A Literature Analysis and Study to Determine Optimal Wildlife Crossing Structure Size

APPLIED RESEARCH \&
INNOVATION BRANCH

Pat Basting
Keith Bishton
Kyle Brown
Teresa Smithson
George Woolley

The contents of this report reflect the views of the author(s), who is(are) responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Technical Report Documentation Page

$\begin{aligned} & \text { 1. Report No. } \\ & \text { CDOT-2022-0 } \end{aligned}$	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle A Literature Analysis to Determine Optimal Wildlife Crossing Structure Size		5. Report Date March 2022
		6. Performing Organization Code
7. Author(s) Pat Basting, Keith Bishton, Kyle Brown, Teresa Smithson and George Woolley		8. Performing Organization Report No.
9. Performing Organization Name and Address Jacobs Engineering Group Inc. 9191 S. Jamaica St. Englewood, CO 80112		10. Work Unit No. (TRAIS)
		11. Contract or Grant No. CDOT Study 121.02
12. Sponsoring Agency Name and Address Colorado Department of Transportation - Research 2829 W. Howard Pl. Denver, CO 80204		13. Type of Report and Period Covered Final Report
		14. Sponsoring Agency Code

15. Supplementary Notes

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration

16. Abstract

The Literature Analysis to Determine Optimal Wildlife Crossing Structure Size Study (Study) emerged from Colorado Department of Transportation's (CDOT's) desire to determine if there is a point of diminishing return of effectiveness based on target species success rates when it comes to sizing highway wildlife passages. This Study's objectives are to review and analyze existing monitoring data to determine if there are optimum structure dimensions for underpasses and overpasses for mule deer (Odocoileus hemionus), elk (Cervus canadensis), pronghorn (Antilocapra americana), moose (Alces alces) and Canada lynx (Lynx canadensis), particularly the point at which increasing structure sizes may reach a range of diminishing returns relative to cost and predicted increase in successful crossings. The Study results infer recommendations for a repeatable process to analyze effectiveness and diminishing returns in the future when new field studies are performed, new literature and data may be available, or a new species of interest is the subject. This Study identifies gaps in the literature, available data, and study processes that challenge the effective realization of diminishing return determinations in relation to success rates and highway wildlife passage dimensions. This Study's results, using regression modeling, may inform development and sizing of highway wildlife passages relative to defining success criteria for larger wildlife and reducing wildlife-related vehicle collisions across Colorado. The results indicate that, given a statistically valid sample size, modeling can be done to determine which structure dimensions (length, width, and height) most strongly influence a species' (such as mule deer) success rate through wildlife underpass crossing structures. Given this analysis, modeling to predict success rates for a given species and a range of structure dimensions can be generated. It is also possible to determine if a given species has a preference regarding underpass type (bridges or culverts). It is critical that monitoring of wildlife crossings be done to determine success and repel rates because this data will allow further application of predictive modeling for other species. In addition, the project team recommends that success criteria for wildlife mitigation projects be clearly defined and measures identified to determine whether they have been achieved.

Statement of Purpose

The goal of this Study is to determine via existing published literature, unpublished study data, and reports (if accessible) if there is a point of diminishing returns of effectiveness based on wildlife success rates when it comes to sizing highway wildlife passages.

17. Keywords Wildlife Crossings, diminishing return, wildlife structures, underpass, overpass, deer, elk, collisions	18. Distribution Statement This document is available on CDOT's website http://www.coloradodot.info/programs/research/pdfs		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages	22. Price

Executive Summary

Wildlife crossing structures (WCSs), underpasses, and overpasses are widely used for the safe travel of larger wildlife species across roads and highways, reducing wildlife-related vehicle collisions to drivers (Denneboom et al. 2021). WCSs are often expensive to build and maintain, and therefore determining a cost-effective, optimal design is a challenge faced by departments of transportation across the United States and elsewhere. Although much research has been conducted on the variables affecting the usage of WCSs by wildlife (Clevenger and Waltho 2000, 2005; Cramer et al. 2015; Dodd et al. 2007; Huijser et al. 2016), few attempts have been made to correlate cost-diminishing returns in relation to the success rates and optimal sizing of WCSs. We conducted a systematic review of the scientific, professional, and grey literature to assess effectiveness of WCSs and a meta-analysis to explore the structural variables that influence their effectiveness on success rates of mule deer (Odocoileus hemionus), elk (Cervus canadensis), and other target species. Ultimately this meta-analysis was used to construct regression modeling for a repeatable approach to determining diminishing return on effectiveness in relation to WCS dimensions. The database provides inputs to run statistical analyses and regression models using Microsoft Excel and R statistical program. ${ }^{1}$ Four models were analyzed to evaluate success rate and independent variables, and a fifth model evaluated costs and structure dimensions.

Based on the data set, modeling, and statistical analysis, success rates for mule deer use of underpasses (culverts and bridges) is most strongly influenced by structure length and width, and the project team was able to generate a tabular summary of predicted success rates for underpasses given length and width dimensions. Mule deer do not show a preference between bridges or culverts, while elk prefer bridges to culverts. However, the team did not have adequate data to determine strongest drivers of success rate relative to bridge or culvert underpass size dimensions for elk. Based on the modeling and statistical analysis with the database, the success rate could be the same for mule deer and elk for a combination of underpass structure dimensions. The team attempted to determine if mule deer or elk exhibited a preference for overpasses as compared to underpasses and if so, the range of dimensions (length, width, and

[^0]height) correlated to success rate. However, the data for overpasses used by mule deer and elk to evaluate this scenario were insufficient.

There is not enough monitoring data available currently to perform a separate statistical analysis to determine predicted success rates for any given structural types or dimensions for moose (Alces alces), pronghorn (Antilocapra americana), Rocky Mountain bighorn sheep (Ovis canadensis), or Canada lynx (Lynx canadensis).

A single point of diminishing return where incremental costs to increase structure size outweighed predicted increase in success rate could not be identified. Using the results of Model 4 predicted success rates for mule deer, the team was able to demonstrate an example where once a desired success rate or range of success rates (for example, 60-75\%) is identified, a predicted range of structural dimensions can be identified that may achieve that success rate. Evaluation of biological, engineering and cost constraints of a project can be worked through to balance project needs and achieve desired outcomes.

Implementation Statement

Based on the literature review and modeling, the project team recommends use of the Eastern Slope and Plains and Western Slope wildlife prioritization studies (Kintsch et al., 2019; Kintsch et al., 2022) to identify priority locations to perform wildlife mitigation. In addition, there is a need for developing a systematic monitoring protocol for wildlife mitigation projects-in particular, those projects addressing species such as elk, moose, pronghorn, Rocky Mountain bighorn sheep, and Canada lynx where success and repel rates are determined. This additional data will allow further modeling and analysis to determine predicted optimal sizing for WCSs for these species. A key recommendation is clearly defining success for mitigation projects by defining a range of expected wildlife crossing success rates and expected reductions in wildlifevehicle collisions. This can best be accomplished by developing interdisciplinary design teams of biologists and engineers.

Contents

1. Introduction 1
1.1 Study Objectives 2
1.2 Hypothesis 2
2. Methods. 3
2.1 Literature Analysis and Database Development. 3
2.2 Model Selection Analysis 3
2.3 Regression Model Variable Assumptions, Limitations, and Definitions 4
2.4 Model Analysis and Development Justification 6
3. Results 8
4. Models to Evaluate Success Rate (Models 1 through 4) 9
4.1 Model 1 Results 9
4.2 Model 2 Results 12
4.3 Model 3 Results 13
4.4 Model 4 Results 13
4.4.1 Mule Deer Model 4 Results 13
4.4.2 Elk Model 4 Results 14
4.4.3 Elk and Underpass Models 14
4.5 Model 5 Results 16
4.5.1 Cost Analysis 16
5. Diminishing Return 19
6. Discussion 24
6.1 Canada Lynx 26
6.2 Moose 29
6.3 Rocky Mountain Bighorn Sheep 30
6.4 Pronghorn 31
6.5 Other Variables Influencing Wildlife Crossing Structure Use 32
7. Recommendations. 36
8. Conclusion 39
9. References 41
Appendices
A Published and Unpublished Data Used in Statistical Modeling
B Model 1 Statistical Analysis of Weighted Average Success Rate for all Species andStructural Dimensions for all Underpass Types
C Model 2 Statistical Analysis of Predicted Response to Underpass Structures with Fixed Dimensions by Mule Deer and Elk
D Model 4 Statistical Analysis of Predicted Success Rates and Structural Dimensions for Mule Deer; Underpass Structure Preference for Elk
E Model 5 Diminishing Return Statistical Analysis
Tables
1 Regression Model and Model Variables 4
2 Modeling Summary Results ${ }^{\text {a }}$. 8
3 Animal Count by Species for Model 1 9
4 Descriptive Statistics for All Species Model 1 10
5 Model 2 Summary Output (106 Observations) 12
6 Descriptive Statistics for Mule Deer Model 4 14
7 Summary of Structure Cost Data. 16
8 Lynx Use of Wildlife Crossing Structures, Trans-Canada Highway Twinning Project, Banff, Alberta, Canada 27
9 Eurasion Lynx Use of WCS in Sweden. 28
Figures
1 Predicted Success Rates for All Species Given Combinations of Length and Width. 11
2 Predicted Success Rates for Mule Deer Given Combinations of Length and Width 15
3 Bivariate Analysis of Cost Data Plotted Against Wildlife Crossing Structure Height 17
4 Predicted and Estimated Costs (in Millions) Plot Comparison. 18
5 Predicted Success Rates for Mule Deer Given Combinations of Length and Width 20
6 Success Rate Curves of Length and Width for Mule Deer 21

Acronyms and Abbreviations

AIC	Akaike Information Criterion
ANOVA	analysis of variance
CDOT	Colorado Department of Transportation
DVC	deer vehicle collision
HSD	honestly significant difference
I-	Interstate
MDT	Montana Department of Transportation
N/A	not applicable
Study	Literature Analysis to Determine Optimal Wildlife Crossing Structure Size Study
SH	State Highway
U.S.	United States
US	U.S. Highway
WCS	wildlife crossing structure
WVC	wildlife-related vehicle collision

1. Introduction

In North America, wildlife-related vehicle collisions (WVCs) are a serious safety concern for state departments of transportation and the traveling public. Between 1 and 2 million collisions with large wildlife are estimated to occur in the United States (U.S.) each year (Conover et al. 1995; IIHS 2018; State Farm 2021), resulting in wildlife mortalities and human fatalities and injuries, as well as associated costs of more than 10 billion U.S. dollars annually (Huijser et al. 2007, adjusted for inflation to 2021 dollars). From July 2020 through June 2021, 1 out of every 179 Colorado drivers submitted a claim from hitting an animal, which was a 7% increase from 2018 (State Farm 2021).

Over the past 5 years, Colorado Department of Transportation (CDOT) and Colorado Parks and Wildlife (CPW) have developed statewide priority planning for wildlife mitigation, and funding has been put in place to address migration and habitat connectivity at both state and national levels. Specific examples include the following:

- Department of the Interior Secretarial Order 3362 (Improving Habitat Quality in Western Big Game Winter Range and Migration Corridors)
- Colorado Governor’s Executive Order D 2019011 (Conserving Colorado’s Big Game Winter Range and Migration Corridors)
- Colorado's Western Slope and soon-to-be-completed Eastern Slope and Plains Wildlife Prioritization Studies (Kintsch et al., 2019; Kintsch et al., 2022)
- Recent passage of the 2021 Bipartisan Infrastructure Investment and Jobs Act and its provisions for wildlife mitigation funding

Wildlife crossing structures (WCSs), underpasses, and overpasses are widely used for the safe travel of larger wildlife across roadways and highways, reducing WVCs to drivers (Denneboom et al. 2021). WCSs are often expensive to build and maintain; therefore, a cost-effective optimal design is essential. Although much research has been conducted on the variables affecting the usage of WCSs by wildlife, few attempts have been made to correlate cost-diminishing returns in relation to success rates and optimal sizing of WCSs. The purpose of this Study) is to review and analyze if science-based, practical recommendations for the dimensions and types of WCS used primarily by mule deer (Odocoileus hemionus), elk (Cervus canadensis), pronghorn (Antilocarpa
americana), moose (Alces alces), and Canada lynx (Lynx canadensis) can be identified from published and grey literature, as well as if a point of diminishing returns on costs associated with the success rates of target species can be determined.

1.1 Study Objectives

The Study objectives are as follows:

1) Review and analyze existing literature and data to determine the optimum size of underpasses and overpasses for wildlife species, including mule deer, elk, Canada lynx, moose, Rocky Mountain bighorn sheep (Ovis canadensis), and pronghorn-particularly, the point at which increasing structure sizes may reach a point of diminishing returns in effectiveness.
2) Recommend a repeatable process to achieve objective 1 in the future, to be implemented when new field studies are performed, new literature and data may be available, or a new species of interest is the subject.
3) Identify gaps in the literature, available data, or study process that challenge the effective realization of objectives 1 and 2. In addition, provide recommendations for filling gaps in a potential future phase of research on this topic.

1.2 Hypothesis

The hypothesis, in two terms, is as follows:

1) If optimal sizing of WCSs can be determined through analysis of published and unpublished wildlife crossing monitoring data (such as repel rate or success rate) for the readily available data on structures (such as length, width, and height) for different species (such as mule deer, elk, pronghorn, moose, Canada lynx, and other species), optimal WCS size can be estimated based on dependent success criteria for desired passage rates.
2) If optimal structure sizing can be estimated, a determination of when a structure size may reach the point of diminishing returns can be estimated through analysis of structure cost and the strongest potential variables, such as structure dimensions and other factors to support desired species, that may affect successful passage.

2. Methods

2.1 Literature Analysis and Database Development

To test the hypothesis, published and unpublished data were gathered from multiple studies for use in statistical analyses. Literature was deemed suitable for use in the meta-analysis if the data collected for the WCSs in the studies contained complete data sets. A complete data set is defined as a singular WCS (either an underpass or overpass) with dimension measurements (such as length, width, and height), and structure class (such as culvert or bridge). In addition, a complete data set includes the number of crossings, success rates, and repel rates for a target species (such as mule deer, elk, and other species). Studies that were unpublished data sets were given titles based on the source for the data, such as files received from CDOT or other researchers or transportation agencies.

Eighteen studies primarily focusing on western U.S. and Canada were used in the initial data collection to construct the database. However, only 16 studies were used in the final database because 2 omitted studies did not have complete data sets. Studies used in this analysis are provided in Appendix A.

2.2 Model Selection Analysis

Several analytical methods were used to determine the significant influence of independent variables for model determination. In addition to the standard descriptive statistics for each data set, the feasibility of a regression analysis was determined using a sample size calculator. The factors used in this calculation are power $=0.8$, an ' f ' distribution with a medium size of 0.39 , and three independent variables. It was determined, using a sample size calculator, that the minimum size for a regression analysis with three independent variables was 76 (Statistics Kingdom 2021). Where the data set became too small for multiple regression analysis and did not meet the minimum statistical sample size, a simple linear regression analysis was performed individually on each variable; this was done as an exploratory exercise to determine probable independent predictor of success. For data sets with a sufficient sample size, a multiple linear regression was performed in addition to descriptive analysis.

Regression analysis describes the magnitude of the relationship between independent (predictor) variables and a dependent (response) variable. Numerous types of regression models exist. For continuous data, such as the structure dimensions (for example, length, width, height), a multiple linear regression serves as an appropriate statistical technique. For the evaluation of categorical independent variables, such as a structure type (for example, culvert, bridge, overpass), a logistical regression is used and the categorical variables are coded as 0 or 1 when inputting the data into R statistical program ${ }^{2}$ for analysis. Model selection analysis was performed in R using the explanatory variables as described in Table 1.

Table 1. Regression Model and Model Variables

Regression Model	Success Rate	Structure Dimensions $^{\mathbf{b}}$	Species	Structure $_{\text {Class }^{\mathbf{c}}}$	Structure Type $^{\mathbf{d}}$	Costs
Variables $^{\boldsymbol{a}}$	Dependent	Independent	Indicator	Indicator	Indicator	Dependent
Model 1	X	X				
Model 2	X	X	X			
Model 3	X	X		X		
Model 4	X	X	X		X	
Model 5	X				X	

${ }^{a}$ Variables used in the modeling analysis are defined as dependent, independent, or indicator variables.
${ }^{\mathrm{b}}$ Structure dimension variables, expressed in feet, are defined as the length, width, or height (if appropriate) of an individual WCS.
${ }^{\text {c }}$ Structure class variables are defined as either a wildlife crossing overpass or an underpass.
${ }^{\mathrm{d}}$ Structure type variables are defined as either a bridge or culvert WCS type.

2.3 Regression Model Variable Assumptions, Limitations, and Definitions

In addition to model selection analysis, the following list of assumptions (with constraints that may impact the statistical analyses) was determined:

- The purpose of the structures is to minimize wildlife-vehicle collisions and provide environmental benefits (such as connectivity). Benefits are not quantified as part of the Study.
- For all structures, assume wildlife fencing is present.

[^1]- Report data are reasonably accurate and can be used to inform the Study.
- The Study uses readily available data and does not perform additional monitoring activities.
- Independent variables are limited or constrained by readily available data in published and unpublished data.
- Cost information is readily available for structures. Where cost information is unavailable, additional assumptions will be developed to estimate costs, which may impact the analysis.
- Lack of any specific species in the Study does not indicate a lack of use by that species.
- Studies used in the formation of the database for this study evaluated underpasses constructed of various material types (reinforced concrete box, concrete round or elliptical, structural steel plate pipes, concrete arches, and bridges). Some studies analyzed a continuous single underpass under two or more lanes or two underpasses (one each) under two or more lanes of a divided highway with an open atrium.

In addition, the definitions of the variables used in the statistical analyses are as follows:

- Structural Dimensions:

- Length: the distance wildlife have to travel to get from one side of the highway to the other either through or over a WCS. This distance may include an atrium in addition to structure length dimension.
- Width: the lateral distance from one side of a WCS to the other as wildlife move through or over the length of a WCS.
- Height: the distance from the finished grade or substrate of an underpass to the top of the inside of a culverted underpass or low beam elevation of a bridge.
- Repel Rate: If available from monitoring data, percentage of instances in which wildlife approach structure but do not completely cross the structure, determined by dividing the total number of repels by the total number of approaches.
- Success Rate: If available from monitoring data, percentage of instances in which wildlife completely cross the structure, determined by dividing total number of successful crossings by the total number of approaches.
- Optimal Sizing: A deterministic estimate of WCS size based on a regression model with repel or success rates as the dependent and independent variables, which includes dimensions of structures.
- Diminishing Return: Additional inputs (such as increase) to the size of the structure resulting in an observed increase in the success rate (such as a decrease in repel rate) when all other inputs remain constant (follows use of the term "diminishing return" in traditional economics); for example, an increase in dimensions (such as length, width, or height) that would not result in a decrease to the repel rate or an increase to success rate.
- Wildlife Crossing Structure: A structure in connection to a roadway that allows wildlife to cross separated from traffic either under or over the roadway.

Some studies include an analysis of parallel rates or visitation rates that are not considered a successful crossing nor a rejection of the crossing. Therefore, to provide consistency across studies, the project team focused efforts on defining what makes a successful crossing and determined that all studies identified the term consistently. The project team has identified and used a repeatable method to test for optimal sizing of WCS and at what point cost hits a point of diminishing return effectiveness in the future when new field studies are performed, new literature and data may be available, or a new species of interest is the subject.

2.4 Model Analysis and Development Justification

The project team developed five models for analysis:

1) Model 1 evaluates a weighted average success rate for all species (mule deer, elk, moose, Rocky Mountain bighorn sheep, Canada lynx, and pronghorn), all underpasses (bridges and culverts), and structural dimensions (length, width, and height). The purpose of this model is for comparison to other models that are limited by species and underpass type. The results could be used for general reference when species and structure type are not identified.
2) Model 2 evaluates the success rate for deer and elk species, relative to underpasses holding all structural dimensions the same. The purpose of this model is to evaluate differences between species (deer and elk) and success rates relative to underpasses (bridges and culverts).
3) Model 3 evaluates the success rate for two WCS classes (underpass and overpass) and structural dimensions. The purpose of this model is to evaluate differences between structure classes. The results could be used for conditions in which structure class is identified.
4) Model 4 evaluates the success rate for deer and elk species, for two wildlife crossing underpass types (culvert and bridge), and structural dimensions. The purpose of this model is to evaluate differences between species and underpass structure type. Four analyses were performed: deer to (1) structure type and to (2) structure dimension, and elk to (3) structure type and to (4) structure dimension.
5) Model 5 evaluates the costs and structure dimensions. The purpose of this model is to identify a predictive model to estimate costs for data points that do not identify costs. Model 4 also can help inform further evaluation of diminishing return by identifying ranges of success rate (output) given structural dimensions (inputs) and the costs associated with a diminishing return at a particular structure dimension. Also, the predictive model can be applied in further evaluations such as benefit-cost analysis. The predictive model for costs is meant only to be used for this analysis and is not intended for engineering cost estimates.

3. Results

While initially tasked with considering multiple species as identified in objective 1 for all five models, only model 1 included data for mule deer, elk, moose, pronghorn, Rocky Mountain bighorn sheep, and Canada lynx. Analysis for models 2 and 4 could only be run with data for mule deer and elk. Due to insufficient monitoring studies and not having a minimum statistical sample size for analysis, data for moose, pronghorn, Rocky Mountain bighorn sheep, and Canada lynx were excluded in models 2 and 4.

In addition, model 3 had insufficient sample sizes associated with studies that monitored overpasses in the U.S. and Canada that were used by mule deer and elk built. Table 2 provides the results of the R modeling analyses for each of the five models. Supplemental statistical graphics, R outputs, and data sets used for the analysis of each model are in Appendices B through E.

Table 2. Modeling Summary Results ${ }^{\text {a }}$

Regression Model	Model 1	Model 2	Model 4 $^{\mathbf{b}}$	Model 5
Best-fit model ${ }^{\mathbf{c}}$	Success Rate $=185.412-$ $32.687 * \ln ($ (Length $)+$ $10.736 * \ln ($ Width $)$	Success Rate $=161.247-$ $(33.378 * \ln ($ length $))+$ $\left(5.721^{*} \ln (\right.$ width $\left.)\right)+$ $(16.116 * \ln (h e i g h t))$	Success Rate $=188.528-$ $(33.663 * \ln (\operatorname{length}))+$ $\left(10.428^{*} \ln (\right.$ width $\left.)\right)$	$\mathrm{y}=84,614 *$ height + 485,639
Adjusted R-squared	0.49	0.57	0.51	0.28
AIC	725.36	945.87	681.50	N/A
f-statistic	$39.99(2$ and 78 df$)$	$32.66(4$ and 101 df$)$	$39.73(2$ and 73 df$)$	$13.6(1$ and $35 \mathrm{df})$
Significance of f	<0.001	<0.001	<0.001	<0.001

${ }^{\text {a }}$ Model 3 did not have sufficient statistical sample size nor viable modeling results
${ }^{\mathrm{b}}$ Model 4 results in this table only present mule deer results. Refer to Model 4 Results section for more details.
${ }^{\text {c }}$ Refer to respective model results for information on transformations and best-fit model details.
AIC $=$ The Akaike information criterion is a mathematical method for evaluating how well a model fits the data it was generated from. AIC estimates the quality of each model, relative to each of the other models and a null model within the same data set. A lower AIC score is better when comparing models run within a data set.
$\mathrm{df}=$ The degrees of freedom in statistics indicate the number of independent values that can vary in an analysis without breaking any constraints.
$\mathrm{N} / \mathrm{A}=$ not applicable

4. Models to Evaluate Success Rate (Models 1 through 4)

4.1 Model 1 Results

Model 1 evaluated weighted average success rate for all species (weight based on observed animal counts), all underpasses, and structural dimensions. The purpose of this model is for comparison to other models that are limited by species and underpass type. The results could be used for general reference when species and underpass structure type are not identified. The model used 80 complete WCSs data sets ($\mathrm{n}=80$). Table 3 gives total animal count by species]).

Table 3. Animal Count by Species for Model 1

Species	Animal Count	Percent of Total Animal Count	Number of Underpasses Used by Each Species
Deer	270,020	98.5%	75
Elk	3,810	1.4%	33
Bighorn Sheep \& Pronghorn	127	$>0.1 \%$	5
Lynx	6	$>0.1 \%$	5
Moose	68	$>0.1 \%$	5
Wild Horse	unknown	-	3

Based on summary statistics and normality tests, the success rate, with an average of 65%, was found to have normal distribution. However, length, width, and height with an average of 138 feet, 46 feet, and 14 feet, respectively, did not have normal distribution (Appendix B). Structure dimensions were corrected for normality using a log transformation.

A multivariable analysis was then conducted regressing the weighted average success rate against the length, width, and height of the structures. Based on the regression analysis, the structure height ($\mathrm{p}=0.1382$) was not statistically significant in estimating success rate. A multivariable regression was conducted using length and width $\left(R^{2}=0.49, F(2,78)=39.99\right.$, $p<0.001$). The regression results indicated that approximately 49%, or R^{2}, of the variability in the success rate is explained by length and width and that the success rate could be influenced by other factors (Appendix B). R's "MuMin glmulti" function identified the best model as including length, width, and height, but it was not significantly better that just length and width ($\mathrm{p}>0.05$). Refer to Appendix B for detailed output from R software.

In evaluating the linear and multivariable options, each option was over the 95% level of evidence (100% and 97.4% respectively), adjusted R-squared value was slightly better for the first model (0.5016 and 0.4936 respectively), and the AIC scores were statistically the same (725.30 and 725.36 respectively); it was determined that the models would provide the same confidence level of results. In evaluating the coefficient t-scores, t the $\operatorname{Pr}(>|t|)$ was insignificant for height $(t=0.1382)$ and the width was marginally significant $(t=0.0727)$ within the first model. Based on all other considerations, the second model, length + width, was chosen as the preferred model.

The following is the best-fit model, with logarithmic transformation to correct for structure dimension non-normal distribution, for model 1:

$$
\text { Success Rate }=185.412-32.687 * \ln (\text { Length })+10.736 * \ln (\text { Width })
$$

Table 4 provides the descriptive statistics and Figure 1 provides a summary of predicted success rates for all species for combinations of length and width dimensions, in Model 1.

Table 4. Descriptive Statistics for All Species Model 1

Descriptive Statistic	Structure Length $(\mathbf{f t})$	Structure Width $(\mathbf{f t})$	Structure Height $(\mathbf{f t})$	Average Success Rate
Minimum	38	6	6	0
1st Quartile	70	19	10	50
Median	105	24	12	69
Mean	138	46	14	65
3rd Quartile	185	38	15	91
Maximum	558	900	38	100

200	37	41	44	47	49	50	52	53	54	55	56	57	58	59	59	60	61	61	62	62	63	63	64	64	64	65	65	65	66	66	67	67	67	68	68	68	69	69	69
195	38	42	45	48	50	51	53	54	55	56	57	58	59	59	60	61	61	62	62	63	64	64	64	65	65	66	66	66	67	67	68	68	68	69	69	69	69	70	70
190	39	43	46	48	50	52	54	55	56	57	58	59	60	60	61	62	62	63	63	64	64	65	65	66	66	67	67	67	68	68	68	69	69	69	70	70	70	71	71
185	39	44	47	49	51	53	54	56	57	58	59	60	60	61	62	62	63	64	64	65	65	66	66	67	67	67	68	68	69	69	69	70	70	70	71	71	71	71	72
180	40	45	48	50	52	54	55	57	58	59	60	60	61	62	63	63	64	65	65	66	66	67	67	68	68	68	69	69	69	70	70	70	71	71	71	72	72	72	73
175	41	46	49	51	53	55	56	57	59	60	61	61	62	63	64	64	65	65	66	67	67	68	68	68	69	69	70	70	70	71	71	71	72	72	72	73	73	73	73
170	42	47	50	52	54	56	57	58	60	61	61	62	63	64	65	65	66	66	67	68	68	68	69	69	70	70	71	71	71	72	72	72	73	73	73	74	74	74	74
165	43	48	51	53	55	57	58	59	61	62	62	63	64	65	66	66	67	67	68	68	69	69	70	70	71	71	72	72	72	73	73	73	74	74	74	75	75	75	75
160	44	49	52	54	56	58	59	60	62	63	63	64	65	66	67	67	68	68	69	69	70	70	71	71	72	72	73	73	73	74	74	74	75	75	75	76	76	76	76
155	45	50	53	55	57	59	60	61	63	64	65	65	66	67	68	68	69	69	70	71	71	71	72	72	73	73	74	74	74	75	75	75	76	76	76	77	77	77	77
150	46	51	54	56	58	60	61	62	64	65	66	66	67	68	69	69	70	71	71	72	72	73	73	73	74	74	75	75	75	76	76	76	77	77	77	78	78	78	79
145	47	52	55	57	59	61	62	64	65	66	67	68	68	69	70	70	71	72	72	73	73	74	74	75	75	75	76	76	77	77	77	78	78	78	78	79	79	79	80
140	49	53	56	58	60	62	63	65	66	67	68	69	69	70	71	72	72	73	73	74	74	75	75	76	76	77	77	77	78	78	78	79	79	79	80	80	80	80	81
135	50	54	57	60	62	63	65	66	67	68	69	70	71	71	72	73	73	74	75	75	76	76	76	77	77	78	78	79	79	79	80	80	80	81	81	81	81	82	82
130	51	55	58	61	63	64	66	67	68	69	70	71	72	73	73	74	75	75	76	76	77	77	78	78	79	79	79	80	80	80	81	81	81	82	82	82	83	83	83
125	52	57	60	62	64	66	67	68	70	71	72	72	73	74	75	75	76	76	77	78	78	79	79	79	80	80	81	81	81	82	82	82	83	83	83	84	84	84	84
120	54	58	61	63	65	67	69	70	71	72	73	74	75	75	76	77	77	78	78	79	79	80	80	81	81	82	82	82	83	83	83	84	84	84	85	85	85	86	86
115	55	59	62	65	67	68	70	71	72	73	74	75	76	77	77	78	79	79	80	80	81	81	82	82	83	83	83	84	84	84	85	85	85	86	86	86	87	87	87
110	56	61	64	66	68	70	71	73	74	75	76	77	77	78	79	79	80	81	81	82	82	83	83	84	84	84	85	85	86	86	86	87	87	87	88	88	88	88	89
105	58	62	65	68	70	71	73	74	75	76	77	78	79	80	80	81	82	82	83	83	84	84	85	85	85	85	86	87	87	87	88	88	88	89	89	89	90	90	90
100	60	64	67	69	71	73	74	76	77	78	79	80	80	81	82	83	83	84	84	85	85	86	86	87	87	88	88	88	89	89	89	90	90	90	91	91	91	91	92
95	61	66	69	71	73	75	76	77	79	80	81	81	82	83	84	84	85	85	86	87	87	88	88	88	89	89	90	90	90	91	91	91	92	92	92	93	93	93	93
90	63	67	70	73	75	76	78	79	80	81	82	83	84	85	85	86	87	87	88	88	89	89	90	90	91	91	91	92	92	92	93	93	93	94	94	94	95	95	95
85	65	69	72	75	77	78	80	81	82	83	84	85	86	87	87	88	89	89	90	90	91	91	92	92	92	93	93	94	94	94	95	95	95	96	96	96	97	97	97
80	67	71	74	77	79	80	82	83	84	85	86	87	88	89	89	90	90	91	92	92	93	93	94	94	94	95	95	96	96	96	97	97	97	98	98	98	99	99	99
75	69	73	76	79	81	82	84	85	86	87	88	89	90	91	91	92	93	93	94	94	95	95	96	96	97	97	97	98	98	98	99	99	99	100	100	100	100	100	100
70	71	76	79	81	83	85	86	87	89	90	90	91	92	93	94	94	95	95	96	97	97	97	98	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100
65	74	78	81	84	85	87	89	90	91	92	93	94	95	95	96	97	97	98	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
60	76	81	84	86	88	90	91	92	94	95	96	96	97	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
55	79	83	87	89	91	93	94	95	96	97	98	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
50	82	87	90	92	94	96	97	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
45	86	90	93	96	97	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
40	90	94	97	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200

Legend for Predicted Success Rate \%

<70	70 to 79	80 to 89	90 to 99	100

Figure 1. Predicted Success Rates for All Species Given Combinations of Length and Width

4.2 Model 2 Results

Model 2 evaluated the success rate (dependent variable), which used the success rate for individual species (mule deer and elk) and underpass structure dimensions (length, width, and height). The model used 106 complete WCS data sets ($\mathrm{n}=106$). This occurred because some structures that were used by both deer and elk are counted twice. Analysis of significance showed no significant impact by species; therefore, species observations were pooled together for analysis ($p=0.3716$; Appendix C). Elk had 30 observations, and mule deer had 76 observations. Based on summary statistics and normality tests, all variables were found to have non-normal distribution.

Table 5. Model 2 Summary Output (106 Observations)

Quartiles	Success Rate \%	Length	Width	Height
Minimum	N/A	38	6	6
$1^{\text {st }}$ Quartile	33	78	19	9
Median	66	132	26	12
Mean	60	149	54	14
$3^{\text {rd }}$ Quartile	88	190	42	15
Maximum	100	558	900	38

Note: all length, width, and height units are in feet.

AIC and regression analysis identified the best-fit model with length, width, and height as the variables with the most statistical significance. Test for univariate correlations between variables and multicollinearity among variables by calculating pairwise Pearson correlation coefficients and variance inflation factors were conducted. Values exceeding 0.7 or 4.0, respectively, were removed. In addition, the model was transformed to correct for normality. Refer to Appendix C for the detailed statistical analysis output from the R software.

The following is the best-fit model with transformation:

$$
\text { Success Rate }=161.247-(33.378 * \ln (\text { length }))+(5.721 * \ln (\text { width }))+(16.116 * \ln (\text { height }))
$$

Based on the modeling and statistical analysis with the database, when evaluating each individual underpass (that is, fixed dimensions) for deer or elk use, success rate is indifferent for species. In other words, the success rate could be the same for deer and elk for a combination of
underpass structure dimensions. This could be the result of two things: the relatively homogenous structure dimensions within the database and the overwhelming influence of mule deer use relative to elk use of underpasses in the database.

4.3 Model 3 Results

Model 3 evaluated the success rate for the WCS classes (underpass and overpass) and structure dimensions (length, width, and height). This analysis was tried, but the data for overpasses used by mule deer and elk to evaluate this scenario were insufficient. However, reports by Clevenger et.al. (2009) in Canada, Kintsch et.al. (2021) in Colorado, and Stewart (2015) in Nevada have conducted pairwise comparisons of overpass and underpass use for mule deer and/or elk because their studies included overpasses built in proximity to underpasses in their respective study areas.

4.4 Model 4 Results

Model 4 evaluated success rate (dependent variable) for mule deer and elk for two wildlife crossing underpass types (culverts and bridges) and structural dimensions (length, width, and height). Four analyses were performed: mule deer to (1) structure type and (2) structure dimension, and elk to (3) structure type and (4) structure dimension.

4.4.1 Mule Deer Model 4 Results

For the mule deer scenarios, the analysis used 76 complete data sets of underpasses. Performing one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) significant difference tests revealed no significant difference between underpass types (bridges or culverts) for mule deer ($\mathrm{p}>0.05$), so bridge and culvert observations were pooled together for analysis. Based on summary statistics and normality tests, the success rate was found to have non-normal distribution with an average of 63.25%. Length, width, and height had non-normal distributions: Length with an average of 135.50 feet, width with an average of 46.89 feet, and height with an average of 13.29 feet (Appendix D). AIC and regression analysis revealed the best-fit model with length and width as the variables with the most statistical significance affecting mule deer success rates of underpasses (Appendix D). In addition, the model was transformed to correct for normality. Table 6 provides descriptive statistics and Figure 2 provides
a summary of predicted success rates for mule deer with combinations of length and width dimensions, in Model 4.

The following is the best-fit model for deer with transformation:

$$
\text { Deer_SuccessRate }=188.528-(33.663 * \ln (\text { length }))+(10.428 * \ln (\text { width }))
$$

4.4.2 Elk Model 4 Results

For the elk scenarios, the analysis used 33 complete data sets with two variables: 18 bridges and 15 culverts. Based on summary statistics and normality tests, the success rate was found to have normal distribution with an average of 32.53%. Length, width, and height with averages of 192.90 feet, 24.53 feet, and 11.40 feet respectively, all had non-normal distribution (Appendix 4) and a log transformation was applied. Performing one-way ANOVA and Tukey HSD significant difference tests revealed a statistically significant difference between underpass types for elk $(p=0.0306)$, with the data set used in this Study elk prefer bridges to culverts.

4.4.3 Elk and Underpass Models

Although a valid multiple regression analysis for elk relative to independent variables (length, width, and height) for underpass types (bridges and culverts) could not be conducted, an exploratory analysis of each variable independently revealed that length likely is the strongest driver of success for elk with culverts and width likely the second strongest driver. However, these exploratory results are not statistically validated due to lack of sufficient data (Appendix D).

Table 6. Descriptive Statistics for Mule Deer Model 4

Descriptive Statistic	Structure Length $(\mathbf{f t})$	Structure Width $(\mathbf{f t})$	Structure Height $(\mathbf{f t})$	Success Rate
Minimum	38	6	6	0.00
1st Quartile	68	17	10	48
Median	99	24	12	66
Mean	136	47	13	63
3rd Quartile	186	38	15	91
Maximum	558	900	35	100

Figure 2. Predicted Success Rates for Mule Deer Given Combinations of Length and Width

4.5 Model 5 Results

4.5.1 Cost Analysis

As part of the Study, cost data for wildlife crossings were collected for projects documented in the studies identified in Appendix A and are used as part of the analysis presented herein. The analysis of the cost data is not intended to be used for engineering cost estimates, rather it is used as part of the Study to evaluate costs in the context of relationships with structural dimensions and order of magnitude. Depending on the results of the regression models for success rate, cost data could be used to identify marginal and average costs at an estimated point or range of diminishing return(s). However, the results of Model 4 do not provide data that can be used to identify a single point, but rather a range. The predictive model for costs (Model 5) has different statistically significant input variable (height) than the predictive models (Model 4) for success rate.

Of the data collected, 37 projects included cost information along with structural dimensions. The project implementation years ranged from 1998 to 2020, and costs were adjusted for inflation using the Consumer Price Index to express cost in 2021 dollars. Forty-five projects had cost information, but eight of the projects did not include structural dimension. Table 7 summarizes the structure costs for the 45 identified projects. Some project data were excluded because the estimated costs were 10 million dollars and skewed the analysis.

Table 7. Summary of Structure Cost Data

Descriptive Statistics	Inflation Adjusted Costs $(\$, 1000)^{\mathbf{a}}$
Mean	$\$ 1,922$
Standard deviation	$\$ 922$
Median	$\$ 1,640$
Count	45

${ }^{\text {a }}$ Expressed in 2021 dollars

A regression analysis of costs and structural dimensions was conducted to identify a predictive model that could be used for the purposes of the Study to estimate costs based on structure dimensions for those projects that did not report costs. This predictive formula is not intended for
engineering cost estimating, rather it is used to estimate costs based for projects documented in other studies and that did not identify costs. Appendix F provides the detailed regression output and key components are summarized as follows.

A multivariable analysis was conducted regressing costs against the length, width, and height of the structures. Based the regression analysis, the structure length $(\mathrm{p}=0.92)$ and width $(\mathrm{p}=0.43)$ were not statistically significant in estimating costs. Based on these results, a linear bivariate regression was conducted using height $\left(R^{2}=0.25, F(1,35)=11.93, p=0.001\right)$. The regression results indicated that approximately 25% of the variability in cost is explained by height and that costs are influenced by other factors. The intent of the predictive model is not to determine success rate, rather it is used to estimate costs for projects without cost data. Ideally, length and width should be used, but these variables were not found to have statical significance for model 5. Figure 3 summarizes the bivariate analysis regressing costs against height ($y=84,614$ * height $+485,639$). Figure 4 compares the predicted and estimate costs.

Figure 3. Bivariate Analysis of Cost Data Plotted Against Wildlife Crossing Structure Height

Figure 4. Predicted and Estimated Costs (in Millions) Plot Comparison

5. Diminishing Return

As noted in the objectives, part of this Study was to determine if a point of diminishing return of effectiveness based on mule deer, elk, and other target species success rates exists in relation to sizing highway wildlife passages. Based on review of readily available literature, a point of diminishing return of effectiveness has not been explored or documented. The Study attempted to evaluate relevant and available data regarding structure dimensions, species type, and success rates to explore the idea of diminishing return. In other words, when evaluating structure sizes, is there a point at which the cost of incremental increases in length, width or height exceeds the expected benefit relative to improved success rate? No single point of diminishing return could be identified.

The regression model results (presented in Model 4) for predicting success rates based on structure dimensions for mule deer were reviewed. The results suggest no difference between culvert and bridge underpasses. The variables length and width were significant ($\mathrm{p}<0.001$) and the predictive model for the success rate for mule deer is $y=188.528-(33.663 * \ln ($ length $))+$ $\left(10.428^{*} \ln (\right.$ width $\left.)\right),\left(R^{2}=0.51, F(2,73)=39.73, p<0.0001\right)$.

As part of the consideration of diminishing return, some of the inherent constraints regarding engineering and sizing of structure-the length of the structure is defined by the number of lanes for the roadway, fill heights and right-of-way medians; the width, and the distance between abutments-could be constrained by the topography. Figure 5 presents a tabular summary of Model 4, mule deer predicted success rates relating to combinations of length and width (note, this is the same as Figure 2). If points are selected for a 70% success rate, Figure 5 can be used to identify matching length and width pairs. For example, when length is 115 feet and width is 50 feet, the predicted success rate is 70%. Figure 5 can be used to identify ranges for purposes of understanding viable structure dimensions and predicted success rates. For a desired success rate of 70% to 79% for mule deer, the corresponding structure length dimensions are 65 to 140 feet; and the corresponding structure width are 20 to 95 feet. Figure 6 presents matching length and width pairs for 70% and 80% success rates.

200	34	38	41	44	46	47	49	50	51	52	53	54	54	55	56	56	57	58	58	59	59	60	60	61	61	61	62	62	62	63	63	63	64	64	64	65	65	65	65
195	35	39	42	45	46	48	49	51	52	53	54	55	55	56	57	57	58	59	59	60	60	61	61	61	62	62	63	63	63	64	64	64	65	65	65	65	66	66	66
190	36	40	43	45	47	49	50	52	53	54	55	55	56	57	58	58	59	59	60	60	61	61	62	62	63	63	63	64	64	64	65	65	65	66	66	66	67	67	67
185	37	41	44	46	48	50	51	52	54	55	55	56	57	58	58	59	60	60	61	61	62	62	63	63	64	64	64	65	65	65	66	66	66	67	67	67	68	68	68
180	38	42	45	47	49	51	52	53	55	56	56	57	58	59	59	60	61	61	62	62	63	63	64	64	64	65	65	66	66	66	67	67	67	68	68	68	68	69	69
175	39	43	46	48	50	52	53	54	55	56	57	58	59	60	60	61	62	62	63	63	64	64	65	65	65	66	66	67	67	67	68	68	68	69	69	69	69	70	70
170	40	44	47	49	51	53	54	55	56	57	58	59	60	61	61	62	63	63	64	64	65	65	66	66	66	67	67	68	68	68	69	69	69	69	70	70	70	71	711 71
165	41	45	48	50	52	54	55	56	57	58	59	60	61	62	62	63	64	64	65	65	66	66	67	67	67	68	68	69	69	69	70	70	70	71	71	71	71	72	72
160	42	46	49	51	53	55	56	57	58	59	60	61	62	63	63	64	65	65	66	66	67	67	68	68	68	69	69	70	70	70	71	71	71	72	72	72	72	73	73
155	43	47	50	52	54	56	57	58	60	61	61	62	63	64	64	65	66	66	67	67	68	68	69	69	70	70	70	71	71	71	72	72	72	73	73	73	73	74	74
150	44	48	51	53	55	57	58	60	61	62	63	63	64	65	66	66	67	67	68	68	69	69	70	70	71	71	71	72	72	72	73	73	73	74	74	74	75	75	75
145	45	49	52	55	56	58	59	61	62	63	64	65	65	66	67	67	68	68	69	70	70	70	71	71	72	72	73	73	73	74	74	74	75	75	75	75	76	76	76
140	46	50	53	56	58	59	61	62	63	64	65	66	66	67	68	69	69	70	70	71	71	72	72	73	73	73	74	74	74	75	75	75	76	76	76	77	77	77	77
135	47	52	55	57	59	60	62	63	64	65	66	67	68	68	69	70	70	71	71	72	72	73	73	74	74	75	75	75	76	76	76	77	77	77	78	78	78	78	79
130	49	53	56	58	60	62	63	64	65	66	67	68	69	70	70	71	72	72	73	73	74	74	75	75	75	76	76	77	77	77	78	78	78	79	79	79	79	80	80
125	50	54	57	60	61	63	64	66	67	68	69	70	70	71	72	72	73	73	74	75	75	75	76	76	77	77	78	78	78	79	79	79	80	80	80	80	81	81	81
120	51	56	59	61	63	64	66	67	68	69	70	71	72	72	73	74	74	75	75	76	76	77	77	78	78	79	79	79	80	80	80	81	81	81	82	82	82	82	83
115	53	57	60	62	64	66	67	68	70	71	71	72	73	74	74	75	76	76	77	77	78	78	79	79	80	80	80	81	81	81	82	82	82	83	83	83	84	84	84
110	54	59	62	64	66	67	69	70	71	72	73	74	75	75	76	77	77	78	78	79	79	80	80	81	81	81	82	82	83	83	83	84	84	84	84	85	85	85	86
105	56	60	63	65	67	69	70	72	73	74	75	75	76	77	78	78	79	79	80	80	81	81	82	82	83	83	83	84	84	84	85	85	85	86		86	87	87	87
100	58	62	65	67	69	71	72	73	74	75	76	77	78	79	79	80	80	81	82	82	83	83	83	84	84	85	85	85	86	86	86	87	87	87	88	88	88	88	89
95	59	63	66	69	71	72	74	75	76	77	78	79	80	80	81	82	82	83	83	84	84	85	85	86	86	86	87	87	87	88	88	88	89	89	89	90	90	90	90
90	61	65	68	71	73	74	76	77	78	79	80	81	81	82	83	83	84	85	85	86	86	87	87	87	88	88	89	89	89	90	90	90	91	91	91	91	92	92	92
85	63	67	70	73	74	76	77	79	80	81	82	83	83	84	85	85	86	86	87	88	88	88	89	89	90	90	91	91	91	92	92	92	93	93	93	93	94	94	94
80	65	69	72	75	76	78	79	81	82	83	84	85	85	86	87	87	88	89	89	90	90	90	91	91	92	92	93	93	93	94	94	94	95	95	95	95	96	96	
75	67	71	74	77	79	80	82	83	84	85	86	87	87	88	89	90	90	91	91	92	92	93	93	94	94	94	95	95	95	96	96	96	97	97	97	98	98	98	98
70	70	74	77	79	81	83	84	85	86	87	88	89	90	91	91	92	92	93	94	94	95	95	95	96	96	97	97	97	98	98	98	99	99	99	100	100	100	100	100
65	72	76	79	82	83	85	86	88	89	90	91	92	92	93	94	94	95	95	96	97	97	97	98	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100
60	75	79	82	84	86	88	89	90	91	92	93	94	95	96	96	97	98	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
55	78	82	85	87	89	91	92	93	94	95	96	97	98	99	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
50	81	85	88	90	92	94	95	97	98	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
45	84	89	92	94	96	97	99	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	108
40	88	93	96	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190		

Legend for Predicted Success Rate \%

<70	70 to 79	80 to 89	90 to 99	100

Figure 5. Predicted Success Rates for Mule Deer Given Combinations of Length and Width

Figure 6. Success Rate Curves of Length and Width for Mule Deer

When sufficient data were available, the project team developed a repeatable method to test for optimal sizing of WCS, and once a desired success rate was identified, a range of structural dimensions were analyzed in determining how best to balance biological, engineering, and budgetary needs and constraints of a project. The methods and results presented can be used to aid in determining a range of structure dimensions and predicted success rates may occur and be updated in the future when new field studies are performed, new literature and data may be available, or a new species of interest is the subject.

In summary, model 1 evaluated the weighted average success rate for all species (weight based on observed animal counts), all underpasses, and structural dimensions. This model included data for mule deer, elk, moose, pronghorn, Rocky Mountain bighorn sheep, and Canada lynx. The results could be used for general reference when species and underpass structure type are not identified.

Model 2 found that success rate is indifferent for deer and elk, based on the modeling and statistical analysis with the database when evaluating each individual underpass (that is, fixed dimensions) for deer or elk use. In other words, the success rate could be the same for deer and
elk for a combination of underpass structure dimensions. This could be the result of two things: the relatively homogenous structure dimensions within the database and the overwhelming influence of mule deer use relative to elk use of underpasses in the database.

Model 3 evaluated the success rate for the WCS classes (underpass and overpass) and structure dimensions (length, width, and height). Though this analysis was tried, the data for overpasses used by mule deer and elk to evaluate this scenario were insufficient. However, Clevenger et.al. (2009) in Canada, Kintsch et.al. (2021) in Colorado and Stewart (2015) in Nevada have conducted pairwise comparisons of overpass and underpass use for mule deer and/or elk because their studies included overpasses built in relatively close proximity to underpasses in their respective study areas.

Model 4 evaluated success rate (dependent variable) for mule deer and elk for two wildlife crossing underpass types (culverts and bridges) and structural dimensions (length, width, and height). Statistical modeling found that mule deer showed no preference between bridges and culverts, whereas elk showed a preference for bridges versus culverted underpasses. In addition, using a complete data set for mule deer, statistical modeling showed that length and width were the strongest drivers of successful crossings. Using this model, the team developed a graphic showing predicted success rates with various lengths and widths.

The team also found that conclusions should not be made regarding bridge or culvert underpass sizes for elk. A full multiple regression analysis was not possible because of the small number of elk observations for each underpass type. An exploratory look at the data suggests that length is likely a determining factor to the success of culverts and that length and height likely affect the success of bridges. However, this information is preliminary and should be used as a basis for further study. Additional data on elk success rates need to be obtained before further analysis and conclusions can be determined.

Model 5 generated a regression analysis of WCS costs and structural dimensions to identify a predictive model that could be used for the purposes of the Study to estimate WCS costs based on structure dimensions for those projects that did not report costs. In addition, using the results of Model 4 predicted success rates for mule deer, the project team was able to demonstrate an example where once a success rate is identified, a predicted range of structural dimensions can be
identified that may achieve that success rate. Evaluation of biological, engineering, and cost constraints of a project can be worked through to balance project needs and achieve desired outcomes.

6. Discussion

This section addresses limitations to the data gathered from literature analysis, limitations to modeling analysis in conjunction with using wildlife monitoring data, and caveats to the inherent limitations of wildlife monitoring data. In addition, it presents findings from the literature review for species with insufficient information for individual species modeling in this Study, related to WCS use and other features that may influence use of crossing structures.

Minimum statistical sample sizes were unavailable for several of the target species (moose, pronghorn, Canada lynx, and others). Total observations after the literature analysis for moose, pronghorn, and Canada lynx yielded between five to seven observations per species, which is too small of a sample size to conduct practical statistical analyses. However, model 1 analyzed weighted average success rates for all species in the database combined and, therefore, could be used as a general guide for sizing underpasses for multi-species within our database.

Mule deer was the only target species that had enough observations to reach beyond a minimum statistical sample size for linear and multiple regression analysis. Mule deer do not appear to have a preference relative to culverts and bridges. Multiple regression analysis in model 4 yielded that length and width are the primary drivers of success for mule deer crossings; a graph with logarithmic curve was generated fitted with length and width fitted on the X and Y axes, and success rates were plotted on the graph to aid in determining predicted success rate fitted to varying lengths and widths for underpasses.

Elk had a marginal statistical sample size that could be used when data was pooled to determine elk preferences relative to underpass types, culverts, or bridges (one-way ANOVA and Tukey HSD models yielded a statistical significance for elk preference to bridges versus culverts). However, as stated in the Results section, elk observations could not be used to conduct for a multiple regression analysis to determine optimal length, width, or height for culverts or bridges in model 4. Conclusions should not be made regarding bridge or culvert underpass sizes for elk. The data were too homogenous and did not meet minimum statistical sample size for multiple regression analysis.

Similar to Van der Grift et. al. (2013), the fact that the database was limited to mule deer and marginal elk data meeting statistical modeling requirements depicts the inherent lack of monitoring data, and lower species density and distribution for other ungulate species (moose, pronghorn, and Rocky Mountain bighorn sheep) and most non-ungulate species that use WCSs, such as Canada lynx. Few monitoring studies include non-ungulate species or collected nonungulate monitoring data, and those monitoring studies could not be used due to limitations of the data collection (Van der Grift et. al. 2015). To correct for this bias in model 1, the project team used weighted averages of the total number of crossings and all the species success rates for statistical analyses. In addition, several studies provided cumulative totals of number of crossings and number of repels across all WCSs; therefore, the project team calculated averaged success and repel rates for a single WCS to obtain complete data sets. During the initial literature review sources were categorized as potential data sources and those that addressed other factors. After further review 18 studies were read through, some studies had averaged success rates across WCSs with little or no data provided to back up success rates; two studies were excluded from the statistical analysis while the remaining 16 were used to build the database. The Recommendations section details several solutions toward the biases seen in monitoring data collection.

In addition, cost data for several WCSs used in this Study, particularly older WCSs studies, were difficult to obtain. Several of the studies averaged the cost of the WCSs, did not have individual cost totals, or had cost data that were a cumulative total of all WCSs for a project. Several studies provided cumulative totals of number of crossings and number of repels across for all WCSs; therefore, calculated averaged success and repels were used. In addition, some studies had averaged success rates across WCSs used in the monitoring studies.

Because there was insufficient data to conduct regression analysis for other species of interest in this Study, including Canada lynx, moose, Rocky Mountain bighorn sheep, and pronghorn, the remaining portion of this discussion is a brief synthesis of literature reviewed and findings relative to WCS use, sizes and other features that may influence successful crossings.

6.1 Canada Lynx

Data on Canada lynx use of crossing structures is sparse due to small population sizes combined with a limited number of crossing structures in occupied lynx habitat. Research in the mid-2000s monitored seven underpasses built to mitigate the impacts of highway projects on lynx in Colorado (Crooks et al. 2008). The monitored crossings included box and pipe culverts ranging from 6 to 12 feet wide by 4 to 10 feet high by 40 to 158 feet long; four of the underpasses had very short segments of wildlife fencing to guide animals to the location and three locations did not have fencing. The research did not detect any lynx passages or approaches, which may have been due to multiple factors:

1) Lynx are uncommon, wide-ranging, and have large home ranges.
2) The monitored underpasses were located across western Colorado, yet at the time of this research (2005 to 2007), few lynx had ventured outside of the southwestern portion of the state in the early years following the reintroduction effort.
3) In several cases, fencing was not provided to guide animals to the crossing locations instead of crossing the road at-grade.
4) Winter conditions may have impeded access to an underpass (Kintsch and Basting 2021).

Observations of lynx highway crossing behavior on Interstate (I-) I-70 at East Vail Pass based on three collared individuals indicate repeated use of existing large, span bridges under the eastbound lanes along natural drainages with no fencing (Baigas et al. 2017). The researchers also noted that lynx crossed I-70 at-grade during periods of low traffic volumes, primarily during the nighttime hours.

The Banff research study (Clevenger and Barrueto 2014) found that lynx used overpasses 10 times and various types of underpasses 8 times throughout a 17-year period. Success rates were not measured in this Study, but lynx were documented successfully passing through a variety of overpasses and various type and sizes of underpasses including bridges, large elliptical culverts, and a box culvert (Table 8).

Table 8. Lynx Use of Wildlife Crossing Structures, Trans-Canada Highway
Twinning Project, Banff, Alberta, Canada

Phase	Structure	Structure Type	Width (feet)	Height (feet)	Length (feet)	Lynx Crossings
3B	COP	Overpass	185	N/A	345	1
3B	Moraine	Creek bridge	75	5.5	138	1
3A	WOP	Overpass	164	N/A	236	5
3A	WUP	Large culvert	24	11	205	1
3A	REOP	Overpass	164	N/A	236	4
3A	RECR	Creek bridge	38	7.2	185	1
3A	John	Box culvert	10	8	190	1
3A	Castle	Large culvert	24	11.5	185	2
1\&2	Edith	Open span	34	9.2	84	1
1\&2	5 Mile	Open span	unknown	unknown	unknown	1
Total						18

In Maine, camera traps have documented three lynx passages, each at a different structure (Maine DOT, pers. comm. 2022).

- Concrete pipe culvert: 4 feet diameter, 96 feet long
- Metal arch culvert with a concrete shelf: 54 inches high by 81 inches wide by 76 feet long
- Multi-use bridge: 20 feet high by 20 feet wide

A recent long-term, 8-year continuous monitoring study of wildlife mitigation on a divided fourlane highway with an open median in Northeastern Ontario, Canada documented lynx use of underpasses and an overpass (Eco-Kare International 2020). Mitigation measures monitored on Ontario Highway 69 included the following:

- Five concrete box underpasses
- Two bridge pathways along the Murdock River and one pathway along Lovering Creek
- One wildlife overpass
- Large animal exclusion fencing on both sides of the highway
- Twenty-seven one-way gates
- Two ungulate guards

Relative to structure use by Canada lynx, lynx used the overpass three times and the underpasses five times. One successful passage was approximately 16 feet wide by 16 feet high by 78 feet long twinned (northbound and southbound) with open median reinforced concrete box culvert. In the last 2 years of the monitoring study, either one or several lynx started to favor (four passages in 2 years) three smaller twinned box culverts (approximately 10 feet wide by 8 feet high by 78 feet long) installed for turtles that were built in and adjacent to wetland habitat (Eco-Kare International 2020).

While Eurasian lynx is a different species than the Canada lynx, they are similar in morphology and ecology (Helldin, pers. comm. 2022) In Sweden, during a 1-year monitoring period of two overpasses, one viaduct, and three underpasses, Helldin reported the data included in Table 9.

Table 9. Eurasion Lynx Use of WCS in Sweden

Structure Name	Type	Width (feet)	Height (feet)	Length (feet)	Lynx Crossings
Viltbro Hemmanet	Overpass	32	-	174	3
Viltbro Nolby	Overpass	32	-	184	13
Landbro Vapelbäcken	Viaduct	344	>16	69	1
Viltport Hemmanet	Underpass	26	16	69	10
Ridport Nolby	Underpass	13	13	144	8
Tunnel Sandmovägen	Underpass	134	16	125	14
Total				49	

Multiple studies highlight the value of vegetative tree cover with regards to lynx habitat use and lynx highway crossing locations (Clevenger and Waltho 2005; Squires et al. 2013). Baigas et al. (2017) found that at a fine-scale lynx crossed highways in close proximity to vegetative cover, primarily conifer stands with high basal area. Dense forested habitat provides security cover adjacent to a roadway and the highest concentrations of snowshoe hares, lynx's primary winter food source. Where human activity and recreation overlap with lynx habitat, lynx have been shown to adjust their temporal patterns, becoming less active during the day, waiting for the disturbance to decline, and increasing activity at night (Olson et al. 2018); they appear to be fairly tolerant of non-motorized recreation winter recreation activities that overlap with preferred lynx habitat (Olson et al. 2018; Squires et al. 2019). The small number of WCSs built in lynx habitat combined with the small number and relatively dispersed nature of lynx, it appears lynx
would use a variety of crossing structures and sizes. While it appears there is a general preference for overpasses, evidence is building regarding their acceptance and use of underpasses situated in appropriate locations.

6.2 Moose

Given their restricted range and lower population densities, few states have documented experience in accommodating moose in underpasses (Cramer et al. 2015). In Utah, moose have been documented using 10 feet high by 17 feet wide by 165 feet long corrugated steel culverts in the northern mountains (Cramer 2012). Sawyer and LeBeau (2011) have similarly reported moose use of culverts measuring 10 feet high by 20 feet wide by 60 feet long in Wyoming. Additionally, in Wyoming moose used overpasses and bridge underpasses at Trappers Point with 12% use of the overpass structures and 88% use of the bridge underpasses (Sawyer et al. 2015).

Across the WCSs combined (five underpasses and two overpasses) on State Highway (SH) 9 in Colorado, Kintsch et.al. (2021) recorded a success rate of 90% for moose crossings out of 83 approaches. The five underpasses along SH 9 are 42 feet wide by 14 feet high by 66 feet long, and the two overpasses are 100 feet wide by 66 feet long.

In Northeastern Ontario, moose successfully used a wide variety of structure types from overpass, bridge underpasses, turtle culverts (9 feet high by 11 feet wide by 78 feet long), and large underpasses (16 feet high by 16 feet wide by 46 feet long and 13 feet high by 13 feet wide by 52 feet long) (Eco-Kare International 2020).

In Montana, moose used two separate bridge underpasses during a long-term monitoring study for U.S. Highway (US) 93 South (Cramer and Hamlin 2017), and Sturm (pers. comm. 2018) used camera traps to monitor two three-sided concrete bridges along Montana Highway 200 east of Lincoln, Montana, where he has also documented use of these structures by all age classes of moose. These two structures are approximately 12 feet high by 20 feet wide by 45 feet long. In summation, it appears moose seem to be highly adaptive to use a wide variety of WCS types and sizes; location relative to suitable habitats (riparian and wetland) is likely an important factor.

6.3 Rocky Mountain Bighorn Sheep

Arizona and Nevada have constructed several wildlife overpasses and underpasses for desert bighorn sheep and monitoring studies conducted have shown a strong preference for overpasses (Gagnon et al. 2017). However, desert bighorn sheep are quite different from Rocky Mountain bighorn sheep in their tolerance and response to human disturbance, traffic, and use of WCS.

Over a long-term 17-year monitoring period in Canada, 4,999 successful crossing of WCSs built along the Trans-Canada Highway Twinning project were reported (Clevenger and Barrueto 2014). Phases 1 and 2 had the most frequent (4,958), and Phase 3A had another 41 successful crossings; no success or repel rates were calculated. Rocky Mountain bighorn sheep in this Study only used wildlife crossing underpasses consisting of large culverts, open span, and creek bridges for all documented crossings.

In Colorado, bighorn sheep used WCSs 30 times out of 37 documented approaches throughout a 5 -year monitoring study with overpasses being used 18 times (100% success rate) and underpasses 12 times (63% success rate) (Kintsch et al. 2021).

In Montana, Sturm (pers. comm. 2017) used camera traps to document use of three-sided bridges (12 feet high by 20 feet wide by 45 feet long) built east of Lincoln, Montana, by all age classes of Rocky Mountain bighorn sheep. In addition, passage under a very high and wide bridge over the Thompson River and an underpass built for Rocky Mountain bighorn sheep under Montana Highway 200 east of Thompson Falls, Montana, was documented (Weigand, pers. comm. 2022). The underpass (Photo 1) is a prestressed concrete slab bridge 49.5 feet long. The bottom of the draw under the bridge is 20 feet across

Photo 1. Underpass built for Rocky Mountain bighorn sheep, Hwy 200 East of Thompson Falls, MT.

Source: Joe Weigand, Montana
Department of Transportation (MDT) with a shallow depression 1 foot deep for drainage. Maximum clearance height under the bridge is just over 10 feet. The underpass is accompanied by 2.2 miles of 8 -foot exclusion fence.

Montana Department of Transportation (MDT) conducted trail camera monitoring pre and postconstruction (Weigand, pers. comm. 2022). White-tailed deer were regularly using the underpass within a few days of completed construction. Bighorn sheep and elk were using the underpass within a month. All three species, plus turkeys, now freely and regularly move back and forth under the bridge. Other species documented using the underpass include black bear, mountain lion, coyote and mule deer. All of these species are also documented to frequently move back and forth under the new 2016 Thompson River bridge. When the exclusion fence and underpass were constructed, Crosstek Zapcrete electrified wildlife deterrent mats were installed at each end of the project fence ends to deter wildlife from entering the fenced road corridor. It has been a learning experience for MDT, but the Zapcrete appears to be functioning as intended. Formal research and evaluation of the Zapcrete efficacy is underway.

Since completion of the project, Weigand is unaware of any bighorn sheep, or other wildlife, being hit by a vehicle along this stretch. Images of bighorn sheep hanging out at the entrance of each side of the underpass bridge have been captured, and the sheep have been exhibiting rutting activity at and under the new underpass (Photo 2). The bighorn sheep appear to be indifferent to vehicles passing over the bridge (Weigand, pers. comm. 2022).

Photo 2. Bighorn sheep displaying rutting activity at bridged underpass

East of Thompson Falls, Montana
Source: Joe Weigand, MDT

Photo 3: Herd of bighorn sheep indifferent to vehicular traffic on bridged underpass East of Thompson Falls, MT.

Source: Joe Weigand, MDT crossings for in North America. In a review of pronghorn movements near roads, Sawyer and Rudd (2005) concluded that either very high and
wide bridges or overpasses are suitable structures for pronghorn passage. Little research has been conducted on the crossing features influencing pronghorn passage. US 30 in Nugget Canyon in Wyoming is one of the few states where pronghorn have been documented using crossing structures (Sawyer and LeBeau 2011). In this herd, pronghorn appear to have learned to use 10 -foot-high by 20 -foot-wide by 60 -foot-long reinforced concrete box culverts by following mule deer through the structure. In Colorado, Kintsch et.al (2021) documented use of underpasses (14 feet high by 42 feet wide by 66 feet long) and overpasses (100 feet wide by 66 feet long) by pronghorn along SH 9 with a remarkable success rate of 99%. Pronghorn appeared to have preference for underpasses versus overpasses, and habituation increased over time. The authors also noted that the majority of pronghorn passages were males (79\%) making solo movements or in pairs at underpass structures.

Recently, the Wyoming Department of Transportation completed a project in western Wyoming where 12 miles of game fencing, six simple span bridge underpasses (approximately 66 feet wide by 42 feet long by 13 feet high), and two overpasses (150 feet wide by 400 feet long) were constructed to reduce WVCs and allow large herds of migratory pronghorn and mule deer to safely cross US 191, an increasingly popular two-lane highway that leads to Grand Teton and Yellowstone National Parks (Sawyer and Rogers 2015). Although the overpasses were constructed 7 miles apart, each had an underpass located within 0.5 mile. Overall, 90% of pronghorn traveled over the highway $(\mathrm{n}=22,710)$ via the overpasses and only 10% moved under ($\mathrm{n}=2,546$). With respect to roads, several authors have noted the serious barrier effect of various types of highway right-of-way fencing relative to pronghorn movement and distribution (Sheldon and Lindzey 2004; Jones et al. 2019; Xu et al. 2021).

6.5 Other Variables Influencing Wildlife Crossing Structure Use

Other variables that can affect use of WCSs by wildlife have been identified by various authors (Cramer 2012; Clevenger and Waltho 2005; Clevenger et al. 2009; Denneboom et al. 2021; Dodd et al. 2007; Huijser et al. 2016; Riginos et al. 2018; Van der Grift et al. 2013). While applying lessons learned from various studies to a potential project may be challenging, by carefully analyzing the studies' target species, movement types, location and relevant habitat, road structure, traffic volumes, and other factors where a mitigation project was built is important and would aid CDOT in development of mitigation designs. Long-term monitoring
studies such as those conducted by Clevenger et.al.(2009), Kintsch et.al (2021), Dodd et.al (2007) and Eco-Kare Intl. (2020) have yielded a wealth of information that must be taken into context relative to each of their respective study areas. Lessons learned from these studies can be used and applied when and where appropriate to aid in design and decision making for mitigation projects. For example, Clevenger and Waltho (2005), Cramer (2015), and Denneboom et.al (2021) have put forth that ungulate use of overpasses can be negatively affected by shrub and tree cover at the entrances of overpasses. For mule deer, use of underpasses has been positively correlated with structural vegetation near the approaches. Clevenger and Waltho (2005) found that structural attributes dominate species performance indices. However, they also found that human activity in or near WCSs can negatively affect wildlife usage, particularly for carnivores. Similarly, cattle presence at a WCS was found to negatively affect wildlife use of a crossing structure (Loberger et al. 2021).

Clevenger and Waltho (2005) and Cramer (2015) provide good discussions regarding wildlife usage related to guild levels. For example, at the guild level, structural and landscape factors were equally important in explaining carnivore passage, whereas structural attributes were the most dominant features affecting ungulate passage (Clevenger and Waltho 2005). Consistent with our findings in this Study, shorter length of underpasses in addition to openness (width and relative height) has a stronger correlation to successful passage for elk and mule deer. More constricted crossing structures (that is, longer in length, low and narrow) best explained passage by black bears and mountain lions (Clevenger and Waltho 2005).

Mitigation strategies that paired WCS with longer stretches of wildlife exclusion fencing approximately 3 miles) were found to have a much stronger effect in reducing WVCs by approximately 80% (Huijser et al. 2016). Isolated crossing structures with shorter sections of wing fencing (less than approximately 3 miles) was more variable in its affect reducing WVCs but averaged approximately 52%. With isolated crossing structures paired with short wing fencing less than approximately 3 miles, consideration should be given to fence end treatments so that WVC problems are not moved from one spot to another close to the fence ends. A recent study in Virginia found that the addition of 1 mile of wildlife fencing (0.5 mile of fence in both directions from underpass) to certain existing isolated underpasses can be a highly cost-effective means of increasing driver safety and enhancing habitat connectivity for wildlife (Donaldson and

Elliot 2020). After fencing installation, deer vehicle collisions (DVCs) were reduced by 92% on average (96.5% and 88% at the box culvert and bridge underpass, respectively). Deer crossings increased 410% at the box culvert and 71% at the bridge underpass. Use of the culvert and bridge underpasses by other mammals increased 81% and 165%, respectively. DVCs did not increase at the fence ends, but high deer activity was noted where fence ends did not tie into a feature, such as right-of-way fencing.

Another issue relative to fencing and WCSs is that any deterrent to movement including wildlifefriendly fencing directly in front of WCS openings can negatively affect wildlife use (Cramer and Hamlin 2021; Loberger et al. 2021).

Structures placed too closely together may influence usage of structure type whereas isolated structures within higher quality habitat may actually see higher use than a structure with similar dimensions closer to other crossing structures (Clevenger and Waltho 2005). Structures paired too closely together may also negatively affect the benefit-cost analysis and the ability of those structures to pay for themselves over their lifespan in mitigation benefits through reduction of WVCs.

Maintaining wildlife connectivity across roads through tested wildlife crossing designs as presented by Cramer (2015) and the Wildlife Crossing Structure Handbook Design and Evaluation in North America, (Clevenger and Huijser 2011), give a good synthesis covering multiple studies of wildlife use of crossing structures relative to individual species and/or guilds in conjunction with design considerations and recommendations.

By no means comprehensive, a list of other factors that have been identified as affecting wildlife usage of crossing structures includes, but is not limited to, the following:

- Structural variables
- Wildlife exclusion fencing
- Spacing between structures
- Human use
- Land use and development
- Habitat quality and heterogeneity relative to season of use by wildlife around WCS
- Vegetation near WCS
- Ungulate use of underpasses had a positive correlation with increased distance to forest cover in winter range
- Proximity to riparian meadows positively correlated with elk use of underpasses in drier environments
- Traffic volume
- Noise

Other research or documents identified herein provide a list for CDOT biologists and other interdisciplinary team members to consider and work from as they work to identify relevant WCS sizing and other factors for a given mitigation projects that could affect wildlife usage of planned mitigation measures.

7. Recommendations

WCSs are gaining increasing attention by transportation agencies as well as various state governments and wildlife agencies for their ability to allow wildlife movement across roadways and improve safety for the traveling public by reducing wildlife-vehicle collisions. One of the primary challenges facing transportation agencies is designing and building successful, costeffective wildlife crossing systems with limited funding. The project team suggests the following recommendations.

Identify the priority locations for mitigation

A good first step to addressing these challenges is identifying the priority locations for mitigation. CDOT has taken the initiative by recognizing this need and working collaboratively with the CPW to develop the Western Slope Wildlife Prioritization Study in 2019 and the soon-to-be-completed Eastern Slope and Plains Wildlife Prioritization Study. These studies will provide Colorado a statewide wildlife prioritization that incorporates biological criteria for identified target species and safety criteria.

Develop systematic monitoring protocol for mitigation projects

Underpinning research is still needed to identify best practices and ensure funds are allocated in a cost-effective manner that maximizes (to the extent practical) ecological and societal benefits (Denneboom et al. 2021). In a systematic review of studies around the world that assessed factors affecting usage of WCS by wildlife, most studies in their review did not measure approaches to crossing structures (71.5% of the studies reviewed), and this can explain the inconsistencies found in the literature regarding the effects of structural and environmental attributes (Denneboom et al. 2021). Kintsch et.al. (2021) and Cramer et.al. (2021, draft New Mexico Wildlife Action Plan, Chapter 7.2) provide good examples for guidelines CDOT might consider in developing systematic monitoring protocol for mitigation projects in Colorado.

Define success for any given mitigation project

WCSs and their associated features (fencing, escape ramps, wildlife-guards) must be designed to accommodate site-specific conditions determined by the target specie(s) or for multi-species design guild preferences, terrain, landscape considerations, roadway footprint and associated infrastructure, and other variables (Kintsch and Basting 2021). However, CDOT must decide how they will define success for any given mitigation project. The project team suggests the following stepwise progression early on during project planning and development:

First, identify and clearly articulate the mitigation objectives that a project is attempting to achieve. Typically, most wildlife mitigation projects implemented by a department of transportation are attempting to address safety of the traveling public through a reduction in WVCs. Further, as recognized herein, governments at the federal, state, tribal, and local scales are recognizing the importance of maintaining wildlife migration and movement corridors and connecting crucial wildlife habitats. Therefore, a second objective paired with safety is often maintaining habitat connectivity.

Once broader mitigation objectives have been established, transportation and respective state fish and game staff must work to identify target species and the scale and type of movement that is to be addressed. Identify whether the project is addressing the following:

- Within home range movements by resident populations
- Within seasonal winter or summer range movements
- Critical seasonal migration movements (spring and fall)
- Dispersal movements (infrequent movements by members of a population to access new habitat and/or establish new territories within a region)

Once mitigation success criteria are defined, identify how best to measure or determine success. Using data-driven analysis and research regarding target species and factors affecting successful wildlife use of crossing structures, determine what level or range of successful crossings by wildlife would be desired as a percentage basis of successful crossing rates relative to visitation/parallel and repel rates. The success rate does not have to be a hard singular number but should be a range. Recognize scale when assessing connectivity, it is important to determine
if a localized issue or a larger landscape issue is being addressed. In addition to defining success relative to successful wildlife crossings, the level of reductions in WVCs that a department of transportation would accept must also be clearly identified. This is best accomplished by an interdisciplinary team of biologists and engineers.

Determine wildlife crossing sizing

To determine wildlife crossing sizing, we recommend pairing data-driven research (such as presented herein) with benefit-cost analysis to define success criteria more comprehensively. Ultimately, pairing the two processes would help tighten success criteria and aid in development of cost-effective mitigation strategies that can work within identified budget constraints. A useful benefit-cost analysis tool to specifically assess wildlife mitigation projects has already been developed by CDOT and their research team for the Western Slope and Eastern Slope and Plains wildlife prioritization studies identified earlier in this document. The benefit-cost analysis tool in combination with this and other relevant research for WCS sizing would provide CDOT with a powerful set of tools for development of effective wildlife crossing sizing and mitigation projects from the biological, engineering, safety and fiscal budgetary aspects as well.

8. Conclusion

In conclusion, success rates for mule deer use of underpasses (culverts and bridges) is most strongly influenced by structure length and width. Given this, the project team was able to generate a tabular summary of predicted success rates for underpasses given length and width dimensions. Mule deer do not show any preference between bridges or culverts. Conversely, elk prefer bridges to culverts. The study team did not have adequate data to determine the strongest drivers of success rates relative to bridge or culvert underpass size dimensions for elk. Based on the modeling and statistical analysis with the database, the success rate could be the same for mule deer and elk for a combination of underpass structure dimensions.

The team attempted to determine if mule deer or elk exhibited a preference for overpasses as compared to underpasses and if so, the range of dimensions (length, width, and height) correlated to success rate. However, the data for overpasses used by mule deer and elk to evaluate this scenario were insufficient.

Currently there is not enough monitoring data available to perform separate statistical analysis to determine predicted success rates for any given structural types or dimensions for moose, pronghorn, Rocky Mountain bighorn sheep, or Canada lynx.

The team could not identify a single point of diminishing return where incremental costs to increase structure size outweighed predicted increase in success rate. Using the results of Model 4 predicted success rates for mule deer, the project team was able to demonstrate an example where once a desired success rate or range of success rates (for example, 60% to 75%) is identified, a predicted range of structural dimensions can be identified that may achieve that success rate. Evaluation of biological, engineering, and cost constraints of a project can be worked through to balance project needs and achieve desired outcomes.

Based on the literature review and modeling, the project team recommends using the Eastern Slope and Plains and Western Slope wildlife prioritization studies to identify priority locations to perform wildlife mitigation. In addition, there is a need for developing a systematic monitoring protocol for wildlife mitigation projects-in particular, those projects addressing species such as elk, moose, pronghorn, Rocky Mountain bighorn sheep, and Canada lynx where success and repel rates are determined. This additional data over time will allow further modeling and
analysis to determine predicted optimal sizing for WCSs for these species. A key recommendation is a clearly defining success for mitigation projects by defining a range of expected wildlife crossing success rates and expected reductions in wildlife-vehicle collisions. This can best be accomplished by developing interdisciplinary design teams of biologists and engineers.

9. References

Baigas, P.E., J.R. Squires, L.E. Olson, J.S. Ivan, E.K. Roberts. 2017. "Using environmental features to model highway crossing behavior of Canada lynx in the Southern Rocky Mountains." Landscape and Urban Planning. 157:200-213.

Colorado Department of Transportation (CDOT). 2021a. I-25 South Gap Project. Unpublished cost data. Colorado Department of Transportation, Denver, Colorado.

Colorado Department of Transportation (CDOT). 2021b. Unpublished cost data. Richmond Hill Underpass. Colorado Department of Transportation, Denver, Colorado.

Clevenger, Anthony P., A.T. Ford, and M.A. Sawaya. 2009. Banff Wildlife Crossings Project: Integrating Science and Education in Restoring Population Connectivity across Transportation Corridors. Final. Prepared for Parks Canada Agency, Radium Hot Springs, British Columbia, Canada. 165 pp. June.

Clevenger, Anthony P. and M. P. Huijser. 2011. Handbook for Design and Evaluation of Wildlife Crossing Structures in North America. Prepared by Western Transportation Institute for the Department of Transportation, Federal Highway Administration, Washington D.C.

Clevenger, Anthony P., and M. Barrueto (eds.). 2014. Trans-Canada Highway Wildlife and Monitoring Research, Final Report. Part B: Research. Prepared for Parks Canada Agency, Radium Hot Springs, British Columbia. Prepared by Western Transportation Institute at Montana State University and the Miistakis Institute. July.

Clevenger, Anthony P. and N.Waltho. 2000. "Factors Influencing the Effectiveness of Wildlife Underpasses in Banff National Park, Alberta, Canada." Conservation Biology. Volume 14, No. 1. February 2000. pp 47-56.

Clevenger, Anthony P. and N. Waltho. 2005. "Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals." Biological Conservation Volume 121. pp 453-464.

Conover, M.R., W.C. Pitt, K.K. Kessler, T.J. DuBow, and W.A. Sanborn. 1995. "Review of Human Injuries, Illnesses, and Economic Losses Caused by Wildlife in the United States." Wildlife Society Bulletin. Volume 23(3). pp. 407-414.

Cramer, P. C. 2012. Determining Wildlife Use of Wildlife Crossing Structures Under Different Scenarios. Final. UT-12.07. Utah Department of Transportation Research Division. May.

Cramer, Patricia C. and R.F. Hamlin. 2017. Evaluation of Wildlife Crossing Structures on US 93 in Montana's Bitterroot Valley. Final. Prepared for Montana Department of Transportation, Helena, Montana. FHWA/MT-17-003/8194.

Cramer, Patricia and Robert Hamlin. 2019. US Highway 89 Kanab-Paunsaugunt Wildlife Crossing and Existing Structures Research. No. UT-19.19.

Cramer, Patricia and Robert Hamlin. 2021. US 160 Dry Creek Wildlife Study. Colorado Department of Transportation. CDOT.2020.012012. 33pp.

Cramer, Patricia, J. Kintsch and S. Jacobson. 2015. "Maintaining Wildlife Connectivity Across Roads Through Tested Wildlife Crossing Designs." Proceedings of the 2015 International Conference on Ecology and Transportation. Raleigh, North Carolina.

Crooks, K., C. Haas, S. Baruch-Mordo, K. Middledorf, S. Magle, T. Shenk, K. Wilson, and D. Theobald. 2008. Roads and Connectivity in Colorado: Animal-Vehicle Collisions, Wildlife Mitigation Structures, and Lynx-roadway Interactions. CDOT-2008-4. Prepared for Colorado Department of Transportation Research Branch. March.

Denneboom, Dror, Avi Bar-Massada, and Assaf Shwartz. 2021. "Factors affecting usage of crossing structures by wildlife-a systematic review and meta-analysis." Science of The Total Environment. Volume 777. July.

Donaldson, Bridget M. and K.E. Elliott. 2020. Enhancing Existing Isolated Underpasses with Fencing to Decrease Wildlife Crashes and Increase Habitat Connectivity. Performed for Virginia Department of Transportation, Richmond, Virginia. Final. FHWA/VTRC 20-R28. May.

Dodd, N. L., Gagnon, J. W., Boe, S., Manzo, A., \& Schweinsburg, R. E. 2007. Evaluation of Measures to Minimize Wildlife Vehicle Collisions and Maintain Wildlife Permeability across Highways: Arizona Route 260. Final Report 540. No. FHWA-AZ-07-540. Arizona Department of Transportation in cooperation with U.S. Department of Transportation and Federal Highway Administration. August.

Eco-Kare International. 2020. Effectiveness monitoring of wildlife mitigation measures for largeand mid-sized animals on Highway 69 in Northeastern Ontario: September 2011 to September 2019. Prepared for Ontario Ministry of Transportation, North Bay, Ontario, Canada. October.

Executive Order, D Series. 2019. Colorado Governor's Executive Order D 2019011. Conserving Colorado's Big Game Winter Range and Migration Corridors. Denver, Colorado.

Ford, Adam T., Anthony P. Clevenger, and Andrew Bennett. 2009. "Comparison of methods of monitoring wildlife crossing-structures on highways." The Journal of Wildlife Management 73.7: 1213-1222.

Gagnon, Jeffrey W., C.D. Loberger, K.S. Ogren, S.C. Sprague, S.R. Boe and R.E. Schweinsburg. 2017. Evaluation of Desert Bighorn Sheep Overpass Effectiveness: U.S. Route 93 Long-Term Monitoring. Prepared for Arizona Department of Transportation, Phoenix, Arizona. FHWA-AZ-17-710. May.

Helldin, J.O. 2022. Unpublished data from Swedish Biodiversity Centre regarding Eurasian lynx use of wildlife crossing structures in Sweden. Personal communication (email) through Wildlife List Serve: wftlistserv@lists.ncsu.edu. on January 25.

Huijser, M.P., P. McGowen, J. Fuller, A. Hardy, A. Kociolek, A.P. Clevenger, D. Smith, and R. Ament. 2007. Wildlife-vehicle Collision Reduction Study. Report to Congress. U.S. Department of Transportation, Federal Highway Administration, Washington D.C.

Huijser, M.P. E.R. Fairbank, W. Camel-Means, J. Graham, V. Watson, P. Basting, and D. Becker. 2016. "Effectiveness of short sections of wildlife fencing and crossing structures along
highways in reducing wildlife-vehicle collisions and providing safe crossing opportunities for large mammals." Biological Conservation. Volume 197. pp.61-68.

Insurance Institute for Highway Safety (IIHS). 2018. Facts and Statistics: Deer Vehicle Collisions. https://www.iii.org/fact-statistic/facts-statistics-deer-vehicle-collisions.

Jones, Paul F., A.F. Jakes, A.C. Telander, H. Sawyer, B.H. Martin and M. Hebblewhite. 2019. "Fences reduce habitat for partially migratory ungulate in the Northern Sagebrush Steppe." Ecossphere. Volume 10(7) Article e02782. July.

Kalisz, Glen. 2021. Unpublished data. Washington Wildlife Structure Use. Washington, Department of Transportation.

Kintsch J., P. Basting, M. McClure and J.O. Clarke. 2019. Western Slope Wildlife Prioritization Study. Colorado Department of Transportation, Innovation and Research Branch. Denver, CO. https://www.codot.gov/programs/research/pdfs/2019/WSWPS

Kintsch J., P. Basting, T. Smithson and G. Woolley. 2022. Eastern Slope and Plains Wildlife Prioritization Study. Draft. Colorado Department of Transportation and Colorado Parks and Wildlife. Denver, CO.

Kintsch J. and P. Basting. 2021. West Vail Pass Auxillary Lanes Project. Wildlife Crossings Memo: Methodology for Sizing and Designing Wildlife Crossing Structures. September 13.

Kintsch, J., S. Jacobson, and P. Cramer. 2015. "The wildlife crossing guilds decision framework: A behavior-based approach to designing effective wildlife crossing structures." Proceedings of the 2015 International Conference on Ecology and Transportation. Raleigh, North Carolina.

Kintsch, Julia, P. Cramer, P. Singer and M. Cowardin. 2021. State Highway 9 Wildlife Crossings Mitigation Monitoring Final Report. Report No. CDOT-2021-01. Colorado Department of Transportation - Research, Denver, Colorado. March.

Loberger, Chad D., J. Gagnon, H.P. Nelson, C.A. Beach and S.C. Sprague. 2021. Determining Effectiveness of Wildlife-Vehicle Mitigation Projects: Phase One Final Report. R917034. New Mexico Department of Transportation Research Bureau. Albuquerque, New Mexico. February.

Maine Department of Transportation (Maine DOT). 2022. Unpublished data regarding Canada lynx use of underpasses. Personal communication (email) through Wildlife List Serve: wftlistserv@lists.ncsu.edu. January 25.

Olson, L.E., J.R. Squires, E.K. Roberts, J.S. Ivan, and M. Hebblewhite. 2018. "Sharing the same slope: behavioral responses of a threatened mesocarnivore to motorized and nonmotorized winter recreation." Ecology and Evolution. DOI: 10.1002/ece3.4382. July.

Reed, Dale F., Thomas N. Woodard, and Thomas M. Pojar. 1975. Behavioral response of mule deer to a highway underpass. The Journal of Wildlife Management. pp. 361-367.

Riginos, C., C. Smith, ER Fairbank, E. Hansen, and P. Hallsten. 2018. Traffic Thresholds in Deer Road-Crossing Behavior. Prepared by Northern Rockies Conservation Cooperative for Wyoming Department of Transportation, Cheyenne, WY. Report No. WY-1807F. May.

Sawyer, Hall and B. Rudd. 2005. Pronghorn Roadway Crossings: A Review of Available Information and Potential Options. Prepared for FHWA, Cheyenne, Wyoming; Wyoming Department of Transportation, Cheyenne, Wyoming, and Wyoming Game and Fish, Cheyenne, Wyoming.

Sawyer, Hall, and Chad LeBeau. 2011. Evaluation of Mule Deer Crossing Structures in Nugget Canyon, Wyoming. Wyoming Department of Transportation. FHWA-WY-11/02F. September.

Sawyer, Hall and Patrick Rodgers. 2015. Pronghorn and Mule Deer Use of Underpasses and Overpasses Along US Highway 191, Wyoming. Wyoming Department of Transportation. FHWA-WY-06/01F. December.

Sheldon, D., and F. Lindzey. 2004. "Movement and dispersion of pronghorn in southwestern Wyoming." Proceedings of Pronghorn Workshop 21:112.

Simpson-Proctor, Nova. 2021. Unpublished data. Nevada Crossing Projects. Nevada Department of Transportation.

Simpson, N. O., Stewart, K. M., Schroeder, C., Cox, M., Huebner, K., \& Wasley, T. 2016. "Overpasses and underpasses: effectiveness of crossing structures for migratory Ungulates." The Journal of Wildlife Management Volume 80, Number 8, pp. 1370-1378.
https://doi.org/10.1002/jwmg. 21132.

Squires, J.R., N.J. DeCesare, L.E. Olson, J.A. Kolbe, M. Hebblewhite, and S.A. Parks. 2013. "Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery." Biological Conservation. 157:187-195.

Squires, J.R., L.E. Olson, E.K. Roberts, J.S. Ivan, and M. Hebblewhite. 2019. "Winter recreation and Canada lynx: reducing conflict through niche partitioning." Ecosphere. 10.1002:e2.2876. October.

State Farm. 2021. Annual Report from State Farm Shows Reduction in Deer-related Crashes. https://newsroom.statefarm.com/2021-deer-crashes-increase 7.2\%.

Statistics Kingdom. 2021. Sample Size Calculator. August.
https://www.statskingdom.com/sample size_regression.html.

Stewart, Kelley M. 2015. Effectiveness of Wildlife Crossing Structures to Minimize Traffic Collisions with Mule Deer and Other Wildlife in Nevada. Report No. 101-10-803. April.

Sturm, Paul. 2017. Unpublished data. Montana Department of Transportation. Personal communication (email and phone call). November 14 and 15.
U.S. Department of Interior. Secretarial Order 3362: Improving Habitat Quality in Western Big Game Winter Range and Migration Corridors. February 9, 2018.
https://www.doi.gov/sites/doi.gov/files/uploads/so 3362 migration.pdf.

Van der Grift, Edgar A., and R. van der Ree. 2015. "Guidelines for Evaluating Use of Wildlife Crossing Structures." Handbook of Road Ecology. pp. 119-128. April.
https://onlinelibrary.wiley.com/doi/10.1002/9781118568170.ch15.

Van der Grift, Edgar A., R. van der Ree, L. Fahrig, S. Findlay, J. Houlahan, J. AG Jaeger, N. Klar, L.F. Madrinan, and L. Olson. 2013. "Evaluating the effectiveness of road mitigation measures." Biodiversity and Conservation. 22:425-448.

Weigand, Joe. 2022. Unpublished data. Montana Department of Transportation. Personal communication (phone and email). February 2.

Xu, Wenjing, N. Dejid, V. Herrmann, H. Sawyer and A.D. Middleton. 2021. "Barrier Behaviour Analysis (BaBA) reveals extensive effects of fencing on wide-ranging ungulates." Journal of Applied Ecology. doi:10.1111. British Ecological Society. January.

Zlystra, Josh. 2021. Unpublished data. Washington I-90 Snoqualmie Deer and Elk Detections. Washington Department of Transportation.

Appendix A
 Published and Unpublished Data Used in Statistical Modeling

Appendix A - Studies Used

Title	Roadway(s)	State/Province	Author
Nevada Crossing Projects ${ }^{1}$	United States of America (USA) Parkway, United States Route (US) 93, State Route (SR) 160, Interstate- (I) 580	Nevada	Nova Simpson-Proctor
Washington Wildlife Structure Use ${ }^{1}$	SR 522, SR 109	Washington	Glen Kalisz
Banff Wildlife Crossings Project: Integrating Science and Education in Restoring Population Connectivity Across Transportation Corridors	Trans Canadian Highway	Alberta (CA)	Anthony P. Clevenger, Adam T. Ford, Michael A. Sawaya
Washington I-90 Snoqualmie Deer and Elk Detections ${ }^{1}$	I-90	Washington	Josh Zylstra
Evaluation of Measures to Minimize Wildlife-Vehicle Collisions and Maintain Permeability Across Highways	SR 260	Arizona	Norris L. Dodd, Jeffrey W. Gagnon, Susan Boe, Amanda Manzo, Raymond E. Schweinsburg
State Highway 9 Wildlife Crossings Monitoring	SR 9	Colorado	Julia Kintsch, Patricia Cramer, Paige Singer, Michelle Cowardin, Joy Phelan
Pronghorn and Mule Deer Use of Underpasses and Overpasses Along US Highway 191, Wyoming	US 191	Wyoming	Hall Sawyer, Patrick Rodgers
Evaluation of Mule Deer Crossing Structures in Nugget Canyon, Wyoming	US 35	Wyoming	Hall Sawyer, Chad LeBeau
Determining Wildlife Use of Wildlife Crossing Structures Under Different Scenarios	US 6, I-70, US 89, US 191, I-15, I-80, US 189	Utah	Patricia Cramer
Effectiveness of Wildlife Crossing Structures to Minimize Traffic Collisions with Mule Deer and Other wildlife in Nevada	US 93	Nevada	Kelley M. Stewart
Behavioral Response of Mule Deer to a Highway Underpass	I-70	Colorado	Dale F. Reed, Thomas N. Woodard, Thomas M. Pojar
US 160 Dry Creek Wildlife Study	US 160	Colorado	Patricia Cramer, Robert Hamlin
U.S. Highway 89 Kanab-Paunsaugunt Wildlifecrossing and Existing Structures Research	US 89	Utah	Patricia Cramer, Robert Hamlin
I-25 South Gap Project ${ }^{1}$	I-25	Colorado	CDOT
Richmond Hills Underpass ${ }^{1}$	US 285	Colorado	CDOT
Shaffers Crossing ${ }^{l}$	US 285	Colorado	CDOT

[^2]
Appendix B

Model 1 Statistical Analysis of Weighted Average Success Rate for all Species and Structural Dimensions for all Underpass Types

Model 1 - underpasses, structure dimensions, weighted average success rate
Best Fit Model: SuccessRate $=185.412-32.687 * \ln ($ Length $)+10.736^{*} \ln$ (Width)
SUMMARY OUTPUT (81 Observations)
SuccessRate

	Length
-	
50	
69	
65	
88	
100	

Width	Height	
38	6	6
70	19	10
105	24	12
138	46	14
185	38	15
558	900	38

SKEWNESS \& KURTOSIS (LOG, SQUARE ROOT, CUBED)

	SuccessRate	Length	Width	
Skew, no adj	-0.7838	1.889	7.4979	1.9071
Kurtosis, no adj	2.3841	8.9457	63.0092	6.5568
Skew, log		0.233	1.41	0.925
Kurtosis, log	na		2.344	6.532
Skew, sqrt	-1.308	0.886	4.564	
Kurtosis, sqrt	3.885	4.021	29.119	1.416
Skew, cube	-1.816	0.638	4.792	
Kurtosis, cube	6.712	3.21	18.314	1.251
RESULTS: apply log transformation to Length, Width, and Height	4.32			

JARQUE-BERA NORMALITY TEST (per transformation above)

	SuccessRate	Length	Width		Height	
JB	9.57		2.18	68.92	12.62	
p-value	$8.34 \mathrm{E}-03$	0.3353	$1.11 \mathrm{E}-15$	0.0018		

LM VARIABLE ANALYSIS:

	Estimate	Std Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	168.516	24.895	6.769	$2.27 \mathrm{E}-09$ sig to 0	
Length	-32.857	4.086	-8.042	$8.43 \mathrm{E}-12$ sig to 0	
Width	6.948	3.818	1.82	0.0727 sig to 0.1	
Height	11.94	7.97	1.498	0.1382	
Residential standard error	20.4377 df				
Multiple R-squared	0.5203				
Adjusted R-squared	0.5016				
F-statistic	27.843 and 77 df				
p-value	$2.70 \mathrm{E}-12$				

BEST FIT MODEL (glmulti analysis): SuccessRate ~ 1 + Length + Height
Evidence $\quad 0.3931$
Worst IC 778.16

2 models to reach 95% of evidence weight
3 models within 2 IC units
model aicc
SuccessRate ~ 1 + Length + Width + Height

weights	
725.30	0.393
725.36	0.383
726.44	0.223

FINAL LM COEFFICIENTS (SuccessRate ~ 1 + Length + Height)

PSEUDO R SQUARED

McFadden	0.221553
Cox and Snell (ML	0.919437
Nagelkerke (Craig	0.919448

ANOVA Best Fit model

	Length	Width	
Df	1	Residuals	
Sum Sq	28030	1	78
Mean Sq	28030	5881	33069
F value	66.116	5881	424
Pr $(>F)$	$5.241 \mathrm{E}-12$	0.0003683	

Actual vs Predicted Success Rates

CORRELATION (PEARSON)

Model-averaged importance of terms

PLOTS: VARIABLE TO SUCCESS RATES

Added-Variable Plots

	Y	X1	X2	X3
Record_ID	Average Success Rate	Structure Length_ft	Structure Width_ft	Structure_ Height_ft
110	53	90	20	12
111	48	90	20	12
113	43	90	20	12
115	73	145	20	13
117	61	105	20	13
118	95	105	20	13
135	98	132	24	12
136	97	60	17	9
137	62	207	32	9
138	19	273	44	8
139	44	315	14	11
140	62	131	32	10
141	62	131	31	10
142	62	89	33	10
143	62	89	32	9
144	62	84	34	9
146	62	132	30	10
149	12	558	7	6
150	11	205	38	11
151	22	167	24	12
152	12	217	10	8
153	12	217	10	8
154	12	256	10	8
156	11	185	37	7
157	22	188	24	13
158	12	190	10	8
159	22	185	24	12
160	69	118	120	20
161	84	160	900	30
162	47	190	120	10
164	39	163	140	31
166	50	270	25	15
167	77	220	180	24
168	64	180	120	35

	Y	X1	X2	X3
Record_ID	Average Success Rate	Structure_ Length_ft	Structure Width_ft	Structure_ Height_ft
169	49	185	120	22
187	75	175	32	22
188	66	365	52	38
204	82	66	42	14
206	62	66	42	14
207	79	66	42	14
208	90	66	42	14
210	97	66	42	14
219	92	60	20	10
220	92	60	20	10
221	92	60	20	10
222	92	60	20	10
223	92	60	20	10
224	92	60	20	10
225	92	60	20	10
226	98	86	93	16
227	70	82	108	16
228	94	98	27	16
229	88	98	88	15
232	84	38	48	16
233	25	231	17	17
234	63	202	17	12
235	76	98	12	9
236	75	202	19	14
237	25	202	19	14
238	5	208	19	14
241	54	157	17	10
242	63	165	17	10
243	46	154	13	9
244	67	142	13	9
245	89	65	27	15
246	86	65	27	15
248	75	175	12	9
249	0	280	12	10
250	100	135	26	26
257	60	92	26	20
259	60	92	26	20
260	60	92	26	20
262	62	100	10	10
263	88	70	39	13
264	89	44	50	30
265	25	84	6	8
266	86	52	16	9
267	79	52	16	9
268	85	68	19	12
269	91	77	23	12
270	89	75	24	12

Appendix C
 Model 2 Statistical Analysis of Predicted Response to Underpass Structures with Fixed Dimensions by Mule Deer and Elk

Model 2 - structure dimensions, species success rate
Best Fit Model: SuccessRate for deer and elk is not impacted by species
SuccessRate $=161.247-(33.378 * \ln ($ length $))+\left(5.721^{*} \ln (\right.$ width $\left.)\right)+\left(16.116^{*} \ln (\right.$ height $\left.)\right)$

SUMMARY OUTPUT (106 Observations)

	SuccessRate	Length	Width	Height	
Minimum	-	38	6	6	
1st Quartile	33	78	19	9	
Median	66	132	26	12	
Mean	60	149	54	14	
3rd Quartile	88	190	42	15	
Maximum	100	558	900	38	

SKEWNESS \& KURTOSIS (LOG, SQUARE ROOT, CUBED)

	SuccessRate	Length	Width	Height	
Skew, no adj		-0.455	1.866	6.217	1.820
Kurtosis, no adj		1.872	8.678	42.796	6.009
Skew, log	na		0.128	1.306	0.895
Kurtosis, log	na		2.332	5.982	3.350
Skew, sqrt		-0.906	0.821	4.021	1.360
Kurtosis, sqrt	2.757	4.016	23.061	4.445	
Skew, cube	-1.299	0.556	3.028	1.205	
Kurtosis, cube	4.551	3.204	15.516	4.025	

RESULTS: apply log transformation to Length, Width, and Height

JARQUE-BERA NORMALITY TEST (per transformation above)
null hypothesis: distribution is normal after transformation
SuccessRate Length Width Height

JB	9.27	2.2578	69.41	14.693
p-value	$9.70 \mathrm{E}-03$	0.3234	$8.82 \mathrm{E}-16$	0.0006

not normal normal not normal not normal

Initial LM VARIABLE ANALYSIS:

	Estimate	Std Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	153.802	23.527	6.537	$2.59 \mathrm{E}-09$ sig to 0
Length	-32.495	3.64	-8.926	$2.07 \mathrm{E}-14$ sig to 0
Width	6.28	3.268	1.922	0.0575 sig to 0.05
Height	15.437	7.012	2.201	0.03 sig to 0.01
Species: Deer	4.154	4.628	0.897	0.3716
Residential standard error	20.35101 df			
Multiple R-squared	0.564			
Adjusted R-squared	0.567			
4 and 101				
F-statistic	32.66			
p-value	$2.20 \mathrm{E}-16$			

	Length	Width	Height			Species		
Var Inflation Factor (Multicollinearity)	1.089	2.068	2.016	1.113	<5, low collinearity			
Importation of Variables	8.93	1.92	2.2	0.9				

BEST FIT MODEL (glmulti analysis): SuccessRate ~ 1 + Length + Width + Height

Evidence	0.37899
Worst IC	1026

4 models to reach 95\% of evidence weight
3 models within 2 IC units
model aicc weights

SuccessRate $\sim 1+$ Length + Width + Height	945.87	0.37899
SuccessRate $\sim 1+$ Length + Width	946.93	0.2235
SuccessRate $\sim 1+$ Length + Height	947.28	0.1876

	X1	X2	X3	Y
Record_ID	Structure _Length_f t	Structure_ Width_ft	Structure_Heig ht ft	Deer_Succe ss Rate
110	90	20	12	53
111	90	20	12	48
113	90	20	12	43
135	132	24	12	98.13
136	60	17	9	96.81
137	207	32	9	50
138	273	44	8	30
139	315	14	11	43
140	131	32	10	50
141	131	31	10	50
142	89	33	10	50
143	89	32	9	50
144	84	34	9	50
146	132	30	10	50
149	558	7	6	13
150	205	38	11	15
151	167	24	12	20
152	217	10	8	13
153	217	10	8	13
154	256	10	8	13
156	185	37	7	15
157	188	24	13	20
158	190	10	8	13
159	185	24	12	20
160	118	120	20	65
161	160	900	30	77
162	190	120	10	94

	X1	X2	X3	Y
	Structure _Length_f	Structure	Structure_Heig	Deer_Succe
Record_ID	t	Width_ft	ht_ft	ss_Rate
164	163	140	31	78
166	270	25	15	100
167	220	180	24	82
168	180	120	35	64
169	185	120	22	53
204	66	42	14	91
206	66	42	14	97
207	66	42	14	96
208	66	42	14	96
210	66	42	14	95
219	60	20	10	92
220	60	20	10	92
221	60	20	10	92
222	60	20	10	92
223	60	20	10	92
224	60	20	10	92
225	60	20	10	92
226	86	93	16	98.3
227	82	108	16	70.1
228	98	27	16	94
229	98	88	15	88
232	38	48	16	84
233	231	17	17	25.4
234	202	17	12	63
235	98	12	9	76
236	202	19	14	75
237	202	19	14	25
238	208	19	14	5
241	157	17	10	54
242	165	17	10	63
243	154	13	9	46
244	142	13	9	67
245	65	27	15	89
246	65	27	15	86
248	175	12	9	75
249	280	12	10	0
250	135	26	26	100
257	92	26	20	60
259	92	26	20	60
260	92	26	20	60
262	100	10	10	62
263	70	39	13	88
264	44	50	30	89
265	84	6	8	25
266	52	16	9	86
267	52	16	9	79

	X1	X2	X3	Y
Record ID	Structure _Length_f t	Structure_ Width ft	Structure_Heig ht ft	Deer_Succe ss Rate
268	68	19	12	85
269	77	23	12	91
270	75	24	12	89
	X1	X2	X3	Y
Record_ID	Structure $\underset{\mathrm{t}}{\text { _Length_f }}$	Structure_ Width ft	Structure_Heig ht ft	Elk_Success Rate
137	207	32	9	74
138	273	44	8	8
139	315	14	11	45
140	131	32	10	74
141	131	31	10	74
142	89	33	10	74
143	89	32	9	74
144	84	34	9	74
146	132	30	10	74
149	558	7	6	11
150	205	38	11	7
151	167	24	12	24
152	217	10	8	11
153	217	10	8	11
154	256	10	8	11
156	185	37	7	7
157	188	24	13	24
158	190	10	8	11
159	185	24	12	24
160	118	120	20	72
161	160	900	30	91
167	220	180	24	72
168	180	120	35	63
169	185	120	22	45
187	175	32	22	75
188	365	52	38	66
204	66	42	14	55
207	66	42	14	84
208	66	42	14	78
210	66	42	14	99

Appendix D

 Model 4 Statistical Analysis of Predicted Success Rates and Structural Dimensions for Mule Deer; Underpass Structure Preference for Elk
Analyze Deer Reaction to Various Scenarios

Summary Data (78 Observations)

1) Deer to Structure Type: Conclusion is no significant difference between structure types

StructureType	mean sd	
1 Bridge	61.50	29.10
2 Culvert	63.60	29.10

ONE WAY ANOVA

Model Summary
 Residuals

StructureType	1	74	73.6	0.086	0.771 greater than .05, accept Hyp that

Df \quad| Sum Sq | | Mean Sq |
| :--- | :--- | :--- |
| | 1 | 74 |
| | F Valu | |

$\operatorname{Pr}(>F)$
$\begin{array}{lll}76 & 65324 & 859.5\end{array}$ all groups are equal

Tukey HSD between structure types

Type	diff	Iwr	upr	adj	
Culvert-Bridge	2.158	-12.534	16.851	0.7706	significant difference if padj < . 05

BLANK

Deer to Underpass Size: Best Fit Model for Deer
SuccessRate $=188.528$ - (33.663* $\ln ($ length $))+(10.428 * \ln ($ width $))$

Data Summary (76 Observations)

	SuccessRate	Length		Width		Height	
Minimum	0.00	38.00	6.00	6.00			
1st Quar	47.50	67.50	17.00	10.00			
Median	66.00	99.00	24.00	12.00			
Mean	63.25	135.50	46.89	13.29			
3rd Quar	91.00	185.80	38.25	15.00			
Maximum	100.00	558.00	900.00	35.00			

SKEWNESS \& KURTOSIS (LOG, SQUARE ROOT, CUBED)

	SuccessRate	Length	Width		Height
Skew, no adj		-0.537	1.958	7.262	1.830
Kurtosis, no adj		2.019	9.781	59.140	6.219
Skew, log	na		0.240	1.383	0.892
Kurtosis, log	na		2.294	6.286	3.497
Skew, sqrt		-1.107	0.887	4.299	1.362
Kurtosis, sqrt	3.572	4.115	27.562	4.624	
Skew, cube	-1.687	0.636	3.148	1.205	
Kurtosis, cube	6.624	3.222	17.423	4.192	
RESULTS: Do not apply transformation to SuccessRate;					

JARQUE-BERA NORMALITY TEST (per transformation above)

	SuccessRate	Length		Width		Height	
JB	6.69	2.303	58.42	10.874			
p-value		$3.52 \mathrm{E}-02$	0.31161	$2.063 \mathrm{E}-13$	0.0044		

LINEAR REGRESSION (LM) VARIABLE ANALYSIS:

Estimate		Std Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	170.343	27.593	6.173	$3.55 \mathrm{E}-08$ sig to 0.001
Length	-33.24	4.271	-7.784	$3.89 \mathrm{E}-11$ sig to 0.001
Width	7.147	3.975	1.798	0.0764 sig to 0.1
Height	10.772	8.89	1.212	0.2296
Residential standard el		72 df		
Multiple R-squared	0.5308			
Adjusted R-squared	0.5112			
F-statistic	27.15	3 and 72 df		
p -value	7.45E-12			

	Length	Width	Height	
Var Inflation Factor (Multicollinearity)	1.012	1.877	1.889	<5, low collinearity
Importation of Variables	7.78	1.798	1.212	
ANOVA LM model			Residuals	
Df	1	1	1	72
Sum Sq	28480.9	5451.8	622.9	30548
Mean Sq	28480.9	5451.8	622.9	424
F value	67.1274	12.8494	1.4681	
$\operatorname{Pr}(>\mathrm{F})$	6.68E-12	0.0006109	0.2296	

BEST FIT MODEL (glmulti analysis): SuccessRate ~ 1 + Length + Width
Evidence $\quad 0.477$
Worst IC 733.07

2 models to reach 95% of evidence weight
3 models within 2 IC units
model aicc weights

Deer_SuccessRate ~ 1 + Length + Width $681.50 \quad 0.477$
Deer_SuccessRate $\sim 1+$ Length + Width + Height
Deer_SuccessRate ~ 1 + Length + Height

$y=188.528-(33.663 * \ln ($ length $))+$	+ (10.428* $\ln ($ width))			
LINEAR REGRESSION (LM) VARIABLE ANALYSIS: Best Fit with Length and Width				
	Estimate	Std Error	t value	$\operatorname{Pr}(>\|t\|)$
Intercept	188.528	23.228	8.116	$8.51 \mathrm{E}-12$ sig to 0
Length	-33.663	4.27	-7.884	$2.33 \mathrm{E}-11$ sig to 0
Width	10.428	2.918	3.573	0.000629 sig to 0
Residential standard e।	20.66	73 df		
Multiple R-squared	0.5212			
Adjusted R-squared	0.5081			
F-statistic	39.73	2 and 73 df		
p -value	$2.12 \mathrm{E}-12$		$\begin{aligned} & \text { GOOD MODEL } \\ & \text { FIT } \end{aligned}$	

Model-averaged importance of terms

Actual vs Predicted Success Rates

formula: Deer_SuccessRate $=188.528-\left(33.663^{*} \ln (\right.$ length $\left.)\right)+\left(10.428^{*} \ln (\right.$ width $\left.)\right)$

| Length/Width | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllll}30 & 90.81671 & 98.04485 & 102.273 & 105.273 & 107.5999 & 109.5012 & 111.1087 & 112.5011 & 113.7294 & 114.8281\end{array}$ $\begin{array}{lllllllllll}31 & 89.71291 & 96.94105 & 101.1692 & 104.1692 & 106.4961 & 108.3974 & 110.0049 & 111.3973 & 112.6256 & 113.7243\end{array}$ $\begin{array}{lllllllllll}32 & 88.64415 & 95.87229 & 100.1005 & 103.1004 & 105.4274 & 107.3286 & 108.9361 & 110.3286 & 111.5568 & 112.6555\end{array}$ $\begin{array}{lllllllllll}33 & 87.60828 & 94.83642 & 99.06461 & 102.0646 & 104.3915 & 106.2928 & 107.9002 & 109.2927 & 110.5209 & 111.6196\end{array}$ $\begin{array}{llllllllllll}34 & 86.60334 & 93.83148 & 98.05967 & 101.0596 & 103.3866 & 105.2878 & 106.8953 & 108.2878 & 109.516 & 110.6147\end{array}$ $\begin{array}{llllllllllll}35 & 85.62754 & 92.85568 & 97.08387 & 100.0838 & 102.4108 & 104.312 & 105.9195 & 107.312 & 108.5402 & 109.6389\end{array}$ $\begin{array}{lllllllllll}36 & 84.67922 & 91.90736 & 96.13555 & 99.1355 & 101.4624 & 103.3637 & 104.9712 & 106.3636 & 107.5919 & 108.6906\end{array}$ $\begin{array}{llllllllllll}37 & 83.75689 & 90.98503 & 95.21322 & 98.21317 & 100.5401 & 102.4414 & 104.0488 & 105.4413 & 106.6695 & 107.7682\end{array}$ $\begin{array}{llllllllllll}38 & 82.85916 & 90.08729 & 94.31548 & 97.31543 & 99.64237 & 101.5436 & 103.1511 & 104.5436 & 105.7718 & 106.8705\end{array}$ $\begin{array}{llllllllllll}39 & 81.98474 & 89.21288 & 93.44107 & 96.44102 & 98.76796 & 100.6692 & 102.2767 & 103.6692 & 104.8974 & 105.9961\end{array}$ $\begin{array}{lllllllllll}40 & 81.13247 & 88.36061 & 92.5888 & 95.58875 & 97.91569 & 99.81694 & 101.4244 & 102.8169 & 104.0451 & 105.1438\end{array}$ $\begin{array}{llllllllllll}41 & 80.30124 & 87.52938 & 91.75757 & 94.75752 & 97.08446 & 98.98571 & 100.5932 & 101.9857 & 103.2139 & 104.3126\end{array}$ $\begin{array}{lllllllllll}42 & 79.49005 & 86.71818 & 90.94638 & 93.94632 & 96.27326 & 98.17451 & 99.782 & 101.1745 & 102.4027 & 103.5014\end{array}$ $\begin{array}{llllllllllll}43 & 78.69794 & 85.92608 & 90.15427 & 93.15422 & 95.48116 & 97.38241 & 98.98989 & 100.3824 & 101.6106 & 102.7093\end{array}$ $\begin{array}{lllllllllll}44 & 77.92404 & 85.15218 & 89.38037 & 92.38032 & 94.70726 & 96.60851 & 98.21599 & 99.60846 & 100.8367 & 101.9354\end{array}$ $\begin{array}{llllllllllll}45 & 77.16754 & 84.39568 & 88.62387 & 91.62382 & 93.95076 & 95.85201 & 97.45949 & 98.85196 & 100.0802 & 101.1789\end{array}$ $\begin{array}{llllllllllll}46 & 76.42766 & 83.6558 & 87.88399 & 90.88394 & 93.21088 & 95.11213 & 96.71961 & 98.11208 & 99.34032 & 100.439\end{array}$ $\begin{array}{llllllllllll}47 & 75.7037 & 82.93184 & 87.16003 & 90.15998 & 92.48692 & 94.38817 & 95.99565 & 97.38812 & 98.61636 & 99.71506\end{array}$ $\begin{array}{lllllllllllll}48 & 74.99498 & 82.22312 & 86.45131 & 89.45126 & 91.7782 & 93.67945 & 95.28693 & 96.6794 & 97.90764 & 99.00634\end{array}$ $\begin{array}{lllllllllll}49 & 74.30087 & 81.52901 & 85.7572 & 88.75715 & 91.08409 & 92.98534 & 94.59282 & 95.98529 & 97.21353 & 98.31223\end{array}$ $\begin{array}{llllllllllll}50 & 73.62079 & 80.84893 & 85.07712 & 88.07707 & 90.40401 & 92.30526 & 93.91274 & 95.3052 & 96.53345 & 97.63215\end{array}$ $\begin{array}{lllllllllll}51 & 72.95417 & 80.18231 & 84.4105 & 87.41045 & 89.73739 & 91.63864 & 93.24612 & 94.63859 & 95.86683 & 96.96553\end{array}$ $\begin{array}{llllllllllll}52 & 72.3005 & 79.52864 & 83.75683 & 86.75678 & 89.08372 & 90.98497 & 92.59245 & 93.98492 & 95.21316 & 96.31186\end{array}$ $\begin{array}{llllllllllll}53 & 71.65928 & 78.88742 & 83.11561 & 86.11556 & 88.4425 & 90.34375 & 91.95123 & 93.3437 & 94.57194 & 95.67064\end{array}$ $\begin{array}{lllllllllll}54 & 71.03005 & 78.25819 & 82.48638 & 85.48633 & 87.81327 & 89.71452 & 91.322 & 92.71446 & 93.94271 & 95.04141\end{array}$ $\begin{array}{lllllllllll}55 & 70.41236 & 77.6405 & 81.86869 & 84.86864 & 87.19558 & 89.09683 & 90.70431 & 92.09678 & 93.32502 & 94.42372\end{array}$ $\begin{array}{lllllllllll}56 & 69.8058 & 77.03394 & 81.26213 & 84.26208 & 86.58902 & 88.49027 & 90.09776 & 91.49022 & 92.71846 & 93.81716\end{array}$ $\begin{array}{lllllllllll}57 & 69.20998 & 76.43812 & 80.66631 & 83.66626 & 85.9932 & 87.89445 & 89.50193 & 90.8944 & 92.12264 & 93.22134\end{array}$ $\begin{array}{lllllllllll}58 & 68.62453 & 75.85266 & 80.08085 & 83.0808 & 85.40774 & 87.30899 & 88.91648 & 90.30894 & 91.53718 & 92.63588\end{array}$ $\begin{array}{llllllllllll}59 & 68.04908 & 75.27721 & 79.5054 & 82.50535 & 84.83229 & 86.73354 & 88.34103 & 89.73349 & 90.96173 & 92.06043\end{array}$ $\begin{array}{llllllllllll}60 & 67.4833 & 74.71144 & 78.93963 & 81.93958 & 84.26652 & 86.16777 & 87.77525 & 89.16771 & 90.39596 & 91.49465\end{array}$ $\begin{array}{lllllllllll}61 & 66.92687 & 74.15501 & 78.3832 & 81.38315 & 83.71009 & 85.61134 & 87.21882 & 88.61129 & 89.83953 & 90.93823\end{array}$ $\begin{array}{lllllllllllll}62 & 66.37949 & 73.60763 & 77.83582 & 80.83577 & 83.16271 & 85.06396 & 86.67144 & 88.06391 & 89.29215 & 90.39085\end{array}$

$\begin{array}{lllllllllll}63 & 65.84087 & 73.06901 & 77.2972 & 80.29715 & 82.62409 & 84.52534 & 86.13283 & 87.52529 & 88.75353 & 89.85223\end{array}$ $\begin{array}{llllllllllll}64 & 65.31074 & 72.53888 & 76.76707 & 79.76701 & 82.09396 & 83.99521 & 85.60269 & 86.99515 & 88.2234 & 89.32209\end{array}$ $\begin{array}{lllllllllll}65 & 64.78882 & 72.01696 & 76.24515 & 79.2451 & 81.57204 & 83.47329 & 85.08077 & 86.47324 & 87.70148 & 88.80018\end{array}$ $\begin{array}{llllllllllll}66 & 64.27487 & 71.50301 & 75.7312 & 78.73115 & 81.05809 & 82.95934 & 84.56682 & 85.95929 & 87.18753 & 88.28623\end{array}$ $\begin{array}{lllllllllll}67 & 63.76865 & 70.99679 & 75.22498 & 78.22493 & 80.55187 & 82.45312 & 84.0606 & 85.45307 & 86.68131 & 87.78001\end{array}$ $\begin{array}{lllllllllll}68 & 63.26993 & 70.49807 & 74.72626 & 77.72621 & 80.05315 & 81.9544 & 83.56188 & 84.95435 & 86.18259 & 87.28129\end{array}$ $\begin{array}{lllllllllll}69 & 62.77849 & 70.00663 & 74.23482 & 77.23477 & 79.56171 & 81.46296 & 83.07044 & 84.46291 & 85.69115 & 86.78985\end{array}$ $\begin{array}{llllllllllll}70 & 62.29412 & 69.52226 & 73.75045 & 76.7504 & 79.07734 & 80.97859 & 82.58607 & 83.97854 & 85.20678 & 86.30548\end{array}$ $\begin{array}{llllllllllll}71 & 61.81663 & 69.04476 & 73.27295 & 76.2729 & 78.59984 & 80.50109 & 82.10858 & 83.50104 & 84.72928 & 85.82798\end{array}$ $\begin{array}{lllllllllll}72 & 61.34581 & 68.57395 & 72.80214 & 75.80208 & 78.12903 & 80.03027 & 81.63776 & 83.03022 & 84.25846 & 85.35716\end{array}$ $\begin{array}{llllllllllll}73 & 60.88148 & 68.10962 & 72.33781 & 75.33776 & 77.6647 & 79.56595 & 81.17343 & 82.5659 & 83.79414 & 84.89284\end{array}$ $\begin{array}{lllllllllll}74 & 60.42348 & 67.65161 & 71.8798 & 74.87975 & 77.20669 & 79.10794 & 80.71543 & 82.10789 & 83.33613 & 84.43483\end{array}$ $\begin{array}{lllllllllll}75 & 59.97162 & 67.19975 & 71.42795 & 74.42789 & 76.75483 & 78.65608 & 80.26357 & 81.65603 & 82.88427 & 83.98297\end{array}$ $\begin{array}{llllllllllll}76 & 59.52574 & 66.75388 & 70.98207 & 73.98202 & 76.30896 & 78.21021 & 79.81769 & 81.21016 & 82.4384 & 83.5371\end{array}$ $\begin{array}{lllllllllll}77 & 59.0857 & 66.31384 & 70.54203 & 73.54197 & 75.86892 & 77.77016 & 79.37765 & 80.77011 & 81.99835 & 83.09705\end{array}$ $\begin{array}{lllllllllll}78 & 58.65133 & 65.87947 & 70.10766 & 73.10761 & 75.43455 & 77.3358 & 78.94328 & 80.33575 & 81.56399 & 82.66269\end{array}$ $\begin{array}{lllllllllll}79 & 58.2225 & 65.45063 & 69.67882 & 72.67877 & 75.00571 & 76.90696 & 78.51445 & 79.90691 & 81.13515 & 82.23385\end{array}$ $\begin{array}{lllllllllll}80 & 57.79906 & 65.02719 & 69.25538 & 72.25533 & 74.58227 & 76.48352 & 78.09101 & 79.48347 & 80.71171 & 81.81041\end{array}$ $\begin{array}{lllllllllll}81 & 57.38088 & 64.60902 & 68.83721 & 71.83715 & 74.1641 & 76.06534 & 77.67283 & 79.06529 & 80.29353 & 81.39223\end{array}$ $\begin{array}{lllllllllll}82 & 56.96783 & 64.19597 & 68.42416 & 71.42411 & 73.75105 & 75.6523 & 77.25978 & 78.65224 & 79.88049 & 80.97919\end{array}$ $\begin{array}{lllllllllll}83 & 56.55979 & 63.78793 & 68.01612 & 71.01606 & 73.34301 & 75.24425 & 76.85174 & 78.2442 & 79.47245 & 80.57114\end{array}$ $\begin{array}{lllllllllll}84 & 56.15663 & 63.38477 & 67.61296 & 70.61291 & 72.93985 & 74.8411 & 76.44858 & 77.84105 & 79.06929 & 80.16799\end{array}$ $\begin{array}{lllllllllll}85 & 55.75825 & 62.98639 & 67.21458 & 70.21453 & 72.54147 & 74.44272 & 76.0502 & 77.44267 & 78.67091 & 79.76961\end{array}$ $\begin{array}{lllllllllll}86 & 55.36453 & 62.59266 & 66.82085 & 69.8208 & 72.14774 & 74.04899 & 75.65648 & 77.04894 & 78.27718 & 79.37588\end{array}$ $\begin{array}{lllllllllll}87 & 54.97535 & 62.20349 & 66.43168 & 69.43163 & 71.75857 & 73.65982 & 75.2673 & 76.65977 & 77.88801 & 78.98671\end{array}$ $\begin{array}{lllllllllll}88 & 54.59063 & 61.81877 & 66.04696 & 69.04691 & 71.37385 & 73.2751 & 74.88258 & 76.27505 & 77.50329 & 78.60199\end{array}$ $\begin{array}{llllllllllll}89 & 54.21025 & 61.43839 & 65.66658 & 68.66653 & 70.99347 & 72.89472 & 74.5022 & 75.89467 & 77.12291 & 78.22161\end{array}$
$\begin{array}{lllllllllll}90 & 53.83413 & 61.06226 & 65.29045 & 68.2904 & 70.61734 & 72.51859 & 74.12608 & 75.51854 & 76.74678 & 77.84548\end{array}$ $\begin{array}{lllllllllll}91 & 53.46215 & 60.69029 & 64.91848 & 67.91843 & 70.24537 & 72.14662 & 73.75411 & 75.14657 & 76.37481 & 77.47351\end{array}$ $\begin{array}{lllllllllll}92 & 53.09425 & 60.32239 & 64.55058 & 67.55053 & 69.87747 & 71.77872 & 73.3862 & 74.77867 & 76.00691 & 77.10561\end{array}$ $\begin{array}{lllllllllll}93 & 52.73032 & 59.95846 & 64.18665 & 67.1866 & 69.51354 & 71.41479 & 73.02227 & 74.41474 & 75.64298 & 76.74168\end{array}$ $\begin{array}{lllllllllll}94 & 52.37029 & 59.59843 & 63.82662 & 66.82656 & 69.1535 & 71.05475 & 72.66224 & 74.0547 & 75.28294 & 76.38164\end{array}$ $\begin{array}{lllllllllll}95 & 52.01406 & 59.2422 & 63.47039 & 66.47034 & 68.79728 & 70.69853 & 72.30601 & 73.69848 & 74.92672 & 76.02542\end{array}$ $\begin{array}{llllllllllll}96 & 51.66157 & 58.8897 & 63.11789 & 66.11784 & 68.44478 & 70.34603 & 71.95352 & 73.34598 & 74.57422 & 75.67292\end{array}$ $\begin{array}{lllllllllll}97 & 51.31272 & 58.54086 & 62.76905 & 65.769 & 68.09594 & 69.99719 & 71.60467 & 72.99714 & 74.22538 & 75.32408\end{array}$ $\begin{array}{llllllllllll}98 & 50.96746 & 58.1956 & 62.42379 & 65.42374 & 67.75068 & 69.65193 & 71.25941 & 72.65187 & 73.88012 & 74.97882\end{array}$ $\begin{array}{lllllllllll}99 & 50.6257 & 57.85384 & 62.08203 & 65.08198 & 67.40892 & 69.31017 & 70.91765 & 72.31012 & 73.53836 & 74.63706\end{array}$ $\begin{array}{llllllllllllll}100 & 50.28737 & 57.51551 & 61.7437 & 64.74365 & 67.07059 & 68.97184 & 70.57933 & 71.97179 & 73.20003 & 74.29873\end{array}$
$\begin{array}{llllllllllll}101 & 49.95242 & 57.18056 & 61.40875 & 64.40869 & 66.73564 & 68.63688 & 70.24437 & 71.63683 & 72.86507 & 73.96377\end{array}$ $\begin{array}{lllllllllll}102 & 49.62076 & 56.8489 & 61.07709 & 64.07704 & 66.40398 & 68.30523 & 69.91271 & 71.30518 & 72.53342 & 73.63212\end{array}$ $\begin{array}{lllllllllll}103 & 49.29234 & 56.52048 & 60.74867 & 63.74861 & 66.07556 & 67.9768 & 69.58429 & 70.97675 & 72.20499 & 73.30369\end{array}$ $\begin{array}{lllllllllll}104 & 48.96709 & 56.19523 & 60.42342 & 63.42337 & 65.75031 & 67.65156 & 69.25904 & 70.6515 & 71.87975 & 72.97845\end{array}$ $\begin{array}{lllllllllll}105 & 48.64495 & 55.87309 & 60.10128 & 63.10123 & 65.42817 & 67.32942 & 68.9369 & 70.32937 & 71.55761 & 72.65631\end{array}$ $\begin{array}{lllllllllll}106 & 48.32587 & 55.55401 & 59.7822 & 62.78215 & 65.10909 & 67.01034 & 68.61782 & 70.01028 & 71.23853 & 72.33723\end{array}$ $\begin{array}{lllllllllll}107 & 48.00978 & 55.23792 & 59.46611 & 62.46606 & 64.793 & 66.69425 & 68.30173 & 69.6942 & 70.92244 & 72.02114\end{array}$ $\begin{array}{lllllllllll}108 & 47.69664 & 54.92477 & 59.15296 & 62.15291 & 64.47985 & 66.3811 & 67.98859 & 69.38105 & 70.60929 & 71.70799\end{array}$ $\begin{array}{lllllllllll}109 & 47.38637 & 54.61451 & 58.8427 & 61.84265 & 64.16959 & 66.07084 & 67.67833 & 69.07079 & 70.29903 & 71.39773\end{array}$ $\begin{array}{lllllllllll}110 & 47.07895 & 54.30709 & 58.53528 & 61.53523 & 63.86217 & 65.76342 & 67.3709 & 68.76336 & 69.99161 & 71.09031\end{array}$ $\begin{array}{lllllllllll}111 & 46.7743 & 54.00244 & 58.23063 & 61.23058 & 63.55752 & 65.45877 & 67.06625 & 68.45872 & 69.68696 & 70.78566\end{array}$ $\begin{array}{lllllllllll}112 & 46.47239 & 53.70053 & 57.92872 & 60.92867 & 63.25561 & 65.15686 & 66.76434 & 68.15681 & 69.38505 & 70.48375\end{array}$ $\begin{array}{llllllllllll}113 & 46.17316 & 53.4013 & 57.62949 & 60.62944 & 62.95638 & 64.85763 & 66.46511 & 67.85758 & 69.08582 & 70.18452\end{array}$ $\begin{array}{lllllllllll}114 & 45.87657 & 53.10471 & 57.3329 & 60.33285 & 62.65979 & 64.56104 & 66.16852 & 67.56099 & 68.78923 & 69.88793\end{array}$ $\begin{array}{lllllllllll}115 & 45.58257 & 52.81071 & 57.0389 & 60.03885 & 62.36579 & 64.26704 & 65.87452 & 67.26698 & 68.49523 & 69.59393\end{array}$ $\begin{array}{llllllllllll}116 & 45.29111 & 52.51925 & 56.74744 & 59.74739 & 62.07433 & 63.97558 & 65.58306 & 66.97553 & 68.20377 & 69.30247\end{array}$ $\begin{array}{lllllllllll}117 & 45.00216 & 52.2303 & 56.45849 & 59.45843 & 61.78538 & 63.68663 & 65.29411 & 66.68657 & 67.91482 & 69.01351\end{array}$ $\begin{array}{lllllllllll}118 & 44.71566 & 51.9438 & 56.17199 & 59.17194 & 61.49888 & 63.40013 & 65.00761 & 66.40008 & 67.62832 & 68.72702\end{array}$ $\begin{array}{lllllllllll}119 & 44.43158 & 51.65972 & 55.88791 & 58.88786 & 61.2148 & 63.11605 & 64.72354 & 66.116 & 67.34424 & 68.44294\end{array}$ $\begin{array}{lllllllllll}120 & 44.14988 & 51.37802 & 55.60621 & 58.60616 & 60.9331 & 62.83435 & 64.44184 & 65.8343 & 67.06254 & 68.16124\end{array}$ $\begin{array}{lllllllllll}121 & 43.87052 & 51.09866 & 55.32685 & 58.3268 & 60.65374 & 62.55499 & 64.16247 & 65.55494 & 66.78318 & 67.88188\end{array}$ $\begin{array}{lllllllllllll}122 & 43.59346 & 50.8216 & 55.04979 & 58.04974 & 60.37668 & 62.27793 & 63.88541 & 65.27787 & 66.50612 & 67.60482\end{array}$ $\begin{array}{llllllllllll}123 & 43.31866 & 50.5468 & 54.77499 & 57.77493 & 60.10188 & 62.00312 & 63.61061 & 65.00307 & 66.23131 & 67.33001\end{array}$ $\begin{array}{llllllllllll}124 & 43.04608 & 50.27422 & 54.50241 & 57.50236 & 59.8293 & 61.73055 & 63.33803 & 64.7305 & 65.95874 & 67.05744\end{array}$ $\begin{array}{llllllllllll}125 & 42.77569 & 50.00383 & 54.23202 & 57.23197 & 59.55891 & 61.46016 & 63.06764 & 64.46011 & 65.68835 & 66.78705\end{array}$ $\begin{array}{llllllllllll}126 & 42.50746 & 49.7356 & 53.96379 & 56.96374 & 59.29068 & 61.19193 & 62.79941 & 64.19188 & 65.42012 & 66.51882\end{array}$ $\begin{array}{lllllllllll}127 & 42.24135 & 49.46949 & 53.69768 & 56.69763 & 59.02457 & 60.92582 & 62.5333 & 63.92577 & 65.15401 & 66.25271\end{array}$ $\begin{array}{llllllllllll}128 & 41.97732 & 49.20546 & 53.43365 & 56.4336 & 58.76054 & 60.66179 & 62.26927 & 63.66174 & 64.88998 & 65.98868\end{array}$ $\begin{array}{lllllllllll}129 & 41.71535 & 48.94349 & 53.17168 & 56.17163 & 58.49857 & 60.39982 & 62.0073 & 63.39977 & 64.62801 & 65.72671\end{array}$ $\begin{array}{lllllllllll}130 & 41.45541 & 48.68355 & 52.91174 & 55.91168 & 58.23862 & 60.13987 & 61.74736 & 63.13982 & 64.36806 & 65.46676\end{array}$ $\begin{array}{llllllllllll}131 & 41.19745 & 48.42559 & 52.65378 & 55.65373 & 57.98067 & 59.88192 & 61.4894 & 62.88187 & 64.11011 & 65.20881\end{array}$ $\begin{array}{lllllllllll}132 & 40.94146 & 48.1696 & 52.39779 & 55.39774 & 57.72468 & 59.62593 & 61.23341 & 62.62587 & 63.85412 & 64.95281\end{array}$ $\begin{array}{lllllllllll}133 & 40.6874 & 47.91553 & 52.14372 & 55.14367 & 57.47061 & 59.37186 & 60.97935 & 62.37181 & 63.60005 & 64.69875\end{array}$ $\begin{array}{lllllllllll}134 & 40.43524 & 47.66338 & 51.89157 & 54.89151 & 57.21846 & 59.11971 & 60.72719 & 62.11965 & 63.3479 & 64.44659\end{array}$ $\begin{array}{llllllllllll}135 & 40.18495 & 47.41309 & 51.64128 & 54.64123 & 56.96817 & 58.86942 & 60.4769 & 61.86937 & 63.09761 & 64.19631\end{array}$ $\begin{array}{lllllllllll}136 & 39.93652 & 47.16466 & 51.39285 & 54.39279 & 56.71974 & 58.62098 & 60.22847 & 61.62093 & 62.84918 & 63.94787\end{array}$ $\begin{array}{llllllllllll}137 & 39.6899 & 46.91804 & 51.14623 & 54.14618 & 56.47312 & 58.37437 & 59.98185 & 61.37432 & 62.60256 & 63.70126\end{array}$ $\begin{array}{lllllllllll}138 & 39.44508 & 46.67322 & 50.90141 & 53.90136 & 56.2283 & 58.12955 & 59.73703 & 61.12949 & 62.35774 & 63.45644\end{array}$ $\begin{array}{lllllllllll}139 & 39.20202 & 46.43016 & 50.65835 & 53.6583 & 55.98524 & 57.88649 & 59.49397 & 60.88644 & 62.11468 & 63.21338\end{array}$ $\begin{array}{lllllllllll}140 & 38.96071 & 46.18885 & 50.41704 & 53.41699 & 55.74393 & 57.64518 & 59.25266 & 60.64513 & 61.87337 & 62.97207\end{array}$ $\begin{array}{lllllllllllll}141 & 38.72111 & 45.94925 & 50.17744 & 53.17739 & 55.50433 & 57.40558 & 59.01307 & 60.40553 & 61.63377 & 62.73247\end{array}$ $\begin{array}{lllllllllll}142 & 38.48321 & 45.71135 & 49.93954 & 52.93949 & 55.26643 & 57.16768 & 58.77516 & 60.16763 & 61.39587 & 62.49457\end{array}$ $\begin{array}{lllllllllll}143 & 38.24698 & 45.47512 & 49.70331 & 52.70326 & 55.0302 & 56.93145 & 58.53893 & 59.9314 & 61.15964 & 62.25834\end{array}$ $\begin{array}{lllllllllll}144 & 38.01239 & 45.24053 & 49.46872 & 52.46867 & 54.79561 & 56.69686 & 58.30434 & 59.69681 & 60.92505 & 62.02375\end{array}$ $\begin{array}{llllllllllll}145 & 37.77943 & 45.00757 & 49.23576 & 52.23571 & 54.56265 & 56.4639 & 58.07138 & 59.46385 & 60.69209 & 61.79079\end{array}$ $\begin{array}{lllllllllll}146 & 37.54807 & 44.77621 & 49.0044 & 52.00435 & 54.33129 & 56.23254 & 57.84002 & 59.23249 & 60.46073 & 61.55943\end{array}$ $\begin{array}{llllllllllll}147 & 37.31829 & 44.54643 & 48.77462 & 51.77456 & 54.1015 & 56.00275 & 57.61024 & 59.0027 & 60.23094 & 61.32964\end{array}$ $\begin{array}{lllllllllll}148 & 37.09006 & 44.3182 & 48.54639 & 51.54634 & 53.87328 & 55.77453 & 57.38201 & 58.77448 & 60.00272 & 61.10142\end{array}$ $\begin{array}{lllllllllll}149 & 36.86337 & 44.09151 & 48.3197 & 51.31965 & 53.64659 & 55.54784 & 57.15533 & 58.54779 & 59.77603 & 60.87473\end{array}$ $\begin{array}{llllllllllll}150 & 36.6382 & 43.86634 & 48.09453 & 51.09448 & 53.42142 & 55.32267 & 56.93015 & 58.32262 & 59.55086 & 60.64956\end{array}$ $\begin{array}{llllllllllll}151 & 36.41453 & 43.64267 & 47.87086 & 50.87081 & 53.19775 & 55.099 & 56.70648 & 58.09894 & 59.32719 & 60.42588\end{array}$ $\begin{array}{lllllllllll}152 & 36.19233 & 43.42047 & 47.64866 & 50.64861 & 52.97555 & 54.8768 & 56.48428 & 57.87674 & 59.10499 & 60.20369\end{array}$ $\begin{array}{lllllllllll}153 & 35.97159 & 43.19973 & 47.42792 & 50.42786 & 52.75481 & 54.65605 & 56.26354 & 57.656 & 58.88424 & 59.98294\end{array}$ $\begin{array}{lllllllllll}154 & 35.75228 & 42.98042 & 47.20861 & 50.20856 & 52.5355 & 54.43675 & 56.04423 & 57.4367 & 58.66494 & 59.76364\end{array}$ $\begin{array}{llllllllllll}155 & 35.5344 & 42.76254 & 46.99073 & 49.99068 & 52.31762 & 54.21887 & 55.82635 & 57.21882 & 58.44706 & 59.54576\end{array}$ $\begin{array}{llllllllllll}156 & 35.31792 & 42.54605 & 46.77424 & 49.77419 & 52.10113 & 54.00238 & 55.60987 & 57.00233 & 58.23057 & 59.32927\end{array}$ $\begin{array}{lllllllllll}157 & 35.10282 & 42.33095 & 46.55914 & 49.55909 & 51.88603 & 53.78728 & 55.39477 & 56.78723 & 58.01547 & 59.11417\end{array}$ $\begin{array}{llllllllllll}158 & 34.88908 & 42.11722 & 46.34541 & 49.34536 & 51.6723 & 53.57355 & 55.18103 & 56.5735 & 57.80174 & 58.90044\end{array}$ $\begin{array}{llllllllllll}159 & 34.6767 & 41.90484 & 46.13303 & 49.13297 & 51.45991 & 53.36116 & 54.96865 & 56.36111 & 57.58935 & 58.68805\end{array}$ $\begin{array}{llllllllllll}160 & 34.46564 & 41.69378 & 45.92197 & 48.92192 & 51.24886 & 53.15011 & 54.75759 & 56.15006 & 57.3783 & 58.477\end{array}$ $\begin{array}{lllllllllll}161 & 34.2559 & 41.48404 & 45.71223 & 48.71218 & 51.03912 & 52.94037 & 54.54785 & 55.94032 & 57.16856 & 58.26726\end{array}$ $\begin{array}{lllllllllll}162 & 34.04746 & 41.2756 & 45.50379 & 48.50374 & 50.83068 & 52.73193 & 54.33941 & 55.73188 & 56.96012 & 58.05882\end{array}$ $\begin{array}{lllllllllll}163 & 33.84031 & 41.06844 & 45.29663 & 48.29658 & 50.62352 & 52.52477 & 54.13226 & 55.52472 & 56.75296 & 57.85166\end{array}$ $\begin{array}{llllllllllll}164 & 33.63441 & 40.86255 & 45.09074 & 48.09069 & 50.41763 & 52.31888 & 53.92637 & 55.31883 & 56.54707 & 57.64577\end{array}$

55	60	65	70	75	80	85	90	95	
5.822	116.729	7.564	118.3368	119.0563	7293	120.3615	120.9575	121.5213	122.0562
114.7182	115.6255	116.4602	117.233	117.9525	118.6255	119.2577	119.8537	120.4175	120.9524
113.6494	114.5568	115.3914	116.1642	116.8837	117.5567	118.1889	118.7849	119.3488	36
112.6135	113.5209	114.3556	115.1284	115.8478	116.5208	117.153	117.7491	118.3129	78
111.6086	112.516	113.3506	114.1234	114.8429	115.5159	116.1481	116.7441	17.308	28
110.6328	111.5401	112.3748	113.1476	113.8671	114.5401	115.1723	115.7683	116.3321	
109.6845	110.5918	111.4265	112.1993	112.9188	113.591	114.224	14.82	115.3838	115.9187
108.7621	109.6695	110.5042	11	111	112.669	113.3016	113.8977	114.4615	
107.8644	108.7718	109.606	110.3792	111.098	111.7717	112.4039	113	113.5638	
106.99	107.897	108.73	109.	110	110	11	255	112.6894	113.2242
106.1377	107.0	107.8	108.65	109	110.0	110.	111.273	. 837	
105.3065	106.	107.0	07.8	108.	109.	109.8	10.44	111.0059	111.5407
104.4953	105.402	106.2	107.010	107.	108.4026	109.03	109.6308	110.1947	110
103.7032	104.610	105.445	106	106.9	107.6	108.242	108.838	109.4025	109.
102.9293	103.83	104.	105.	106.16	106.8	107.4688	108.0648	108.6287	109.1635
102.1728	103.080	103.9148	104.687	105.4071	106.0801	106.7123	107.3083	107.8721	08.407
101.4329	102.340	10	103.9478	104.667	105.340	105.972	106.5685	107.1323	107.6672
100.709	101.616	102	103.223	103.9	104.616	105.	105.8445	106.4083	106.9432
100.0002	100.9076	101.7423	102.51	103.23	103.907	104.539	105.1358	105.6996	106.2345
99.30612	100.2135	101.0	101	102.5	103.213	103.845	104.4417	105.0055	105
98.62604	99.533	100.3	101.	101.860	102.	103.165	103.7616	104.32	104
97.95942	98.86	99.7	100.	101.193	101.86	102.498	103.09	103.6588	104
97.3	98.21	99	99	100	101	101.8	102.4413	103.0051	103.54
96.	97.	98.	99	99.8	100	10	101.8001	102.3639	102
96.0353	96.9426	97.7	98.5501	99.269	99.942	100.5	101	101.7347	102
95.41761	96.32497	97.1596	97.93245	98.6519	99.32492	99.957	100.5532	101.117	101.651
94.81106	95.71841	96.5531	97.3258	98.0453	98.71836	99.35055	99.9466	100.5104	101.0453
94.21524	95.12259	95.95728	96.73007	97.44953	98.12254	98.75473	99.35078	99.91459	100.4
93.62978	94.53713	95.37182	96.14462	96.86407	97.53708	98.16927	98.76532	99.32914	99.86402
93.05433	93.96168	94.79637	95.56917	96.28862	96.96163	97.59382	98.18987	98.75369	99.28857
92.48855	93.3959	94.23059	95.00339	95.72285	96.39585	97.02805	97.62409	98.18791	98.72279
91.93212	92.83948	93.67416	94.44696	95.16642	95.83943	96.47162	97.06767	97.63148	98.16637
91.38475	92.2921	93.12679	93.89958	94.61904	95.29205	95.92424	96.52029	97.0841	97.61899

$\begin{array}{llllllllll}90.84613 & 91.75348 & 92.58817 & 93.36096 & 94.08042 & 94.75343 & 95.38562 & 95.98167 & 96.54548 & 97.08037\end{array}$ $\begin{array}{llllllllllllll}90.31599 & 91.22334 & 92.05803 & 92.83083 & 93.55028 & 94.22329 & 94.85549 & 95.45153 & 96.01535 & 96.55023\end{array}$ $\begin{array}{llllllllll}89.79407 & 90.70143 & 91.53611 & 92.30891 & 93.02837 & 93.70138 & 94.33357 & 94.92962 & 95.49343 & 96.02832\end{array}$ $\begin{array}{lllllllllll}89.28012 & 90.18748 & 91.02216 & 91.79496 & 92.51442 & 93.18743 & 93.81962 & 94.41567 & 94.97948 & 95.51437\end{array}$ $\begin{array}{llllllllll}88.7739 & 89.68126 & 90.51594 & 91.28874 & 92.0082 & 92.68121 & 93.3134 & 93.90945 & 94.47326 & 95.00815\end{array}$ $\begin{array}{llllllllll}88.27518 & 89.18254 & 90.01722 & 90.79002 & 91.50948 & 92.18249 & 92.81468 & 93.41073 & 93.97454 & 94.50943\end{array}$ $\begin{array}{llllllllll}87.78374 & 88.6911 & 89.52578 & 90.29858 & 91.01804 & 91.69105 & 92.32324 & 92.91929 & 93.4831 & 94.01799\end{array}$ $\begin{array}{llllllllll}87.29938 & 88.20673 & 89.04142 & 89.81421 & 90.53367 & 91.20668 & 91.83887 & 92.43492 & 92.99873 & 93.53362\end{array}$ $\begin{array}{lllllllllll}86.82188 & 87.72923 & 88.56392 & 89.33672 & 90.05617 & 90.72918 & 91.36137 & 91.95742 & 92.52124 & 93.05612\end{array}$ $\begin{array}{llllllllll}86.35106 & 87.25841 & 88.0931 & 88.8659 & 89.58535 & 90.25836 & 90.89056 & 91.4866 & 92.05042 & 92.5853\end{array}$ $\begin{array}{llllllllll}85.88673 & 86.79409 & 87.62877 & 88.40157 & 89.12103 & 89.79404 & 90.42623 & 91.02228 & 91.58609 & 92.12098\end{array}$ $\begin{array}{lllllllllll}85.42873 & 86.33608 & 87.17077 & 87.94357 & 88.66302 & 89.33603 & 89.96822 & 90.56427 & 91.12808 & 91.66297\end{array}$ $\begin{array}{lllllllllll}84.97687 & 85.88422 & 86.71891 & 87.49171 & 88.21116 & 88.88417 & 89.51636 & 90.11241 & 90.67623 & 91.21111\end{array}$ $\begin{array}{llllllllll}84.53099 & 85.43835 & 86.27303 & 87.04583 & 87.76529 & 88.4383 & 89.07049 & 89.66654 & 90.23035 & 90.76524\end{array}$ $\begin{array}{lllllllllll}84.09095 & 84.9983 & 85.83299 & 86.60579 & 87.32524 & 87.99825 & 88.63045 & 89.22649 & 89.79031 & 90.32519\end{array}$ $\begin{array}{lllllllllll}83.65658 & 84.56394 & 85.39862 & 86.17142 & 86.89088 & 87.56388 & 88.19608 & 88.79213 & 89.35594 & 89.89083\end{array}$ $\begin{array}{lllllllllll}83.22775 & 84.1351 & 84.96979 & 85.74259 & 86.46204 & 87.13505 & 87.76724 & 88.36329 & 88.92711 & 89.46199\end{array}$ $\begin{array}{lllllllllll}82.80431 & 83.71166 & 84.54635 & 85.31915 & 86.0386 & 86.71161 & 87.3438 & 87.93985 & 88.50367 & 89.03855\end{array}$ $\begin{array}{lllllllllll}82.38613 & 83.29348 & 84.12817 & 84.90097 & 85.62042 & 86.29343 & 86.92563 & 87.52167 & 88.08549 & 88.62037\end{array}$ $\begin{array}{lllllllllll}81.97308 & 82.88044 & 83.71512 & 84.48792 & 85.20738 & 85.88038 & 86.51258 & 87.10863 & 87.67244 & 88.20732\end{array}$ $\begin{array}{lllllllllll}81.56504 & 82.47239 & 83.30708 & 84.07988 & 84.79933 & 85.47234 & 86.10454 & 86.70058 & 87.2644 & 87.79928\end{array}$ $\begin{array}{llllllllll}81.16188 & 82.06924 & 82.90392 & 83.67672 & 84.39618 & 85.06919 & 85.70138 & 86.29743 & 86.86124 & 87.39613\end{array}$ $\begin{array}{lllllllllll}80.7635 & 81.67086 & 82.50554 & 83.27834 & 83.9978 & 84.6708 & 85.303 & 85.89905 & 86.46286 & 86.99775\end{array}$ $\begin{array}{llllllllll}80.36978 & 81.27713 & 82.11182 & 82.88462 & 83.60407 & 84.27708 & 84.90927 & 85.50532 & 86.06914 & 86.60402\end{array}$ $\begin{array}{lllllllllll}79.98061 & 80.88796 & 81.72265 & 82.49544 & 83.2149 & 83.88791 & 84.5201 & 85.11615 & 85.67996 & 86.21485\end{array}$ $\begin{array}{llllllllll}79.59588 & 80.50324 & 81.33792 & 82.11072 & 82.83018 & 83.50318 & 84.13538 & 84.73143 & 85.29524 & 85.83013\end{array}$ $\begin{array}{lllllllllll}79.2155 & 80.12286 & 80.95754 & 81.73034 & 82.4498 & 83.12281 & 83.755 & 84.35105 & 84.91486 & 85.44975\end{array}$
$\begin{array}{llllllllll}78.83938 & 79.74673 & 80.58142 & 81.35422 & 82.07367 & 82.74668 & 83.37887 & 83.97492 & 84.53874 & 85.07362\end{array}$ $\begin{array}{llllllllll}78.46741 & 79.37476 & 80.20945 & 80.98224 & 81.7017 & 82.37471 & 83.0069 & 83.60295 & 84.16676 & 84.70165\end{array}$ $\begin{array}{lllllllllll}78.0995 & 79.00686 & 79.84154 & 80.61434 & 81.3338 & 82.0068 & 82.639 & 83.23505 & 83.79886 & 84.33375\end{array}$ $\begin{array}{llllllllll}77.73557 & 78.64293 & 79.47761 & 80.25041 & 80.96987 & 81.64288 & 82.27507 & 82.87112 & 83.43493 & 83.96982\end{array}$ $\begin{array}{lllllllllll}77.37554 & 78.28289 & 79.11758 & 79.89038 & 80.60983 & 81.28284 & 81.91504 & 82.51108 & 83.0749 & 83.60978\end{array}$ $\begin{array}{lllllllllll}77.01931 & 77.92667 & 78.76135 & 79.53415 & 80.25361 & 80.92662 & 81.55881 & 82.15486 & 82.71867 & 83.25356\end{array}$ $\begin{array}{lllllllllll}76.66682 & 77.57417 & 78.40886 & 79.18166 & 79.90111 & 80.57412 & 81.20631 & 81.80236 & 82.36618 & 82.90106\end{array}$ $\begin{array}{llllllllll}76.31797 & 77.22533 & 78.06001 & 78.83281 & 79.55227 & 80.22528 & 80.85747 & 81.45352 & 82.01733 & 82.55222\end{array}$ $\begin{array}{lllllllllll}75.97271 & 76.88006 & 77.71475 & 78.48755 & 79.20701 & 79.88001 & 80.51221 & 81.10826 & 81.67207 & 82.20695\end{array}$ $\begin{array}{lllllllllll}75.63095 & 76.53831 & 77.37299 & 78.14579 & 78.86525 & 79.53825 & 80.17045 & 80.7665 & 81.33031 & 81.8652\end{array}$ $\begin{array}{lllllllllll}75.29263 & 76.19998 & 77.03467 & 77.80746 & 78.52692 & 79.19993 & 79.83212 & 80.42817 & 80.99198 & 81.52687\end{array}$
$\begin{array}{llllllllll}74.95767 & 75.86502 & 76.69971 & 77.47251 & 78.19196 & 78.86497 & 79.49717 & 80.09321 & 80.65703 & 81.19191\end{array}$ $\begin{array}{llllllllll}74.62601 & 75.53337 & 76.36805 & 77.14085 & 77.86031 & 78.53331 & 79.16551 & 79.76156 & 80.32537 & 80.86025\end{array}$ $\begin{array}{llllllllll}74.29759 & 75.20494 & 76.03963 & 76.81243 & 77.53188 & 78.20489 & 78.83709 & 79.43313 & 79.99695 & 80.53183\end{array}$ $\begin{array}{llllllllll}73.97234 & 74.87969 & 75.71438 & 76.48718 & 77.20664 & 77.87964 & 78.51184 & 79.10788 & 79.6717 & 80.20658\end{array}$ $\begin{array}{llllllllll}73.6502 & 74.55756 & 75.39224 & 76.16504 & 76.8845 & 77.55751 & 78.1897 & 78.78575 & 79.34956 & 79.88445\end{array}$ $\begin{array}{llllllllll}73.33112 & 74.23847 & 75.07316 & 75.84596 & 76.56542 & 77.23842 & 77.87062 & 78.46667 & 79.03048 & 79.56536\end{array}$ $\begin{array}{llllllllll}73.01503 & 73.92239 & 74.75707 & 75.52987 & 76.24933 & 76.92234 & 77.55453 & 78.15058 & 78.71439 & 79.24928\end{array}$ $\begin{array}{llllllllll}72.70189 & 73.60924 & 74.44393 & 75.21672 & 75.93618 & 76.60919 & 77.24138 & 77.83743 & 78.40124 & 78.93613\end{array}$ $\begin{array}{llllllllll}72.39163 & 73.29898 & 74.13367 & 74.90646 & 75.62592 & 76.29893 & 76.93112 & 77.52717 & 78.09098 & 78.62587\end{array}$ $\begin{array}{llllllllll}72.0842 & 72.99155 & 73.82624 & 74.59904 & 75.3185 & 75.9915 & 76.6237 & 77.21974 & 77.78356 & 78.31844\end{array}$ $\begin{array}{lllllllllll}71.77956 & 72.68691 & 73.5216 & 74.29439 & 75.01385 & 75.68686 & 76.31905 & 76.9151 & 77.47891 & 78.0138\end{array}$ $\begin{array}{lllllllllll}71.47764 & 72.385 & 73.21968 & 73.99248 & 74.71194 & 75.38495 & 76.01714 & 76.61319 & 77.177 & 77.71189\end{array}$ $\begin{array}{llllllllll}71.17841 & 72.08577 & 72.92045 & 73.69325 & 74.41271 & 75.08572 & 75.71791 & 76.31396 & 76.87777 & 77.41266\end{array}$ $\begin{array}{lllllllllll}70.88182 & 71.78918 & 72.62386 & 73.39666 & 74.11612 & 74.78913 & 75.42132 & 76.01737 & 76.58118 & 77.11607\end{array}$ $\begin{array}{llllllllll}70.58782 & 71.49517 & 72.32986 & 73.10266 & 73.82212 & 74.49512 & 75.12732 & 75.72337 & 76.28718 & 76.82206\end{array}$ $\begin{array}{lllllllllll}70.29636 & 71.20372 & 72.0384 & 72.8112 & 73.53066 & 74.20367 & 74.83586 & 75.43191 & 75.99572 & 76.53061\end{array}$ $\begin{array}{llllllllll}70.00741 & 70.91476 & 71.74945 & 72.52225 & 73.2417 & 73.91471 & 74.54691 & 75.14295 & 75.70677 & 76.24165\end{array}$ $\begin{array}{lllllllllll}69.72091 & 70.62827 & 71.46295 & 72.23575 & 72.95521 & 73.62822 & 74.26041 & 74.85646 & 75.42027 & 75.95516\end{array}$ $\begin{array}{llllllllll}69.43684 & 70.34419 & 71.17888 & 71.95167 & 72.67113 & 73.34414 & 73.97633 & 74.57238 & 75.13619 & 75.67108\end{array}$ $\begin{array}{llllllllll}69.15514 & 70.06249 & 70.89718 & 71.66997 & 72.38943 & 73.06244 & 73.69463 & 74.29068 & 74.85449 & 75.38938\end{array}$ $\begin{array}{llllllllll}68.87577 & 69.78313 & 70.61781 & 71.39061 & 72.11007 & 72.78308 & 73.41527 & 74.01132 & 74.57513 & 75.11002\end{array}$ $\begin{array}{llllllllll}68.59871 & 69.50606 & 70.34075 & 71.11355 & 71.83301 & 72.50601 & 73.13821 & 73.73425 & 74.29807 & 74.83295\end{array}$ $\begin{array}{llllllllll}68.32391 & 69.23126 & 70.06595 & 70.83875 & 71.5582 & 72.23121 & 72.86341 & 73.45945 & 74.02327 & 74.55815\end{array}$ $\begin{array}{llllllllll}68.05133 & 68.95869 & 69.79337 & 70.56617 & 71.28563 & 71.95864 & 72.59083 & 73.18688 & 73.75069 & 74.28558\end{array}$ $\begin{array}{llllllllll}67.78095 & 68.6883 & 69.52299 & 70.29578 & 71.01524 & 71.68825 & 72.32044 & 72.91649 & 73.4803 & 74.01519\end{array}$ $\begin{array}{llllllllll}67.51271 & 68.42007 & 69.25475 & 70.02755 & 70.74701 & 71.42002 & 72.05221 & 72.64826 & 73.21207 & 73.74696\end{array}$ $\begin{array}{llllllllll}67.2466 & 68.15396 & 68.98864 & 69.76144 & 70.4809 & 71.1539 & 71.7861 & 72.38215 & 72.94596 & 73.48084\end{array}$ $\begin{array}{llllllllll}66.98258 & 67.88993 & 68.72462 & 69.49741 & 70.21687 & 70.88988 & 71.52207 & 72.11812 & 72.68193 & 73.21682\end{array}$ $\begin{array}{llllllllll}66.72061 & 67.62796 & 68.46265 & 69.23544 & 69.9549 & 70.62791 & 71.2601 & 71.85615 & 72.41996 & 72.95485\end{array}$ $\begin{array}{llllllllll}66.46066 & 67.36801 & 68.2027 & 68.9755 & 69.69495 & 70.36796 & 71.00016 & 71.5962 & 72.16002 & 72.6949\end{array}$ $\begin{array}{llllllllll}66.2027 & 67.11006 & 67.94474 & 68.71754 & 69.437 & 70.11001 & 70.7422 & 71.33825 & 71.90206 & 72.43695\end{array}$ $\begin{array}{llllllllll}65.94671 & 66.85406 & 67.68875 & 68.46155 & 69.181 & 69.85401 & 70.48621 & 71.08225 & 71.64607 & 72.18095\end{array}$ $\begin{array}{llllllllll}65.69265 & 66.6 & 67.43469 & 68.20749 & 68.92694 & 69.59995 & 70.23214 & 70.82819 & 71.39201 & 71.92689\end{array}$ $\begin{array}{lllllllllll}65.44049 & 66.34784 & 67.18253 & 67.95533 & 68.67478 & 69.34779 & 69.97999 & 70.57603 & 71.13985 & 71.67473\end{array}$ $\begin{array}{llllllllll}65.19021 & 66.09756 & 66.93225 & 67.70504 & 68.4245 & 69.09751 & 69.7297 & 70.32575 & 70.88956 & 71.42445\end{array}$ $\begin{array}{llllllllll}64.94177 & 65.84912 & 66.68381 & 67.45661 & 68.17606 & 68.84907 & 69.48127 & 70.07731 & 70.64113 & 71.17601\end{array}$ $\begin{array}{llllllllll}64.69515 & 65.60251 & 66.43719 & 67.20999 & 67.92945 & 68.60246 & 69.23465 & 69.8307 & 70.39451 & 70.9294\end{array}$ $\begin{array}{llllllllll}64.45033 & 65.35768 & 66.19237 & 66.96517 & 67.68463 & 68.35763 & 68.98983 & 69.58587 & 70.14969 & 70.68457\end{array}$ $\begin{array}{lllllllllll}64.20727 & 65.11463 & 65.94931 & 66.72211 & 67.44157 & 68.11458 & 68.74677 & 69.34282 & 69.90663 & 70.44152\end{array}$ $\begin{array}{llllllllll}63.96596 & 64.87332 & 65.708 & 66.4808 & 67.20026 & 67.87326 & 68.50546 & 69.10151 & 69.66532 & 70.20021\end{array}$ $\begin{array}{lllllllllll}63.72637 & 64.63372 & 65.46841 & 66.2412 & 66.96066 & 67.63367 & 68.26586 & 68.86191 & 69.42572 & 69.96061\end{array}$ $\begin{array}{llllllllll}63.48846 & 64.39582 & 65.2305 & 66.0033 & 66.72276 & 67.39577 & 68.02796 & 68.62401 & 69.18782 & 69.72271\end{array}$ $\begin{array}{lllllllllll}63.25223 & 64.15959 & 64.99427 & 65.76707 & 66.48653 & 67.15953 & 67.79173 & 68.38778 & 68.95159 & 69.48648\end{array}$ $\begin{array}{lllllllllll}63.01765 & 63.925 & 64.75969 & 65.53248 & 66.25194 & 66.92495 & 67.55714 & 68.15319 & 68.717 & 69.25189\end{array}$ $\begin{array}{llllllllll}62.78468 & 63.69204 & 64.52672 & 65.29952 & 66.01898 & 66.69199 & 67.32418 & 67.92023 & 68.48404 & 69.01893\end{array}$ $\begin{array}{llllllllll}62.55332 & 63.46068 & 64.29536 & 65.06816 & 65.78762 & 66.46062 & 67.09282 & 67.68887 & 68.25268 & 68.78756\end{array}$ $\begin{array}{lllllllllll}62.32354 & 63.23089 & 64.06558 & 64.83838 & 65.55783 & 66.23084 & 66.86304 & 67.45908 & 68.0229 & 68.55778\end{array}$ $\begin{array}{llllllllll}62.09531 & 63.00267 & 63.83735 & 64.61015 & 65.32961 & 66.00262 & 66.63481 & 67.23086 & 67.79467 & 68.32956\end{array}$ $\begin{array}{llllllllll}61.86863 & 62.77598 & 63.61067 & 64.38346 & 65.10292 & 65.77593 & 66.40812 & 67.00417 & 67.56798 & 68.10287\end{array}$ $\begin{array}{lllllllllll}61.64345 & 62.55081 & 63.38549 & 64.15829 & 64.87775 & 65.55076 & 66.18295 & 66.779 & 67.34281 & 67.8777\end{array}$ $\begin{array}{lllllllllll}61.41978 & 62.32713 & 63.16182 & 63.93462 & 64.65407 & 65.32708 & 65.95928 & 66.55532 & 67.11914 & 67.65402\end{array}$ $\begin{array}{llllllllll}61.19758 & 62.10494 & 62.93962 & 63.71242 & 64.43188 & 65.10488 & 65.73708 & 66.33313 & 66.89694 & 67.43182\end{array}$ $\begin{array}{lllllllllll}60.97684 & 61.88419 & 62.71888 & 63.49168 & 64.21113 & 64.88414 & 65.51634 & 66.11238 & 66.6762 & 67.21108\end{array}$ $\begin{array}{llllllllll}60.75754 & 61.66489 & 62.49957 & 63.27237 & 63.99183 & 64.66484 & 65.29703 & 65.89308 & 66.45689 & 66.99178\end{array}$ $\begin{array}{llllllllll}60.53965 & 61.44701 & 62.28169 & 63.05449 & 63.77395 & 64.44695 & 65.07915 & 65.6752 & 66.23901 & 66.77389\end{array}$ $\begin{array}{llllllllll}60.32317 & 61.23052 & 62.06521 & 62.83801 & 63.55746 & 64.23047 & 64.86266 & 65.45871 & 66.02253 & 66.55741\end{array}$ $\begin{array}{lllllllllll}60.10807 & 61.01542 & 61.85011 & 62.62291 & 63.34236 & 64.01537 & 64.64756 & 65.24361 & 65.80743 & 66.34231\end{array}$ $\begin{array}{llllllllll}59.89433 & 60.80169 & 61.63637 & 62.40917 & 63.12863 & 63.80164 & 64.43383 & 65.02988 & 65.59369 & 66.12858\end{array}$ $\begin{array}{llllllllll}59.68195 & 60.5893 & 61.42399 & 62.19679 & 62.91624 & 63.58925 & 64.22145 & 64.81749 & 65.38131 & 65.91619\end{array}$ $\begin{array}{llllllllll}59.47089 & 60.37825 & 61.21293 & 61.98573 & 62.70519 & 63.3782 & 64.01039 & 64.60644 & 65.17025 & 65.70514\end{array}$ $\begin{array}{llllllllll}59.26116 & 60.16851 & 61.0032 & 61.77599 & 62.49545 & 63.16846 & 63.80065 & 64.3967 & 64.96051 & 65.4954\end{array}$ $\begin{array}{lllllllllll}59.05272 & 59.96007 & 60.79476 & 61.56755 & 62.28701 & 62.96002 & 63.59221 & 64.18826 & 64.75207 & 65.28696\end{array}$ $\begin{array}{lllllllllll}58.84556 & 59.75291 & 60.5876 & 61.3604 & 62.07985 & 62.75286 & 63.38505 & 63.9811 & 64.54492 & 65.0798\end{array}$ $\begin{array}{lllllllllll}58.63967 & 59.54702 & 60.38171 & 61.1545 & 61.87396 & 62.54697 & 63.17916 & 63.77521 & 64.33902 & 64.87391\end{array}$
formula: Deer_SuccessRate $=188.528-(33.663 * \ln ($ length $))+(10.428 * \ln ($ width $))$

| Length/Wir | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllll}165 & 33.42978 & 40.65791 & 44.88611 & 47.88605 & 50.21299 & 52.11424 & 53.72173 & 55.11419 & 56.34243 & 57.44113\end{array}$ $\begin{array}{lllllllllll}166 & 33.22637 & 40.45451 & 44.6827 & 47.68265 & 50.00959 & 51.91084 & 53.51832 & 54.91079 & 56.13903 & 57.23773\end{array}$ $\begin{array}{llllllllllll}167 & 33.02419 & 40.25233 & 44.48052 & 47.48047 & 49.80741 & 51.70866 & 53.31614 & 54.70861 & 55.93685 & 57.03555\end{array}$ $\begin{array}{lllllllllll}168 & 32.82322 & 40.05136 & 44.27955 & 47.2795 & 49.60644 & 51.50769 & 53.11517 & 54.50764 & 55.73588 & 56.83458\end{array}$ $\begin{array}{llllllllllll}169 & 32.62344 & 39.85158 & 44.07977 & 47.07972 & 49.40666 & 51.30791 & 52.91539 & 54.30785 & 55.5361 & 56.6348\end{array}$ $\begin{array}{llllllllllll}170 & 32.42484 & 39.65297 & 43.88116 & 46.88111 & 49.20805 & 51.1093 & 52.71679 & 54.10925 & 55.33749 & 56.43619\end{array}$ $\begin{array}{llllllllllll}171 & 32.2274 & 39.45554 & 43.68373 & 46.68368 & 49.01062 & 50.91187 & 52.51935 & 53.91181 & 55.14006 & 56.23876\end{array}$ $\begin{array}{lllllllllllll}172 & 32.03111 & 39.25925 & 43.48744 & 46.48739 & 48.81433 & 50.71558 & 52.32306 & 53.71553 & 54.94377 & 56.04247\end{array}$ $\begin{array}{llllllllllll}173 & 31.83596 & 39.0641 & 43.29229 & 46.29224 & 48.61918 & 50.52043 & 52.12791 & 53.52038 & 54.74862 & 55.84732\end{array}$ $\begin{array}{llllllllllll}174 & 31.64194 & 38.87008 & 43.09827 & 46.09822 & 48.42516 & 50.32641 & 51.93389 & 53.32636 & 54.5546 & 55.6533\end{array}$ $\begin{array}{lllllllllll}175 & 31.44903 & 38.67717 & 42.90536 & 45.90531 & 48.23225 & 50.1335 & 51.74098 & 53.13344 & 54.36169 & 55.46039\end{array}$ $\begin{array}{llllllllllll}176 & 31.25722 & 38.48535 & 42.71354 & 45.71349 & 48.04043 & 49.94168 & 51.54917 & 52.94163 & 54.16987 & 55.26857\end{array}$ $\begin{array}{llllllllllll}177 & 31.06649 & 38.29463 & 42.52282 & 45.52277 & 47.84971 & 49.75096 & 51.35844 & 52.75091 & 53.97915 & 55.07785\end{array}$ $\begin{array}{llllllllllll}178 & 30.87684 & 38.10498 & 42.33317 & 45.33312 & 47.66006 & 49.56131 & 51.16879 & 52.56126 & 53.7895 & 54.8882\end{array}$ $\begin{array}{lllllllllll}179 & 30.68825 & 37.91639 & 42.14458 & 45.14453 & 47.47147 & 49.37272 & 50.9802 & 52.37267 & 53.60091 & 54.69961\end{array}$ $\begin{array}{llllllllllll}180 & 30.50071 & 37.72885 & 41.95704 & 44.95699 & 47.28393 & 49.18518 & 50.79266 & 52.18513 & 53.41337 & 54.51207\end{array}$ $\begin{array}{llllllllllll}181 & 30.31421 & 37.54235 & 41.77054 & 44.77049 & 47.09743 & 48.99868 & 50.60616 & 51.99863 & 53.22687 & 54.32557\end{array}$ $\begin{array}{llllllllllll}182 & 30.12874 & 37.35688 & 41.58507 & 44.58502 & 46.91196 & 48.81321 & 50.42069 & 51.81316 & 53.0414 & 54.1401\end{array}$ $\begin{array}{lllllllllll}183 & 29.94429 & 37.17242 & 41.40062 & 44.40056 & 46.7275 & 48.62875 & 50.23624 & 51.6287 & 52.85694 & 53.95564\end{array}$ $\begin{array}{lllllllllll}184 & 29.76084 & 36.98897 & 41.21717 & 44.21711 & 46.54405 & 48.4453 & 50.05279 & 51.44525 & 52.67349 & 53.77219\end{array}$ $\begin{array}{lllllllllllll}185 & 29.57838 & 36.80652 & 41.03471 & 44.03466 & 46.3616 & 48.26285 & 49.87033 & 51.2628 & 52.49104 & 53.58974\end{array}$ $\begin{array}{llllllllllll}186 & 29.39691 & 36.62505 & 40.85324 & 43.85319 & 46.18013 & 48.08138 & 49.68886 & 51.08132 & 52.30957 & 53.40827\end{array}$ $\begin{array}{llllllllllll}187 & 29.21641 & 36.44455 & 40.67274 & 43.67269 & 45.99963 & 47.90088 & 49.50836 & 50.90083 & 52.12907 & 53.22777\end{array}$ $\begin{array}{llllllllllll}188 & 29.03687 & 36.26501 & 40.4932 & 43.49315 & 45.82009 & 47.72134 & 49.32882 & 50.72129 & 51.94953 & 53.04823\end{array}$ $\begin{array}{llllllllllll}189 & 28.85829 & 36.08643 & 40.31462 & 43.31457 & 45.64151 & 47.54276 & 49.15024 & 50.54271 & 51.77095 & 52.86965\end{array}$ $\begin{array}{llllllllllll}190 & 28.68065 & 35.90879 & 40.13698 & 43.13692 & 45.46387 & 47.36511 & 48.9726 & 50.36506 & 51.59331 & 52.692\end{array}$ $\begin{array}{llllllllllll}191 & 28.50394 & 35.73208 & 39.96027 & 42.96022 & 45.28716 & 47.18841 & 48.79589 & 50.18835 & 51.4166 & 52.5153\end{array}$ $\begin{array}{llllllllllll}192 & 28.32815 & 35.55629 & 39.78448 & 42.78443 & 45.11137 & 47.01262 & 48.6201 & 50.01257 & 51.24081 & 52.33951\end{array}$ $\begin{array}{llllllllllll}193 & 28.15328 & 35.38142 & 39.60961 & 42.60956 & 44.9365 & 46.83775 & 48.44523 & 49.8377 & 51.06594 & 52.16464\end{array}$ $\begin{array}{llllllllllll}194 & 27.97931 & 35.20745 & 39.43564 & 42.43559 & 44.76253 & 46.66378 & 48.27126 & 49.66373 & 50.89197 & 51.99067\end{array}$ $\begin{array}{llllllllllll}195 & 27.80623 & 35.03437 & 39.26256 & 42.26251 & 44.58945 & 46.4907 & 48.09819 & 49.49065 & 50.71889 & 51.81759\end{array}$ $\begin{array}{llllllllllll}196 & 27.63404 & 34.86218 & 39.09037 & 42.09032 & 44.41726 & 46.31851 & 47.926 & 49.31846 & 50.5467 & 51.6454\end{array}$ $\begin{array}{llllllllllll}197 & 27.46273 & 34.69087 & 38.91906 & 41.91901 & 44.24595 & 46.1472 & 47.75468 & 49.14715 & 50.37539 & 51.47409\end{array}$

$\begin{array}{lllllllllll}198 & 27.29229 & 34.52042 & 38.74861 & 41.74856 & 44.0755 & 45.97675 & 47.58424 & 48.9767 & 50.20494 & 51.30364\end{array}$ $\begin{array}{lllllllllllll}199 & 27.1227 & 34.35084 & 38.57903 & 41.57898 & 43.90592 & 45.80717 & 47.41465 & 48.80711 & 50.03536 & 51.13406\end{array}$ $\begin{array}{lllllllllll}200 & 26.95396 & 34.1821 & 38.41029 & 41.41024 & 43.73718 & 45.63843 & 47.24591 & 48.63838 & 49.86662 & 50.96532\end{array}$ $\begin{array}{lllllllllll}201 & 26.78607 & 34.0142 & 38.24239 & 41.24234 & 43.56928 & 45.47053 & 47.07802 & 48.47048 & 49.69872 & 50.79742\end{array}$ $\begin{array}{llllllllllll}202 & 26.619 & 33.84714 & 38.07533 & 41.07528 & 43.40222 & 45.30347 & 46.91095 & 48.30342 & 49.53166 & 50.63036\end{array}$ $\begin{array}{llllllllllll}203 & 26.45277 & 33.6809 & 37.90909 & 40.90904 & 43.23598 & 45.13723 & 46.74472 & 48.13718 & 49.36542 & 50.46412\end{array}$ $\begin{array}{lllllllllll}204 & 26.28735 & 33.51548 & 37.74367 & 40.74362 & 43.07056 & 44.97181 & 46.5793 & 47.97176 & 49.2 & 50.2987\end{array}$ $\begin{array}{llllllllllll}205 & 26.12273 & 33.35087 & 37.57906 & 40.57901 & 42.90595 & 44.8072 & 46.41468 & 47.80715 & 49.03539 & 50.13409\end{array}$ $\begin{array}{lllllllllll}206 & 25.95892 & 33.18706 & 37.41525 & 40.4152 & 42.74214 & 44.64339 & 46.25087 & 47.64334 & 48.87158 & 49.97028\end{array}$ $\begin{array}{llllllllllll}207 & 25.79591 & 33.02404 & 37.25223 & 40.25218 & 42.57912 & 44.48037 & 46.08786 & 47.48032 & 48.70856 & 49.80726\end{array}$ $\begin{array}{llllllllllll}208 & 25.63367 & 32.86181 & 37.09 & 40.08995 & 42.41689 & 44.31814 & 45.92563 & 47.31809 & 48.54633 & 49.64503\end{array}$ $\begin{array}{lllllllllll}209 & 25.47222 & 32.70036 & 36.92855 & 39.9285 & 42.25544 & 44.15669 & 45.76417 & 47.15664 & 48.38488 & 49.48358\end{array}$ $\begin{array}{llllllllllll}210 & 25.31154 & 32.53968 & 36.76787 & 39.76782 & 42.09476 & 43.99601 & 45.60349 & 46.99595 & 48.2242 & 49.3229\end{array}$ $\begin{array}{lllllllllll}211 & 25.15162 & 32.37976 & 36.60795 & 39.6079 & 41.93484 & 43.83609 & 45.44357 & 46.83603 & 48.06428 & 49.16298\end{array}$ $\begin{array}{llllllllllll}212 & 24.99245 & 32.22059 & 36.44878 & 39.44873 & 41.77567 & 43.67692 & 45.28441 & 46.67687 & 47.90511 & 49.00381\end{array}$ $\begin{array}{llllllllllll}213 & 24.83404 & 32.06218 & 36.29037 & 39.29032 & 41.61726 & 43.51851 & 45.12599 & 46.51846 & 47.7467 & 48.8454\end{array}$ $\begin{array}{lllllllllll}214 & 24.67637 & 31.90451 & 36.1327 & 39.13265 & 41.45959 & 43.36084 & 44.96832 & 46.36078 & 47.58903 & 48.68773\end{array}$ $\begin{array}{llllllllllll}215 & 24.51943 & 31.74757 & 35.97576 & 38.97571 & 41.30265 & 43.2039 & 44.81138 & 46.20385 & 47.43209 & 48.53079\end{array}$ $\begin{array}{llllllllllll}216 & 24.36322 & 31.59136 & 35.81955 & 38.8195 & 41.14644 & 43.04769 & 44.65517 & 46.04764 & 47.27588 & 48.37458\end{array}$ $\begin{array}{lllllllllll}217 & 24.20773 & 31.43587 & 35.66406 & 38.66401 & 40.99095 & 42.8922 & 44.49968 & 45.89215 & 47.12039 & 48.21909\end{array}$ $\begin{array}{lllllllllll}218 & 24.05296 & 31.2811 & 35.50929 & 38.50924 & 40.83618 & 42.73743 & 44.34491 & 45.73738 & 46.96562 & 48.06432\end{array}$ $\begin{array}{llllllllllll}219 & 23.8989 & 31.12704 & 35.35523 & 38.35517 & 40.68212 & 42.58336 & 44.19085 & 45.58331 & 46.81155 & 47.91025\end{array}$ $\begin{array}{llllllllllll}220 & 23.74553 & 30.97367 & 35.20186 & 38.20181 & 40.52875 & 42.43 & 44.03749 & 45.42995 & 46.65819 & 47.75689\end{array}$ $\begin{array}{lllllllllll}221 & 23.59287 & 30.82101 & 35.0492 & 38.04915 & 40.37609 & 42.27734 & 43.88482 & 45.27728 & 46.50553 & 47.60422\end{array}$ $\begin{array}{llllllllllll}222 & 23.44089 & 30.66903 & 34.89722 & 37.89717 & 40.22411 & 42.12536 & 43.73284 & 45.12531 & 46.35355 & 47.45225\end{array}$ $\begin{array}{lllllllllll}223 & 23.2896 & 30.51773 & 34.74592 & 37.74587 & 40.07281 & 41.97406 & 43.58155 & 44.97401 & 46.20225 & 47.30095\end{array}$ $\begin{array}{lllllllllllll}224 & 23.13898 & 30.36712 & 34.59531 & 37.59526 & 39.9222 & 41.82345 & 43.43093 & 44.82339 & 46.05164 & 47.15033\end{array}$
$\begin{array}{llllllllllll}225 & 22.98903 & 30.21717 & 34.44536 & 37.44531 & 39.77225 & 41.6735 & 43.28098 & 44.67345 & 45.90169 & 47.00039\end{array}$ $\begin{array}{llllllllllll}226 & 22.83975 & 30.06789 & 34.29608 & 37.29603 & 39.62297 & 41.52422 & 43.1317 & 44.52417 & 45.75241 & 46.85111\end{array}$ $\begin{array}{lllllllllll}227 & 22.69113 & 29.91926 & 34.14746 & 37.1474 & 39.47434 & 41.37559 & 42.98308 & 44.37554 & 45.60378 & 46.70248\end{array}$ $\begin{array}{llllllllllll}228 & 22.54316 & 29.7713 & 33.99949 & 36.99943 & 39.32638 & 41.22762 & 42.83511 & 44.22757 & 45.45581 & 46.55451\end{array}$ $\begin{array}{llllllllllll}229 & 22.39583 & 29.62397 & 33.85216 & 36.85211 & 39.17905 & 41.0803 & 42.68779 & 44.08025 & 45.30849 & 46.40719\end{array}$ $\begin{array}{llllllllllll}230 & 22.24915 & 29.47729 & 33.70548 & 36.70543 & 39.03237 & 40.93362 & 42.54111 & 43.93357 & 45.16181 & 46.26051\end{array}$ $\begin{array}{llllllllllll}231 & 22.10311 & 29.33125 & 33.55944 & 36.55939 & 38.88633 & 40.78758 & 42.39506 & 43.78753 & 45.01577 & 46.11447\end{array}$ $\begin{array}{llllllllllll}232 & 21.9577 & 29.18584 & 33.41403 & 36.41398 & 38.74092 & 40.64217 & 42.24965 & 43.64211 & 44.87036 & 45.96906\end{array}$ $\begin{array}{llllllllllll}233 & 21.81291 & 29.04105 & 33.26924 & 36.26919 & 38.59613 & 40.49738 & 42.10486 & 43.49733 & 44.72557 & 45.82427\end{array}$ $\begin{array}{llllllllllll}234 & 21.66874 & 28.89688 & 33.12507 & 36.12502 & 38.45196 & 40.35321 & 41.96069 & 43.35316 & 44.5814 & 45.6801\end{array}$ $\begin{array}{llllllllllll}235 & 21.52519 & 28.75333 & 32.98152 & 35.98147 & 38.30841 & 40.20966 & 41.81714 & 43.20961 & 44.43785 & 45.53655\end{array}$
$\begin{array}{lllllllllll}236 & 21.38225 & 28.61039 & 32.83858 & 35.83853 & 38.16547 & 40.06672 & 41.6742 & 43.06666 & 44.29491 & 45.39361\end{array}$ $\begin{array}{llllllllllll}237 & 21.23991 & 28.46805 & 32.69624 & 35.69619 & 38.02313 & 39.92438 & 41.53186 & 42.92433 & 44.15257 & 45.25127\end{array}$ $\begin{array}{llllllllllll}238 & 21.09817 & 28.32631 & 32.5545 & 35.55445 & 37.88139 & 39.78264 & 41.39012 & 42.78259 & 44.01083 & 45.10953\end{array}$ $\begin{array}{llllllllllll}239 & 20.95703 & 28.18516 & 32.41335 & 35.4133 & 37.74024 & 39.64149 & 41.24898 & 42.64144 & 43.86968 & 44.96838\end{array}$ $\begin{array}{llllllllllll}240 & 20.81647 & 28.04461 & 32.2728 & 35.27275 & 37.59969 & 39.50094 & 41.10842 & 42.50089 & 43.72913 & 44.82783\end{array}$ $\begin{array}{llllllllllll}241 & 20.6765 & 27.90464 & 32.13283 & 35.13278 & 37.45972 & 39.36097 & 40.96845 & 42.36092 & 43.58916 & 44.68786\end{array}$ $\begin{array}{llllllllllll}242 & 20.53711 & 27.76525 & 31.99344 & 34.99339 & 37.32033 & 39.22158 & 40.82906 & 42.22152 & 43.44977 & 44.54847\end{array}$ $\begin{array}{llllllllllll}243 & 20.39829 & 27.62643 & 31.85462 & 34.85457 & 37.18151 & 39.08276 & 40.69024 & 42.08271 & 43.31095 & 44.40965\end{array}$ $\begin{array}{llllllllllll}244 & 20.26004 & 27.48818 & 31.71637 & 34.71632 & 37.04326 & 38.94451 & 40.552 & 41.94446 & 43.1727 & 44.2714\end{array}$ $\begin{array}{lllllllllll}245 & 20.12236 & 27.3505 & 31.57869 & 34.57864 & 36.90558 & 38.80683 & 40.41431 & 41.80678 & 43.03502 & 44.13372\end{array}$ $\begin{array}{llllllllllll}246 & 19.98524 & 27.21338 & 31.44157 & 34.44152 & 36.76846 & 38.66971 & 40.27719 & 41.66966 & 42.8979 & 43.9966\end{array}$ $\begin{array}{lllllllllll}247 & 19.84868 & 27.07682 & 31.30501 & 34.30496 & 36.6319 & 38.53315 & 40.14063 & 41.5331 & 42.76134 & 43.86004\end{array}$ $\begin{array}{llllllllllll}248 & 19.71267 & 26.94081 & 31.169 & 34.16894 & 36.49589 & 38.39713 & 40.00462 & 41.39708 & 42.62532 & 43.72402\end{array}$ $\begin{array}{llllllllllll}249 & 19.5772 & 26.80534 & 31.03353 & 34.03348 & 36.36042 & 38.26167 & 39.86915 & 41.26162 & 42.48986 & 43.58856\end{array}$ $\begin{array}{llllllllllll}250 & 19.44228 & 26.67042 & 30.89861 & 33.89856 & 36.2255 & 38.12675 & 39.73423 & 41.1267 & 42.35494 & 43.45364\end{array}$ $\begin{array}{llllllllllll}251 & 19.3079 & 26.53604 & 30.76423 & 33.76417 & 36.09111 & 37.99236 & 39.59985 & 40.99231 & 42.22055 & 43.31925\end{array}$ $\begin{array}{llllllllllll}252 & 19.17405 & 26.40219 & 30.63038 & 33.63032 & 35.95727 & 37.85851 & 39.466 & 40.85846 & 42.08671 & 43.1854\end{array}$ $\begin{array}{llllllllllll}253 & 19.04073 & 26.26887 & 30.49706 & 33.49701 & 35.82395 & 37.7252 & 39.33268 & 40.72514 & 41.95339 & 43.05209\end{array}$ $\begin{array}{llllllllllll}254 & 18.90794 & 26.13607 & 30.36426 & 33.36421 & 35.69115 & 37.5924 & 39.19989 & 40.59235 & 41.82059 & 42.91929\end{array}$ $\begin{array}{llllllllllll}255 & 18.77566 & 26.0038 & 30.23199 & 33.23194 & 35.55888 & 37.46013 & 39.06761 & 40.46008 & 41.68832 & 42.78702\end{array}$ $\begin{array}{llllllllllll}256 & 18.64391 & 25.87205 & 30.10024 & 33.10019 & 35.42713 & 37.32838 & 38.93586 & 40.32833 & 41.55657 & 42.65527\end{array}$ $\begin{array}{llllllllllll}257 & 18.51267 & 25.74081 & 29.969 & 32.96895 & 35.29589 & 37.19714 & 38.80462 & 40.19709 & 41.42533 & 42.52403\end{array}$ $\begin{array}{llllllllllll}258 & 18.38194 & 25.61008 & 29.83827 & 32.83822 & 35.16516 & 37.06641 & 38.67389 & 40.06636 & 41.2946 & 42.3933\end{array}$ $\begin{array}{llllllllllll}259 & 18.25172 & 25.47985 & 29.70804 & 32.70799 & 35.03493 & 36.93618 & 38.54367 & 39.93613 & 41.16437 & 42.26307\end{array}$ $\begin{array}{llllllllllll}260 & 18.12199 & 25.35013 & 29.57832 & 32.57827 & 34.90521 & 36.80646 & 38.41394 & 39.80641 & 41.03465 & 42.13335\end{array}$ $\begin{array}{llllllllllll}261 & 17.99277 & 25.22091 & 29.4491 & 32.44905 & 34.77599 & 36.67724 & 38.28472 & 39.67718 & 40.90543 & 42.00413\end{array}$ $\begin{array}{llllllllllll}262 & 17.86404 & 25.09218 & 29.32037 & 32.32032 & 34.64726 & 36.54851 & 38.15599 & 39.54845 & 40.7767 & 41.87539\end{array}$ $\begin{array}{llllllllllll}263 & 17.7358 & 24.96394 & 29.19213 & 32.19207 & 34.51902 & 36.42027 & 38.02775 & 39.42021 & 40.64846 & 41.74715\end{array}$ $\begin{array}{llllllllllll}264 & 17.60804 & 24.83618 & 29.06437 & 32.06432 & 34.39126 & 36.29251 & 37.89999 & 39.29246 & 40.5207 & 41.6194\end{array}$ $\begin{array}{llllllllllll}265 & 17.48077 & 24.70891 & 28.9371 & 31.93705 & 34.26399 & 36.16524 & 37.77272 & 39.16519 & 40.39343 & 41.49213\end{array}$ $\begin{array}{llllllllllll}266 & 17.35398 & 24.58212 & 28.81031 & 31.81026 & 34.1372 & 36.03845 & 37.64593 & 39.0384 & 40.26664 & 41.36534\end{array}$ $\begin{array}{llllllllllll}267 & 17.22767 & 24.45581 & 28.684 & 31.68394 & 34.01089 & 35.91213 & 37.51962 & 38.91208 & 40.14032 & 41.23902\end{array}$ $\begin{array}{lllllllllll}268 & 17.10182 & 24.32996 & 28.55815 & 31.5581 & 33.88504 & 35.78629 & 37.39377 & 38.78624 & 40.01448 & 41.11318\end{array}$ $\begin{array}{llllllllllll}269 & 16.97645 & 24.20459 & 28.43278 & 31.43273 & 33.75967 & 35.66092 & 37.2684 & 38.66087 & 39.88911 & 40.98781\end{array}$ $\begin{array}{llllllllllll}270 & 16.85154 & 24.07968 & 28.30787 & 31.30782 & 33.63476 & 35.53601 & 37.14349 & 38.53596 & 39.7642 & 40.8629\end{array}$ $\begin{array}{llllllllllll}271 & 16.72709 & 23.95523 & 28.18342 & 31.18337 & 33.51031 & 35.41156 & 37.01904 & 38.41151 & 39.63975 & 40.73845\end{array}$ $\begin{array}{llllllllllll}272 & 16.6031 & 23.83124 & 28.05943 & 31.05938 & 33.38632 & 35.28757 & 36.89505 & 38.28752 & 39.51576 & 40.61446\end{array}$ $\begin{array}{llllllllllll}273 & 16.47957 & 23.70771 & 27.9359 & 30.93585 & 33.26279 & 35.16404 & 36.77152 & 38.16399 & 39.39223 & 40.49093\end{array}$ $\begin{array}{llllllllllll}274 & 16.35649 & 23.58463 & 27.81282 & 30.81276 & 33.13971 & 35.04095 & 36.64844 & 38.0409 & 39.26914 & 40.36784\end{array}$ $\begin{array}{llllllllllll}275 & 16.23385 & 23.46199 & 27.69018 & 30.69013 & 33.01707 & 34.91832 & 36.5258 & 37.91827 & 39.14651 & 40.24521\end{array}$ $\begin{array}{llllllllllll}276 & 16.11166 & 23.3398 & 27.56799 & 30.56794 & 32.89488 & 34.79613 & 36.40362 & 37.79608 & 39.02432 & 40.12302\end{array}$ $\begin{array}{llllllllllll}277 & 15.98992 & 23.21806 & 27.44625 & 30.44619 & 32.77314 & 34.67438 & 36.28187 & 37.67433 & 38.90258 & 40.00127\end{array}$ $\begin{array}{llllllllllll}278 & 15.86861 & 23.09675 & 27.32494 & 30.32489 & 32.65183 & 34.55308 & 36.16056 & 37.55303 & 38.78127 & 39.87997\end{array}$ $\begin{array}{llllllllllll}279 & 15.74774 & 22.97588 & 27.20407 & 30.20401 & 32.53095 & 34.4322 & 36.03969 & 37.43215 & 38.66039 & 39.75909\end{array}$ $\begin{array}{llllllllllll}280 & 15.6273 & 22.85543 & 27.08363 & 30.08357 & 32.41051 & 34.31176 & 35.91925 & 37.31171 & 38.53995 & 39.63865\end{array}$ $\begin{array}{llllllllllll}281 & 15.50729 & 22.73542 & 26.96361 & 29.96356 & 32.2905 & 34.19175 & 35.79924 & 37.1917 & 38.41994 & 39.51864\end{array}$ $\begin{array}{llllllllllll}282 & 15.3877 & 22.61584 & 26.84403 & 29.84398 & 32.17092 & 34.07217 & 35.67965 & 37.07212 & 38.30036 & 39.39906\end{array}$ $\begin{array}{llllllllllll}283 & 15.26854 & 22.49668 & 26.72487 & 29.72482 & 32.05176 & 33.95301 & 35.56049 & 36.95296 & 38.1812 & 39.2799\end{array}$ $\begin{array}{llllllllllll}284 & 15.1498 & 22.37794 & 26.60613 & 29.60608 & 31.93302 & 33.83427 & 35.44175 & 36.83422 & 38.06246 & 39.16116\end{array}$ $\begin{array}{llllllllllll}285 & 15.03148 & 22.25961 & 26.4878 & 29.48775 & 31.81469 & 33.71594 & 35.32343 & 36.71589 & 37.94413 & 39.04283\end{array}$ $\begin{array}{llllllllllll}286 & 14.91357 & 22.14171 & 26.3699 & 29.36984 & 31.69678 & 33.59803 & 35.20552 & 36.59798 & 37.82622 & 38.92492\end{array}$ $\begin{array}{llllllllllll}287 & 14.79607 & 22.02421 & 26.2524 & 29.25235 & 31.57929 & 33.48054 & 35.08802 & 36.48049 & 37.70873 & 38.80743\end{array}$ $\begin{array}{llllllllllll}288 & 14.67898 & 21.90712 & 26.13531 & 29.13526 & 31.4622 & 33.36345 & 34.97093 & 36.3634 & 37.59164 & 38.69034\end{array}$ $\begin{array}{llllllllllll}289 & 14.5623 & 21.79044 & 26.01863 & 29.01857 & 31.34552 & 33.24676 & 34.85425 & 36.24671 & 37.47495 & 38.57365\end{array}$ $\begin{array}{llllllllllll}290 & 14.44602 & 21.67416 & 25.90235 & 28.90229 & 31.22924 & 33.13048 & 34.73797 & 36.13043 & 37.35867 & 38.45737\end{array}$ $\begin{array}{llllllllllll}291 & 14.33014 & 21.55828 & 25.78647 & 28.78642 & 31.11336 & 33.01461 & 34.62209 & 36.01455 & 37.2428 & 38.34149\end{array}$ $\begin{array}{llllllllllll}292 & 14.21466 & 21.44279 & 25.67098 & 28.67093 & 30.99787 & 32.89912 & 34.50661 & 35.89907 & 37.12731 & 38.22601\end{array}$ $\begin{array}{llllllllllll}293 & 14.09957 & 21.32771 & 25.5559 & 28.55585 & 30.88279 & 32.78404 & 34.39152 & 35.78398 & 37.01223 & 38.11093\end{array}$ $\begin{array}{llllllllllll}294 & 13.98487 & 21.21301 & 25.4412 & 28.44115 & 30.76809 & 32.66934 & 34.27682 & 35.66929 & 36.89753 & 37.99623\end{array}$ $\begin{array}{llllllllllll}295 & 13.87057 & 21.09871 & 25.3269 & 28.32684 & 30.65379 & 32.55503 & 34.16252 & 35.55498 & 36.78323 & 37.88192\end{array}$ $\begin{array}{llllllllllll}296 & 13.75665 & 20.98479 & 25.21298 & 28.21293 & 30.53987 & 32.44112 & 34.0486 & 35.44106 & 36.66931 & 37.76801\end{array}$ $\begin{array}{llllllllllll}297 & 13.64311 & 20.87125 & 25.09944 & 28.09939 & 30.42633 & 32.32758 & 33.93506 & 35.32753 & 36.55577 & 37.65447\end{array}$ $\begin{array}{llllllllllll}298 & 13.52996 & 20.7581 & 24.98629 & 27.98624 & 30.31318 & 32.21443 & 33.82191 & 35.21438 & 36.44262 & 37.54132\end{array}$ $\begin{array}{llllllllllll}299 & 13.41719 & 20.64533 & 24.87352 & 27.87346 & 30.20041 & 32.10165 & 33.70914 & 35.1016 & 36.32984 & 37.42854\end{array}$

55	60	65	70	75	80	85	90	95	
. 43503	59.34238	60.17707	60.94987	61.66932	62.34233	452	57057	13439	27
58.2316	59.13898	59.97367	60.74646	61.46592	62.13893	62.77112	63.36717	63.93098	87
58	8.9368	59.77148	60.54428	61.26374	61.93675	62.56894	63.16499	3.7288	69
57.82847	58.73583	59.57051	60.34331	61.06277	61.73577	62.36797	62.96402	63.52783	72
57.62869	58.53604	59.37073	60.14353	60.86299	61.53599	62.16819	62.76423	63.32805	93
57.43009	58.33744	59.17213	59.94493	60.66438	61.33739	61.96958	62.56563	63.12945	33
57.23265	58.14	58.97469	59.74749	60.46695	61.13995	5	19	201	63.46689
57.03636	57.9437	58.7	59.5512	60.27066	60.94367	61.57586	62.17191	72	
56.84122	57.7485	58.58326	59.35605	60.07551	60.74852	61.38071	76	57	
56.6	57.5	58.38923	59	59	0.	61.18669	61.78274	555	
56.4	57.36	58.	58.96	59	60.	60	3	62.15364	
56.	57.1698	58.0	58.	59	60	60	1	61.96183	
56.07	56.9	57	58.5	59.	59.	60.	61.20729	61.7711	
55.88209	56.78	57.6	58.396	59.	59.	60.	4	61.58145	
55	56.60	57.43	58.	58	59	60	60.82905	6	
55.50596	56.4133	57.248	58.0208	58.74026	59.41327	60.04546	60.64151	61.20532	21
55.31946	56.22	57.0615	57.8343	58.55376	59.22677	59.85896	60.45501	61.01882	371
55.	56.0413	56.87603	57.64883	58.36829	59.0413	59.67349	60.26954	60.83335	24
54.94954	55.85689	56.69158	57.46438	58.18383	58.85684	59.48903	60.08508	0.6489	1.18378
54.76609	55.67	56.50813	57.28093	58.00038	58.67339	59.30558	59.90163	60.46545	33
54.	55.4909	56.3256	57.098	57.8	58.4	59.1231	59.71918	0.28299	60.
54.	55.30	6.1	56.91	57.6	58.3	58.	59.537	60.1015	60.6364
54	55.	55.9	56.7	57.45596	58	58.76116	59.	9.9	60.45591
54.	54.	55	56	5	57	58	59.	59.	60
53.8	54.	55.60	56.37	57	57.7708	58.4030	58.99909	59.5629	60.
53.6859	54.5932	55.	56.	56.9201	57.5932	58.225	58.8214	59.38526	59.
53.50919	54.4165	55.2512	56.02403	56.74349	57.41649	58.04869	58.64473	59.20855	59.74343
53.3334	54.24076	55.07544	55.84824	56.5677	57.24071	57.8729	58.46895	59.03276	59.56765
53.15853	54.06589	54.90057	55.67337	56.39283	57.06583	57.69803	58.29408	58.85789	59.39277
52.98456	53.89192	54.7266	55.4994	56.21886	56.89186	57.52406	58.12011	58.68392	59.21881
52.81149	53.71884	54.55353	55.32632	56.04578	56.71879	57.35098	57.94703	58.51084	59.04573
52.6393	53.54665	54.38134	55.15413	55.87359	56.5466	57.17879	57.77484	58.33865	58.87354
52.46	53.	54.21002	54.98282	55.70228	56.37529	57.00748	57.60353	58.16734	58.70223

$\begin{array}{llllllllll}52.29754 & 53.20489 & 54.03958 & 54.81238 & 55.53183 & 56.20484 & 56.83703 & 57.43308 & 57.9969 & 58.53178\end{array}$ $\begin{array}{lllllllllll}52.12795 & 53.0353 & 53.86999 & 54.64279 & 55.36225 & 56.03525 & 56.66745 & 57.26349 & 57.82731 & 58.36219\end{array}$ $\begin{array}{lllllllllll}51.95921 & 52.86657 & 53.70125 & 54.47405 & 55.19351 & 55.86652 & 56.49871 & 57.09476 & 57.65857 & 58.19346\end{array}$ $\begin{array}{lllllllllll}51.79132 & 52.69867 & 53.53336 & 54.30616 & 55.02561 & 55.69862 & 56.33081 & 56.92686 & 57.49068 & 58.02556\end{array}$ $\begin{array}{llllllllll}51.62425 & 52.53161 & 53.36629 & 54.13909 & 54.85855 & 55.53156 & 56.16375 & 56.7598 & 57.32361 & 57.8585\end{array}$ $\begin{array}{lllllllllll}51.45802 & 52.36537 & 53.20006 & 53.97286 & 54.69231 & 55.36532 & 55.99751 & 56.59356 & 57.15738 & 57.69226\end{array}$ $\begin{array}{llllllllll}51.2926 & 52.19995 & 53.03464 & 53.80744 & 54.52689 & 55.1999 & 55.83209 & 56.42814 & 56.99195 & 57.52684\end{array}$ $\begin{array}{lllllllllll}51.12799 & 52.03534 & 52.87003 & 53.64282 & 54.36228 & 55.03529 & 55.66748 & 56.26353 & 56.82734 & 57.36223\end{array}$ $\begin{array}{lllllllllll}50.96417 & 51.87153 & 52.70621 & 53.47901 & 54.19847 & 54.87148 & 55.50367 & 56.09972 & 56.66353 & 57.19842\end{array}$ $\begin{array}{lllllllllll}50.80116 & 51.70851 & 52.5432 & 53.316 & 54.03545 & 54.70846 & 55.34065 & 55.9367 & 56.50052 & 57.0354\end{array}$ $\begin{array}{lllllllllll}50.63893 & 51.54628 & 52.38097 & 53.15376 & 53.87322 & 54.54623 & 55.17842 & 55.77447 & 56.33828 & 56.87317\end{array}$ $\begin{array}{lllllllllll}50.47747 & 51.38483 & 52.21951 & 52.99231 & 53.71177 & 54.38478 & 55.01697 & 55.61302 & 56.17683 & 56.71172\end{array}$ $\begin{array}{lllllllllll}50.31679 & 51.22414 & 52.05883 & 52.83163 & 53.55109 & 54.22409 & 54.85629 & 55.45233 & 56.01615 & 56.55103\end{array}$ $\begin{array}{lllllllllll}50.15687 & 51.06422 & 51.89891 & 52.67171 & 53.39117 & 54.06417 & 54.69637 & 55.29241 & 55.85623 & 56.39111\end{array}$ $\begin{array}{lllllllllll}49.99771 & 50.90506 & 51.73975 & 52.51254 & 53.232 & 53.90501 & 54.5372 & 55.13325 & 55.69706 & 56.23195\end{array}$ $\begin{array}{lllllllllll}49.83929 & 50.74665 & 51.58133 & 52.35413 & 53.07359 & 53.7466 & 54.37879 & 54.97484 & 55.53865 & 56.07354\end{array}$ $\begin{array}{lllllllllll}49.68162 & 50.58897 & 51.42366 & 52.19646 & 52.91592 & 53.58892 & 54.22112 & 54.81716 & 55.38098 & 55.91586\end{array}$ $\begin{array}{lllllllllll}49.52468 & 50.43204 & 51.26672 & 52.03952 & 52.75898 & 53.43199 & 54.06418 & 54.66023 & 55.22404 & 55.75893\end{array}$ $\begin{array}{lllllllllll}49.36847 & 50.27583 & 51.11051 & 51.88331 & 52.60277 & 53.27578 & 53.90797 & 54.50402 & 55.06783 & 55.60272\end{array}$ $\begin{array}{lllllllllll}49.21299 & 50.12034 & 50.95503 & 51.72782 & 52.44728 & 53.12029 & 53.75248 & 54.34853 & 54.91234 & 55.44723\end{array}$ $\begin{array}{lllllllllll}49.05821 & 49.96557 & 50.80025 & 51.57305 & 52.29251 & 52.96552 & 53.59771 & 54.19376 & 54.75757 & 55.29246\end{array}$ $\begin{array}{lllllllllll}48.90415 & 49.8115 & 50.64619 & 51.41899 & 52.13844 & 52.81145 & 53.44365 & 54.03969 & 54.60351 & 55.13839\end{array}$ $\begin{array}{lllllllllll}48.75079 & 49.65814 & 50.49283 & 51.26562 & 51.98508 & 52.65809 & 53.29028 & 53.88633 & 54.45014 & 54.98503\end{array}$ $\begin{array}{lllllllllll}48.59812 & 49.50547 & 50.34016 & 51.11296 & 51.83242 & 52.50542 & 53.13762 & 53.73366 & 54.29748 & 54.83236\end{array}$ $\begin{array}{llllllllllll}48.44614 & 49.3535 & 50.18818 & 50.96098 & 51.68044 & 52.35345 & 52.98564 & 53.58169 & 54.1455 & 54.68039\end{array}$ $\begin{array}{lllllllllll}48.29485 & 49.2022 & 50.03689 & 50.80969 & 51.52914 & 52.20215 & 52.83434 & 53.43039 & 53.9942 & 54.52909\end{array}$ $\begin{array}{llllllllllll}48.14423 & 49.05158 & 49.88627 & 50.65907 & 51.37853 & 52.05153 & 52.68373 & 53.27977 & 53.84359 & 54.37847\end{array}$
$\begin{array}{llllllllll}47.99428 & 48.90164 & 49.73632 & 50.50912 & 51.22858 & 51.90159 & 52.53378 & 53.12983 & 53.69364 & 54.22853\end{array}$ $\begin{array}{llllllllll}47.845 & 48.75236 & 49.58704 & 50.35984 & 51.0793 & 51.7523 & 52.3845 & 52.98055 & 53.54436 & 54.07925\end{array}$ $\begin{array}{lllllllllll}47.69638 & 48.60373 & 49.43842 & 50.21122 & 50.93067 & 51.60368 & 52.23587 & 52.83192 & 53.39574 & 53.93062\end{array}$ $\begin{array}{lllllllllll}47.54841 & 48.45576 & 49.29045 & 50.06325 & 50.7827 & 51.45571 & 52.08791 & 52.68395 & 53.24777 & 53.78265\end{array}$ $\begin{array}{lllllllllll}47.40109 & 48.30844 & 49.14313 & 49.91592 & 50.63538 & 51.30839 & 51.94058 & 52.53663 & 53.10044 & 53.63533\end{array}$ $\begin{array}{lllllllllll}47.25441 & 48.16176 & 48.99645 & 49.76924 & 50.4887 & 51.16171 & 51.7939 & 52.38995 & 52.95376 & 53.48865\end{array}$ $\begin{array}{lllllllllll}47.10836 & 48.01572 & 48.8504 & 49.6232 & 50.34266 & 51.01567 & 51.64786 & 52.24391 & 52.80772 & 53.34261\end{array}$ $\begin{array}{llllllllll}46.96295 & 47.8703 & 48.70499 & 49.47779 & 50.19725 & 50.87025 & 51.50245 & 52.0985 & 52.66231 & 53.19719\end{array}$ $\begin{array}{lllllllllll}46.81816 & 47.72552 & 48.5602 & 49.333 & 50.05246 & 50.72547 & 51.35766 & 51.95371 & 52.51752 & 53.05241\end{array}$ $\begin{array}{llllllllll}46.674 & 47.58135 & 48.41604 & 49.18883 & 49.90829 & 50.5813 & 51.21349 & 51.80954 & 52.37335 & 52.90824\end{array}$ $\begin{array}{lllllllllll}46.53044 & 47.4378 & 48.27248 & 49.04528 & 49.76474 & 50.43775 & 51.06994 & 51.66599 & 52.2298 & 52.76469\end{array}$
$\begin{array}{lllllllllll}46.3875 & 47.29486 & 48.12954 & 48.90234 & 49.6218 & 50.2948 & 50.927 & 51.52305 & 52.08686 & 52.62174\end{array}$ $\begin{array}{lllllllllll}46.24516 & 47.15252 & 47.9872 & 48.76 & 49.47946 & 50.15247 & 50.78466 & 51.38071 & 51.94452 & 52.47941\end{array}$ $\begin{array}{lllllllllll}46.10342 & 47.01078 & 47.84546 & 48.61826 & 49.33772 & 50.01073 & 50.64292 & 51.23897 & 51.80278 & 52.33767\end{array}$ $\begin{array}{lllllllllll}45.96228 & 46.86963 & 47.70432 & 48.47712 & 49.19657 & 49.86958 & 50.50177 & 51.09782 & 51.66164 & 52.19652\end{array}$ $\begin{array}{lllllllllll}45.82172 & 46.72908 & 47.56376 & 48.33656 & 49.05602 & 49.72903 & 50.36122 & 50.95727 & 51.52108 & 52.05597\end{array}$ $\begin{array}{lllllllllll}45.68175 & 46.58911 & 47.42379 & 48.19659 & 48.91605 & 49.58905 & 50.22125 & 50.8173 & 51.38111 & 51.916\end{array}$ $\begin{array}{lllllllllll}45.54236 & 46.44971 & 47.2844 & 48.0572 & 48.77666 & 49.44966 & 50.08186 & 50.6779 & 51.24172 & 51.7766\end{array}$ $\begin{array}{lllllllllll}45.40354 & 46.3109 & 47.14558 & 47.91838 & 48.63784 & 49.31085 & 49.94304 & 50.53909 & 51.1029 & 51.63779\end{array}$ $\begin{array}{llllllllll}45.2653 & 46.17265 & 47.00734 & 47.78013 & 48.49959 & 49.1726 & 49.80479 & 50.40084 & 50.96465 & 51.49954\end{array}$ $\begin{array}{lllllllllll}45.12762 & 46.03497 & 46.86966 & 47.64245 & 48.36191 & 49.03492 & 49.66711 & 50.26316 & 50.82697 & 51.36186\end{array}$ $\begin{array}{lllllllllll}44.99049 & 45.89785 & 46.73253 & 47.50533 & 48.22479 & 48.8978 & 49.52999 & 50.12604 & 50.68985 & 51.22474\end{array}$ $\begin{array}{lllllllllll}44.85393 & 45.76129 & 46.59597 & 47.36877 & 48.08823 & 48.76123 & 49.39343 & 49.98948 & 50.55329 & 51.08818\end{array}$ $\begin{array}{lllllllllll}44.71792 & 45.62527 & 46.45996 & 47.23276 & 47.95221 & 48.62522 & 49.25742 & 49.85346 & 50.41728 & 50.95216\end{array}$ $\begin{array}{lllllllllll}44.58245 & 45.48981 & 46.32449 & 47.09729 & 47.81675 & 48.48976 & 49.12195 & 49.718 & 50.28181 & 50.8167\end{array}$ $\begin{array}{llllllllll}44.44753 & 45.35489 & 46.18957 & 46.96237 & 47.68183 & 48.35483 & 48.98703 & 49.58308 & 50.14689 & 50.68178\end{array}$ $\begin{array}{lllllllllll}44.31315 & 45.2205 & 46.05519 & 46.82799 & 47.54744 & 48.22045 & 48.85265 & 49.44869 & 50.01251 & 50.54739\end{array}$ $\begin{array}{lllllllllll}44.1793 & 45.08665 & 45.92134 & 46.69414 & 47.41359 & 48.0866 & 48.7188 & 49.31484 & 49.87866 & 50.41354\end{array}$ $\begin{array}{llllllllll}44.04598 & 44.95333 & 45.78802 & 46.56082 & 47.28028 & 47.95328 & 48.58548 & 49.18152 & 49.74534 & 50.28022\end{array}$ $\begin{array}{lllllllllll}43.91319 & 44.82054 & 45.65523 & 46.42802 & 47.14748 & 47.82049 & 48.45268 & 49.04873 & 49.61254 & 50.14743\end{array}$ $\begin{array}{lllllllllll}43.78092 & 44.68827 & 45.52296 & 46.29575 & 47.01521 & 47.68822 & 48.32041 & 48.91646 & 49.48027 & 50.01516\end{array}$ $\begin{array}{llllllllll}43.64916 & 44.55652 & 45.3912 & 46.164 & 46.88346 & 47.55647 & 48.18866 & 48.78471 & 49.34852 & 49.88341\end{array}$ $\begin{array}{lllllllllll}43.51792 & 44.42528 & 45.25996 & 46.03276 & 46.75222 & 47.42523 & 48.05742 & 48.65347 & 49.21728 & 49.75217\end{array}$ $\begin{array}{llllllllll}43.38719 & 44.29455 & 45.12923 & 45.90203 & 46.62149 & 47.2945 & 47.92669 & 48.52274 & 49.08655 & 49.62144\end{array}$ $\begin{array}{lllllllllll}43.25697 & 44.16432 & 44.99901 & 45.77181 & 46.49126 & 47.16427 & 47.79646 & 48.39251 & 48.95633 & 49.49121\end{array}$ $\begin{array}{lllllllllll}43.12724 & 44.0346 & 44.86928 & 45.64208 & 46.36154 & 47.03455 & 47.66674 & 48.26279 & 48.8266 & 49.36149\end{array}$ $\begin{array}{lllllllllll}42.99802 & 43.90537 & 44.74006 & 45.51286 & 46.23232 & 46.90532 & 47.53752 & 48.13356 & 48.69738 & 49.23226\end{array}$ $\begin{array}{lllllllllll}42.86929 & 43.77664 & 44.61133 & 45.38413 & 46.10359 & 46.77659 & 47.40879 & 48.00483 & 48.56865 & 49.10353\end{array}$ $\begin{array}{llllllllll}42.74105 & 43.6484 & 44.48309 & 45.25589 & 45.97534 & 46.64835 & 47.28055 & 47.87659 & 48.44041 & 48.97529\end{array}$ $\begin{array}{lllllllllll}42.6133 & 43.52065 & 44.35534 & 45.12813 & 45.84759 & 46.5206 & 47.15279 & 47.74884 & 48.31265 & 48.84754\end{array}$ $\begin{array}{lllllllllll}42.48603 & 43.39338 & 44.22807 & 45.00086 & 45.72032 & 46.39333 & 47.02552 & 47.62157 & 48.18538 & 48.72027\end{array}$ $\begin{array}{lllllllllll}42.35923 & 43.26659 & 44.10127 & 44.87407 & 45.59353 & 46.26654 & 46.89873 & 47.49478 & 48.05859 & 48.59348\end{array}$ $\begin{array}{lllllllllll}42.23292 & 43.14027 & 43.97496 & 44.74776 & 45.46721 & 46.14022 & 46.77242 & 47.36846 & 47.93228 & 48.46716\end{array}$ $\begin{array}{lllllllllll}42.10708 & 43.01443 & 43.84912 & 44.62191 & 45.34137 & 46.01438 & 46.64657 & 47.24262 & 47.80643 & 48.34132\end{array}$ $\begin{array}{llllllllll}41.9817 & 42.88906 & 43.72374 & 44.49654 & 45.216 & 45.889 & 46.5212 & 47.11725 & 47.68106 & 48.21595\end{array}$ $\begin{array}{lllllllllll}41.85679 & 42.76415 & 43.59883 & 44.37163 & 45.09109 & 45.7641 & 46.39629 & 46.99234 & 47.55615 & 48.09104\end{array}$ $\begin{array}{lllllllllll}41.73234 & 42.6397 & 43.47438 & 44.24718 & 44.96664 & 45.63965 & 46.27184 & 46.86789 & 47.4317 & 47.96659\end{array}$ $\begin{array}{lllllllllll}41.60836 & 42.51571 & 43.3504 & 44.12319 & 44.84265 & 45.51566 & 46.14785 & 46.7439 & 47.30771 & 47.8426\end{array}$ $\begin{array}{lllllllllll}41.48482 & 42.39218 & 43.22686 & 43.99966 & 44.71912 & 45.39212 & 46.02432 & 46.62037 & 47.18418 & 47.71907\end{array}$ $\begin{array}{lllllllllll}41.36174 & 42.26909 & 43.10378 & 43.87658 & 44.59603 & 45.26904 & 45.90124 & 46.49728 & 47.0611 & 47.59598\end{array}$ $\begin{array}{llllllllll}41.2391 & 42.14646 & 42.98114 & 43.75394 & 44.4734 & 45.14641 & 45.7786 & 46.37465 & 46.93846 & 47.47335\end{array}$ $\begin{array}{llllllllllll}41.11692 & 42.02427 & 42.85896 & 43.63175 & 44.35121 & 45.02422 & 45.65641 & 46.25246 & 46.81627 & 47.35116\end{array}$ $\begin{array}{lllllllllll}40.99517 & 41.90252 & 42.73721 & 43.51001 & 44.22946 & 44.90247 & 45.53467 & 46.13071 & 46.69453 & 47.22941\end{array}$ $\begin{array}{llllllllll}40.87386 & 41.78122 & 42.6159 & 43.3887 & 44.10816 & 44.78116 & 45.41336 & 46.00941 & 46.57322 & 47.10811\end{array}$ $\begin{array}{llllllllll}40.75299 & 41.66034 & 42.49503 & 43.26783 & 43.98728 & 44.66029 & 45.29249 & 45.88853 & 46.45235 & 46.98723\end{array}$ $\begin{array}{lllllllllll}40.63255 & 41.5399 & 42.37459 & 43.14739 & 43.86684 & 44.53985 & 45.17204 & 45.76809 & 46.33191 & 46.86679\end{array}$ $\begin{array}{llllllllll}40.51254 & 41.41989 & 42.25458 & 43.02738 & 43.74683 & 44.41984 & 45.05203 & 45.64808 & 46.21189 & 46.74678\end{array}$ $\begin{array}{lllllllllll}40.39295 & 41.30031 & 42.13499 & 42.90779 & 43.62725 & 44.30026 & 44.93245 & 45.5285 & 46.09231 & 46.6272\end{array}$ $\begin{array}{lllllllllll}40.27379 & 41.18115 & 42.01583 & 42.78863 & 43.50809 & 44.18109 & 44.81329 & 45.40934 & 45.97315 & 46.50804\end{array}$ $\begin{array}{lllllllllll}40.15505 & 41.06241 & 41.89709 & 42.66989 & 43.38935 & 44.06235 & 44.69455 & 45.2906 & 45.85441 & 46.38929\end{array}$ $\begin{array}{lllllllllll}40.03673 & 40.94408 & 41.77877 & 42.55157 & 43.27102 & 43.94403 & 44.57622 & 45.17227 & 45.73608 & 46.27097\end{array}$ $\begin{array}{lllllllllll}39.91882 & 40.82617 & 41.66086 & 42.43366 & 43.15311 & 43.82612 & 44.45831 & 45.05436 & 45.61818 & 46.15306\end{array}$ $\begin{array}{llllllllll}39.80132 & 40.70868 & 41.54336 & 42.31616 & 43.03562 & 43.70862 & 44.34082 & 44.93687 & 45.50068 & 46.03556\end{array}$ $\begin{array}{lllllllllll}39.68423 & 40.59159 & 41.42627 & 42.19907 & 42.91853 & 43.59154 & 44.22373 & 44.81978 & 45.38359 & 45.91848\end{array}$ $\begin{array}{lllllllllll}39.56755 & 40.4749 & 41.30959 & 42.08239 & 42.80184 & 43.47485 & 44.10705 & 44.70309 & 45.26691 & 45.80179\end{array}$ $\begin{array}{lllllllllll}39.45127 & 40.35862 & 41.19331 & 41.96611 & 42.68556 & 43.35857 & 43.99077 & 44.58681 & 45.15063 & 45.68551\end{array}$ $\begin{array}{llllllllll}39.33539 & 40.24274 & 41.07743 & 41.85023 & 42.56968 & 43.24269 & 43.87489 & 44.47093 & 45.03475 & 45.56963\end{array}$ $\begin{array}{llllllllll}39.21991 & 40.12726 & 40.96195 & 41.73475 & 42.4542 & 43.12721 & 43.7594 & 44.35545 & 44.91926 & 45.45415\end{array}$ $\begin{array}{lllllllllll}39.10482 & 40.01217 & 40.84686 & 41.61966 & 42.33912 & 43.01212 & 43.64432 & 44.24036 & 44.80418 & 45.33906\end{array}$ $\begin{array}{lllllllllll}38.99012 & 39.89748 & 40.73216 & 41.50496 & 42.22442 & 42.89743 & 43.52962 & 44.12567 & 44.68948 & 45.22437\end{array}$ $\begin{array}{lllllllllll}38.87582 & 39.78317 & 40.61786 & 41.39066 & 42.11011 & 42.78312 & 43.41532 & 44.01136 & 44.57518 & 45.11006\end{array}$ $\begin{array}{llllllllll}38.7619 & 39.66925 & 40.50394 & 41.27674 & 41.9962 & 42.6692 & 43.3014 & 43.89744 & 44.46126 & 44.99614\end{array}$ $\begin{array}{llllllllll}38.64837 & 39.55572 & 40.39041 & 41.1632 & 41.88266 & 42.55567 & 43.18786 & 43.78391 & 44.34772 & 44.88261\end{array}$ $\begin{array}{llllllllll}38.53521 & 39.44257 & 40.27725 & 41.05005 & 41.76951 & 42.44252 & 43.07471 & 43.67076 & 44.23457 & 44.76946\end{array}$ $\begin{array}{lllllllllll}38.42244 & 39.32979 & 40.16448 & 40.93728 & 41.65673 & 42.32974 & 42.96194 & 43.55798 & 44.1218 & 44.65668\end{array}$

Length/Wis	5	10	15	20	25	30	35	40	45	50
300	13.30479	20.53293	24.76112	27.76107	30.08801	31.98926	33.59674	34.98921	36.21745	37.31615
301	13.19277	20.4209	24.64909	27.64904	29.97598	31.87723	33.48472	34.87718	36.10542	37.20412
302	13.08111	20.30925	24.53744	27.53739	29.86433	31.76558	33.37306	34.76553	35.99377	37.09247
303	12.96983	20.19797	24.42616	27.42611	29.75305	31.6543	33.26178	34.65425	35.88249	36.98119
304	12.85892	20.08705	24.31524	27.31519	29.64213	31.54338	33.15087	34.54333	35.77157	36.87027
305	12.74836	19.9765	24.20469	27.20464	29.53158	31.43283	33.04031	34.43278	35.66102	36.75972
306	12.63817	19.86631	24.0945	27.09445	29.42139	31.32264	32.93012	34.32259	35.55083	36.64953
307	12.52834	19.75648	23.98467	26.98462	29.31156	31.21281	32.82029	34.21276	35.441	36.5397
308	12.41887	19.64701	23.8752	26.87515	29.20209	31.10334	32.71082	34.10329	35.33153	36.43023
309	12.30975	19.53789	23.76608	26.76603	29.09297	30.99422	32.6017	33.99417	35.22241	36.32111
310	12.20099	19.42912	23.65731	26.65726	28.9842	30.88545	32.49294	33.8854	35.11364	36.21234
311	12.09257	19.32071	23.5489	26.54885	28.87579	30.77704	32.38452	33.77699	35.00523	36.10393
312	11.9845	19.21264	23.44083	26.44078	28.76772	30.66897	32.27645	33.66892	34.89716	35.99586
313	11.87678	19.10492	23.33311	26.33306	28.66	30.56125	32.16873	33.5612	34.78944	35.88814
314	11.7694	18.99754	23.22573	26.22568	28.55262	30.45387	32.06135	33.45382	34.68206	35.78076
315	11.66237	18.8905	23.11869	26.11864	28.44558	30.34683	31.95432	33.34678	34.57502	35.67372
316	11.55567	18.78381	23.012	26.01195	28.33889	30.24014	31.84762	33.24008	34.46833	35.56703
317	11.44931	18.67745	22.90564	25.90559	28.23253	30.13378	31.74126	33.13372	34.36197	35.46067
318	11.34328	18.57142	22.79961	25.79956	28.1265	30.02775	31.63523	33.0277	34.25594	35.35464
319	11.23759	18.46573	22.69392	25.69387	28.02081	29.92206	31.52954	32.92201	34.15025	35.24895
320	11.13223	18.36037	22.58856	25.58851	27.91545	29.8167	31.42418	32.81665	34.04489	35.14359
321	11.0272	18.25533	22.48352	25.48347	27.81041	29.71166	31.31915	32.71161	33.93985	35.03855
322	10.92249	18.15063	22.37882	25.37877	27.70571	29.60696	31.21444	32.60691	33.83515	34.93385
323	10.81811	18.04625	22.27444	25.27439	27.60133	29.50258	31.11006	32.50252	33.73077	34.82947
324	10.71405	17.94219	22.17038	25.17033	27.49727	29.39852	31.006	32.39847	33.62671	34.72541
325	10.61031	17.83845	22.06664	25.06659	27.39353	29.29478	30.90226	32.29473	33.52297	34.62167
326	10.50689	17.73503	21.96322	24.96317	27.29011	29.19136	30.79884	32.19131	33.41955	34.51825
327	10.40379	17.63193	21.86012	24.86007	27.18701	29.08826	30.69574	32.08821	33.31645	34.41515
328	10.301	17.52914	21.75733	24.75728	27.08422	28.98547	30.59295	31.98542	33.21366	34.31236
329	10.19853	17.42667	21.65486	24.6548	26.98175	28.88299	30.49048	31.88294	33.11118	34.20988
330	10.09636	17.3245	21.55269	24.55264	26.87958	28.78083	30.38831	31.78078	33.00902	34.10772
331	9.994508	17.22265	21.45084	24.45079	26.77773	28.67898	30.28646	31.67892	32.90717	34.00587
332	9.89296	17.1211	21.34929	24.34924	26.67618	28.57743	30.18491	31.57738	32.80562	33.90432

$\begin{array}{lllllllllll}333 & 9.791718 & 17.01986 & 21.24805 & 24.248 & 26.57494 & 28.47619 & 30.08367 & 31.47613 & 32.70438 & 33.80308\end{array}$ $\begin{array}{llllllllllll}334 & 9.690779 & 16.91892 & 21.14711 & 24.14706 & 26.474 & 28.37525 & 29.98273 & 31.3752 & 32.60344 & 33.70214\end{array}$ $\begin{array}{llllllllllll}335 & 9.590142 & 16.81828 & 21.04647 & 24.04642 & 26.37336 & 28.27461 & 29.88209 & 31.27456 & 32.5028 & 33.6015\end{array}$ $\begin{array}{llllllllllll}336 & 9.489806 & 16.71794 & 20.94613 & 23.94608 & 26.27302 & 28.17427 & 29.78176 & 31.17422 & 32.40246 & 33.50116\end{array}$ $\begin{array}{lllllllllll}337 & 9.389767 & 16.61791 & 20.8461 & 23.84604 & 26.17299 & 28.07423 & 29.68172 & 31.07418 & 32.30242 & 33.40112\end{array}$ $\begin{array}{llllllllllll}338 & 9.290025 & 16.51816 & 20.74635 & 23.7463 & 26.07324 & 27.97449 & 29.58198 & 30.97444 & 32.20268 & 33.30138\end{array}$ $\begin{array}{lllllllllll}339 & 9.190577 & 16.41872 & 20.64691 & 23.64685 & 25.9738 & 27.87504 & 29.48253 & 30.87499 & 32.10323 & 33.20193\end{array}$ $\begin{array}{llllllllllll}340 & 9.091422 & 16.31956 & 20.54775 & 23.5477 & 25.87464 & 27.77589 & 29.38337 & 30.77584 & 32.00408 & 33.10278\end{array}$ $\begin{array}{lllllllllll}341 & 8.992559 & 16.2207 & 20.44889 & 23.44884 & 25.77578 & 27.67703 & 29.28451 & 30.67698 & 31.90522 & 33.00392\end{array}$ $\begin{array}{lllllllllll}342 & 8.893985 & 16.12212 & 20.35031 & 23.35026 & 25.6772 & 27.57845 & 29.18594 & 30.5784 & 31.80664 & 32.90534\end{array}$ $\begin{array}{lllllllllll}343 & 8.795699 & 16.02384 & 20.25203 & 23.25198 & 25.57892 & 27.48017 & 29.08765 & 30.48011 & 31.70836 & 32.80706\end{array}$ $\begin{array}{llllllllllll}344 & 8.697698 & 15.92584 & 20.15403 & 23.15398 & 25.48092 & 27.38217 & 28.98965 & 30.38211 & 31.61036 & 32.70906\end{array}$ $\begin{array}{llllllllllll}345 & 8.599983 & 15.82812 & 20.05631 & 23.05626 & 25.3832 & 27.28445 & 28.89193 & 30.2844 & 31.51264 & 32.61134\end{array}$ $\begin{array}{lllllllllll}346 & 8.50255 & 15.73069 & 19.95888 & 22.95883 & 25.28577 & 27.18702 & 28.7945 & 30.18697 & 31.41521 & 32.51391\end{array}$ $\begin{array}{llllllllllll}347 & 8.405398 & 15.63354 & 19.86173 & 22.86168 & 25.18862 & 27.08987 & 28.69735 & 30.08981 & 31.31806 & 32.41676\end{array}$ $\begin{array}{llllllllllll}348 & 8.308526 & 15.53667 & 19.76486 & 22.7648 & 25.09175 & 26.99299 & 28.60048 & 29.99294 & 31.22118 & 32.31988\end{array}$ $\begin{array}{lllllllllll}349 & 8.211932 & 15.44007 & 19.66826 & 22.66821 & 24.99515 & 26.8964 & 28.50388 & 29.89635 & 31.12459 & 32.22329\end{array}$ $\begin{array}{llllllllllll}350 & 8.115615 & 15.34375 & 19.57194 & 22.57189 & 24.89883 & 26.80008 & 28.40757 & 29.80003 & 31.02827 & 32.12697\end{array}$ $\begin{array}{llllllllllll}351 & 8.019572 & 15.24771 & 19.4759 & 22.47585 & 24.80279 & 26.70404 & 28.31152 & 29.70399 & 30.93223 & 32.03093\end{array}$ $\begin{array}{llllllllllll}352 & 7.923802 & 15.15194 & 19.38013 & 22.38008 & 24.70702 & 26.60827 & 28.21575 & 29.60822 & 30.83646 & 31.93516\end{array}$ $\begin{array}{lllllllllllll}353 & 7.828304 & 15.05644 & 19.28463 & 22.28458 & 24.61152 & 26.51277 & 28.12026 & 29.51272 & 30.74096 & 31.83966\end{array}$ $\begin{array}{lllllllllll}354 & 7.733077 & 14.96122 & 19.18941 & 22.18935 & 24.5163 & 26.41754 & 28.02503 & 29.41749 & 30.64573 & 31.74443\end{array}$ $\begin{array}{llllllllllll}355 & 7.638117 & 14.86626 & 19.09445 & 22.0944 & 24.42134 & 26.32259 & 27.93007 & 29.32253 & 30.55078 & 31.64947\end{array}$ $\begin{array}{lllllllllll}356 & 7.543425 & 14.77156 & 18.99975 & 21.9997 & 24.32664 & 26.22789 & 27.83538 & 29.22784 & 30.45608 & 31.55478\end{array}$ $\begin{array}{llllllllllll}357 & 7.448999 & 14.67714 & 18.90533 & 21.90528 & 24.23222 & 26.13347 & 27.74095 & 29.13342 & 30.36166 & 31.46036\end{array}$ $\begin{array}{llllllllllll}358 & 7.354837 & 14.58298 & 18.81117 & 21.81111 & 24.13806 & 26.0393 & 27.64679 & 29.03925 & 30.26749 & 31.36619\end{array}$ $\begin{array}{lllllllllllll}359 & 7.260937 & 14.48908 & 18.71727 & 21.71721 & 24.04416 & 25.9454 & 27.55289 & 28.94535 & 30.17359 & 31.27229\end{array}$

360	7.167299	14.39544	18.	21.62358	23.95052	25	27.45925	28.85171		66
361	7.07392	14.30206	18.53025	21.5302	23.85714	25.75839	27.36587	28.75834	29.98658	31.08528
362	6.980799	14.20894	18.43713	21.43708	23.76402	25.66527	27.27275	28.66522	29.89346	30.99216
363	6.887936	14.11607	18.34426	21.34421	23.67115	25.5724	27.17989	28.57235	29.80059	30.89929
364	6.795328	14.02347	18.25166	21.25161	23.57855	25.4798	27.08728	28.47974	29.70799	30.80669
365	6.702974	13.93111	18.1593	21.15925	23.48619	25.38744	26.99492	28.38739	29.61563	30.71433
366	6.610873	13.83901	18.0672	21.06715	23.39409	25.29534	26.90282	28.29529	29.52353	30.62223
367	6.519023	13.74716	17.97535	20.9753	23.30224	25.20349	26.81097	28.20344	29.43168	30.53038
368	6.427423	13	17	20	23.21064	25.11189	26.71937	28.11184	29.34008	30.43878
369	6.	1	17.7924	20	23.11929	25	26.62802	28.02049	29.24873	30.34743
370	6.244967	13	17	20	23.02819	24.92943	26.53692	27.92938	29.15762	30.25632
371	6.154109	13.38225	17	20.61039	22.93733	24.83858	26.44606	27.83852	29.06677	30.16547
3	6.	13	17.51982	2	22.84671	2	26.35545	1	5	5
373	5.973124	13.20126	17	20.4294	22.75634	24	26.26508	27.65754	28.88578	29.98448
374	5.882996	13.11113	17.33932	20.33927	22.66621	24.56746	26.17495	27.56741	28.79565	29.89435
375	5.793108	13.02125	17.24944	20.24939	22.57633	24.47758	26.08506	27.47752	28.70577	29.80447
376	5.703459	12.9316	17.15979	20.15974	22.48668	24.38793	25.99541	27.38788	28.61612	29.71482
377	5.614049	12.8421	17.0703	20.07033	22.39727	24.29852	25.906	27.29847	28.52671	29.62541
378	5.524875	12	16.9812	19	22.30809	2	25.81683	27.20929	3	29.53623
37	5.	12	16	19	22.21916	2	25.72789	27.12035	6	29.44729
380	5.3	12	16.80356	19	22.13045	2	25.63918	27.03165	28.25989	29.35859
381	5.25876	12.4869	16	19	22.04198	23.94323	25.55071	26.94318	28.17142	29.27012
382	5.170525	12.39866	16.6268	19	21.95374	23.85499	25.46248	26.85494	28.08318	29.18188
383	5.082517	12.31066	16.53885	19.53879	21.86574	23.76698	25.37447	26.76693	27.99517	29.09387
38	4.994738	12.22288	16.45107	19.45102	21.77796	23.67921	25.28669	26.67915	27.9074	29.0061
385	4.907188	12.13533	16.36352	19.36347	21.69041	23.59166	25.19914	26.5916	27.81985	28.91855
386	4.819865	12.048	16.27619	19.27614	21.60308	23.50433	25.11182	26.50428	27.73252	28.83122
387	4.732768	11.96091	16.1891	19.18905	21.51599	23.41724	25.02472	26.41718	27.64543	28.74413
388	4.645896	11.87403	16.10222	19.10217	21.42911	23.33036	24.93785	26.33031	27.55855	28.65725
389	4.559247	11.78739	16.01558	19.01552	21.34247	23.24371	24.8512	26.24366	27.4719	28.5706
390	4.472821	11.70096	15.92915	18.9291	21.25604	23.15729	24.76477	26.15724	27.38548	28.48418
391	4.386616	11.61475	15.84294	18.84289	21.16983	23.07108	24.67857	26.07103	27.29927	28.39797
392	4.300631	11.52877	15.75696	18.75691	21.08385	22.9851	24.59258	25.98505	27.21329	28.31199
393	4.214866	11.443	15.67119	18.67114	20.99808	22.89933	24.50682	25.89928	27.12752	28.22622
394	4.129318	11.35746	15.58565	18.5856	20.91254	22.81379	24.42127	25.81373	27.04198	28.14068
395	4.043987	11.27213	15.50032	18.50026	20.82721	22.72845	24.33594	25.7284	26.95664	28.05534
396	3.958872	11.18701	15.4152	18.41515	20.74209	22.64334	24.25082	25.64329	26.87153	27.97023
397	3.873972	11.10211	15.3303	18.33025	20.65719	22.55844	24.16592	25.55839	26.78663	27.88533
398	3.789285	11.01742	15.24561	18.24556	20.5725	22.47375	24.08124	25.4737	26.70194	27.80064
399	3.70481	10.93295	15.16114	18.16109	20.48803	22.38928	23.99676	25.38923	26.61747	27.71617
400	3.620548	10.84869	15.07688	18.07683	20.40377	22.30502	23.9125	25.30496	26.53321	27.6319

55	60	65	70	75	80	85	90	95	
. 31004	. 2174	40.05208	40.82488	,	42.21734	42.84954	43.44559	44.0094	29
38.19802	39.10537	39.94006	40.71286	41.43231	42.10532	42.73751	43.33356	43.89738	44.43226
38.08637	38.99372	39.82841	40.6012	41.32066	41.99367	42.62586	43.22191	43.78572	44.32061
37.97508	38.88244	39.71712	40.48992	41.20938	41.88239	42.51458	43.11063	444	44.20933
37.86417	38.77152	39.60621	40	41.09846	41	42.40366	42.99971	352	44.09841
37.75362	38.66097	39.49566	40.26	40	41	42	42.88916	43.45297	43.98786
37.	38.55078	39.3	40.	40.8	41	42	42.77897	78	43.87767
37.5	38.44095	39	40.	40	41.4409	42	42	295	43.76784
37.4	38.3	39	39	40.	41.	41	42.55967	8	43.65837
37.3	38.2	39.05704	39.82984	40	41	41.8545	42.45055	6	43.54925
7.20624	38.11359	38.94828	39.7	40.4405	41	41.	42.3	42.90559	43.44048
37.09782	38.00518	38.83986	39.612	40.3	41.00	41.6	42.2333	42.79718	43.33207
36.98975	37.89711	38.73179	39.50459	40.22405	40.89706	41.52925	42.1253	42.68911	43.224
36.88203	37.78939	38.62407	39.3968	40.11633	40.7893	41.4	42.01758	42.58139	43.11628
36.77465	37.68201	38.51669	39.28	40.0089	40.6819	41.3141	41.910	42.47401	3.008
36.66762	37.57497	38.40966	39.1824	39.9019	40.57492	41.2071	41.80316	42.36698	42.9018
36.56092	37.46827	38.30296	39.07	39.7952	40.46822	41.1004	41.69647	42.26028	42.
36.45456	37.36191	38.1966	38.	39.6	40.3	40.9940	41.590	42.15392	42.6888
36.34853	37.25589	38.0905	38.863	39.5	40.2	40.88	41.48408	42.04789	42
36.2428	37.150	37.98	38.	39,	40.	40.	41.37839	41.9422	42.47709
36.13748	37.04	37.87952	38.65232	39	40.	40.	41.27303	41.	42.37173
36.03245	36.9398	37.	38.5	39.	39	40.	41.	41.73181	42.26669
35.9277	36.8351	37.66	38.	39	39.8	40.	41.0632	627	42
35.82336	36.73071	37.5	38.	39.05	39.7	40.3628	40.9589	41.52272	42.0576
35.7193	36.62666	37.46134	38.23	38.	39.6	40.258	40.85485	41.4186	41.95355
35.61556	36.52292	37.3576	38.130	38.8498	39.52287	40.1550	40.7511	41.31492	41.84981
35.51214	36.4195	37.25418	38.02698	38.7464	39.41945	40.0516	40.64769	1.211	41.74639
35.40904	36.3164	37.15108	37.92388	38.64334	39.31634	39.94854	40.54459	41.1084	41.64329
35.30625	36.21361	37.04829	37.82109	38.54055	39.21356	39.84575	40.4418	41.00561	41.5405
35.20378	36.11113	36.94582	37.71862	38.43807	39.11108	39.74328	40.33932	40.90314	41.4380
35.10161	36.00897	36.84365	37.6164	38.33591	39.00892	39.6411	40.23716	40.80097	41.33586
34.99976	35.90711	36.7418	37.5146	38.23406	38.90706	39.53926	40.1353	40.69912	1.2
4.89821	35.80557	36.64025	37.41305	38.13251	38.80552	39.43771	40.03376	40.59757	1.1

$\begin{array}{llllllllll}34.79697 & 35.70432 & 36.53901 & 37.31181 & 38.03127 & 38.70427 & 39.33647 & 39.93251 & 40.49633 & 41.03121\end{array}$ $\begin{array}{lllllllllll}34.69603 & 35.60339 & 36.43807 & 37.21087 & 37.93033 & 38.60333 & 39.23553 & 39.83158 & 40.39539 & 40.93028\end{array}$ $\begin{array}{llllllllll}34.59539 & 35.50275 & 36.33743 & 37.11023 & 37.82969 & 38.5027 & 39.13489 & 39.73094 & 40.29475 & 40.82964\end{array}$ $\begin{array}{lllllllllll}34.49506 & 35.40241 & 36.2371 & 37.0099 & 37.72935 & 38.40236 & 39.03455 & 39.6306 & 40.19442 & 40.7293\end{array}$ $\begin{array}{llllllllll}34.39502 & 35.30237 & 36.13706 & 36.90986 & 37.62931 & 38.30232 & 38.93452 & 39.53056 & 40.09438 & 40.62926\end{array}$ $\begin{array}{lllllllllll}34.29528 & 35.20263 & 36.03732 & 36.81011 & 37.52957 & 38.20258 & 38.83477 & 39.43082 & 39.99463 & 40.52952\end{array}$ $\begin{array}{llllllllll}34.19583 & 35.10318 & 35.93787 & 36.71067 & 37.43012 & 38.10313 & 38.73533 & 39.33137 & 39.89519 & 40.43007\end{array}$ $\begin{array}{lllllllllll}34.09667 & 35.00403 & 35.83871 & 36.61151 & 37.33097 & 38.00398 & 38.63617 & 39.23222 & 39.79603 & 40.33092\end{array}$ $\begin{array}{lllllllllll}33.99781 & 34.90517 & 35.73985 & 36.51265 & 37.23211 & 37.90511 & 38.53731 & 39.13336 & 39.69717 & 40.23205\end{array}$ $\begin{array}{lllllllllll}33.89924 & 34.80659 & 35.64128 & 36.41407 & 37.13353 & 37.80654 & 38.43873 & 39.03478 & 39.59859 & 40.13348\end{array}$ $\begin{array}{lllllllllll}33.80095 & 34.70831 & 35.54299 & 36.31579 & 37.03525 & 37.70825 & 38.34045 & 38.9365 & 39.50031 & 40.03519\end{array}$ $\begin{array}{lllllllllll}33.70295 & 34.6103 & 35.44499 & 36.21779 & 36.93725 & 37.61025 & 38.24245 & 38.8385 & 39.40231 & 39.93719\end{array}$ $\begin{array}{lllllllllll}33.60523 & 34.51259 & 35.34727 & 36.12007 & 36.83953 & 37.51254 & 38.14473 & 38.74078 & 39.30459 & 39.83948\end{array}$ $\begin{array}{lllllllllll}33.5078 & 34.41516 & 35.24984 & 36.02264 & 36.7421 & 37.41511 & 38.0473 & 38.64335 & 39.20716 & 39.74205\end{array}$ $\begin{array}{lllllllllll}33.41065 & 34.31801 & 35.15269 & 35.92549 & 36.64495 & 37.31795 & 37.95015 & 38.5462 & 39.11001 & 39.64489\end{array}$ $\begin{array}{lllllllllll}33.31378 & 34.22113 & 35.05582 & 35.82862 & 36.54807 & 37.22108 & 37.85328 & 38.44932 & 39.01314 & 39.54802\end{array}$ $\begin{array}{lllllllllll}33.21718 & 34.12454 & 34.95922 & 35.73202 & 36.45148 & 37.12449 & 37.75668 & 38.35273 & 38.91654 & 39.45143\end{array}$ $\begin{array}{lllllllllll}33.12087 & 34.02822 & 34.86291 & 35.6357 & 36.35516 & 37.02817 & 37.66036 & 38.25641 & 38.82022 & 39.35511\end{array}$ $\begin{array}{lllllllllll}33.02482 & 33.93218 & 34.76686 & 35.53966 & 36.25912 & 36.93213 & 37.56432 & 38.16037 & 38.72418 & 39.25907\end{array}$ $\begin{array}{lllllllllll}32.92905 & 33.83641 & 34.67109 & 35.44389 & 36.16335 & 36.83636 & 37.46855 & 38.0646 & 38.62841 & 39.1633\end{array}$ $\begin{array}{lllllllllll}32.83356 & 33.74091 & 34.5756 & 35.34839 & 36.06785 & 36.74086 & 37.37305 & 37.9691 & 38.53291 & 39.0678\end{array}$ $\begin{array}{lllllllllll}32.73833 & 33.64568 & 34.48037 & 35.25317 & 35.97262 & 36.64563 & 37.27783 & 37.87387 & 38.43769 & 38.97257\end{array}$ $\begin{array}{llllllllllll}32.64337 & 33.55072 & 34.38541 & 35.15821 & 35.87766 & 36.55067 & 37.18287 & 37.77891 & 38.34273 & 38.87761\end{array}$ $\begin{array}{lllllllllll}32.54868 & 33.45603 & 34.29072 & 35.06352 & 35.78297 & 36.45598 & 37.08817 & 37.68422 & 38.24804 & 38.78292\end{array}$ $\begin{array}{lllllllllll}32.45425 & 33.36161 & 34.19629 & 34.96909 & 35.68855 & 36.36155 & 36.99375 & 37.5898 & 38.15361 & 38.6885\end{array}$ $\begin{array}{llllllllll}32.36009 & 33.26744 & 34.10213 & 34.87493 & 35.59438 & 36.26739 & 36.89959 & 37.49563 & 38.05945 & 38.59433\end{array}$ $\begin{array}{llllllllllll}32.26619 & 33.17354 & 34.00823 & 34.78103 & 35.50048 & 36.17349 & 36.80569 & 37.40173 & 37.96555 & 38.50043\end{array}$

32.17255	33.07991	33.91459	34.68739	35.40685	36.07985	36.71205	37.3081	37.87191	38.40679
32.07917	32.98653	33.82121	34.59401	35.31347	35.98648	36.61867	37.21472	37.77853	38.31342
31.98605	32.89341	33.72809	34.50089	35.22035	35.89335	36.52555	37.1216	37.68541	38.2203
31.89319	32.80054	33.63523	34.40803	35.12748	35.80049	36.43268	37.02873	37.59255	38.12743
31.80058	32.70793	33.54262	34.31542	35.03488	35.70788	36.34008	36.93612	37.49994	38.03482
31.70823	32.61558	33.45027	34.22306	34.94252	35.61553	36.24772	36.84377	37.40758	37.94247
31.61612	32.52348	33.35816	34.13096	34.85042	35.52343	36.15562	36.75167	37.31548	37.85037
31.52427	32.43163	33.26631	34.03911	34.75857	35.43158	36.06377	36.65982	37.22363	37.75852
31.43267	32.34003	33.17471	33.94751	34.66697	35.33998	35.97217	36.56822	37.13203	37.66692
31.34132	32.24868	33.08336	33.85616	34.57562	35.24863	35.88082	36.47687	37.04068	37.57557
31.25022	32.15757	32.99226	33.76506	34.48451	35.15752	35.78972	36.38576	36.94958	37.48446
		32.06672	32.9014	33.6742	34.39366	35.06666	35.69886	36.29491	36.85872

Analyze Elk Reaction to Various Scenarios

Summary (33 Observations)

1) Elk to Structure Type: Conclusion is there IS a significant difference between structure types

StructureType	mean	sd	
\# of rec			
1 Bridge	56.9	32.7	18
2 Culvert	32.5	32.7	15

ONE WAY ANOVA

Model Summary	Df	Sum Sq		Mean Sq	F Value		$\operatorname{Pr}(>\mathrm{F})$	
StructureType		1	4853	4853		5.133		
Residuals		31	29312	946				

Tukey HSD between structure types

| Type diff Iwr
 Tylvert-Bridge -24.356 -46.28
 Culv -2.43 0.0306 | | | |
| :--- | :--- | :--- | :--- | :---: |
| significant difference
 if p adj $<.05$ | | | |

Elk to Culvert Size: Length appears to be a driver
Data Summary (15 culverts)

	SuccessRate		Length		Width
Minimum	0.00	66.00	7.00	6.00	
1st Quar	11.00	66.00	10.00	8.00	
Median	24.00	188.00	24.00	12.00	
Mean	32.53	192.90	24.53	11.40	
3rd Quar	50.00	236.50	42.00	14.00	
Maximum	99.00	558.00	42.00	15.00	
Correlation (1:1)		-0.51	0.66	0.49	
Significance on Individual Basis		0.00911	0.0162	0.0644	

SKEWNESS \& KURTOSIS (LOG, SQUARE ROOT, CUBED)

	SuccessRate	Length		Width	
	0.929	1.346	0.205	-0.483	
Skew, no adj		2.473	5.014	1.447	1.7
Kurtosis, no adj			-0.087	-0.215	-0.06
Skew, log	na	1.944	1.529	2.09	
Kurtosis, log	na	0.099	0.524	0.006	-0.588
Skew, sqrt		2.204	2.971	1.453	1.858
Kurtosis, sqrt	-0.606	0.289	-0.065	-0.625	
Skew, cube	2.844	2.52	1.468	1.468	
Kurtosis, cube					
RESULTS: Do not apply transformation to SuccessRate;					

p-value

	Length	Width	Height	
Var Inflation Factor (Multicollinearity)	4.04	4.04		<5, low collinearity
Importation of Variables	1.1	0.429		
ANOVA LM model			Residuals	
Df	1	1	1	
Sum Sq				
Mean Sq				
F value				
$\operatorname{Pr}(>\mathrm{F})$				

BEST FIT MODEL (glmulti analysis): SuccessRate ~1+ Length Evidence Worst IC
2 models to reach 95% of evidence weight 1 models within 2 IC units
model
Elk_SuccessRate ~ 1 + Length Elk_SuccessRate ~ 1 + Width
aicc 145.66 146.88
weights 0.557 0.303

PSEUDO R SQUARED

McFadden	0.1
Cox and Snell (ML)	0.649
Nagelkerke (Craig \& Uhler)	0.649

Nagelkerke (Craig \& Uhler) 0.649
0.1

formula: Elk Success Rate $=184.411-(30.075 * \ln ($ length $))$

LINEAR REGRESSION (LM) VARIABLE ANALYSIS: Best Fit with Length					
	Estimate	Std Error	$t \mathrm{value}$	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	184.411	50.057	3.684	0.00275	sig to 0.001
Length	-30.075	9.827	-3.061	0.00911	sig to 0.001
Residential standard el	25.42	13 df			
Multiple R-squared	0.4188				
Adjusted R-squared	0.3741				
F-statistic	9.367	1 and 13 df			
p-value	0.009113	Too few input n basis of further	makes this as a study		

No conclusions should be made regarding bridge underpass size. The data is too homogenous with 10 of the 18 observations having a success rate between $\mathbf{7 2}$ and $\mathbf{7 5}$, but lengths from 30^{\prime} to 180 ' and heights from 9^{\prime} to 24'.
Elk to Bridge Size: Best Fit Model is Elk_SuccessRate = Inconclusive

Data Summary (18 bridges)

SuccessRate	Length		Width	
	0.00	84.00	30.00	7.00
Minimum	49.50	131.00	32.00	9.25
1st Quar	73.00	177.50	37.50	10.00
Median	56.89	173.30	110.40	16.33
Mean	74.00	201.20	120.00	22.00
3rd Quar	91.00	365.00	900.00	38.00
Maximum		-0.37	0.26	0.33
Correlation (1:1)		0.077	0.667	0.126

SKEWNESS \& KURTOSIS (LOG, SQUARE ROOT, CUBED)

	SuccessRate	Length		Width	
Height					
Skew, no adj		-1.082	1.063	3.56	0.985
Kurtosis, no adj		2.507	4.357	14.447	2.605
Skew, log	na		0.009	1.579	0.58
Kurtosis, log	na		2.624	5.079	1.791
Skew, sqrt		-1.381	0.51	2.767	0.772
Kurtosis, sqrt	3.361	3.229	10.501	2.121	
Skew, cube	-1.721	0.335	2.37	0.706	
Kurtosis, cube	4.879	2.97	8.603	1.993	
RESULTS: Do not apply transformation to SuccessRate;					

JARQUE-BERA NORMALITY TEST (per transformation above)

	SuccessRate	Length		Width	Height	
JB	3.698	0.106	10.72	2.106		
p-value		0.1574	0.948	0.0047	0.3488	

Residential standa	21.814 df
Multiple R-square	0.5202
Adjusted R-square	0.4562
F-statistic	8.1322 and 15 df

p-value 0.004054

	Length		Width			
Var Inflation Factor (Multicollinearity)		1.17			1.17	<5, low collinearity
Importation of Variables		3.45			3.25	
ANOVA LM model						
Df		1		1	1	14
Sum Sq						
Mean Sq						
F value						
$\operatorname{Pr}(>\mathrm{F})$						

PSEUDO R SQUARED

McFadden	0.209
Cox and Snell (ML)	0.9
Nagelkerke (Craig \& Uhler)	0.9

LINEAR REGRESSION (LM) VARIABLE ANALYSIS: Best Fit with Length and Height					
	Estimate	Std Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	225.05	68.93	3.265	0.00522	sig to 0.001
Length	-50.45	14.63	-3.448	0.00358	sig to 0.001
Height	33.46	10.3	3.249	0.00539	sig to 0.001
Residential standard error	21.8	15 df			
Multiple R-squared	0.5202				
Adjusted R-squared	0.4562				
F-statistic	8.132	2 and 15 df			
p-value	0.004054	Marginal size dataset			

Actual vs Predicted Success Rates

Bridge formula: Elk_SuccessRate $=225.05-(50.45 * \ln ($ length $))+(33.46 * \ln ($ height $))$
$\left.\begin{array}{rrrrrrrrr}\text { Length/ } & & & & & & & & \\ \text { Height } & & 5 & 10 & 15 & 20 & 25 & 30 & 35\end{array}\right] 40$

Appendix E Model 5 Diminishing Return Statistical Analysis

Multivariate Regression
SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.5182
R Square	0.2686
Adjusted R Square	0.2021
Standard Error	656239
Observations	37

ANOVA

	$d f$		SS	MS	F
Significance F					
Regression	3	$5.21773 \mathrm{E}+12$	$1.73924 \mathrm{E}+12$	4.0387	0.0150
Residual	33	$1.42114 \mathrm{E}+13$	$4.30649 \mathrm{E}+11$		
Total	36	$1.94291 \mathrm{E}+13$			

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	465093	490915	0.9474	0.3503	-533681	1463866
X1	412	4001	0.1029	0.9186	-7729	8553
X2	-3272	4110	-0.7961	0.4317	-11635	5090
X3	92865	27108	3.4258	0.0017	37714	148017

Bivariate Regression SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.5039
R Square	0.2539
Adjusted R Square	0.2325
Standard Error	643578
Observations	37

ANOVA	$d f$		SS	MS	F
	1	$4.932 \mathrm{E}+12$	$4.932 \mathrm{E}+12$	$1.191 \mathrm{E}+01$	$1.476 \mathrm{E}-03$
Regression	35	$1.450 \mathrm{E}+13$	$4.142 \mathrm{E}+11$		
Residual	36	$1.943 \mathrm{E}+13$			
Total					

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	485639	359878.681	1.349	0.186	-244954.009	1216231.118
X3	84614	24519.650	3.451	0.001	34836.568	134391.6389

CPI-U Inflation Factor Lookup Table				
Year	Avg	Factor		
1988	118.275	2.264	CPI for All Urban Consumers (CPI-U)	
1989	123.942	2.160	Original Data Value	
1990	130.658	2.049		
1991	136.167	1.966	Series Id: CUSROOOOSAO Seasonally Adjusted	
1992	140.308	1.908		
1993	144.475	1.853	Series Title:	All items in U.S. city average, all urban consumers, seasonally adjusted
1994	148.225	1.806	Area:	U.S. city average
1995	152.383	1.757	Item:	All items
1996	156.858	1.707	Base Period:	1982-84=100
1997	160.525	1.668	Years:	1988 to 2021
1998	163.008	1.642		
1999	166.583	1.607	Source:	
2000	172.192	1.555	https://data.	v/pdq/SurveyOutputServlet
2001	177.042	1.512		
2002	179.867	1.488		
2003	184.000	1.455		
2004	188.908	1.417		
2005	195.267	1.371		
2006	201.558	1.328		
2007	207.344	1.291		
2008	215.254	1.244		
2009	214.565	1.248		
2010	218.076	1.228		
2011	224.923	1.190		
2012	229.586	1.166		
2013	232.952	1.149		
2014	236.715	1.131		
2015	237.002	1.130		
2016	240.005	1.116		
2017	245.136	1.092		
2018	251.102	1.066		
2019	255.653	1.047		
2020	258.844	1.034		
2021	267.728	1.000		

[^0]: ${ }^{1} \mathrm{R}$ is a free software environment for statistical computing and graphics (https://www.r-project.org/).

[^1]: ${ }^{2} \mathrm{R}$ is a free software environment for statistical computing and graphics (https://www.r-project.org/).

[^2]: ${ }^{1}$ unpublished data

