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EXECUTIVE SUMMARY 

Colorado has roughly one-third of the stockpiled tires in the country. In addition, the number of 

tires stockpiled in Colorado is rising every year. The Colorado Senate Bill 09-289 requires 

elimination of all waste tire mono-fills in Colorado by the year of 2019. In the early 1990s, 

recycled waste tire particles’ usage expanded into a relatively new product called rubberized 

concrete. Rubberized concrete uses portland cement as its binder. Research has shown that 

rubberized concrete has a positive outlook for inception into selected markets such as pavement 

applications.  

The reuse potential of tire chips as coarse aggregates in pavement concrete was examined in this 

research by investigating the effects of low- and high-volume tire chips on fresh and hardened 

concrete properties. An extensive literature review covering published research reports, journal 

articles, and other documents since early 1980s was performed on the rubberized concrete 

focusing on tire chips as coarse aggregate replacement. One concrete control mixture was 

designed, which well exceeds CDOT Class P concrete requirements. The coarse aggregate 

component of the mixture was replaced in 100%, 50%, 30%, 20%, and 10% by volume using tire 

chips. The fresh concrete properties, compressive strength, flexural strength, splitting strength, 

permeability, and freeze/thaw durability were tested in the lab in order to determine if there is a 

promise in developing the paving concrete mixes including tire chips. The testing results indicate 

tire chips can be used to replace coarse aggregate in concrete pavement mixtures.  

Two mixtures with 10% coarse aggregate replaced by tire chips and normal cement content had 

the best performance. The workability was comparable to the control mixture, and the air content 

reached 6%. At 28 days of age, the average compressive strength of the two mixtures was 4735 

psi. Although this strength was significantly less than the 7058 psi of the control, it did exceed 

CDOT field strength requirement of 4200 psi. The average flexural strength (957 psi) was 

slightly higher than the control (907 psi) and significantly exceeded CDOT’s required 650 psi.  

The averaged splitting tensile strength is higher than 590 psi. In addition, the two mixtures 

exhibited moderate resistance to chloride-ion penetration at 28 days of age and high freeze/thaw 

durability. The rubberized mixtures investigated in this study sustained a much higher 

deformation than the control mixture when subjected to compressive, flexural, and splitting 

loadings.
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Implementation   

The testing results from this study indicate tire chips can be used to replace coarse aggregate up 

to 10 percent in concrete pavement mixtures. Additional testing will need to be done to evaluate 

mix optimization and alternate sources of material and/or combinations of materials.  This 

optimization could be best done by a profit-driven contractor.  They would design a mix that 

would be stable and controllable on a construction project using materials that would be 

available at the project.  A researcher could take the contractor’s mix and play around with it by 

re-proportioning the mix to see what effects the changes would have. After a mixture is 

determined applicable, its incorporation into a pilot project would follow. In-service monitoring 

would be necessary and evaluated. It’s anticipated this part will take eighteen months for this 

research and three years of service to evaluate the pavement performance with final results in 

five years. 
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Federal regulations classify waste tires as non-hazardous waste. However, the stockpiles are 

depleting land resources, and they are vulnerable to fire. The combustion of tires releases volatile 

gases, heavy metals, oil, and other hazardous compounds. In addition, the stockpiles provide 

breeding grounds for rats, mosquitoes, and other vermin (1). The Colorado Senate Bill 09-289 

requires elimination of all waste tire mono-fills in Colorado by the year of 2019. Some 

innovative solutions have been developed to meet the challenge of waste tire stockpiling 

problem. Whole tires could be used as tire bales for highway embankments and retaining wall 

construction. Granulated rubber could be incorporated to asphalt binders for asphalt pavement. It 

has been successful to incorporate waste tires in asphalt pavement. Better skid resistance, 

reduced fatigue cracking, and longer pavement life were revealed in rubberized asphalt (1). 

Some schools use processed waste tires as a gravel replacement in playgrounds. Tire chips or 

shreds could be used for thermal insulation and they could potentially be used as an alternative to 

soil/aggregate materials in civil engineering applications. In Colorado, the top 5 end-use markets 

for recycled waste tires in 2011 are included in Table 1-1. 

Table 1-1 2011 Top 5 Recycled Waste Tire End-Use Markets in Colorado 

 

In the early 1990s, recycled waste tire usage expanded into a relatively new product called 

rubberized concrete (6-7). Rubberized concrete uses portland cement as its binder. Research has 

shown that rubberized concrete has a very positive outlook for inception into selected markets 

such as pavement applications (8). A recent research study completed by the University of 

Colorado at Denver for the Colorado Department of Public Health and Environment indicated 

the feasibility of using commercially processed crumb rubber as a partial replacement for the fine 

aggregate in CDOT Class P pavement concrete mixes (8). Volumetric portions ranging from 10 

to 50% replacements of sand were tested for fresh and hardened concrete properties. From the 

five replacement values, the 20 and 30% replacement mixtures performed adequately to fulfill 

Market
2011,
Tires

% of Waste 
Tires Generated

Tire-derived Fuel 1,948,465 38.9%
Alternative daily cover 1,295,711 25.8%

Crumb Rubber 683,741 13.6%
Used Tires 468,786 9.3%

Fencing/Windbreaks 259,588 5.2%
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CDOT Class P concrete requirements. The recycled waste tire particles did not exhibit any type 

of unusual rate of strength gain behaviors with the different replacement quantities. The leaching 

tests were performed to examine the environmental sustainability of the rubberized concrete 

mixtures. According to these tests, this material would pose no threat to human health.  

As a potential solution to help eliminate the waste tire mono-fills in Colorado by 2019, the reuse 

potential of tire chips as coarse aggregates in concrete pavement was examined in this study. The 

effects of low- and high-volume tire chips on concrete properties were investigated in this 

research. 

The current requirements for various concrete classes are given in CDOT Standard for Road and 

Bridge Construction specification guide Section 601. CDOT Class P concrete is used in 

pavements.  Concrete within this class are typically designed at low slumps for use in slip-form 

paving machines or curb and gutter machines.  Maximum aggregate sizes range from 1 ½ to ¾-

inch depending on placement types and whether or not dowels are being used in transverse 

joints.  Modulus of rupture (flexural strength) of the pavement concretes is specified as 650 psi 

in the field and 700 psi in the laboratory at 28-days. The required field compressive strength is 

4500 psi at 28 days of age. The minimum cementitious material content is 520 lbs./cy. The 

maximum water to cementitious material ratio is 0.44. The concrete is required to have 4-8% air 

to ensure a good durability to resist freeze/thaw cycling. The rubberized concrete mixtures are 

expected to have the same range of air content to have a good freeze/thaw resistance. 

1.2 Study Objectives 

The primary objectives of this research study are to: 

 Examine the effects of increasing the coarse aggregate replacement percentage with 

recycled tire chips on concrete fresh properties, compressive strength, split-tension, 

flexural strength, permeability and freeze/thaw resistance, and determine an optimum 

replacement percentage of coarse aggregate with recycled tire chips for pavement 

concrete mixtures. 

 Provide recommendations for the use of recycled tire chips as a coarse aggregate 

replacement in a concrete mixture designed for field implementation. 
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The main benefit of the research is to find an alternative to recycle waste tires in concrete. If tire 

chips can successfully replace the coarse aggregate in paving concrete mixes, the people of 

Colorado will benefit from the value gained in extending natural resources, reducing land space 

needed for waste products, and potentially decreasing costs associated with the product 

development and construction. 

1.3 Scope of Study 

This research evaluated the reuse potential of recycled tire chips as coarse aggregate in CDOT 

Class P pavement concrete mixes. An extensive literature review was performed on the 

rubberized concrete focusing on the tire chips as coarse aggregate replacement. Chapter 2 

summarized the research findings which are related to the engineering properties of tire chips, 

design, construction, and performance evaluation of the rubberized concrete mixtures since early 

1980s.  One concrete control mixture was designed, which well exceeded CDOT Class P 

concrete requirements. The coarse aggregate component of the mixture was replaced in 100%, 

50%, 30%, 20%, and 10% by volume using tire chips. The fresh concrete properties, 

compressive strength, flexural strength, splitting strength, permeability, and freeze/thaw 

durability were tested in the lab in order to determine if there is a promise in developing the 

pavement concrete mixtures including tire chips. Chapter 3 discussed the experimental designs 

and testing methods to measure the fresh and hardened concrete properties. Analyses of 

experiments results were presented in Chapter 4. Finally, Chapter 5 summarized the conclusions 

and provided recommendations. 
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2. LITERATURE REVIEW 

This literature review covered published research reports, journal articles, and other documents 

that discussed the utilization of scrap tires in civil engineering applications focusing on 

rubberized concrete with tire chips incorporated.  

2.1 Typical Compositions of Waste Tires 

Waste tires are the tires removed from automobiles and trucks. The typical weights of an 

automobile tire and a truck tire are 20 lbs. and 100 lbs. respectively. The major materials used to 

manufacture tires include natural & synthetic rubber (41%), carbon black (28%), steel (14-15%), 

fabric, filler, accelerators and antiozonants (16-17%) (1).  The percentages are given by weight.  

2.2 Classification of Recycled Waste Tire Particles 

Table 2-1 includes the terminology for recycled waste tire particles defined by ASTM D-6270 

Standard Practice for Use of Scrap Tires in Civil Engineering Applications.  

Table 2-1 ASTM D-6270 Terminology for Recycled Waste Tire Particles 

 

 

Chopped tires are produced in tire cutting machines. These machines cut waste tires into 

relatively large pieces.  The primary shredding process can produce scrap tires with a size as 

large as 12-18 in. long by 4-9 in. wide (1). Rough shreds, tire derived aggregates, tire shreds and 

tire chips are produced from the secondary shredding, which cut the tires down to 0.5 – 3 in.. 

Granulated rubbers, ground rubbers and powered rubbers are manufactured through cracker mill 

process, granular process, or micro-mill process, two stages of magnetic separation and 

Classification Lower Limit, in (mm) Upper Limit, in (mm)
Chopped Tire
Rough Shred 1.97X1.97X1.97 (50X50X50) 30X1.97X3.94 (762X50X100)

Tire Derived Aggregate 0.47 (12) 12 (305)
Tire Shreds 1.97 (50) 12 (305)
Tire Chips 0.47 (12) 1.96 (50)

Granulated Rubber 0.017 (0.425) 0.47 (12)
Ground Rubber - <0.017 (0.425)
Powered Rubber - <0.017 (0.425)

Unspecified dimensions



6 
 

screening (1,9). The commonly known crumb rubber consists of tire particles passing through 

No. 4 Sieve.  

2.3 Basic Material Properties of Tire Rubber 

This section presents the engineering properties necessary for design of scrap tires in civil 

engineering applications, e.g. specific gravity, modulus of elasticity (MOE), etc. As discussed 

above, tires are made of natural and synthetic rubber elastomers derived from oil, gas, and 

metallic intrusions. Other compositions e.g. carbon black, polymers, steel, and additives are 

incorporated to enhance performance of tires. The basic tire properties are summarized in Table 

2-2 and compared with the properties of mineral aggregates. 

Table 2-2 Basic engineering properties of tire rubber compared with mineral aggregates 

 

 

The specific gravity of tire rubbers can be estimated using ASTM C 127 &128 Standard Test 

Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse/Fine 

Aggregate. The tire chips do not float when submerged in water, but the crumb rubber particles 

do float on the water and do not displace water. Kardos (8) implemented a de-airing agent to 

resolve this issue. The specific gravity of tire rubber is less than half of the mineral aggregates, 

which means a legal 80,000-pound gross weight tractor-trailer delivering recycled tire chips 

would provide 2 to 2-1/2 times the volume of virgin coarse aggregate per delivery. Modulus of 

elasticity is the ratio between the stress applied and the strain measured, which indicates 

materials' capability to resist deformation. The MOE of sand ranges from 6,000 psi to 12,000 psi 

and the gravel is much larger. Compared to sand and gravel, tire rubber has a much lower 

modulus of elasticity. When incorporated in concrete, tire rubber behaves as weak inclusions. 

Some theoretical models were developed by researchers to explain the compressive failure 

modes of the rubberized concrete cylinders (10). The Poisson's ratio of tire is 0.5, which is the 

ratio of contraction to extension of tire rubber under uniaxial tensile testing .  

Properties Tire Rubber Mineral Aggregates References
Specific Gravity 1.02 -1.27 2.6-2.8 Humphrey and Manion, 1992; Ahmed, 1993

Modulus of Elasticity 180 - 750 psi 6,000-12,000 psia Beatty, 1981; Kulhawy and Mayne, 1990
Possion's Ratio 0.5 0.15-0.45 Beatty, 1981; Kulhawy and Mayne, 1990

a Dense, drained sand
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2.4 Fresh Concrete Properties of Rubberized Concrete 

Slump, air content, and unit weight are usually used to evaluate the behaviors of fresh concrete. 

Raghvan et al (11) reported a comparable or better workability was achieved for mortars with 

rubber particles included than a control mortar without rubber particles, while other researchers 

found a decreased slump with an increase in rubber content (12). Khatib and Bayomy (12) also 

noted that the slump of the mixture was almost zero when rubber accounts for 40% of total 

aggregate volume. Mixtures with finer particles were more workable than those with coarse tire 

chips. Higher air content in rubberized concrete was reported than control mixtures (12-13). Air 

is easily trapped by the rough surface of the tire particles created during the milling process. 

Rubber also has hydrophobic tendencies to repel water and cause air to adhere to rubber 

particles. Khatib and Bayomy (12) reported there is a decrease in unit weight with increase in 

rubber content as a percentage of total aggregate volume. This is due to the low specific gravity 

of rubber particles as indicated in Table 2-2. The increased air content due to the increased 

rubber further decreases the unit weight of mixtures. The influence of rubber particles on the 

fresh concrete properties are summarized below: 

 Slump and unit weight of concrete mixtures decreases with increase in rubber content. 

 Air content increases as the rubber content increases. 

2.5 Hardened Concrete Properties of Rubberized Concrete 

2.5.1 Compressive, Splitting Tensile, and Flexural Strength Properties 
The size, surface texture, and contents have been reported to affect compressive and tensile 

strength of the rubberized concrete mixtures (10, 12, 14-16). Eldin and Senouci (10) noted when 

coarse aggregate was 100% replaced by tire chips, there was approximately an 85% reduction in 

compressive strength and a 50% reduction in splitting tensile strength. The rubberized concrete 

mixtures demonstrated a ductile failure under compressive and tensile loads and they were 

capable to absorb a large amount of energy.  

 

The rubberized concrete experienced a loss in compressive and tensile strength with increased 

tire particle content. The primary cause of strength loss is a result of poor adhesion of the 

cementitious products to the surface of the rubber particles. The tire chips could be chemically 

treated to improve the interfacial transition zone (ITZ) bond between the rubber tire chips and 
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the cementitious material within the rubberized concrete mixture. Those methods include (1, 17-

18): 

 Polyacrylamide pretreated 

 Pressure ageing vessel pretreated 

 Silane pretreated 

 Sodium hydroxide soak 

 Magnesium oxychloride cement 

The mixtures with pretreated rubber particles were reported to achieve 16%-57% higher 

compressive strength than concrete containing untreated rubber aggregates (1).  

2.5.2 Toughness and Impact Resistance 
Toughness indicates energy absorption capacity of a specimen, which is defined as the area 

under load-deflection curve of a flexural specimen. Researchers have reported the rubberized 

concrete mixtures were able to carry additional loads after the ultimate load, and they have 

higher toughness than control mixtures without rubber particles (10-12; 19). As the rubber 

content increases, the rubberized concrete specimens tend to fail gradually as opposed to brittle. 

The impact resistance of concrete increased when rubber aggregates were incorporated into the 

concrete mixtures (10; 16; 20-21).  

2.5.3 Durability of Rubberized Concrete 
A limited amount of literature is available concerning the durability of concrete mixture 

containing rubber aggregates. The rapid freezing and thawing (ASTM C 666, Procedure A) 

durability was investigated by Savas et al. (22) for rubberized concrete mixtures with 10%, 15%, 

20%, and 30% granulated rubber by weight of cement. After 300 freeze/thaw cycles, the 

mixtures with 10% and 15% rubber particles had a durability factor higher than 60, but the other 

mixtures with 20% and 30% failed the testing. The loss of weight of all mixtures increased with 

increases in freezing and thawing cycles. Research performed by Paine et al (23) indicates crumb 

rubber could be potentially used as a freeze/thaw resisting agent in concrete.   

 

A concrete sample with good resistance to chloride penetration will pass 1000-2000 coulombs 

(low permeability) tested by ASTM C 1202 Standard Test Method for Electrical Indication of 

Concrete's Ability to Resist Chloride Ion Penetration.  Gesoğlu and Güneyisi (24) evaluated the 
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effects of chloride penetration in the rubberized concrete with silica fume incorporated. Rubber 

exasperates the chloride ion penetration significantly. But the use of silica fume can remarkably 

decrease the magnitudes of chloride penetration especially for the rubberized concretes.  

2.5.4 Summary 
In summary, literature has shown the following influences of rubber particles on hardened 

concrete properties: 

 As rubber content increases, 28-day compressive and tensile strength decrease. 

 The compressive strength of rubberized concrete can be increased by pretreating the tire 

particles chemically. 

 Rubberized concrete experiences a ductile failure under compressive and tensile loads. 

 Higher toughness can be achieved in rubberized concrete than control mixture without 

rubber aggregates. 

 Limited literature on durability indicates that durable rubberized concrete mixtures can be 

achieved at certain replacement levels.  
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3. EXPERIMENTAL DESIGN 

This study further investigated the use of recycled tire chips as coarse aggregate in Colorado 

pavement concrete. The fresh and hardened concrete properties were evaluated based on the 

following: 

 Do the fresh and hardened concrete properties test results meet the current CDOT Class P 

specification? 

 What is the maximum replacement rate of the coarse aggregate by the tire chips? 

3.1 Mixture Proportions 

Nine mixtures were batched in two phases. Mixtures 1-6 were made in the first phase and 

Mixtures 7-9 were made in the second phase. The first phase testing was designed to examine if 

there is a promise to use tire chips to replace coarse aggregate in pavement concrete mixtures. 

The second phase was to investigate the optimum cement content among the mixtures. The 

proportioning of the concrete mixtures is summarized in Table 3-1. The mix design followed 

American Concrete Associate (ACI) absolute volume method of concrete mix design.  

Table 3-1 Mixture Proportions 

 

The portland cement content in Mixtures 1-7 was 660 lbs./cy. and it was 570 lbs./cy. in Mixtures 

8 and 9. A water to cement ratio of 0.40 was kept constant among all the mixtures. Mixture 1 

was the control mixture. The coarse aggregate in mixtures 2-6 was replaced in 100%, 50%, 30%, 

10% (volume) respectively by the tire chips. In order to determine the maximum replacement 

Mixture Identification Water Cement Rock Tire Sand AEA
lbs./cy. lbs./cy. lbs./cy. lbs./cy. lbs./cy. fl oz/cwt

1 0Tire_660 264 660 1790 0 1116 0.5
2 100Tire_660 264 660 0 757 1116 0.5
3 50Tire_660 264 660 894 379 1116 0.5
4 30Tire_660 264 660 1253 227 1116 0.5
5 10Tire_660_1 264 660 1611 76 1116 0.5
6 10Tire_660_2 264 660 1611 76 1116 0.5
7 20Tire_660 264 660 1432 151 1116 0.5
8 30Tire_570 228 570 1253 227 1286 0.5
9 10Tire_570 228 570 1611 76 1286 0.5
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rate and optimum cement content among the mixtures, mixtures 7-9 were designed. 20% of 

coarse aggregate by volume was replaced by tire chips in Mixture 7, and 30% and 10% were in 

Mixture 8 and 9 respectively. A constant dosage of air entraining agent (AEA) was used in all 

mixtures. The moisture contents in the aggregates were measured and proportions were adjusted.  

The mixtures with 10% tire chips were batched twice to verify the repeatability of the testing 

results. 

3.2 Materials 

3.2.1 Cement  
An ASTM Type I portland cement provided from Holcim, Inc. was used in this study. The 

specific gravity of this cement was 3.15 and the blaine fineness was 217 yd2/lb. 

3.2.2 Virgin Mineral Aggregates 
The coarse and fine aggregates were provided by Bestway Aggregate. The physical properties of 

the aggregates are shown in Table 3-3. Both the coarse and fine aggregates met the ASTM C 33 

specification.  Tables 3-3 and 3-4 show the ASTM C 33 grading limits and sieve analysis results 

for the fine and coarse aggregates respectively. 

Table 3-2 Physical Properties of Fine and Coarse Aggregates 

 

 

Table 3-3 ASTM C 33 – Grading Limits and Sieve Analysis for the Fine Aggregate 

 

Material Absorption Capacity Specific Gravity
Fine Aggregate 0.70% 2.61

Coarse Aggregate 0.80% 2.59

U.S Metric(mm) ASTM C33 Upper Limit ASTM C33 Lower Limit Sand Analysis 
3/8 inch 9.5 100 100 100
NO.4 4.75 100 95 99.8
NO.8 2.36 100 80 90.1
NO.16 1.18 85 50 65
NO.30 0.6 60 25 35.8
NO.50 0.3 30 5 12.9
NO.100 0.15 10 0 2

Sieve Size % passing
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3.2.4 Chemical Admixtures 
Sika Air admixture was used in all concrete mixtures to achieve the specified 4-8% air content.  

The AEA contained a blend of high-grade saponified rosin and organic acid salts. Typical 

addition rates ranged from 0.5 to 3 fl oz per 100 lbs. of cementitious material. As shown in Table 

3-1, the lower limit of the dosage was used in all mixtures.  

 

Sika Plastocrete 161, a commercially available lignin polymer type A high range water reducing 

admixture (HRWRA) was used during mixing of the concrete. The manufacturer’s recommended 

addition rates ranged from 2 to 6 fl. oz/100 lbs of cementitious materials. The target slump is 1-2 

in. for all mixtures. But it is discussed later that the mixtures containing high-volume tire chips 

had zero inch slump even with excessive high range water reducer incorporated. 

3.3 Test Methods 

The batching followed ASTM C 192 Standard Practice for Making and Curing Concrete Test 

Specimens in the laboratory. Both fresh and hardened concrete properties were examined for 

each mixture. The fresh concrete properties investigated include slump (ASTM C 143), unit 

weight (ASTM C 138), and air content (ASTM C 231 & ASTM C 173). Hardened concrete 

properties tested in this research include compressive strength (ASTM C 39), flexural strength 

(ASTM C 78), splitting tensile strength (ASTM C 496), resistance to freezing and thawing 

(ASTM C666, Procedure A), and rapid chloride ion penetrability (ASTM C 1202). The fresh and 

hardened concrete tests are shown in Table 3-6. 

Table 3-6 Fresh and Hardened Concrete Tests 

 

Fresh Concrete Tests Standard Time of Test
Slump ASTM C 143 At Batching

Unit Weight ASTM C 138 At Batching
Air Content (Pressure Meter) ASTM C 231 At Batching

Air Content (Roller Meter) ASTM C 173 At Batching
Hardened Concrete Tests Standard Time of Test

Compressive Strength ASTM C 39 3,14,28 days
Modulus of Rupture ASTM C 78 28 days

Freeze-Thaw Resistance ASTM C 666 28 and Subsequent days
Rapid Chloride Ion Penetration ASTM C 1202 28days

Splitting Tensile ASTM C 496 28 days
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The compressive strength of each mixture was tested at 3, 7, and 28 days of age, using three 4 × 

8 in. cylinders for each test date.  Rapid chloride ion penetration and splitting tensile tests were 

performed at 28 days of age, using two 4 × 8 in. cylinders each. Concrete beams were made for 

flexural strength and freeze/thaw resistance testing.  The flexural strength was measured at the 

28 days of age using two beams. DK-4000 Dynamic Resonance Frequency Tester was used to 

measure the transverse resonant frequencies of two concrete prisms of each mixture used for the 

freeze/thaw testing. The tester complies with ASTM C 214. The averaged experimental results 

are presented in Chapter 4, followed by discussions on the findings. 
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1 Fresh Concrete Properties  

The fresh concrete properties of the nine mixtures are summarized in Table 4.1. The effects of 

tire chips on the slump, air content, and unit weight are discussed in the following sections.  

Table 4-1 Fresh Concrete Properties 

  

4.1.1 Slump 
The slumps and the dosage rates of HRWRA are plotted in Figure 4-1. The slump of the control 

mixture, 0Tire_660, was 1 in. with HRWRA dosage rate of 5 fl. oz per 100 lb of cement. 

Comparing the slumps of Mixture 1-6 in the first phase of batching, the slump increased as the 

rubber content decreased. At rubber content of 100% of the coarse aggregate, the slump was zero 

even with excessive HRWRA 5 fl oz/cwt incorporated. To achieve the target 1-2 in. slump, 7.8 fl 

oz/cwt and 7.3 fl oz/cwt dosage rates of HRWRA were used in Mixture 3, 50Tire_660, and 

Mixture 4, 30Tire_660, respectively. The dosage rates were a little higher than the 

manufacturer’s recommendation ranging from 2 to 6 fl. oz/100 lbs. of cementitious materials. 

Mixture 5 and 6, two mixtures with 10% tire chips by volume of coarse aggregate, were 

incorporated with 5 fl. oz per 100 lb HRWRA. The slumps were 2 in. and 1.25 in., which were 

higher than the control mixture. This means the tire chips was not detrimental to the workability 

of the concrete at the rubber content of 10% of the coarse aggregate volume. The three mixtures 

in phase two were incorporated with excessive HRWRA with dosage rates 26.20 fl oz/cwt, 28.90 

fl oz/cwt, and 26.20/cwt respectively. The slump of Mixture 7, 20Tire_660, was 1.25 in., but too 

Slump Unit weight

(in.) (lbs./ft3) Pressure (%) Roller (%)
1 0Tire_660 1 145 5 -
2 100Tire_660 0 93 18 3.5
3 50Tire_660 1 121 11 10.75
4 30Tire_660 1.75 127 10 7.25
5 10Tire_660_1 2 139 6 5.75
6 10Tire_660_2 1.5 141 6 5.25
7 20Tire_660 1.25 138 3.25 -
8 30Tire_570 0.75 131 6 -
9 10Tire_570 0.25 143 4.75 -
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Air Content
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4.2.3 Splitting Tensile Strength 
The splitting tensile strengths of the nine mixtures are summarized in Table 4-4, and plotted in 

Figure 4-10. The control mixture had the highest splitting tensile strength, and the mixture with 

full replacement of coarse aggregate had the lowest. The splitting tensile strengths of the 

rubberized concrete ranged from 170 psi to 662 psi. The mixture 10Tire_660_1 had the highest 

splitting tensile strength among all mixtures with rubber aggregates. Similar to flexural strength 

testing, Figure 4-11 shows the rubberized concrete cylinders were not separated into two halves 

when they failed because of bridging of cracks by the tire particles.  In addition, both Figure 4-10 

and Figure 4-12 indicate a decrease trend of the splitting tensile strength due to the increased tire 

chips content. 

Table 4-4 Splitting Strength at 28 Days  

 

 

 

 

Mixtures Identification 28-day (psi)
1 0Tire_660 806
2 100Tire_660 170
3 50Tire_660 295
4 30Tire_660 347
5 10Tire_660_1 662
6 10Tire_660_2 531
7 20Tire_660 611
8 30Tire_570 450
9 10Tire_570 497
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contents. As discussed in Chapter 2, air is easily trapped by the rough surfaces of the tire 

particles. The readings from pressure meter were high. Roller meter was used to measure the air 

contents for rubberized mixture in phase 1. The results are summarized in Table 4-1. Using the 

air contents measured from roller meter and 2708 Coulombs reading for Mixture 30Tire_570, the 

results of total charge passed vs. air contents are plotted in Figure 4-15. The figure indicates an 

increase of total charge passed due to increase of the air content except one data point from 

Mixture 50Tire_660. Additional batches are recommended to investigate the abnormal point. 

The relationship between the air content and tire chips content was revealed in Figure 4-2. The 

general trend is as the tire content increases, the air content increases. But Figure 4-13, Figure 

4-14, and Figure 4-15 illustrate the permeability was more affected by the air content than the 

tire chips content. The tire chips content is only one factor influencing the air content of 

rubberized concrete.  

Table 4-5 Rapid Chloride-ion Penetration Tests Results 

 

 

 

Mixtures Identification 28-day (Coulombs) ASTM C1202
1 0Tire_660 1785 Low
2 100Tire_660 2183 Moderate
3 50Tire_660 1356 Low
4 30Tire_660 2889 Moderate
5 10Tire_660_1 2257 Moderate
6 10Tire_660_2 2146 Moderate
7 20Tire_660 1516 Low
8 30Tire_570 4185 High
9 10Tire_570 1648 Low
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Table 4-6 Resistance to Freeze /Thaw Cycling 

 

 

Table 4-7 Durability Factor 

 

 

 

 

Mixtures Identification 0 Cycles (Hz) 36 Cycles (Hz) 72 Cycles (Hz) 108 Cycles (Hz) 144 Cycles (Hz) 180 Cycles (Hz) 216 Cycles (Hz) 252 Cycles (Hz) 288 Cycles (Hz) 324 Cycles (Hz)
1 0Tire_660 2178 2129 2100 2109 2090 2100 2080 2090 2080 2119
2 100Tire_660 938 859 645 645 645 645 586 586 664 664
3 50Tire_660 1572 1562 1533 1553 1514 1523 1475 1475 1523 1484
4 30Tire_660 1768 1768 1738 1748 1719 1738 1719 1709 1748 1728
5 10Tire_660_1 2021 1973 1914 1914 1914 1914 1914 1914 1914 1914
6 10Tire_660_2 1973 1963 1953 1953 1953 1953 1953 1953 1953 1953
7 20Tire_660 1855 1797
8 30Tire_570 1426 1279 Testing in Progress
9 10Tire_570 1387 1250

Mixtures Identification Initial (Hz) Final (Hz) Durability Factor
1 0Tire_660 2178 2119 95

2 100Tire_660 938 645a 11

3 50Tire_660 1572 1484 89
4 30Tire_660 1768 1728 96
5 10Tire_660_1 2021 1914 94
6 10Tire_660_2 1973 1953 98
7 20Tire_660 1855
8 30Tire_570 1426
9 10Tire_570 1387

a Frequency was measured at 72 cycles
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5. CONCLUSIONS AND RECOMMENDATIONS 

Colorado has about one-third of the stockpiled tires in the U.S.. The stockpiles are consuming 

land resources and are vulnerable to fire. They are potential threats to the environment and 

human's health. In order to help achieve the goal of Colorado Senate Bill 09-289, which requires 

elimination of all waste tire mono-fills in Colorado by 2019, this study investigated the reuse 

potential of tire chips as coarse aggregate in pavement concrete mixtures. The rubberized 

concrete does not reduce the cost and even reduce the environmental impacts of concrete itself, 

but it helps eliminate the waste tire stockpiles and reduce the potential threats of the stockpiles to 

the environment. Volumetric portions ranging 10% to 100% replacements of coarse aggregate 

were tested for fresh and hardened concrete properties. Nine mixtures were batched in two 

phases. The first phase was designed to examine if there is a promise to replace coarse aggregate 

by tire chips in pavement concrete mixtures. And the second phase was to investigate the 

optimum cement content among the mixtures. This study evaluated and reported the fresh 

concrete properties including slump, air content, unit weight, and hardened properties including 

compressive, flexural, splitting tensile strengths, permeability and freeze/thaw resistance of 

rubberized concrete mixtures. A summary of the major findings from this study are reported 

blow. 

 

(1) The slump increased as the rubber contents decreased. The tire chips were not 

detrimental to the workability of the concrete when10% of the coarse aggregate by 

volume was replaced by tire chips. The mixtures with high-volume tire chips or low 

cement content were not workable. Low slumps were obtained with excessive HRWRA 

for these mixtures. 

(2) A general trend of increased air content due to the increased tire chips content was 

revealed. But a significant discrepancy of air contents measured from pressure meter and 

roller meter was observed for Mixture 100Tire_660. 

(3) As the rubber aggregate increased, the unit weight decreased linearly regardless of the 

cement content. 

(4) Compressive strength dropped 32% with 10% replacement of coarse aggregate and 

dropped more with higher replacement levels. This results in only two mixtures with 
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10% tire chips by volume of coarse aggregate met the Class P concrete compressive 

strength requirement at 28 days of age. Both cement content and tire chips content 

affected the compressive strength of the rubberized mixtures. The mixtures with low 

cement content had lower compressive strengths. A reduction in compressive strength 

was observed with increase of tire chips content. 

(5) The flexural strength was increased by replacing 10% of coarse aggregate. The flexural 

strengths of two mixtures exceeded 900 psi at 28 days of age. The mixtures with less 

cement withstood additional flexural loading after cracking. The flexural strength testing 

also finds as the tire chips content decreased, the flexural strength increased.  

(6) The splitting tensile strength decreased by at least 18% with a 10% replacement coarse 

aggregate and decreased further as the tire chips content increased.  

(7) The mixtures with tire chips sustained a much higher deformation than the control 

mixture when subjected to compressive, flexural, and splitting loadings. 

(8) Mixtures with rubber aggregates exhibited moderate to high resistance to chloride-ion 

penetration at 28 days of age. The permeability of the rubberized concrete mixtures was 

more affected by the air content than the tire chips content. 

(9) The measurement of transverse resonant frequencies of concrete prisms revealed the 

beams with more tire chips were less stiff. The two mixtures with lower cement content 

had lower stiffness. 

(10) Mixture 100Tire_600 had low resistance to freeze/thaw cycling, but other rubberized 

mixtures showed an excellent resistance to freezing and thawing. 

The following is a summary for the recommended practices for designing a CDOT Class P 

pavement concrete using tire chips: 

(1) Tire chips can be used to replace coarse aggregate in concrete pavement mixtures. 

Mixture 10Tire_660 had the best performance among all rubberized concrete mixtures. 

It’s recommended to pretreat the surfaces of the rubber particles in order to enhance the 

adhesion between the cement paste and the rubber particles. 

(2) All mixtures had low slumps in this study. It’s recommended to optimize the mixture 

design to improve the workability of the rubberized concrete mixtures, e.g. incorporation 

of fly ash in rubberized concrete mixtures.  
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(3) The mixtures with 570 lbs./cy. cement had lower strengths at the 28 days of age. It’s 

recommended to use 660 lbs./cy. or more cement and not reduce the cement content for 

the rubberized concrete.   
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