	\$20.94	22.81
Overhang		2	ft	W30	X	191	\$21.68	23.67

Longest Span	L	80	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	149	\$20.41	21.81
Slab Thickness	Ts	8	in	W36	X	150	\$20.52	21.94
No. of girders	Nb	7		W33	X	152	\$20.75	22.19
Girder spacing	S	8.667	ft	W36	X	160	\$21.64	23.19
Overhang		2	ft	W40	X	167	\$22.41	24.06

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	80	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	135	\$21.30	22.49
Slab Thickness	Ts	8	in	W33	X	141	\$22.08	23.35
No. of girders	Nb	8		W30	X	148	\$22.97	24.35
Girder spacing	S	7.43	ft	W40	X	149	\$23.10	24.49
Overhang		2	ft	W36	X	150	\$23.23	24.63

80 – 90 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	199	\$22.44	24.57
Slab Thickness	Ts	8.5	in	W40	X	211	\$23.53	25.85
No. of girders	Nb	6		W40	X	215	\$23.88	26.28
Girder spacing	S	10.4	ft	W33	X	221	\$24.42	26.92
Overhang		2	ft	W36	X	231	\$25.30	28.00

Longest Span	L	90	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W36	X	182	\$24.07	25.98
Slab Thickness	Ts	8	in	W40	X	183	\$24.18	26.10
No. of girders	Nb	7		W36	X	194	\$25.36	27.48
Girder spacing	S	8.667	ft	W40	X	199	\$25.89	28.10
Overhang		2	ft	W33	X	201	\$26.10	28.35

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	90	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	160	\$24.53	26.10
Slab Thickness	Ts	8	in	W40	X	167	\$25.41	27.10
No. of girders	Nb	8		W33	X	169	\$25.66	27.39
Girder spacing	S	7.43	ft	W36	X	170	\$25.79	27.53
Overhang		2	ft	W36	X	182	\$27.28	29.25

Three Spans Design Table - 56 ft width

80 – 100 – 80 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	215	\$23.85	26.23
Slab Thickness	Ts	8.5	in	W36	X	231	\$25.27	27.94
No. of girders	Nb	6		W40	X	235	\$25.62	28.37
Girder spacing	S	10.4	ft	W36	X	247	\$26.66	29.66
Overhang		2	ft	W40	X	249	\$26.83	29.87

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	199	\$25.85	28.05
Slab Thickness	Ts	8	in	W36	X	210	\$27.01	29.42
No. of girders	Nb	7		W40	X	211	\$27.12	29.55
Girder spacing	S	8.667	ft	W40	X	215	\$27.53	30.05
Overhang		2	ft	W33	X	221	\$28.16	30.80

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	182	27.23	29.19
Slab Thickness	Ts	8	in	W40	X	183	27.36	29.33
No. of girders	Nb	8		W36	X	194	28.71	30.90
Girder spacing	S	7.43	ft	W40	X	199	29.31	31.62
Overhang		2	ft	W33	X	201	29.56	31.90

90 – 100 – 90 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	100	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	249	\$26.86	29.91
Slab Thickness	Ts	8.5	in	W36	X	262	\$27.97	31.31
No. of girders	Nb	6		W40	X	264	\$28.14	31.52
Girder spacing	S	10.4	ft	W40	X	277	\$29.24	32.91
Overhang		2	ft	W40	X	278	\$29.32	33.02

Longest Span	L	100	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	211	\$27.15	29.60
Slab Thickness	Ts	8	in	W40	X	215	\$27.57	30.10
No. of girders	Nb	7		W36	X	231	\$29.23	32.10
Girder spacing	S	8.667	ft	W36	X	232	\$29.33	32.22
Overhang		2	ft	W40	X	235	\$29.64	32.60

						Weight	Erected Cost per Square	Dd
Longest Span	L	100	ft	Nominal Depth		per linear foot		Pounds per Square Foot (Steel)
			_	_			` ,	,
Full Width	W	56	ft	W40	X	183	\$27.40	29.39
Slab Thickness	Ts	8	in	W40	X	199	\$29.36	31.67
No. of girders	Nb	8		W33	X	201	\$29.60	31.96
Girder spacing	S	7.43	ft	W36	X	210	\$30.68	33.24
Overhang		2	ft	W40	X	211	\$30.80	33.39

Spans > 100 ft Design Table - 39 ft width

110 ft span

TIOICSP	110 It Spuii											
				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot				
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)				
Full Width	w	39	ft	W40	X	297	\$43.84	49.25				
Slab Thickness	Ts	8	in	W40	X	324	\$46.95	53.40				
No. of girders	Nb	6		W40	X	327	\$47.29	53.86				
Girder spacing	S	7	ft	W36	X	330	\$47.63	54.32				
Overhang		2	ft	W40	X	331	\$47.74	54.48				

							Erected Cost per	
				Nominal		Weight per linear	Square	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	39	ft	W40	X	249	\$44.11	48.28
Slab Thickness	Ts	8	in	W40	X	264	\$46.25	50.97
No. of girders	Nb	7		W40	X	277	\$48.09	53.30
Girder spacing	S	5.833	ft	W40	X	278	\$48.23	53.48
Overhang		2	ft	W36	X	282	\$48.78	54.20

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	215	\$44.46	47.75
Slab Thickness	Ts	8	in	W36	X	231	\$47.17	51.03
No. of girders	Nb	8		W40	X	235	\$47.84	51.85
Girder spacing	S	5	ft	W36	X	247	\$49.84	54.32
Overhang		2	ft	W40	X	249	\$50.17	54.73

110 – 110 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	235	\$36.19	39.54
Slab Thickness	Ts	8	in	W36	X	247	\$37.69	41.39
No. of girders	Nb	6		W40	X	249	\$37.93	41.70
Girder spacing	S	7	ft	W36	X	256	\$38.80	42.77
Overhang		2	ft	W36	X	262	\$39.53	43.70

I 10		110	6	Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	199	\$36.56	39.14
Slab Thickness	Ts	8	in	W40	X	211	\$38.37	41.30
No. of girders	Nb	7		W40	X	215	\$38.97	42.01
Girder spacing	S	5.833	ft	W36	X	231	\$41.35	44.88
Overhang		2	ft	W36	X	232	\$41.50	45.06

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	183	\$38.74	41.03
Slab Thickness	Ts	8	in	W36	X	194	\$40.68	43.29
No. of girders	Nb	8		W40	X	199	\$41.55	44.31
Girder spacing	S	5	ft	W33	X	201	\$41.90	44.72
Overhang		2	ft	W36	X	210	\$43.46	46.57

120 ft span

	Ţ	120	6	Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	362	\$55.71	59.33
Slab Thickness	Ts	8	in	W40	X	372	\$56.78	60.87
No. of girders	Nb	6		W40	X	392	\$58.89	63.95
Girder spacing	S	7	ft	W36	X	395	\$59.20	64.41
Overhang		2	ft	W40	X	397	\$59.41	64.71

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	297	\$56.16	56.98
Slab Thickness	Ts	8	in	W40	X	324	\$59.78	61.82
No. of girders	Nb	7		W40	X	327	\$60.18	62.36
Girder spacing	S	5.833	ft	W36	X	330	\$60.58	62.90
Overhang		2	ft	W40	X	331	\$60.71	63.08

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	277	\$60.78	60.55
Slab Thickness	Ts	8	in	W40	X	278	\$60.94	60.76
No. of girders	Nb	8		W36	X	282	\$61.57	61.58
Girder spacing	S	5	ft	W40	X	294	\$63.47	64.04
Overhang		2	ft	W40	X	297	\$63.94	64.66

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	277	\$43.58	46.00
Slab Thickness	Ts	8	in	W40	X	294	\$45.60	48.61
No. of girders	Nb	6		W40	X	297	\$45.95	49.08
Girder spacing	S	7	ft	W36	X	302	\$46.54	49.85
Overhang		2	ft	W33	X	318	\$48.38	52.31

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W36	X	247	\$46.30	47.75
Slab Thickness	Ts	8	in	W40	X	249	\$46.59	48.11
No. of girders	Nb	7		W36	X	256	\$47.59	49.36
Girder spacing	S	5.833	ft	W36	X	262	\$48.45	50.44
Overhang		2	ft	W33	X	263	\$48.59	50.62

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	211	\$46.61	46.76
Slab Thickness	Ts	8	in	W40	X	215	\$47.30	47.58
No. of girders	Nb	8		W36	X	231	\$50.02	50.87
Girder spacing	S	5	ft	W36	X	232	\$50.18	51.07
Overhang		2	ft	W40	X	235	\$50.69	51.69

Spans > 100 ft Design Table - 39 ft width

100 – 110 – 100 ft span

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	215	\$33.63	36.45
Slab Thickness	Ts	8	in	W36	X	231	\$35.67	38.91
No. of girders	Nb	6		W40	X	235	\$36.18	39.53
Girder spacing	S	7	ft	W36	X	247	\$37.67	41.37
Overhang		2	ft	W40	X	249	\$37.92	41.68

I amount Survey	T	110		Nominal		Weight per linear	Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	199	\$36.54	39.12
Slab Thickness	Ts	8	in	W36	X	210	\$38.21	41.10
No. of girders	Nb	7		W40	X	211	\$38.36	41.28
Girder spacing	S	5.833	ft	W40	X	215	\$38.96	41.99
Overhang		2	ft	W33	X	221	\$39.85	43.07

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	182	38.55	40.80
Slab Thickness	Ts	8	in	W40	X	183	38.73	41.01
No. of girders	Nb	8		W36	X	194	40.66	43.27
Girder spacing	S	5	ft	W40	X	199	41.54	44.29
Overhang		2	ft	W33	X	201	41.88	44.70

110 – 120 – 110 ft span

Longest Span	L	120	ft	Nominal Depth			Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	249	\$39.50	41.68
Slab Thickness	Ts	8	in	W40	X	277	\$42.91	45.98
No. of girders	Nb	6		W40	X	278	\$43.03	46.14
Girder spacing	S	7	ft	W36	X	282	\$43.51	46.75
Overhang		2	ft	W33	X	291	\$44.58	48.14

Longest Span	L	120	ft	Nominal Depth			Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	39	ft	W40	X	215	\$40.81	42.00
Slab Thickness	Ts	8	in	W36	X	231	\$43.18	44.87
No. of girders	Nb	7		W40	X	235	\$43.77	45.59
Girder spacing	S	5.833	ft	W36	X	247	\$45.52	47.74
Overhang		2	ft	W40	X	249	\$45.81	48.10

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	39	ft	W40	X	199	\$43.65	44.30
Slab Thickness	Ts	8	in	W40	X	211	\$45.73	46.76
No. of girders	Nb	8		W40	X	215	\$46.41	47.58
Girder spacing	S	5	ft	W33	X	221	\$47.44	48.81
Overhang		2	ft	W36	X	231	\$49.13	50.86

100 – 120 – 100 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W36	X	247	\$39.38	41.41
Slab Thickness	Ts	8	in	W40	X	249	\$39.63	41.72
No. of girders	Nb	6		W36	X	262	\$41.23	43.72
Girder spacing	S	7	ft	W33	X	263	\$41.35	43.87
Overhang		2	ft	W40	X	264	\$41.47	44.02

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	211	\$40.35	41.31
Slab Thickness	Ts	8	in	W40	X	215	\$40.95	42.03
No. of girders	Nb	7		W36	X	231	\$43.33	44.90
Girder spacing	S	5.833	ft	W36	X	232	\$43.48	45.08
Overhang		2	ft	W40	X	235	\$43.92	45.62

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	39	ft	W40	X	183	\$41.00	41.05
Slab Thickness	Ts	8	in	W40	X	199	\$43.81	44.33
No. of girders	Nb	8		W33	X	201	\$44.16	44.74
Girder spacing	S	5.00	ft	W36	X	210	\$45.72	46.59
Overhang		2	ft	W40	X	211	\$45.89	46.79

Spans > 100 ft Design Table - 44 ft width

110 ft span

TIO II Sh	110 It Span											
							Erected Cost per					
				Nominal		Weight per linear	Square Foot	Pounds per Square Foot				
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)				
Full Width	w	44	ft	W40	X	324	\$41.79	47.67				
Slab Thickness	Ts	8	in	W36	X	361	\$45.42	52.71				
No. of girders	Nb	6		W40	X	362	\$45.51	52.85				
Girder spacing	S	8	ft	W40	X	372	\$46.47	54.21				
Overhang		2	ft	W33	X	387	\$47.87	56.26				

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	277	\$42.78	47.57
Slab Thickness	Ts	8	in	W40	X	294	\$44.87	50.27
No. of girders	Nb	7		W40	X	297	\$45.23	50.75
Girder spacing	S	6.667	ft	W36	X	302	\$45.84	51.54
Overhang		2	ft	W33	X	318	\$47.74	54.09

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	249	\$44.63	48.82
Slab Thickness	Ts	8	in	W36	X	262	\$46.51	51.18
No. of girders	Nb	8		W40	X	264	\$46.80	51.54
Girder spacing	S	5.714	ft	W40	X	277	\$48.66	53.91
Overhang		2	ft	W40	X	278	\$48.80	54.09

<u>110 – 110 ft s</u>pan

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	249	\$33.78	37.27
Slab Thickness	Ts	8	in	W40	X	264	\$35.41	39.32
No. of girders	Nb	6		W40	X	277	\$36.80	41.09
Girder spacing	S	8	ft	W40	X	278	\$36.91	41.23
Overhang		2	ft	W36	X	282	\$37.33	41.77

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	44	ft	W40	X	215	\$34.70	37.54
Slab Thickness	Ts	8	in	W36	X	231	\$36.80	40.08
No. of girders	Nb	7		W40	X	235	\$37.32	40.72
Girder spacing	S	6.667	ft	W36	X	247	\$38.87	42.63
Overhang		2	ft	W40	X	249	\$39.13	42.95

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	199	\$36.98	39.57
Slab Thickness	Ts	8	in	W40	X	211	\$38.82	41.75
No. of girders	Nb	8		W40	X	215	\$39.43	42.48
Girder spacing	S	5.714	ft	W33	X	221	\$40.33	43.57
Overhang		2	ft	W36	X	231	\$41.83	45.38

120 ft span

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	324	\$53.16	55.13
Slab Thickness	Ts	8	in	W36	X	361	\$57.40	61.02
No. of girders	Nb	7		W40	X	362	\$57.51	61.17
Girder spacing	S	6.667	ft	W40	X	372	\$58.62	62.77
Overhang		2	ft	W33	X	387	\$60.26	65.15

							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	297	\$56.83	57.63
Slab Thickness	Ts	8	in	W40	X	324	\$60.51	62.54
No. of girders	Nb	8		W40	X	327	\$60.91	63.09
Girder spacing	S	5.714	ft	W36	X	330	\$61.31	63.63
Overhang		2	ft	W40	X	331	\$61.44	63.81

120 - 120 ft span

120 - 12													
							Erected						
							Cost per						
						Weight	Square	Pounds per					
				Nominal		per linear	Foot	Square Foot					
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)					
Full Width	w	44	ft	W40	X	297	\$40.89	43.81					
Slab Thickness	Ts	8	in	W40	X	324	\$43.65	47.50					
No. of girders	Nb	6		W40	X	327	\$43.95	47.90					
Girder spacing	S	8	ft	W36	X	330	\$44.25	48.31					
Overhang		2	ft	W40	X	331	\$44.35	48.45					

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	277	\$44.97	47.40
Slab Thickness	Ts	8	in	W40	X	278	\$45.09	47.55
No. of girders	Nb	7		W36	X	282	\$45.59	48.19
Girder spacing	S	6.667	ft	W33	X	291	\$46.69	49.62
Overhang		2	ft	W40	X	294	\$47.06	50.10

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	235	\$45.07	46.10
Slab Thickness	Ts	8	in	W36	X	247	\$46.84	48.28
No. of girders	Nb	8		W40	X	249	\$47.14	48.65
Girder spacing	S	5.714	ft	W36	X	256	\$48.16	49.92
Overhang		2	ft	W36	X	262	\$49.02	51.01

Spans > 100 ft Design Table - 44 ft width

100 – 110 – 100 ft span

				Nominal		Weight	Cost per Square	Pounds per
				- 10		per linear		Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	44	ft	W40	X	249	\$33.77	37.26
Slab Thickness	Ts	8	in	W36	X	262	\$35.18	39.03
No. of girders	Nb	6		W40	X	264	\$35.40	39.30
Girder spacing	S	8	ft	W40	X	277	\$36.79	41.08
Overhang		2	ft	W40	X	278	\$36.90	41.21

				Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	211	\$34.15	36.88
Slab Thickness	Ts	8	in	W40	X	215	\$34.68	37.52
No. of girders	Nb	7		W36	X	231	\$36.79	40.07
Girder spacing	S	6.667	ft	W36	X	232	\$36.92	40.23
Overhang		2	ft	W40	X	235	\$37.31	40.70

	_			Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	199	\$36.96	39.55
Slab Thickness	Ts	8	in	W36	X	210	\$38.65	41.55
No. of girders	Nb	8		W40	X	211	\$38.80	41.73
Girder spacing	S	5.714	ft	W40	X	215	\$39.41	42.45
Overhang		2	ft	W33	X	221	\$40.32	43.55

110 – 120 – 110 ft span

						Weight	Erected Cost per Square	Pounds per
Longest Span	L	120	ft	Nominal Depth		per linear foot	Foot (Steel)	Square Foot (Steel)
Full Width	W	44	ft	W40	X	277	\$38.19	41.07
Slab Thickness	Ts	8	in	W40	X	297	\$40.29	43.80
No. of girders	Nb	6		W36	X	302	\$40.81	44.48
Girder spacing	S	8.00	ft	W40	X	324	\$43.05	47.48
Overhang		2	ft	W40	X	327	\$43,35	47.89

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	249	\$40.75	42.93
Slab Thickness	Ts	8	in	W36	X	262	\$42.40	45.00
No. of girders	Nb	7		W40	X	264	\$42.66	45.32
Girder spacing	S	6.667	ft	W40	X	277	\$44.28	47.39
Overhang		2	ft	W40	X	278	\$44.40	47.54

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	215	\$41.28	42.46
Slab Thickness	Ts	8	in	W36	X	231	\$43.69	45.37
No. of girders	Nb	8		W40	X	235	\$44.29	46.10
Girder spacing	S	5.714	ft	W36	X	247	\$46.06	48.28
Overhang		2	ft	W40	X	249	\$46.35	48.64

100 - 120 - 100 ft span

100 – 120 – 100 It span										
				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot		
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)		
Full Width	W	44	ft	W40	X	277	38.31	41.11		
Slab Thickness	Ts	8	in	W40	X	278	38.42	41.25		
No. of girders	Nb	6		W36	X	282	38.84	41.79		
Girder spacing	S	8	ft	W40	X	294	40.10	43.43		
Overhang		2	ft	W40	X	297	40.41	43.84		

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	44	ft	W40	X	235	\$39.08	40.74
Slab Thickness	Ts	8	in	W36	X	247	\$40.63	42.65
No. of girders	Nb	7		W40	X	249	\$40.88	42.97
Girder spacing	S	6.667	ft	W36	X	256	\$41.78	44.08
Overhang		2	ft	W36	X	262	\$42.53	45.04

		420		Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	44	ft	W40	X	199	\$38.98	39.58
Slab Thickness	Ts	8	in	W40	X	211	\$40.82	41.77
No. of girders	Nb	8		W40	X	215	\$41.43	42.49
Girder spacing	S	5.714	ft	W36	X	231	\$43.84	45.40
Overhang		2	ft	W36	X	232	\$43.99	45 58

Spans > 100 ft Design Table -56 ft width

110 ft span

110 It sp	an							
							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	297	\$40.72	45.80
Slab Thickness	Ts	8	in	W36	X	302	\$41.27	46.51
No. of girders	Nb	8		W40	X	324	\$43.61	49.66
Girder spacing	S	7.429	ft	W40	X	327	\$43.93	50.08
Overhang		2	ft	W36	X	330	\$44.24	50.51

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	249	\$39.58	43.43
Slab Thickness	Ts	8	in	W40	X	277	\$43.14	47.93
No. of girders	Nb	9		W40	X	278	\$43.26	48.09
Girder spacing	S	6.5	ft	W36	X	282	\$43.76	48.73
Overhang		2	ft	W40	X	294	\$45.25	50.66

				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W36	X	247	\$43.52	47.57
Slab Thickness	Ts	8	in	W40	X	249	\$43.80	47.92
No. of girders	Nb	10		W36	X	256	\$44.80	49.17
Girder spacing	S	5.778	ft	W36	X	262	\$45.66	50.25
Overhang		2	ft	W40	X	264	\$45.94	50.60

<u>110 – 110 ft span</u>

						Weight	Erected Cost per Square	Pounds per
Longest Span	L	110	ft	Nominal Depth		per linear foot	Foot (Steel)	Square Foot (Steel)
Full Width	w	56	ft	W40	X	235	\$33.61	36.78
Slab Thickness	Ts	8	in	W36	X	247	\$35.00	38.49
No. of girders	Nb	8		W40	X	249	\$35.23	38.78
Girder spacing	S	7.429	ft	W36	X	256	\$36.03	39.78
Overhang		2	ft	W36	X	262	\$36.72	40.63

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	211	\$34.43	37.16
Slab Thickness	Ts	8	in	W40	X	215	\$34.97	37.80
No. of girders	Nb	9		W36	X	231	\$37.10	40.37
Girder spacing	S	6.5	ft	W36	X	232	\$37.23	40.53
Overhang		2	ft	W40	X	235	\$37.63	41.01

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W40	X	199	\$36.29	38.84
Slab Thickness	Ts	8	in	W36	X	210	\$37.95	40.80
No. of girders	Nb	10		W40	X	211	\$38.10	40.98
Girder spacing	S	5.778	ft	W40	X	215	\$38.70	41.69
Overhang		2	ft	W33	X	221	\$39.59	42.77

120 ft span

		100		Nominal		Weight per linear		Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	324	\$53.62	55.57
Slab Thickness	Ts	8	in	W40	X	327	\$53.98	56.05
No. of girders	Nb	9		W36	X	330	\$54.33	56.53
Girder spacing	S	6.5	ft	W40	X	331	\$54.45	56.69
Overhang		2	ft	W33	X	354	\$57.11	60.39

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	277	\$53.04	53.01
Slab Thickness	Ts	8	in	W40	X	294	\$55.39	56.05
No. of girders	Nb	10		W40	X	297	\$55.79	56.59
Girder spacing	S	5.778	ft	W36	X	302	\$56.47	57.48
Overhang		2	ft	W33	X	318	\$58.61	60.34

120 - 120 ft span

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
	_	_			37			
Full Width	W	56	ft	W40	X	277	\$40.48	42.77
Slab Thickness	Ts	- 8	in	W40	X	294	\$42.35	45.20
No. of girders	Nb	8		W40	X	297	\$42.68	45.62
Girder spacing	S	7.429	ft	W36	X	302	\$43.22	46.34
Overhang		2	ft	W33	X	318	\$44.93	48.62

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	249	\$41.78	43.25
Slab Thickness	Ts	8	in	W36	X	262	\$43.45	45.34
No. of girders	Nb	9		W40	X	264	\$43.71	45.66
Girder spacing	S	6.5	ft	W40	X	277	\$45.35	47.75
Overhang		2	ft	W40	X	278	\$45.47	47.91

Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	215	\$41.29	41.68
Slab Thickness	Ts	8	in	W36	X	231	\$43.65	44.54
No. of girders	Nb	10		W40	X	235	\$44.24	45.25
Girder spacing	S	5.778	ft	W36	X	247	\$45.98	47.40
Overhang		2	ft	W40	X	249	\$46.27	47.75

Spans > 100 ft Design Table - 56 ft width

100 – 110 – 100 ft span

I 40				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	110	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	215	\$31.24	33.90
Slab Thickness	Ts	8	in	W36	X	231	\$33.13	36.19
No. of girders	Nb	- 8		W40	X	235	\$33.60	36.76
Girder spacing	S	7.429	ft	W36	X	247	\$34.99	38.47
Overhang		2	ft	W40	X	249	\$35.22	38.76

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	W	56	ft	W40	X	199	\$32.79	35.21
Slab Thickness	Ts	8	in	W40	X	211	\$34.42	37.14
No. of girders	Nb	9		W40	X	215	\$34.95	37.78
Girder spacing	S	6.5	ft	W33	X	221	\$35.76	38.74
Overhang		2	ft	W36	X	231	\$37.08	40.35

Longest Span	L	110	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	183	\$33.82	35.96
Slab Thickness	Ts	8	in	W36	X	194	\$35.51	37.92
No. of girders	Nb	10		W40	X	199	\$36.27	38.81
Girder spacing	S	5.778	ft	W33	X	201	\$36.57	39.17
Overhang		2	ft	W36	X	210	\$37.93	40.78

110 – 120 – 110 ft span

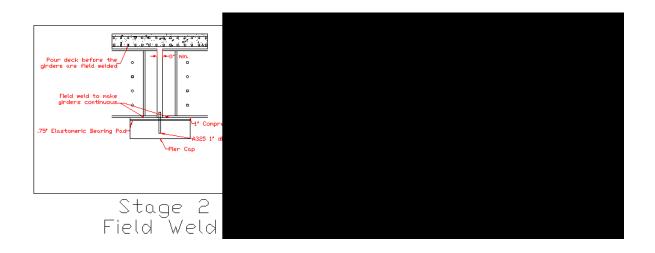
				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	277	\$39.86	42.76
Slab Thickness	Ts	8	in	W40	X	278	\$39.97	42.90
No. of girders	Nb	- 8		W36	X	282	\$40.41	43.48
Girder spacing	S	7.429	ft	W33	X	291	\$41.40	44.76
Overhang		2	ft	W40	X	294	\$41.73	45.19

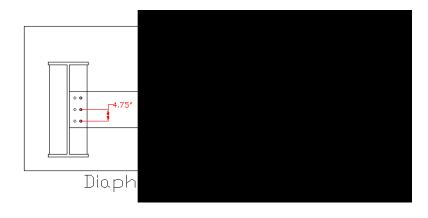
Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W36	X	247	\$40.83	42.93
Slab Thickness	Ts	8	in	W40	X	249	\$41.09	43.25
No. of girders	Nb	9		W36	X	256	\$41.99	44.37
Girder spacing	S	6.5	ft	W36	X	262	\$42.76	45.34
Overhang		2	ft	W33	X	263	\$42.89	45.50

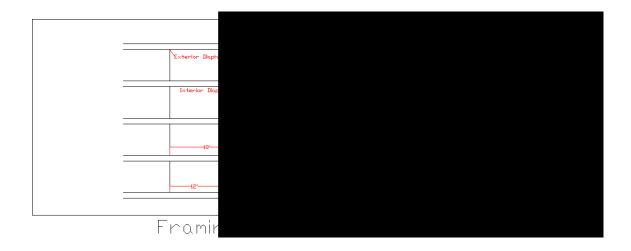
Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	215	\$40.52	41.68
Slab Thickness	Ts	8	in	W36	X	231	\$42.89	44.54
No. of girders	Nb	10		W36	X	232	\$43.03	44.72
Girder spacing	S	5.778	ft	W40	X	235	\$43.47	45.25
Overhang		2	ft	W33	X	241	\$44.34	46.32

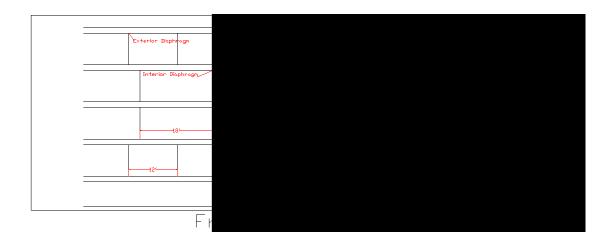
100 – 120 – 100 ft span


				Nominal		Weight per linear	Erected Cost per Square Foot	Pounds per Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	W	56	ft	W40	X	249	\$36.81	38.80
Slab Thickness	Ts	8	in	W36	X	262	\$38.29	40.65
No. of girders	Nb	8		W40	X	264	\$38.52	40.94
Girder spacing	S	7.429	ft	W40	X	277	\$39.98	42.80
Overhang		2	ft	W40	X	278	\$40.09	42.94


Longest Span	L	120	ft	Nominal Depth		Weight per linear foot	Erected Cost per Square Foot (Steel)	Pounds per Square Foot (Steel)
Full Width	w	56	ft	W40	X	215	\$36.74	37.82
Slab Thickness	Ts	8	in	W36	X	231	\$38.87	40.39
No. of girders	Nb	9		W40	X	235	\$39.40	41.03
Girder spacing	S	6.5	ft	W33	X	241	\$40.18	42.00
Overhang		2	ft	W36	X	247	\$40.96	42.96


							Erected	
							Cost per	
						Weight	Square	Pounds per
				Nominal		per linear	Foot	Square Foot
Longest Span	L	120	ft	Depth		foot	(Steel)	(Steel)
Full Width	w	56	ft	W40	X	199	\$38.26	38.85
Slab Thickness	Ts	8	in	W40	X	211	\$40.06	41.00
No. of girders	Nb	10		W40	X	215	\$40.66	41.71
Girder spacing	S	5.778	ft	W33	X	221	\$41.55	42.78
Overhang		2	ft	W36	X	231	\$43.03	44.57


APPENDIX D: DESIGN DETAILS


3 Span Steel Bridge Details (Same as example in Appendix A) 80-100-80 ft spans 44 ft out to out width

APPENDIX E: CSU-CBA USER'S MANUAL AND EXAMPLES

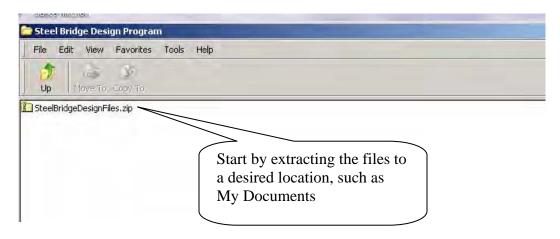
CSU-CBA

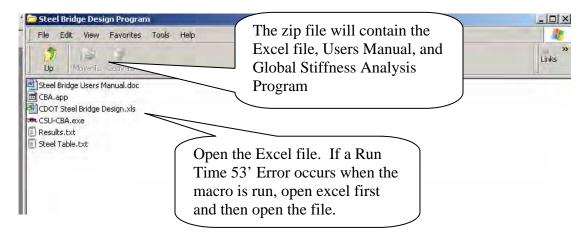
(Colorado State University-Continuous Beam Analysis)

Program Users Guide

Alex Stone John W. van de Lindt Thang N. Dao

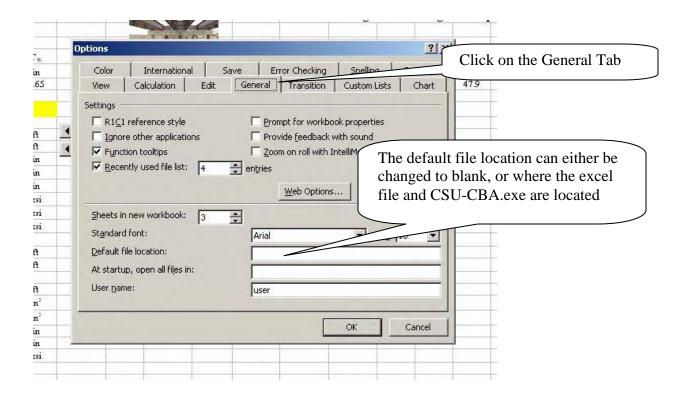
Introduction

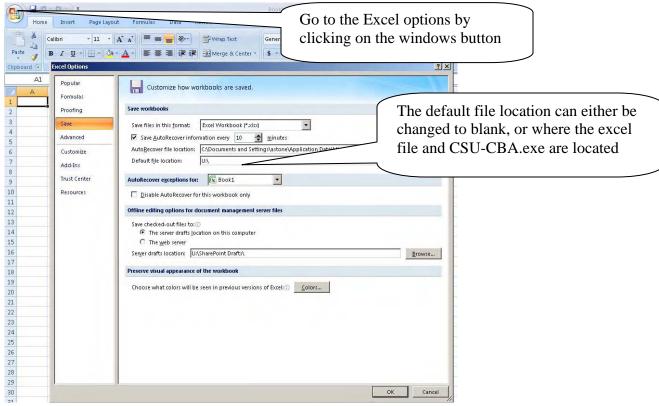

The purpose of this spreadsheet is to find the minimum rolled steel girder size required to support the deck and traffic loads. The girders are designed by a method called simple for dead load and continuous for live load. This implies the beams are designed as simply supported for dead load one (beam weight and concrete deck) and continuous for all other loads (wearing surface, traffic loads, rails, etc). The beams are made continuous at the piers after casting the deck by connecting two separate beams using various methods including using a concrete diaphragm or welding the beams to a connection plate.


Using this method, the spreadsheet was designed to give the user control to select/input various bridge parameters in order to find the lightest wide flange beam to support the loads. Once the user has entered bridge data and run the spreadsheet to find the minimum beam size, the total structural weight of the beams is found and a cost analysis is preformed to give an erected steel price estimate.

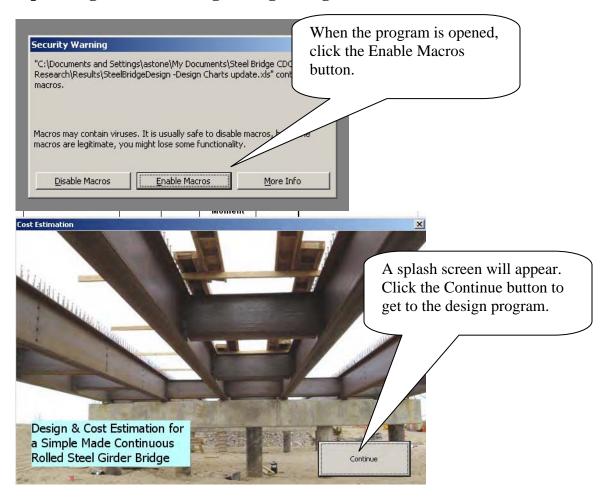
The design program gives the user freedom to create a bridge with any number of spans and lengths. A global stiffness analysis program was created to compute bending moments and shears for any number of trucks, spans, and span lengths. Once the analysis is saved, results are imported into excel and minimum beam sizes are found using a macro that checks all AISC wide flange beams against the AASHTO LRFD Bridge Design Specifications.

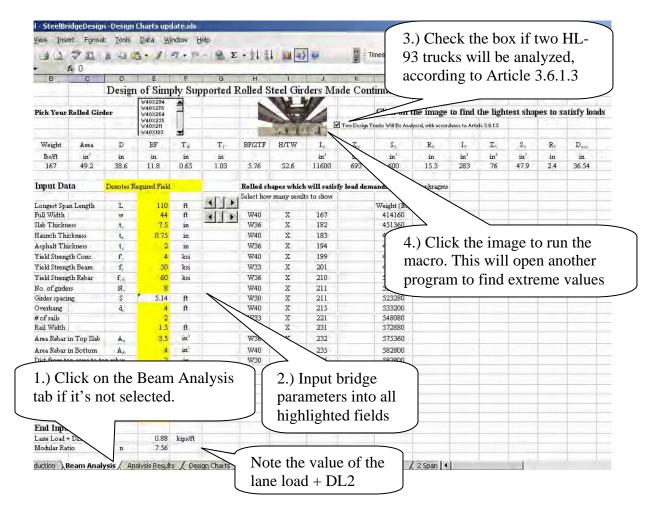
AASHTO LRFD Bridge Design 3.6.1.3 requires the larger extreme force effect of one design truck with variable axle spacing specified by article 3.6.1.2.2 and the lane load or 90% of two design trucks spaced at least 50 ft apart and 90% of the lane load. To do this, two analyses may be required to find which loading combination causes the larger extreme force effect.


Initial Setup

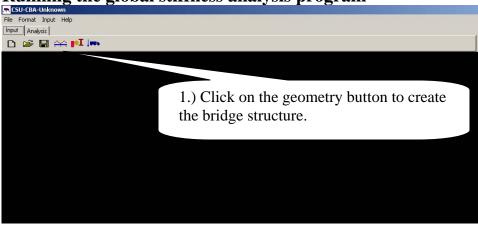


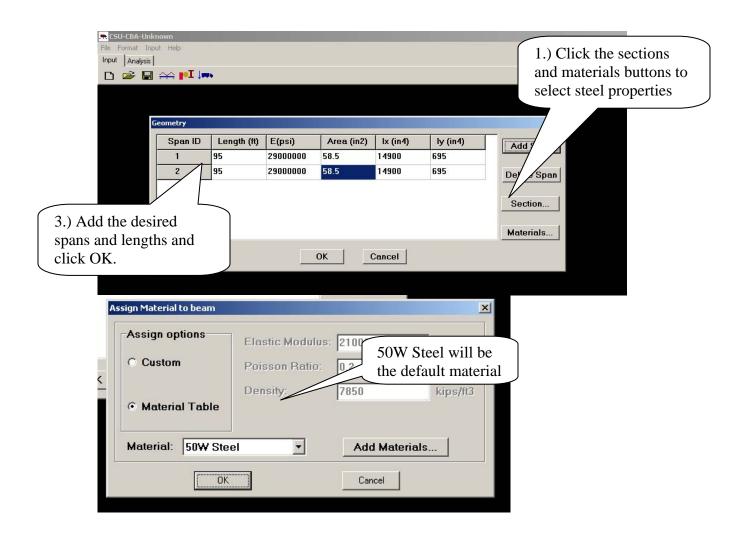
Note: In order for the program to run correctly, the CSU-CBA.exe file must be located where excel looks for and saves files. In many cases the default location is the "My Documents" directory. It is recommended that the default file location be changed to a blank value in the Excel options. If this is done, the .exe file must be located in the same directory as the excel file.

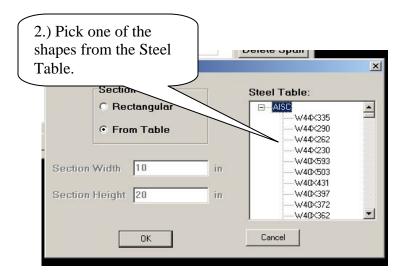

In Excel 2003, go the tools menu, then options to change the default file location.



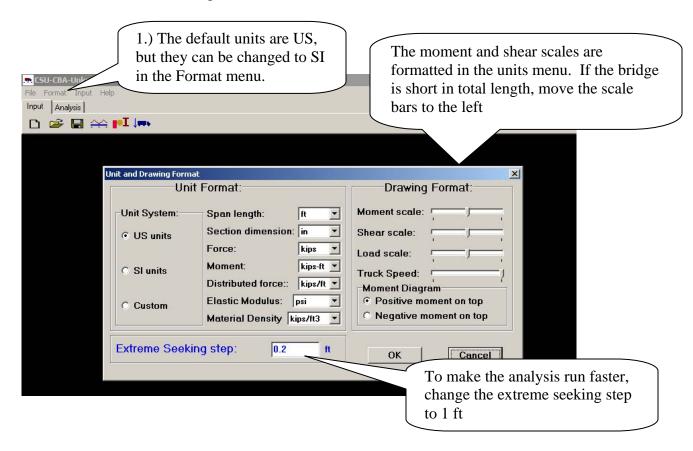
In Excel 2007, go to the Excel option, then the save button to change the default file location.

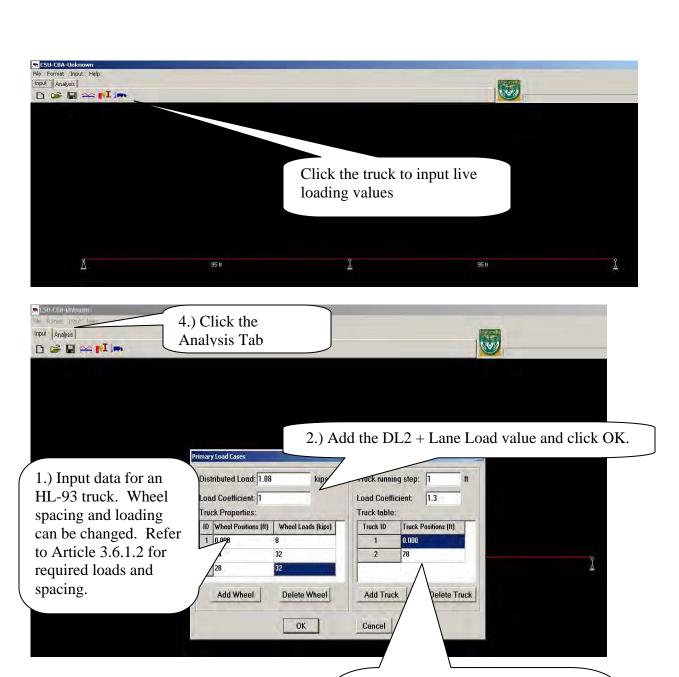

Operating the Steel Bridge Design Program



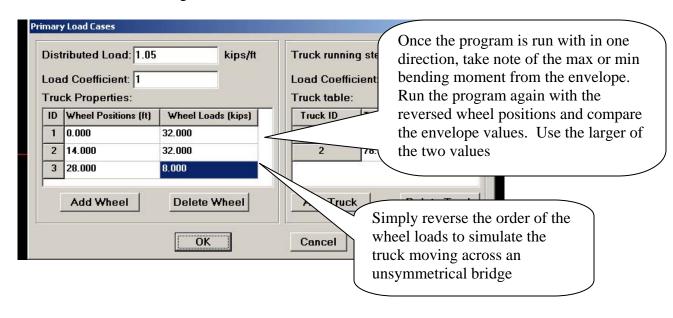


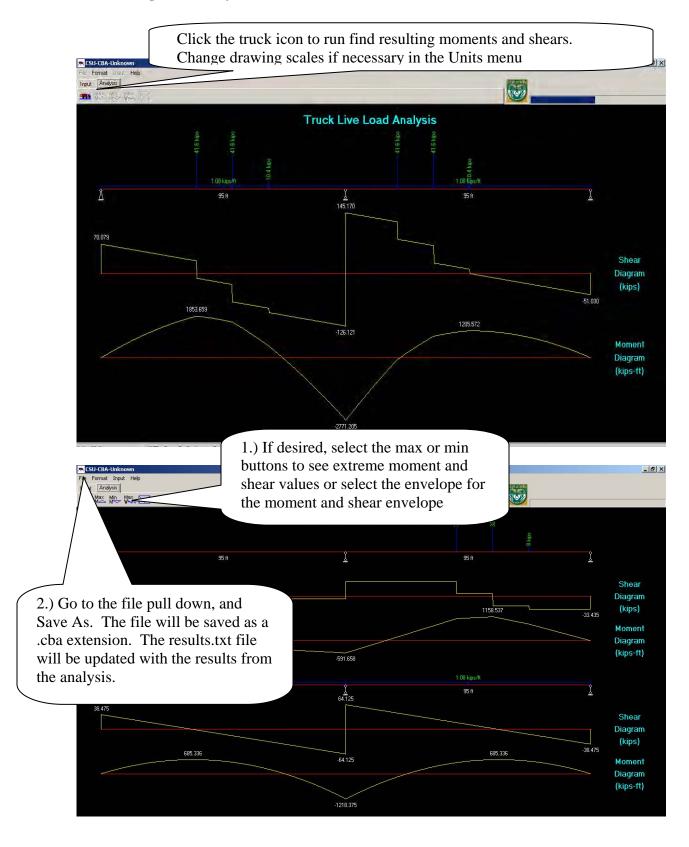
NOTE: In the global stiffness analysis, the distributed load represents the lane load plus the dead load two. The value shown above indicates the 640 lbs/ft lane load plus the load of the wearing surface, rails etc. If there will be an extra dead load that is not accounted for in the excel program, simply add the extra load when putting in the distributed load in the global stiffness analysis program.

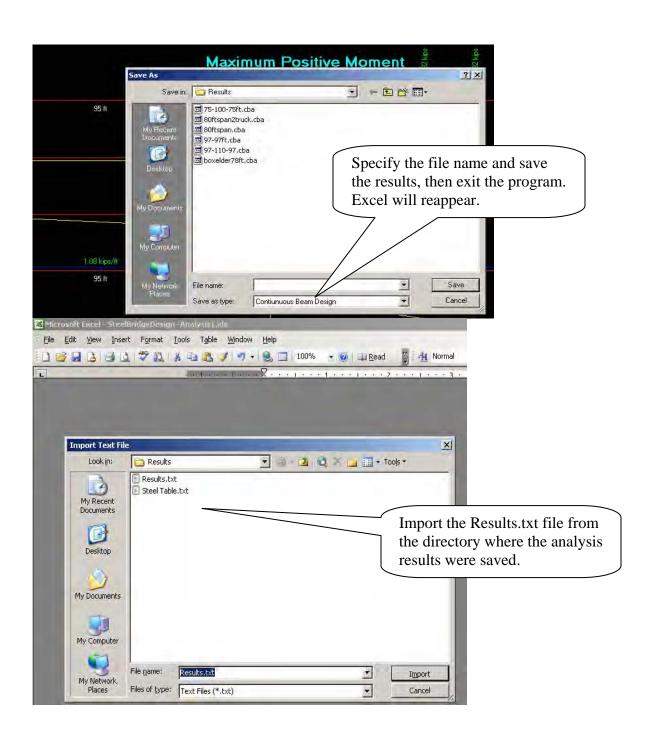

Running the global stiffness analysis program

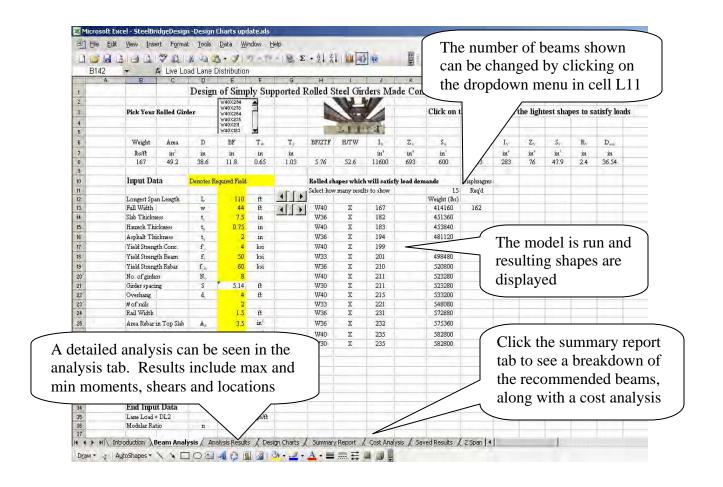


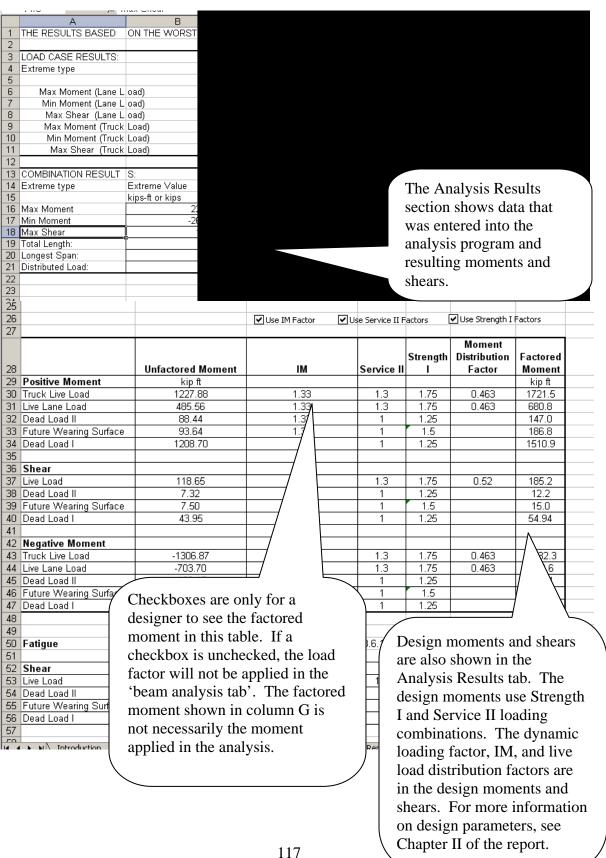
NOTE: Because this research was looking at prismatic cross sections of all the same material, it does not matter which material shape is chosen from the section selection because the EI value will drop out.

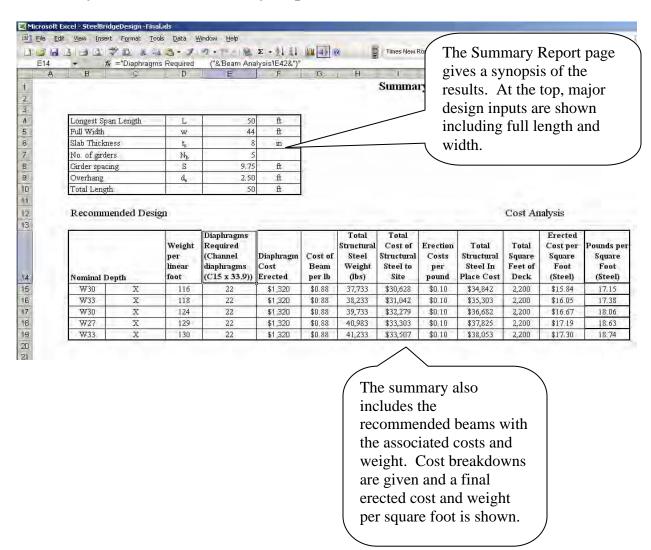



3.) If the check box on the Excel spreadsheet was checked, add a second truck to satisfy Article 3.6.1.3. The 2nd truck position needs to be at least 78 ft. This will allow 50 ft between the two trucks axles

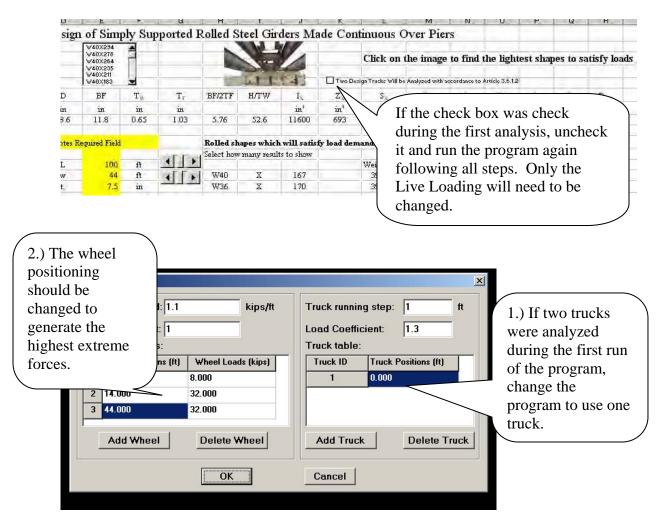

Live Loading for an Unsymmetrical Span Configuration


If the span configuration is unsymmetrical, the truck must be run in both directions to find which creates the largest extreme force.

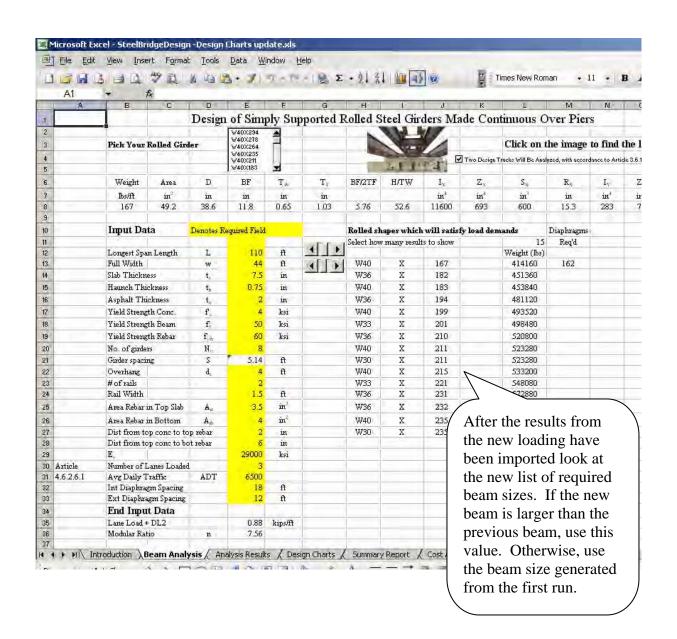

Executing the analysis



Resulting Moments and Shears (Analysis Results Tab)



Summary of Results (Summary Report Tab)



Running the program again for a complete analysis

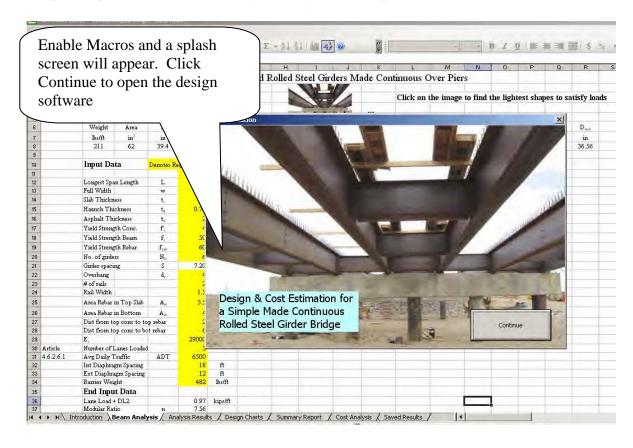
NOTE: For a complete analysis, the program must be run at least twice. If the check box to analyze two trucks was checked when the program was run the first time, uncheck the box. Repeat all steps above, except only use one truck in the Live Loading prompt. Also, use a variable spacing on the rear axle which will generate the highest extreme force. Article 3.6.1.3 states that the rear axle can be varied between 14 and 30 feet.

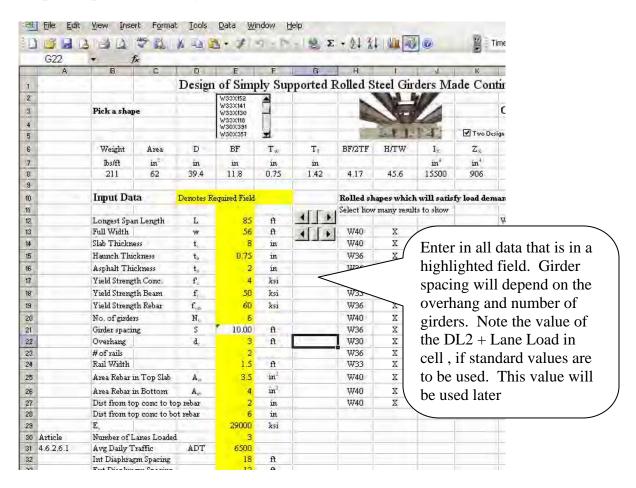
Again, run the program to find the moments and shears generated from the new live loading. Save the program and import the results.txt file as before.

CSU-CBA

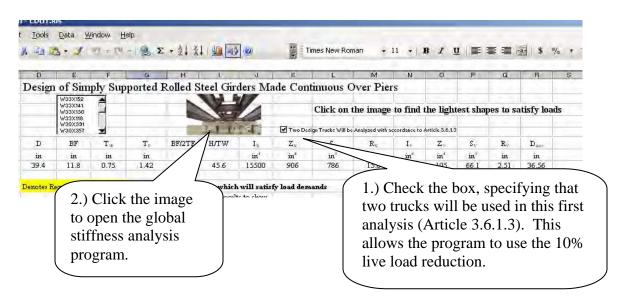
(Colorado State University-Continuous Beam Analysis)

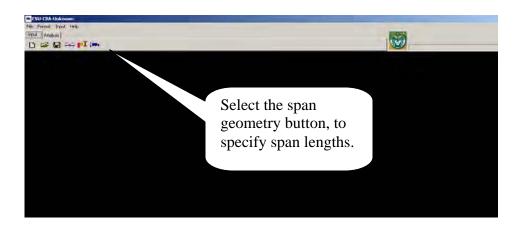
Program Examples Guide


Alex Stone John W. van de Lindt Thang N. Dao

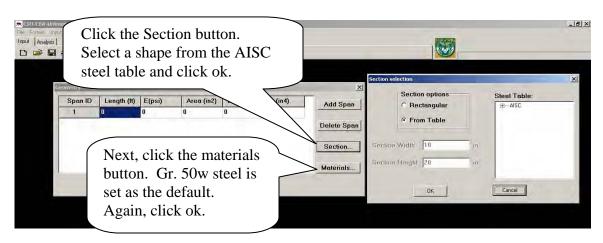


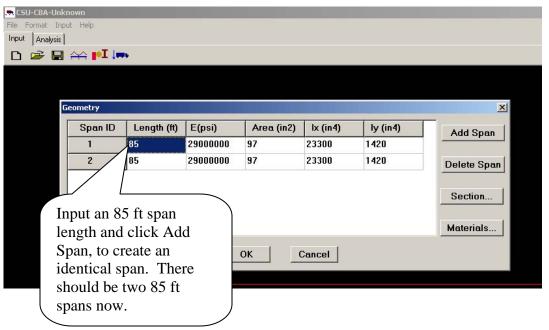
Design of a two span equal length steel bridge (85 - 85 ft length by 56 ft width)

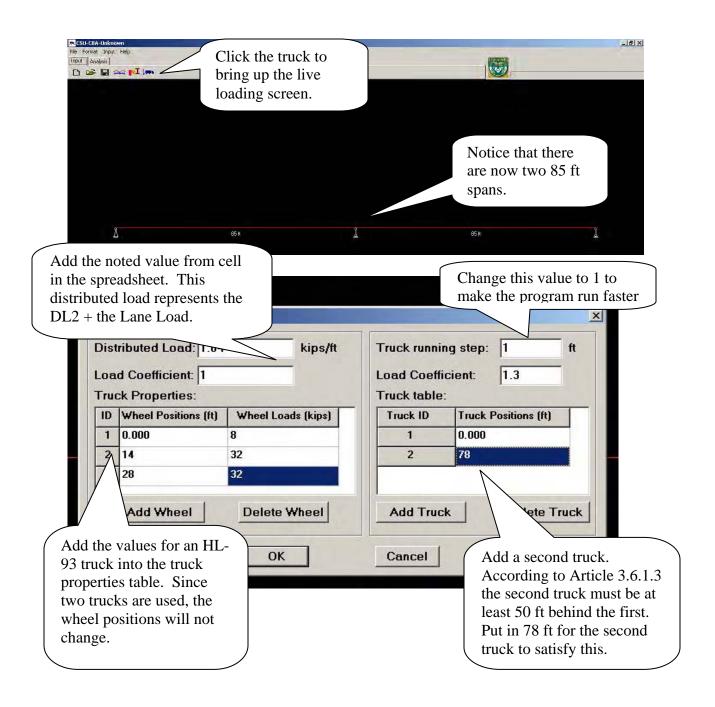

Step 1: Open CSU Steel Bridge Design Excel Spreadsheet

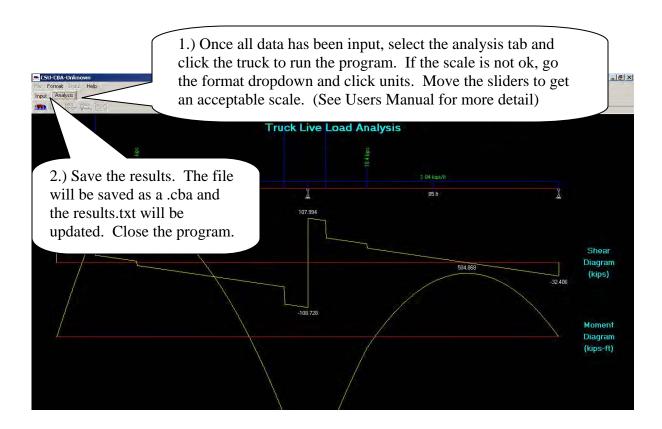


Step 2: Input basic bridge data

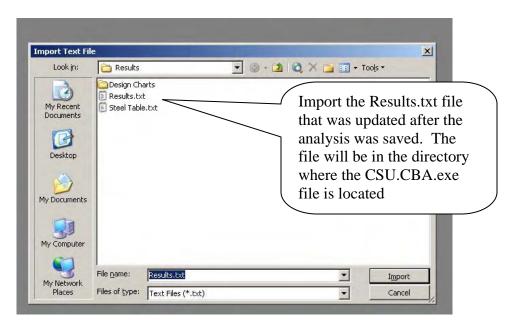


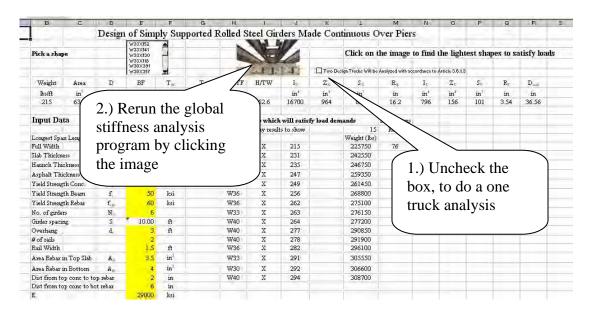

Step 3: Run CSU-CBA.exe global stiffness analysis

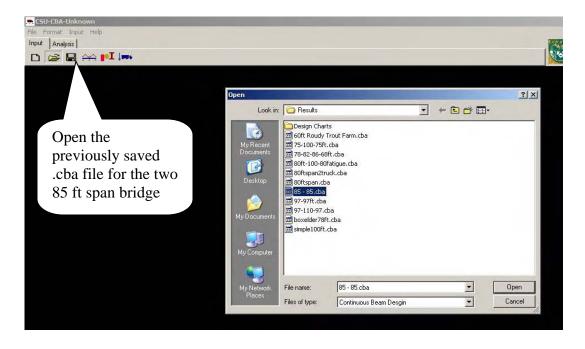


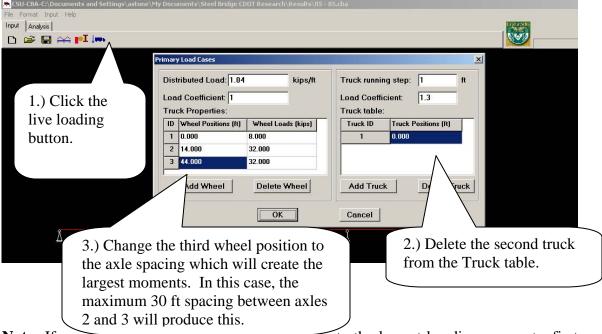


Note: Any size shape can be selected from the Section selection because only moment and shears are being found, which do not take into account elasticity or moment of inertia.

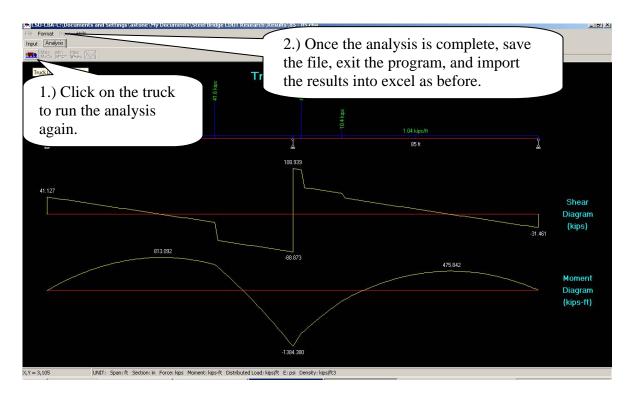



Step 4: Import the data to size the appropriate girders.

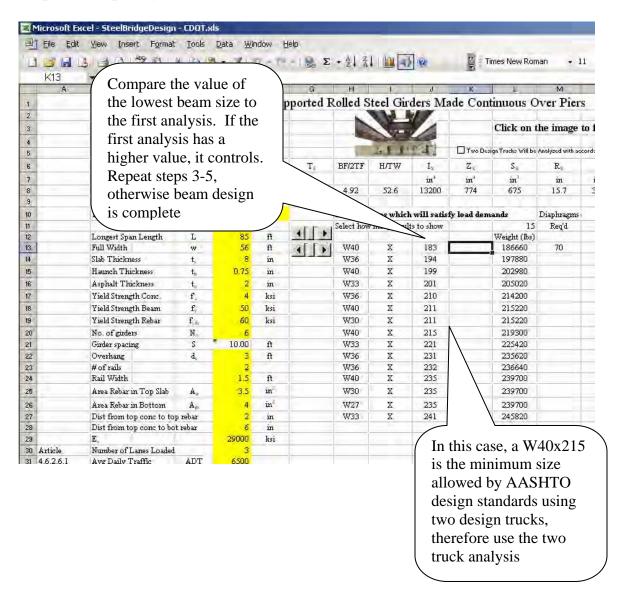

Step 5: Results from two truck analysis


	V	В	C	D	E	F	G	H	1	4	K	1	M	N
1				Design	of Sim	ly Su	ported F	Colled S	teel Gir	ders Ma	de Con	tinuous (Over Pier	S
2				-	W33X152	<u> </u>			W		Taglight Read brook	1		
3		Pick a shap	e		W33X141 W33X130	2			No.			Click on	the image	to find
4			- 4	1	W33X118 W30X391			-	67 E	4	- 100			Marine Marine
5					W30X357	±		100	LE	Ta.	✓ Two De	sign Trucks Will b	e Analyzed with ac	cordance t
8		Weight	Area	D	BF	Tw	T _r	BF/2TF	H/TW	T _v	Zx	S _{sc}	R _s	I
7		Ibs/ft	in ²	in	in	ín	in		3000	ini	íni	in ¹	in	in [‡]
8		215	63.4	39	15.8	0.65	1.22	6.45	52.6	16700	964	859	16.2	796
9			770		1011									
10		Input Dat	a	Denotes R	equired Field			Rolled sh	apes which	will satis	fy load den	nands	Diaphragms	
11		ACA OFFICE			•		7.5		many resul			15		
12		Longest Spar	ı Length	L	85	ft	1 1	The same of the same of	and the second	1		Weight (Ibs)		
13		Full Width		w	56	ft	4 1	W40	X	215		225750	76	
14		Slab Thickne	iss .	t,	8	in		W36	X	231		242550		
15		Haunch Thic	kness	t _n	0.75	in		W40	X	235		246750		
16		Asphalt Thi	kness	t _o	2	in		W36	X	247		259350		
17		Yield Strengt	h Conc.	f.	4	ksi		W40	X	249		261450		
18		Yield Streng	h Beam	f,	50	ksi		W36	X	256		268800		
19		Yield Streng	h Rebar	f.	60	ksi		W36	X	262	Λ	275100		
20		No. of girder	5	N.	6			W33	X	263	/ /	276150		
21		Girder spacir	g	S	10.00	ft		W40	X	264		277200		
22		Overhang		d.	3	ft		W40	X	277		290850		
23		# of rails			2			W40	X	278		291900		
24		Rail Width			1.5	ft		W36	X	282		696100		
25		Area Rebar i	n Top Slab	A.	3.5	in¹		W33	X	291		ssso		
26		Area Rebar i	n Bottom	A,	4	in		W30	X	292		600		
27		Dist from to	p conc to to	p rebar	2	in		W40	X	294		00		
28		Dist from to	p conc to bo	t rebar	6	in								
29		E.			29000	ksi								
30 Article		Number of L	the rest of the second		3									
31 4.6.2.6.		Avg Daily T		ADT	6500					′ On	ce the	results	are im	ported, ea
32		Int Diaphrag			18	ft	_							
33 34		Ext Diaphra Barrier Weig			12 482	ft Ibs/ft								n is subje
2.000		the second second second second second			462	IDS/IT				to e	extrem	ne force	es prodi	aced and
35		End Inpu Lane Load +			7.04	kips/ft							-	
36 37		Lane Load + Modular Rat:		n	7.56	kips/ft	-			cor	npare	a with	ine AA	SHTO LI
					alysis Result	/ Doc	ign Charts 🔏	Summary	Donout	doc	ian '	The lie	htact no	ssing sha

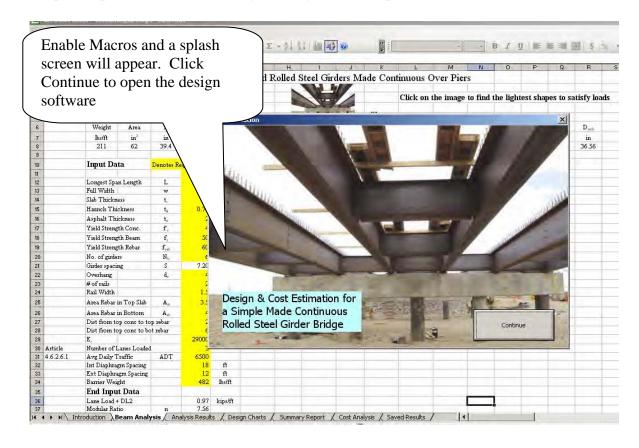
Step 6: One truck analysis



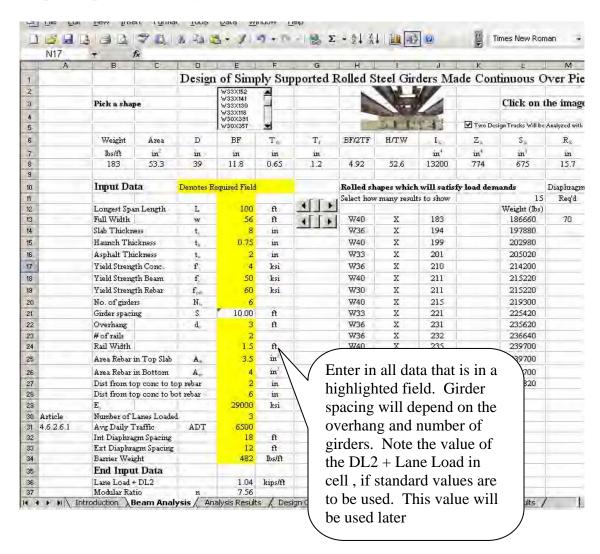
Step 7: Inputting values for one truck analysis



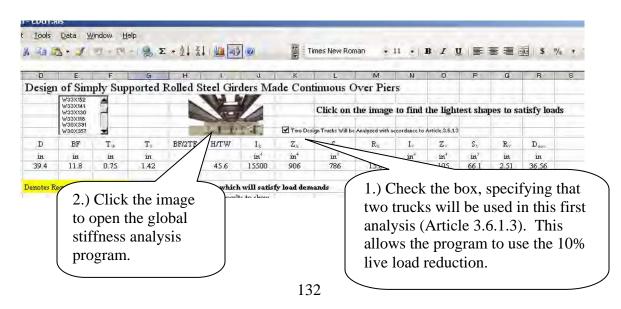
Note: If unsure or what wheer spacing will generate the largest bending moments, first start with 14 ft rear axle spacing. Run the program and click the envelope to see the extreme values. Go back to the live loading prompt and change the rear axle spacing. Again, run the program and look at the moment envelope. Repeat this process until the maximum or minimum moment values have been achieved.

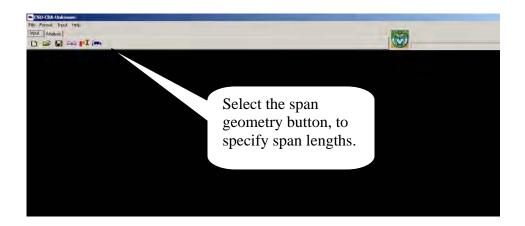


Step 8: Comparing the two analyses

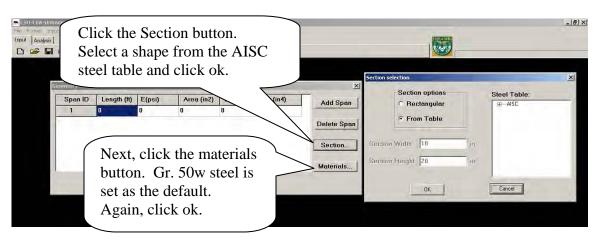


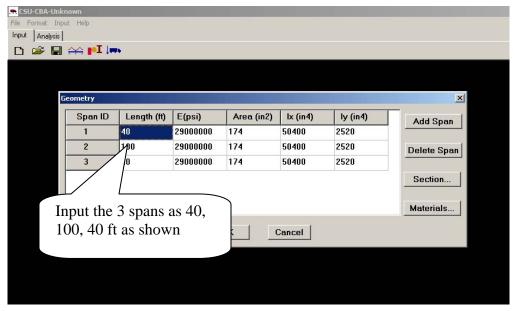
Design of a three span equal length steel bridge (40 - 100 - 40 ft) length by 56 ft width)

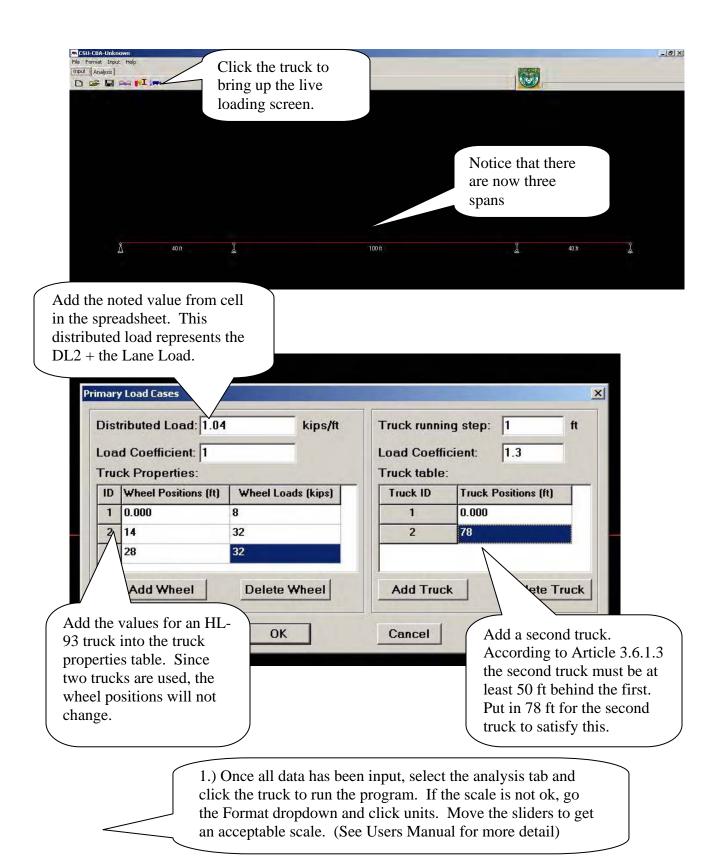

Step 1: Open CSU Steel Bridge Design Excel Spreadsheet



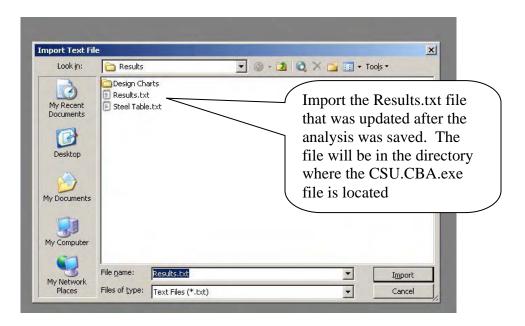
Step 2: Input basic bridge data

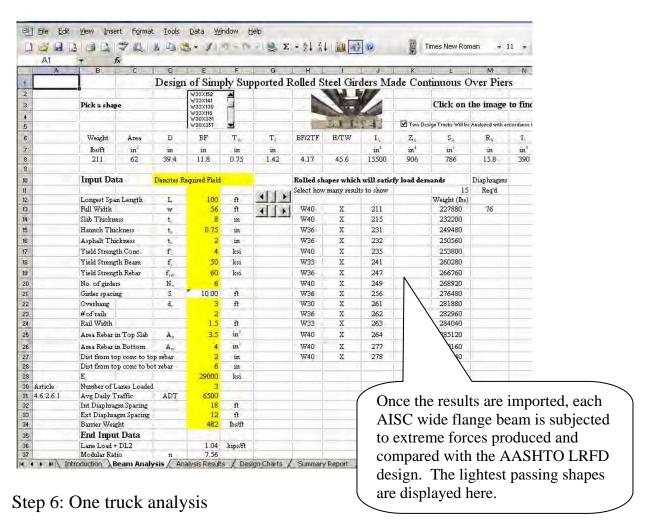



Step 3: Run CSU-CBA.exe global stiffness analysis

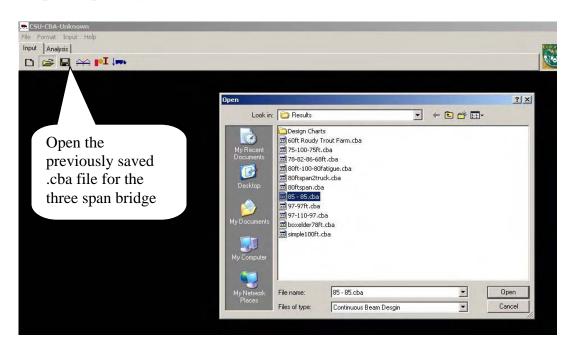


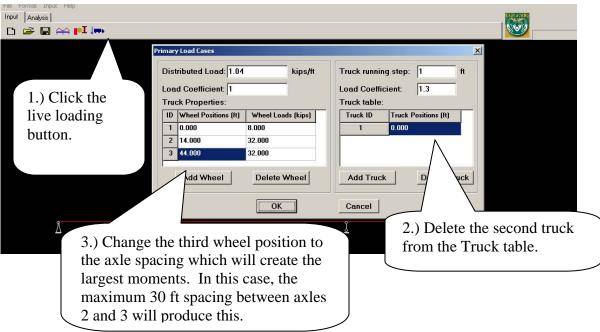
Note: Any size shape can be selected from the Section selection because only moment and shears are being found, which do not take into account elasticity or moment of inertia.

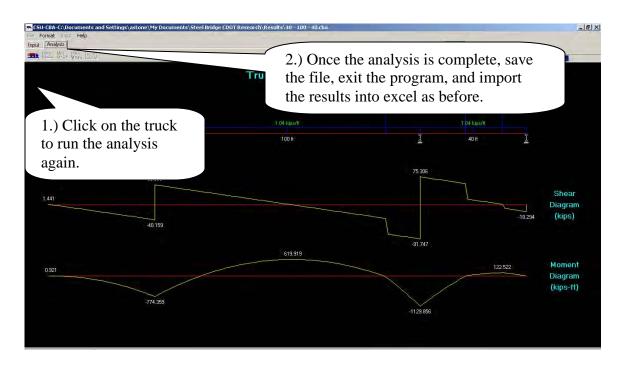




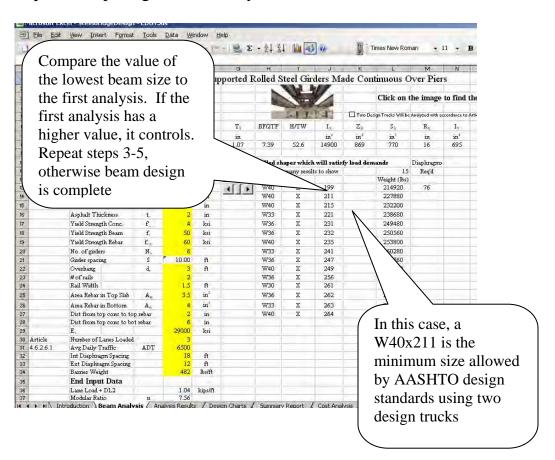
Step 4: Import the data to size the appropriate girders.

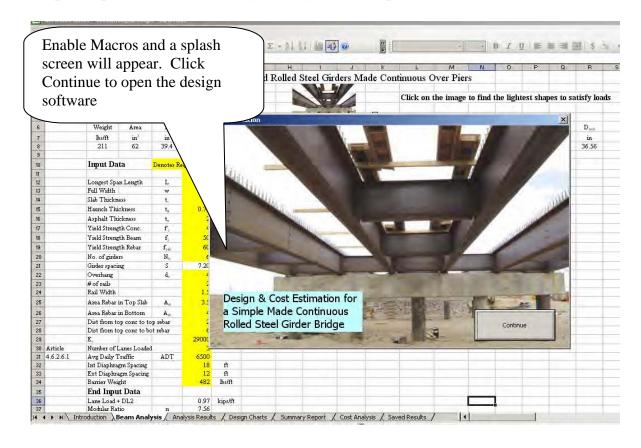



Step 5: Results from two truck analysis

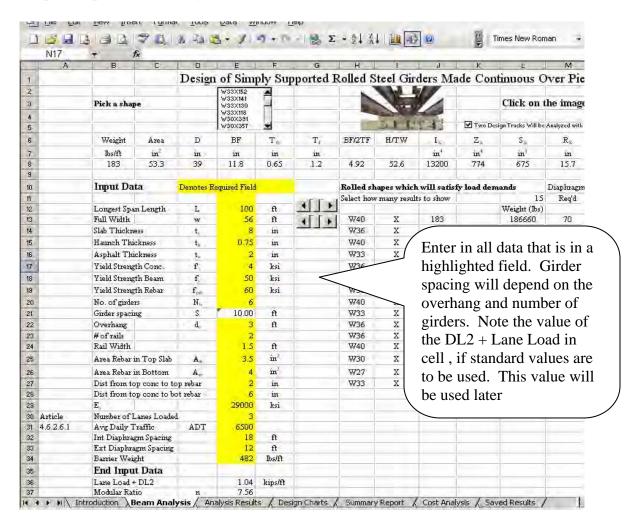


Design of Simply Supported Rolled Steel Girders Made Continuous Over Piers Pick a shape Click on the image to find the lightest shapes to satisfy loads Two Design Trucks Will be Analyzed with accordance to Article 3.6.1.3 Weight H/TW R I Z. Dage Ibs/ft 215 in' 156 in 3.54 in' 101 in 36.56 796 16700 2.) Rerun the global Input Data which will satisfy load demands stiffness analysis results to show Longest Span L Full Width Weight (Ibs) program by clicking Slab Thickness 231 242550 the image 235 Haunch Thickn 246750 1.) Uncheck the Asphalt Thicknes 247 259350 Yield Strength Cor 249 261450 box, to do a one Yield Strength Beam ksi W36 256 268800 Yield Strength Rebai 275100 truck analysis No. of girders Girder spacing W33 263 276150 277200 10.00 W40 264 Overhang W40 277 290850 # of rails Rail Width 291900 W40 278 W36 282 296100 Area Rebar in Top Slab in W33 291 305550 Area Rebar in Bottom A in W30 292 306600 Dist from top conc to top rebar W40 308700 Dist from top conc to bot rebar

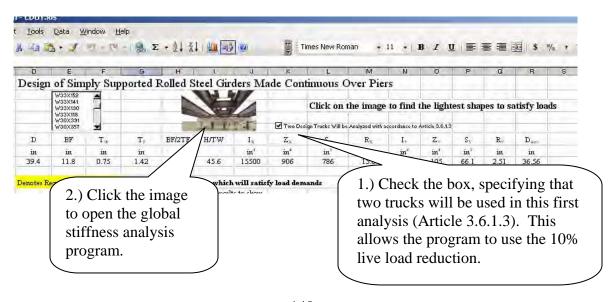

Step 7: Inputting values for one truck analysis

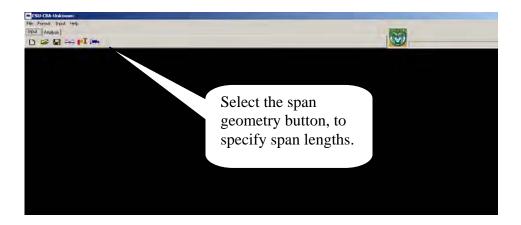


Step 8: Comparing the two analyses

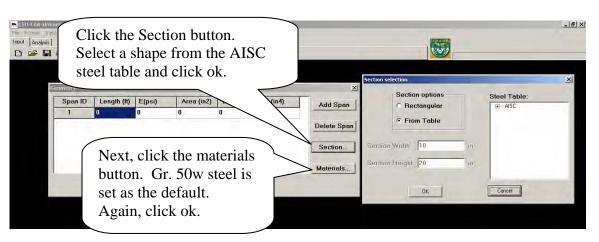


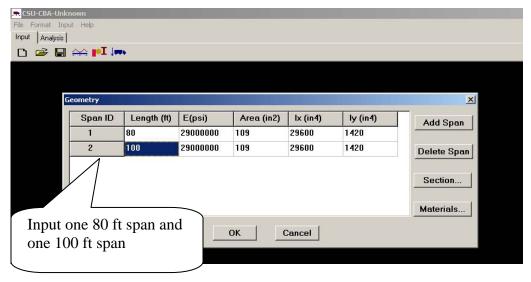
Design of a two span unequal length steel bridge (80 – 100 ft length by 56 ft width)

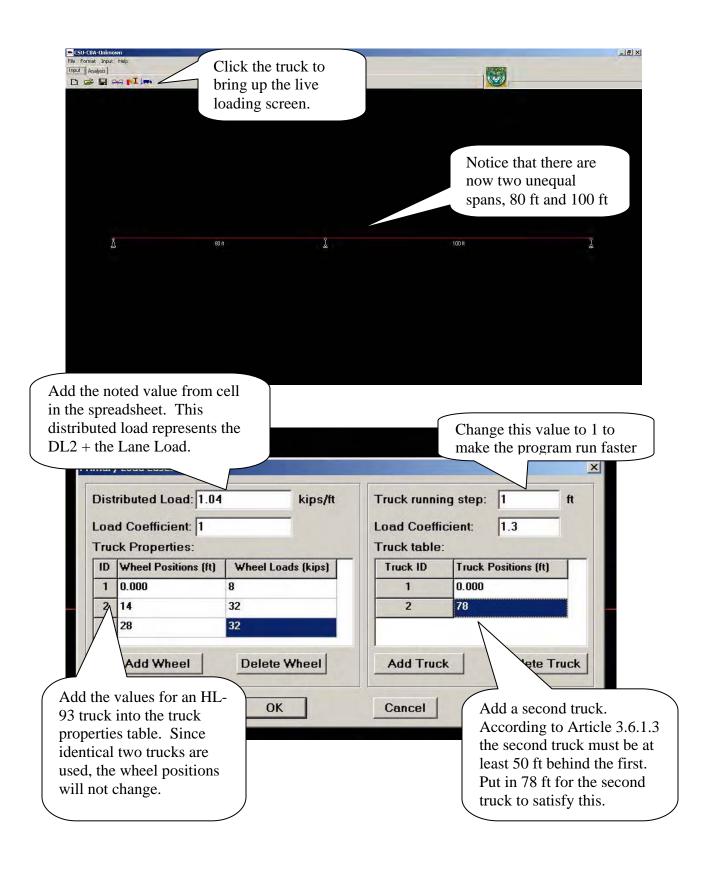

Step 1: Open CSU Steel Bridge Design Excel Spreadsheet

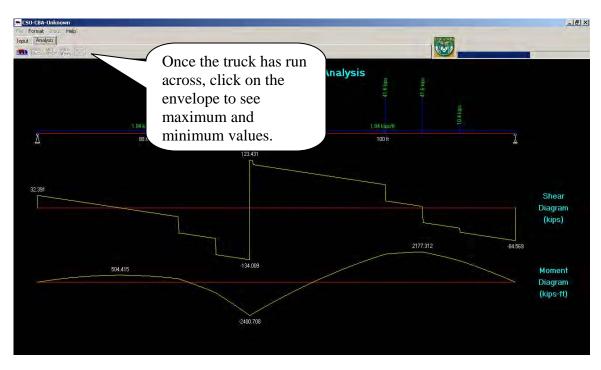


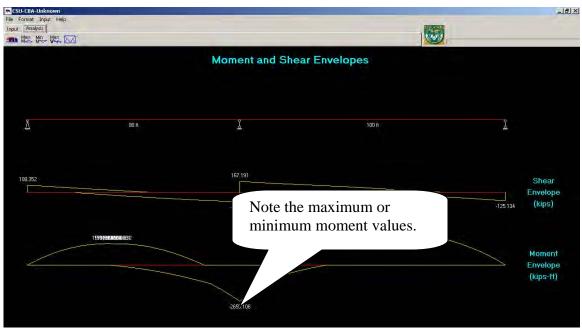
Step 2: Input basic bridge data

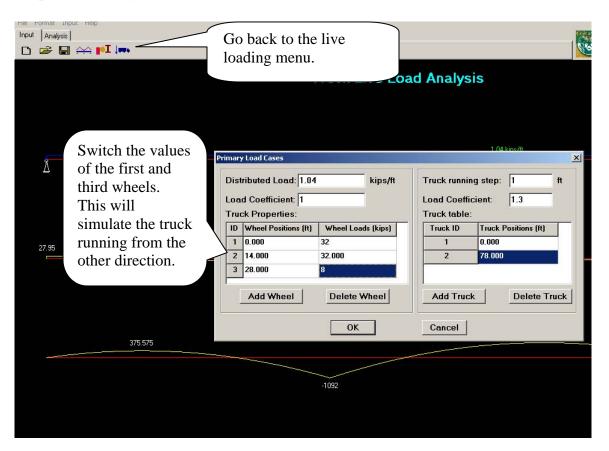


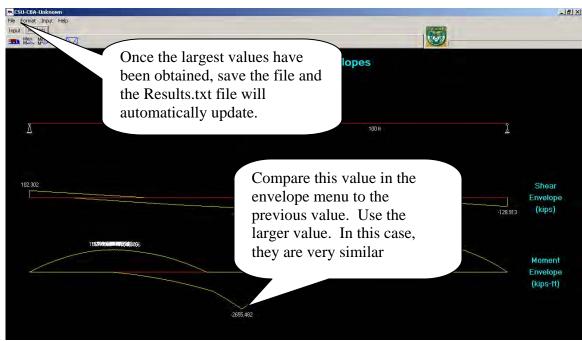

Step 3: Run CSU-CBA.exe global stiffness analysis

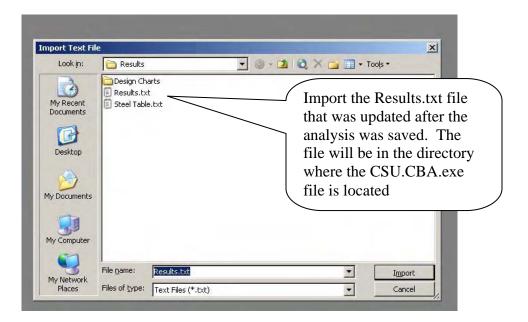




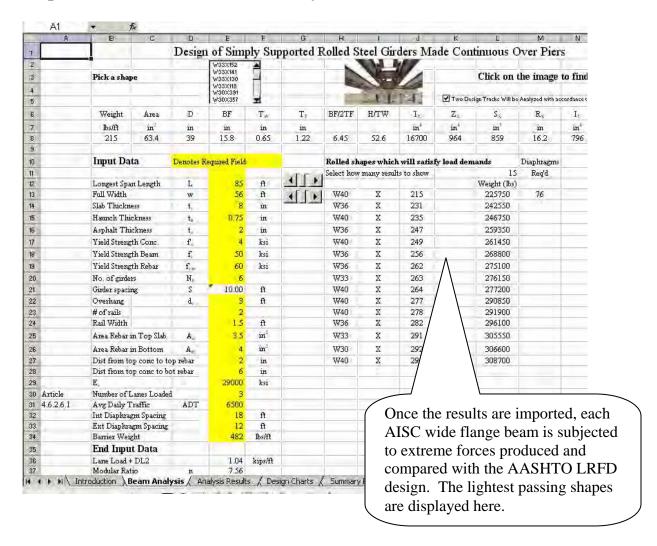

Note: Any size shape can be selected from the Section selection because only moment and shears are being found, which do not take into account elasticity or moment of inertia.

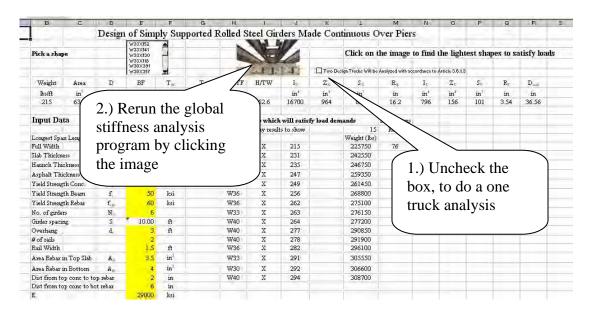


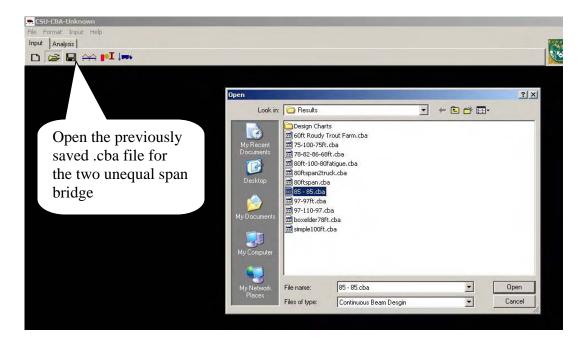


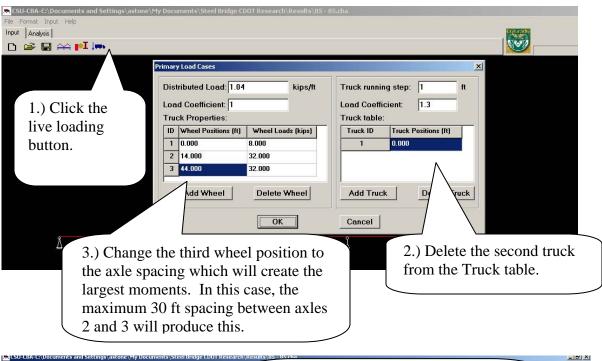


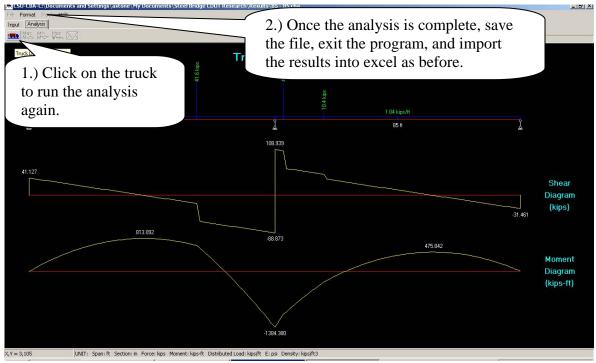
Step 4: Running the truck from both directions

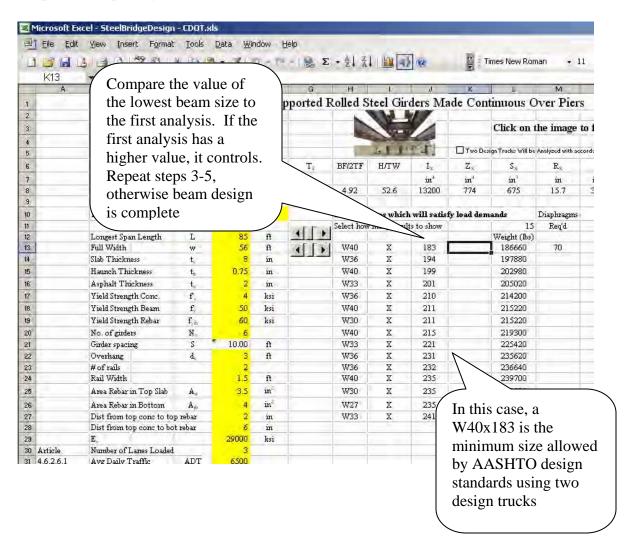



Step 5: Import the data to size the appropriate girders.


Step 6: Results from two truck analysis




Step 7: One truck analysis


Step 8: Inputting values for one truck analysis

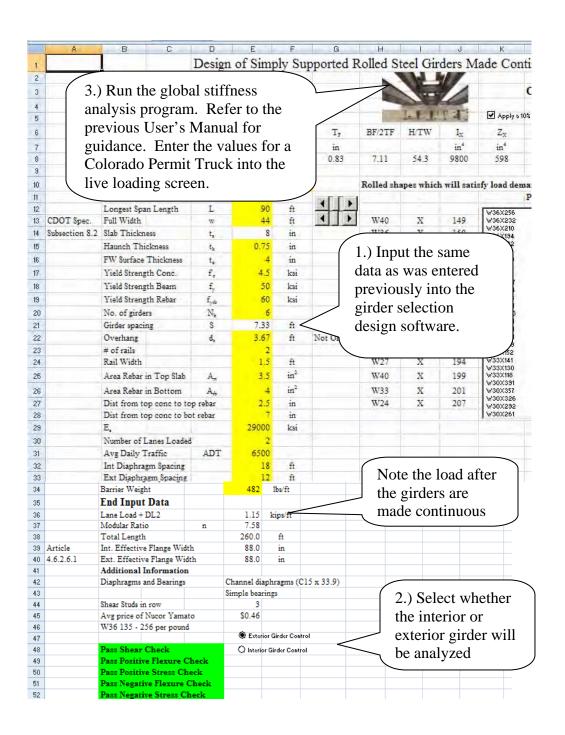
Step 9: Comparing the two analyses

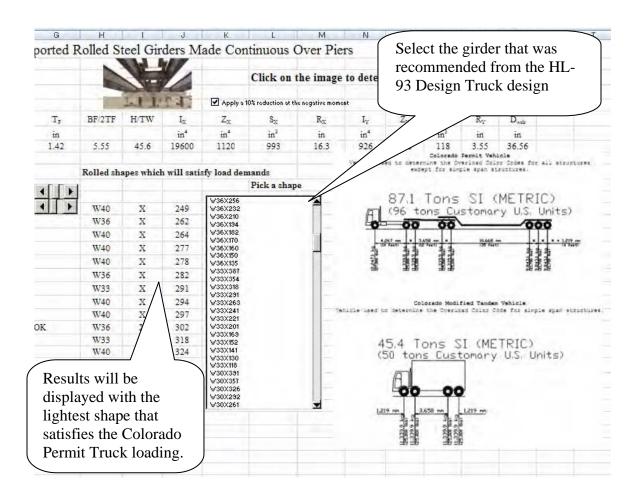
APPENDIX F: COLORADO PERMIT TRUCK ANALYSIS USER'S MANUAL

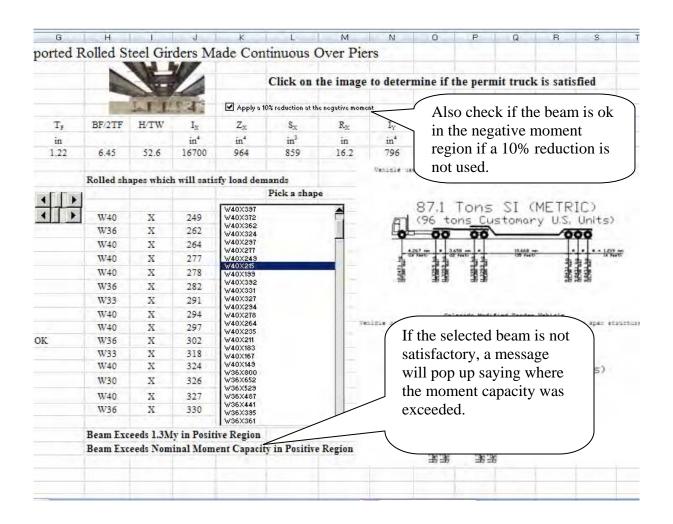
CSU-CBA

(Colorado State University-Continuous Beam Analysis)

Colorado Permit Truck Analysis Program Users Guide


> Alex Stone John W. van de Lindt Thang N. Dao





Introduction

This program analyzes a Colorado Permit Truck and determines the minimum rolled beam size required to satisfy the loading. This program will follow all of the same guidelines as the previous CSU-CBA User's Manual. The Colorado Permit Truck is only analyzed based on strength and uses Strength II load factors. This User's Manual only describes how to set up the program to analyze the Colorado Permit Truck. Refer to the previous User's Manual for a complete guideline for running the software package.

If the girder that was selected in the previous software to satisfy the HL-93 design truck does not meet the demands of the Colorado Permit Truck, use the minimum beam size required by the Colorado Permit Truck.

If the selected beam only exceeds the yield moment by 1.3 or greater, further analysis should be conducted to determine if the beam should be selected.

APPENDIX G: GIRDER SELECTION DESIGN SOFTWARE LOGIC

The following presents the logic that was used to create the girder selection design software.

Loads

- Dead Load 1 moments and shears generated for simply supported beam
- All other loads are put into CSU-CBA and moments and shears are found
- In the 'Analysis Results' tab the moments and shears found from the CSU-CBA
 analysis are broken down into their respective categories, i.e DL2, LL, FW. This
 is done by using ratios from the total distributed load. For example the lane load
 moment would be .64lbs/ft / total inputted load multiplied by the total distributed
 load moment.
- The factored moment in column G is not necessarily the moment used for calculations.

Live Load Lane Distribution

- The live load lane distribution follows provisions from Article 4.6
- Moment and shear distribution factors are found for both interior and exterior beams.
- The appropriate factor is applied depending on inputted data
- These factors are applied to the moments and shears for flexure, shear and stress checks
- In cell E47, the user can choose if the exterior or interior girder will control the design

Flexure

- The plastic moment capacity of the composite section is found in both the positive and negative regions following Appendix D6
- Forces from the flanges, web, slab and reinforcement are found. Using these values, the neutral axis location is determined and used to find the plastic moment capacity. In the positive section, longitudinal reinforcement was conservatively neglected. In the negative section, the slab does not contribute to the strength of the composite section because it is in tension.
- The nominal moment capacity is found by reducing the plastic moment capacity according to Article 6.10.7.1.2
- The yield moment is found and limited to 1.3My.
- Strength I factors are applied to the extreme moment values found in both the positive and negative sections. These values are compared to the nominal moment capacity and it is determined if the given cross section is ok in flexure. The maximum Strength I factored loads must be less than the nominal moment capacity and 1.3My to pass.

Shear

- The nominal shear capacity is found following Article 6.10.9.2
- It was assumed that all logical shapes to be used were compact sections. If the shape is a W40x149, W36x135 or W33x108, the designer should recheck the shear design because these shapes are non compact.
- Holes in the web were not accounted for in the shear capacity. If holes are
 present, the shear capacity should be rechecked.

• The program determines if bearing stiffeners are required by finding if the maximum factored shear is less than 75% of the nominal shear capacity.

Stress

- Elastic section properties are calculated for the positive short and long term sections and negative sections of the composite section.
- The long term section is greater than the short term section by a factor of 3.
- The moment of inertia and section modulus are found for all three sections.
- The negative section only uses the area of steel and reinforcement, while the positive section uses the concrete and steel.
- Once the elastic section properties are found, permanent deformations in the flanges are found in both the positive and negative sections.
- This is done by using the mechanics equation Mc/I, with the I value referring to the appropriate value found in the elastic section properties.
- Service II load factors are applied to the live load.
- Stresses are limited to 95% of the yield strength of the steel.
- The negative section has no contribution of stress from the dead load 1.