Geotechnical Recommendations Reports

SH 92 Stengel's Hill Project No: STA 092A-024 Project Code: 17772

The geotechnical recommendations for this project consist of the following four Memorandums.

- 1. Memorandum Date, March 12, 2012 Geotechnical Recommendations for State Highway 92 & Union Pacific Railroad Intersection and Big Gulch, (26 pages)
- Memorandum Date, October 23, 2013 Geotechnical Addendum for State Highway 92 & Union Pacific Railroad Intersection and Big Gulch, (14 pages)
- 3. Memorandum Date, April 10, 2013 Geotechnical Recommendations for State Highway 92 Retaining Wall at MM 15.1 Stengel's Hill, (11 Pages)
- 4. Memorandum Date, September 14, 2013 Embankment Review for State Highway 92 & Union Pacific Railroad Intersection, (67 pages)

MEMORANDUM

MATERIALS AND GEOTECHNICAL BRANCH GEOTECHNICAL PROGRAM 4670 HOLLY STREET, UNIT A, DENVER, COLORADO 80216

303-398-6604 FAX 303-398-6504

HB 092A-020 SH-92 & UPRR SA 14934

TO: Behrooz Far, CDOT Staff Bridge

FROM: David Thomas, Geotechnical Program

DATE: March 12, 2012

SUBJECT: GEOTECHNICAL RECOMMENDATIONS FOR STATE HIGHWAY 92 & UNION PACIFIC RAIL ROAD INTERSECTION AND BIG GULCH

1.0 INTRODUCTION

This report presents geotechnical exploration observations and recommendations for planned improvements along SH-92 near the intersection of the Union Pacific Railroad (UPRR). The intersection is located at mile marker 14.4 along SH-92 between Delta and Hotchkiss. Currently, the UPRR is an at-grade crossing with SH-92. To increase safety, a bridge raising SH-92 is proposed allowing UPRR to cross underneath SH-92. The proposed bridge is a three span precast, prestressed girder bridge founded on driven piles and drilled shafts. Retaining walls will also be required to contain the approximately 45 feet of embankment fill required to construct the bridge approaches. In addition, a concrete box culvert (CBC) located at Big Gulch (mile marker 14.8) will be extended to the north approximately 92 feet allowing for realignment of the highway as it approaches the bridge.

The purpose of the geotechnical exploration is to characterize physical properties of foundation materials at the proposed structure locations. Foundation recommendations are provided for design and construction of the proposed structures. The scope of work was based on conversations with Mike Perez with URS Corporation, Inc. and Hans Egghart, CDOT Region 3.

2.0 GEOTECHNICAL INVESTIGATION

Geotechnical field activities were completed between December 19 and 20, 2011. Thirteen borings (TH1 through TH13) were advanced using a CME 55 all terrain drill rig and a CME 75 truck mounted drill rig with hollow stem auger techniques. The borings were advanced along SH-92 and the UPRR for the proposed bridge and wall locations as determined by rig access and utility clearances. Only one boring, TH10, was advanced at the Big Gulch CBC extension because entry agreements were not obtained from local land owners. Standard penetration tests using split spoon samplers and California samplers were performed in the borings at select intervals in general accordance with ASTM D-1586 and D-3550, respectively. Traffic control was provided by CDOT Maintenance Patrol 33 along with a Flagman from UPRR. Survey data was provided by CDOT Region 3.

2.1 GEOLOGY

The geology is similar across the site. The geology consists of loose sand and gravel and stiff to very stiff clay and silt underlain by medium hard to very hard shale bedrock. Bedrock was encountered in 12 of the 13 borings ranging from elevations of 5,352 feet above mean sea level (amsl) to 5,381 feet amsl (surface to 8 feet below ground surface [bgs]). Bedrock encountered at the surface was saturated with snow melt and was highly weathered. Groundwater was only encountered during drilling at Big Gulch at an elevation of 5,368 feet amsl. Piezometers PZ1, PZ2, and PZ3 were installed in borings TH3, TH5, and TH8 to allow for future measurement of groundwater. Groundwater was recorded at 5,357.8 feet amsl (9.6 feet bgs) in PZ1, dry in PZ2, and 5,370.5 feet amsl (7.1 feet bgs) in PZ3 on February 1, 2012 and 5,357.9 feet amsl (9.5 feet bgs) in PZ1, dry in PZ2, and 5,371.5 feet amsl (6.1 feet bgs) in PZ3 on March 5, 2012. Groundwater elevations may fluctuate with seasonal changes including precipitation and surface runoff. The engineering geology sheets and boring logs are presented in Attachments 1 and 2, respectively.

2.2 PHYSICAL PROPERTIES

AASHTO classifications for the gravel was A-2-6 (1), the clay ranged from A-6 (9) to A-7-6 (28), and bedrock ranged from A-7-6 (20) to A-7-6 (32). Shale samples from TH4, TH8, TH9, and TH10 were found to be highly plastic with liquid limits up to 51 and plasticity indices up to 30. Swell testing of the clay and shale resulted in swells ranging from 0% to 1.9% under a surcharge pressure of 1.0 ksf. The liquid limit, plastic limit, and swell results indicate a marginal to high potential for swell per AASHTO LRFD Bridge Design Table 10.4.6.3-1. Unconfined compressive strength testing of bedrock samples ranged from 8.7 kips per square foot (ksf) to 32.4 ksf. These values are believed to be low since samples were collected using a California sampler causing disturbance in the sample. Detailed material properties are presented on the engineering geology sheets in Attachment 1.

2.3 GEOCHEMICAL PROPERTIES

Bedrock was analyzed for percent sulfate, pH, percent chlorides, and resistivity. Based on the results of water soluble sulfate testing obtained from CP 2103, the potential for sulfate attack on Portland cement concrete in direct contact with the bedrock is classified as a Class 3 exposure per Table 601-2 of the CDOT 2011 Standard Specifications for Road and Bridge Construction Section 601. The result for resistivity suggests a strong corrosion towards metal based on values per Table C.1 of FHWA report FHWAO-IF-3-017, Geotechnical Engineering Circular No. 7 - Soil Nail Walls. Detailed material properties are presented on the engineering geology sheets in Attachment 1.

3.0 RECOMMENDATIONS

The subsurface conditions are favorable for a bridge on drilled shaft or driven pile foundations, MSE walls, and extension of the Big Gulch CBC.

3.1 DRILLED SHAFTS

For drilled shafts embedded into the bedrock, the allowable unit tip resistance (q_a) and the allowable unit side resistance (f_a) for the Allowable Stress Design (ASD) method, as determined using local practice, are presented in Table 1 along with the nominal unit tip resistance (q_p) and the nominal unit side resistance (q_s) required for the Load Resistance Factor Design (LRFD). The LRFD capacities are converted from ASD values. Table 1 presents the resistance values along with the estimated bedrock elevation.

	Estimated	AS	SD	LRFD		
Location	Bedrock Elevation (feet)	q _a (ksf)	f _a (ksf)	q _p (ksf)	q _s (ksf)	
West Abutment (Abutment 1)	5,363				Q	
West Pier (Pier 2)	5,368	27	27	20		
East Pier (Pier 3)	5,379	21	2.7	80	0	
East Abutment (Abutment 4)	5,381					

Shafts should be completed into the bedrock to obtain tip and side resistance. The recommended minimum bedrock penetration is 10 feet. Side resistance in the overburden soil should be ignored due to the difference in strain limits between the soil and bedrock. Also, the top 5 feet of bedrock penetration should be ignored for side resistance due to material weathering and potential disturbance from temporary casing. The side resistance values are applicable in both vertical directions without reduction. The nominal capacities assume a weighted load factor of 1.5. When using the LRFD method, we recommend a resistance factor of 0.5 be used for both unit tip and side resistance. Should a different load factor be applied for shafts, the resistance factor should be adjusted by dividing the new load factor by 3 to obtain the corresponding resistance factor. Material properties for lateral load analysis are presented in Table 2.

The recommended unit tip and side resistance values assume a minimum spacing of 3 shaft diameters, center-to center, between adjacent drilled shafts. Drilled shafts spaced at 2 diameters will require a reduction factor of 0.9. Reduction factors for spacing less than 2 diameters will require additional analysis and iteration with the structural engineer.

Caving soil may occur above the bedrock elevation. Slurry and/or casing may be needed to support the soils overlying the bedrock during drilled shaft excavation if caving occurs. Dewatering of the drilled holes also may be required prior to placement of the concrete. The potential for dewatering may increase with the amount of time the drill holes remain open. Alternatively, the concrete may be placed by tremie as described in CDOT 2011 *Standard Specifications for Road and Bridge Construction* Section 503 – Drilled Caissons.

3.2 DRIVEN PILES

For driven H-piles with Grade 36 steel, a combined nominal unit side and tip resistance of 27 kips per square inch (ksi) times the cross sectional area of the pile is recommended. For Grade 50 steel, the nominal capacity would be increased to 36 ksi. Per CDOT 2011 *Standard Specifications for Road and Bridge Construction* Section 502 – Piling, a pile driving analyzer will be used to establish the driving criteria. A resistance factor of 0.65 may be used in accordance with AASHTO LRFD bridge design specifications. Driven piles will function as end bearing piles at this site with generally less than 10 feet of penetration into bedrock for Grade 36 steel and 15 feet of penetration into the bedrock for Grade 50 steel. Predrilling of the piles may be required in some areas to reach the minimum penetration depth of 10 feet into natural ground per CDOT Standard Specifications due to the hard bedrock encountered. Battered piles no steeper than 1:4 (H:V) may be used to provide lateral capacity. Additionally, pile tips may be required to penetrate the bedrock. If used, the tips should be Associated Pile & Fitting Corp. (APF) HARD-BITE HP-77600 for hard rock, or equivalent. Material properties for lateral load analyses of the piles using LPILE or similar software are presented in Table 2.

Material	Internal Friction Angle Ø (degrees)	Cohesion C (lb/ft²)	Soil-Modulus k (lb/in³)	Strain at ½ maximum principal stress ε ₅₀ (in/in)	Total Unit Weight (lb/ft ³)	Saturated Unit Weight γ _T (lb/ft ³)
New Class 1 Structure Backfill*	34	0	225	_	125	135
Native Sand/Gravel	32	0	90	_	125	135
Native Silt/Clay	0	1,000	500	0.005	120	130
Bedrock	0	8,000	2,000	0.004	130	140

 TABLE 2.
 MATERIAL PROPERTIES FOR LATERAL LOAD ANALYSIS USING LPILE

* – If proper compaction as described in Section 3.3 cannot be achieved, Native Sand/Gravel values should be used.

3.3 RETAINING WALLS AND TEMPORARY EXCAVATIONS

Retaining walls will be required to contain the approximately 45 feet of embankment fill required to construct the bridge approaches. MSE walls are the proposed wall type. For retaining walls, it is assumed new fill will consist of Class 1 Structure Backfill. Class 1 Structure Backfill should be compacted to at least 95 percent of the maximum dry density and within 2 percent of optimum moisture content as determined by AASHTO T180 (ASTM D 1557) and as described in Section 206 of the 2011 CDOT *Standard Specification for Road and Bridge*

Construction. Retaining wall parameters for design are presented in Table 3. Lateral pressures must be reevaluated when a surcharge loads exist. Temporary excavation support may be required where slopes above the groundwater table are steeper than 1:1 (H:V). Parameters presented in Table 3 also are suitable for temporary excavation support design.

	Typical	Internal	<i></i>	Earth Pressure Coefficients					
Material	Total Unit Weight γ _T (pcf)	Friction Angle Ø (degrees)	Cohesion C (psf)	Active (Ka)	At Rest (Ko)	Passive (Kp)			
New Class 1 Structure Backfill	125	34	0	0.28 ^a /0.42 ^b	0.44 ^a /0.64 ^b	3.5			
Sand	125	32	0	0.30 ^a /0.47 ^b	0.47 ^a /0.68 ^b	3.2			
Clay/Silt	120	20	100	0.49 ^a	0.65 ^a /0.95 ^b	2.0			

TABLE 3.	MATERIAL PARAMETERS FOR RETAINING WALLS
	AND TEMPORARY EXCAVATIONS

^a – Values calculated for horizontal backfill.

^b – Values calculated for a sloping backfill at 2:1 (H:V).

The bearing material will vary from the silt, clay, sand, gravel, and shale bedrock. The nominal bearing capacity value was calculated based on current groundwater conditions, an assumed maximum wall height of approximately 45 feet and reinforcement lengths up to 30 feet. A minimum 3 feet of embedment for frost protection is recommended. Nominal bearing capacities are listed in Table 4 based on the possible foundation material. The bearing capacity will decrease with decreasing reinforcement lengths in the sand and gravel. A bearing resistance factor of 0.65 for MSE walls may be applied when using the LRFD method. Table 4 also presents the coefficient of sliding resistance (μ) that may be used between concrete or MSE and undisturbed foundation material.

It will be important to maintain a good drainage at the base of the MSE wall in order to prevent the shale bedrock in contact with the MSE from becoming wet. If this shale bedrock at the surface becomes wet, the μ can be reduced to near zero resulting in a sliding failure. It is unlikely that the CDOT standard MSE wall drain design will prevent the interface between the granular MSE backfill and the shale bedrock foundation from getting wet. Additional drainage design is recommended to ensure that this interface remains dry. A potential for sliding failure along the shale bedrock surface may also be prevented by using other foundation elements such as caissons or piles to increase the sliding resistance. Properties in Sections 3.1 and 3.2 can be used for design of a drilled shaft or driven pile elements for the MSE walls. The global stability of the walls should be verified after final design is completed.

3.4 Embankments

It is currently planned to raise the roadway approximately 45 feet above current grade at the bridge to allow UPRR to pass underneath SH-92. Embankment fill and construction shall be as described in Section 203 of the 2011 CDOT *Standard Specification for Road and Bridge Construction*. Due to the height of the embankment, settlement may be encountered depending on the construction quality of the fill (type, placement, and compaction). Construction oversight and field testing of the embankment construction will be fundamental to try and minimize settlement over the life of the embankment. Settlement of the foundation materials may also occur due to the embankment construction. We estimate settlements on the order of $1\frac{1}{2}$ -inches in the foundation materials. Most of this settlement is anticipated to occur during construction.

Material	Nominal Bearing Capacity (q _n)	Coefficient of Sliding Resistance (µ)
Sand/Gravel ¹	25 ksf	0.45
Sand/Gravel ²	5 ksf	0.45
Silt/Clay	5.1 ksf	0.35
Bedrock	31 ksf	0.35 ³

TABLE 4. RETAINING WALL BEARING CAPACITYAND SLIDING RESISTANCE

¹ – Reinforcement length of 30 feet.

 2 – Reinforcement length of 6 feet.

 3 – Under dry conditions.

3.5 BIG GULCH CBC EXTENSION

The CBC foundation will likely be supported on the medium dense cobbly sand and gravels. It is assumed the new extensions will be the same height (10 feet) and width (8 feet) as the existing CBC. Nominal bearing capacity is 12 ksf for CBC sections that are supported on undisturbed soil. Additionally, the final CBC will be an extension to the current CBC and differential movement should be expected at the union of the two structures. This movement may be up to a quarter of an inch during initial placement of the extensions.

It is assumed that the wing wall bearing material will be the medium dense cobbly sand and gravels encountered from ground surface to 5,363 feet amsl. Fill quality, fill placement, and material properties from Section 3.3 should be applied to the wing wall design. The nominal bearing capacity value for the wing walls was calculated to be 12 ksf based on an assumed maximum wall height of approximately 10 feet, footing width of 6.66 feet per CDOT Standard Plan M-601-20, and a 1 foot minimum embedment. Bearing capacity will be decreased with decreased footing widths. A bearing resistance factor of 0.55 for gravity walls may be applied when using the LRFD method. A coefficient of sliding resistance (μ) of 0.45 may be used

between concrete and undisturbed foundation soil. The global stability of the walls should be verified after final design is completed.

4.0 SEISMIC DESIGN PARAMETERS

The AASHTO Specifications for LRFD Seismic Bridge Design classify the site as "C" and the seismic zone as "1" using Tables 3.10.3.1-1 and 3.10.6-1, respectively. Using the USGS AASHTO Earthquake Motion Parameters program, a seismic design spectrum plot was created for Spectral Acceleration vs. Time and is presented in Figure 1. Additional data from the program is included in Attachment 3.

Please contact the Geotechnical Program at 303-398-6604 with questions.

REVIEW: Conroy

COPY: Eller – Region 3 RTD Mertes – Region 3 West Engineering Program Engineer Alexander – Region 3 North Engineering RE Egghart – Region 3 West Engineering Goodrich – Region 3 Materials Engineer Perez – URS Corporation Zufall/Hernandez – Staff Materials and Geotechnical Liu – Geotechnical Program

FIGURE 1. DESIGN SPECTRAL ACCELERATION VS. TIME

HB 092A-020 SH-92 & UPRR SA 14934 Page 8 of 8

GEOLOGY SHEETS

The boring log of the above test hole and geotechnical report are on file in the Geotechnical Program Office, Staff Materials and Geotechnical Branch, (303)398-6601

																			1		
				S	UM	MAR`	ΥC	DF T	TES	T F	RES	ULT	S						TYPE OF MATERIAL		
Samala	Death	Clas	sification		Grad	ing Analys	sis (AAS	SHTO)	Atter	berg Lir	mits	Water	Dry	Uniaxial	Swell/	Water		Resistivity	Est Cravel	TEST BOR	ING
Number	(feet)	Corps of Engrs. or Visual	USCS	AASHTO	Gravel	Coarse Sand	Fine Sand	Silt and Clay	L.L. Lw	P.L. Pw	Р.I. ^I W	Content W %	Density (Ib/ft ³)	Compressive Strength (psf)	Surcharge Pressure (%/ksf)	Soluble Sulfates (%)	Soil pH (H ₂ O/CaCl ₂)	ohm—cm Saturated		00 00 00	"Hole Size
10B	9	Clayey Gravel	GC	A-2-6(1)	67.6	5.7	4.3	22.4	37	18	19	11.7	-	_	-	-	-	-		Blows per foot [<u>30,09,1A</u> R = Refued on SPT [31]	Sample Nur
10C	14	Shale	СН	A-7-6(31)	0.3	1.1	1.2	97.4	50	21	29	24.6	104.0	12,340	0.1/1.0	-	-	-		C = California Sample	
																			4	50/0.1	Water Level
																			4	50 Blows in 0.1 ft	Hator Loror
				+					-										4		
																			1		
]	Core Recovery 50	*Standard
																				R.Q.D. 25	Penetration 1
																<u> </u>					(AASHIO I 2
Print	Date: 2,	/8/2012									S	heet	: Rev	isions			alarad		nartment of Transportation	As Constructed	
Drawin	g File Nar	ne:14934geosheet(02.dgn					Г	Da	te:	С	omme	ents		Init.		0101 00	io net	partment of Transportation		4
Horiz.	Scale: 1:20	00	Vert.	. Scale: As	s No	ted	(R-)	≂≻⊢										OT		No Revisions:	
Staff	Geotec	hnical Program			Н	CL	\geq	ドト			+							01 40 D	enver CD 80216		Designer
							\geq	≍ ⊦			_					- 2	DADTHENT OF TRANS		hone: 303-398-6601 FAX: 303-398-6504	Revised:	
							<u> </u>	コト			+				_				hainal Dan ar ann HCl) / - : -!-	Detailer:
								5		void:	Sheet S										

440+00

BORING LOGS

	•										BORING #	
		OT	G	FOLOG			SOF	KING	i L(JG		1
			PROJECT ID	SA	PRO	JECT	NAME				DATE DRIL	LED
DEPARTN	IENT OF TRANS	PORTATIO		OUNTY	934 STRUCT	URE/	BENT	SH 92,	RR	LOCATION	12	/19/11
TOP		TOT	SH 92	Delta		/	/					
тор н 5,	367.7ft		15.0ft	SURVEY INFO	359,540	<u>E:</u>	336,13	7		D. Thomas	s/R. Brown	/P. Spahr
	ft					ŕΡΕ	(t)					
EV (ft	TH (f	о U	DE	SCRIPTION		LET	TH (f	OWS	'ALUE %/RQI	SPT C	ΑΤΑ	WELL
	DEF					AMP	DEF	SAN BL	N-V HEC%			DIAGNAIVI
			Silty Sand, yello	wish orange		0	0.0	1A		5 10	20 40 70	
_								(0' - 5')				
5365	3.0		.									
-	4.0		Clay, mottled light	ea, subroundea it brown & light gra	v. veins of		-4.0	1B	13		♀ ││││││	
-		v	white mineralizatio	on, blocky texture,	stiff	\mathbb{X}		5-5-8				
-												
5360												
-							-9.0	10	10			
-						\mathbb{R}		5-5-5	10		\setminus	
-											\mathbf{N}	
5355											λ	
-	14.0		ion otiff				- 14.0	10	00			
-	15.0		rery sum Fotal Boring Dept	h 15.0ft			_	5-24	29			
-				•								
5350												
-												
-												
-												
5345												
-												
-												
-												
- 5340 -												
DT 3/.												
- DOT.G												
8 -												
49 9 47 5335												
SH92 F												
	SPT		CON'T	GRA	B		SHELI	BY			CAL	IFORNIA
m∃H₂OD g Γ	DEPTH (ft)					_			. UNE	oo, Auger		
	ΓIME							-				

	•		-			-				• •	BORING #	<i>‡</i>
		OT	∥ G	EOLOG	alCAl	_ [BOE	RING	i L(JG		5
			PROJECT ID	SA	PRO	IECT	NAME				DATE DR	ILLED
DEPART	AFNT OF TRANS			14				SH 92,	RR		1	2/19/11
DEFAILT	MEINT OF TRANS	PORTATION	SH 92	Delta	STRUCT	JNE/	/Pier	3		LOCATION		
TOP H	OLE ELEV 380 2ft	TOTAL	L DEPTH	SURVEY INFO	359 487	F۰	336 70	5	0	EOLOGIST/FC	DREMAN S/D Noval	(A Moreno
	,000.2.11		10.011		000,107	<u>ц</u>			%		, <u>D</u> . 1107a	
ELEV (ft)	DEPTH (ft)	LOG	DE	ESCRIPTION		SAMPLE TYR	DEPTH (ft)	SAMPLE IE BLOWS	N-VALUE REC%/RQD	SPT [DATA 0 20 40 70	WELL DIAGRAM
	10	/ Si	It, yellowish or	ange 								
		dr	ills harder nale Bedrock,	dark gray, hard								
5375						×	-4.0	5A 28-28-37	65			er PZ2
- - - - - - - - - - - - - - - - - - -	9.0-	ha	ard				—9.0 —11.0	5B 21-50/5" 5C (11'-13')	71+		>>	
- - - - - - -	14.0	ha	ard otal Boring Dep	th 15.0ft		×	- 14.0	5D 22-50	72			
- 5360 -												
5355 												
SH92 RR.GPJ CO_DOT.GDT												
	1		1									
	SPT		CON'T	GRA	В		SHEL	BY			CAI	IFORNIA
≝H₂O E	DEPTH (ft)	dry	dry	0		_			. UME	/o, Auger		
		2/1/1	2 3/5/1	۷		+		_				
в												

	\$ <u> </u>	0.77	GE	OLOG	ICAL	_ F	BOF	RING	i Lo	OG	BORING #	
	<u>j</u>	O T										12
/			PROJECT ID	SA 149	934	ECT	NAME	SH 92, I	R		DATE DRIL	/20/11
DEPARTM	ENT OF TRANS	SPORTATIO	ROUTE COU	JNTY Delta	STRUCTL	JRE/I	BENT /			LOCATION		
TOP H	OLE ELEV	TOTA	AL DEPTH SI		250 550	Ξ.	227 14	o	C	EOLOGIST/FO	REMAN	A Morono
,	301.31		10.51	IN. (559,550	ш	557,14		%		D. NOVAN	
ELEV (ft)	DEPTH (ft)	ГОС	DES	CRIPTION		SAMPLE TYI	DEPTH (ft)	SAMPLE IC BLOWS	N-VALUE REC%/RQD	SPT D 5 10	ATA 20 40 70	WELL DIAGRAM
5380	-/		Clay , dark gray									
	2.0		drills harder									
_		\$	Shale, dark gray, ha weathering	ard, red iron oxide	9							
-			5				-4.0	11A 19-49	68			
5375												
_												
-	9.0-	v	very hard			\ge	-9.0	11B 20-31-50	81			
-	10.5	Т	Total Boring Depth 1	10.5ft		X		20 01 00				
5370	-											
_	_											
-	_											
-												
5365												
_	_											
-												
-												
5360												
-	_											
-												
-												
	_											
- 10	-											
5350												
	SPT		CON'T	GRAE	3		SHELE	3Y		ORE	CALI	FORNIA
H₂O D	EPTH (ft)					_		NOTES	: CME	75, Auger		
	IME					-		_				

	•											`	~~	BORING #	-
		007	7	G			JG	ICA		301	KINC		UG		13
			PRO	OJECT I	D		SA	PRC	JECT	NAME				DATE DRI	LLED
DEPARTM	IENT OF TRANS	SPORTATIO		UTE	COUN	NTY	149	934 STRUC	URE/	BENT	SH 92,	RR	LOCATION	12	2/20/11
		TOT		H 92	<u>eu</u>	Delta	-0			/					
тор но 5,	380.7ft		10.5	5ft	501		N: 3	359,500	E:	336,94	19		D. Thomas	/D. Novak	/A. Moreno
	Ŧ								ЪЕ	t)					
C (ft)	TH (f	g		D	FSC	RIPTIC	N		Ц Ц Щ	TH (f	PLEI	ALUE /RQI	SPT	ΑΤΑ	WELL
	DEP	<u>۲</u>		2	200				AMPL	DEP	BLO	N-V EC%	02		DIAGRAM
5000			Clay d	ark arav					l'S			<u>۳</u>	5 10	20 40 70	
5380	-//		Ciay, u	ark yray											
-	2.0		drills ha	arder					-						
_			Shale, mineral	dark gra ization	y, haro	d, trace w	/hite								
_									\ge	-4.0	13A	57			
5375											10-20-04				
-															
-															
-	9.0-	,	verv ha	rd						-9.0	13B	87/11"		>>	I
5370	10.5		very na								20-37-	07711			
00/0	10.5		Total B	oring De	pth 10	.5ft									
_															
_	_														
_	_														
5365	_														
-	_														
-	_														
-	_														
5360															
_	_														
_	_														
-															
-															
5355	_														
2															
- 19	_														
5350															
- -															
- b															
	SPT			ΟΝΙΤ			3R4F	3		SHEI	BY				
	EPTH (ft)							<u>ر</u>			NOTES	S: CME	75, Auger		
	ATE														
, T	IME														

ATTACHMENT 3 HB 092A-020, SH-92 & UPRR, SA 14934 2007 AASHTO Bridge Design Guidelines

AASHTO Sp	pectrum fo	or 7% PE	in 75 years	Spectral Response Accelerations SDs and SD1							
Latitude	= 38.79	96959		Latitude = 38.796959							
Longitude	= -107.82	7158		Longitude	= -107.82	7158					
Site Class E	3			As = Fpgal	PGA, SDs	= FaSs, a	and $SD1 = FvS1$				
Data are ba	sed on a ().05 deg g	grid spacing.	Site Class (C - Fpga	= 1.20,	Fa = 1.20, Fv = 1.70				
Period	Sa			Data are based on a 0.05 deg grid spacing.							
(sec)	(g)			Period	Sa						
0.0	0.116	PGA - S	Site Class B	(sec)	(g)						
0.2	0.216	Ss - S	ite Class B	0.0	0.139	As - S	ite Class C				
1.0	0.047	S1 - S	Site Class B	0.2	0.259	SDs - S	ite Class C				
				1.0	0.079	SD1 - S	Site Class C				
Map Respon	se Spectra	a for Site	Class B								
Ss and S1 =	Mapped	Spectral	Acceleration Values	As = FpgaPG	GA, SDs =	= FaSs, S	D1 = FvS1				
Site Class E	3	-		Site Class (C - Fpga	= 1.20,	Fa = 1.20, Fv = 1.70				
Data are ba	sed on a ().05 deg g	grid spacing.	Data are ba	used on a 0	0.05 deg g	grid spacing.				
Period	Sa	Sd		Period	Sa	Sd					
(sec)	(g)	in.		(sec)	(g)	in.					
0.000	0.116	0.000	T = 0.0, $Sa = PGA$	0.000	0.139	0.000	T = 0.0, Sa = As				
0.043	0.216	0.004	T = To, Sa = Ss	0.061	0.259	0.009					
0.200	0.216	0.084	T = 0.2, Sa = Ss	0.200	0.259	0.101	T = 0.2, $Sa = SDs$				
0.216	0.216	0.099	T = Ts, $Sa = Ss$	0.306	0.259	0.237	T = Ts, $Sa = SDs$				
0.300	0.156	0.137	,	0.400	0.198	0.310					
0.400	0.117	0.182		0.600	0.132	0.465					
0.600	0.078	0.274		0.800	0.099	0.620					
0.800	0.058	0.365		1.000	0.079	0.775	T = 1.0, Sa = SD1				
1.000	0.047	0.456	T = 1.0, Sa = S1	1.200	0.066	0.930					
1.200	0.039	0.547		1.400	0.057	1.085					
1.400	0.033	0.638		1.600	0.050	1.240					
1.600	0.029	0.729		1.800	0.044	1.395					
1.800	0.026	0.821		2.000	0.040	1.550					
2.000	0.023	0.912		2.200	0.036	1.705					
2.200	0.021	1.003		2.400	0.033	1.860					
2.400	0.019	1.094		2.600	0.031	2.015					
2.600	0.018	1.185		2.800	0.028	2.170					
2.800	0.017	1.277		3.000	0.026	2.325					
3.000	0.016	1.368		3.200	0.025	2.480					
3.200	0.015	1.459		3.400	0.023	2.635					
3.400	0.014	1.550		3.600	0.022	2.790					
3.600	0.013	1.641		3.800	0.021	2.945					
3.800	0.012	1.732		4.000	0.020	3.100					
4.000	0.012	1.824									

MEMORANDUM

MATERIALS AND GEOTECHNICAL BRANCH GEOTECHNICAL PROGRAM 4670 HOLLY STREET, UNIT A, DENVER, COLORADO 80216

303-398-6604 FAX 303-398-6504

HB 092A-020 SH-92 & UPRR SA 14934

TO: Behrooz Far, CDOT Staff Bridge

FROM: David Thomas, Geotechnical Program

DATE: October 23, 2013

SUBJECT: GEOTECHNICAL ADDENDUM TO STATE HIGHWAY 92 & UNION PACIFIC RAIL ROAD INTERSECTION AND BIG GULCH

1.0 INTRODUCTION

This report is an addendum to the March 12, 2012 geotechnical report. Only the additional exploration activities are discussed in this addendum. Details pertaining to the original field exploration including foundation recommendations are covered in the March 2012 report. The scope of work was based on conversations with Colin Young with URS Corporation, Inc. and Hans Egghart, CDOT Region 3.

2.0 GEOTECHNICAL INVESTIGATION

Geotechnical field activities were completed between August 19 and 21, 2013. Four borings (TH21 through TH24) were advanced using a CME 55 all-terrain drill rig using wireline coring techniques. The borings were advanced along SH-92 and the UPRR for the proposed bridge and wall locations as determined by rig access and utility clearances. The additional borings were to determine bedrock characteristics along the full design depth of the deep foundation elements.

2.1 GEOLOGY

The geology is similar across the site. The geology consists of 4 to 15 feet of clay underlain by shale bedrock. Bedrock was encountered in the borings ranging from elevations of 5,356 feet above mean sea level (amsl) to 5,377 feet amsl. The updated engineering geology sheets and boring logs for TH21 through TH24 are presented in Attachments 1 and 2, respectively.

2.2 PHYSICAL PROPERTIES

AASHTO classifications for the bedrock ranged from A-4 (9) to A-7-6 (32). A shale sample from TH22 was found to be highly plastic with a liquid limit of 55 and plasticity index of 29. Unconfined compressive strength testing of bedrock samples ranged from 27.3 kips per square foot (ksf) to 613.4 ksf. Detailed material properties are presented on the engineering geology sheets in Attachment 1.

Please contact the Geotechnical Program at 303-398-6604 with questions.

REVIEW: Thomas

COPY: Eller – Region 3 RTD Smith – Region 3 West Engineering Program Engineer Alexander – Region 3 North Engineering RE Egghart – Region 3 West Engineering Goodrich – Region 3 Materials Engineer Chomsrimake – Staff Bridge Young – URS Corporation Schiebel/Hernandez – Staff Materials and Geotechnical Ortiz – Geotechnical Program

GEOLOGY SHEET

					S	UMI	MAF	<u> </u>	DF	TES	ST F	RESI	JLTS]		
	Sample Depth (feet) Classification USCS AASHTO		Gra	Grading Analysis (AASHTO)			Att	erberg L	imits	Water	1	Uniavial	Swall /		Water			-				
Sample Number			Grave	Per Coarse	rcent e Fine Sand	Silt	L.L.	P.L.	P.I.	Content W %	Dry Density (lb/ft ³)	Compressive Strength (psf)	Swell/ Surcharge Pressure (%/ksf)	Chlorides (%)	Soluble Sulfates (%)	Soil pH (HzO/CaClz)	Resistivity ohm-cm Saturated					
10	10	Clay	CL	4-7-6(16)) 13 6	5 57	7.8	73.0	43	20	23	16.3	-	_	_	- 1	-	_	_	-		
10	14	Clay	CL	A-7-6(23)) 0.0	0.4	1.2	98.4	43	20	23	15.3	106.8	_	-	- 1	-	_	-	-		
2A	4	Sandy Clay	CL	A-6(9)	20.5	5 9.0	9.6	60.9	39	21	18	8.2	-	-	-	-	-	-	-			
2E	24	Shale	CL	A-7-6(24)) 0.3	1.1	1.5	97.1	44	21	23	9.9	-	-	-	-	-	-	-			
3A	4	Shale	CL	A-7-6(20)) 2.8	6.0	4.5	86.7	44	22	22	10.5	-	_	-	-	-	_	-			
3B	9	Shale	CL	A-7-6(25)) 1.7	1.1	1.1	96.2	44	20	24	14.2	118.0	-	1.9/1.0	-	-	-	-			
3D	16	Shale	-	-	-	-	-	-	-	-	-	-	-	-	-	0.014	3.08	5.80	400			
3E	19	Shale	CL	A-7-6(28)) 0.3	1.0	1.0	97.6	46	20	26	13.0	117.6	16,520	-	-	-	-	-			
4C	15	Shale	СН	A-7-6(29)) 1.7	2.5	1.8	93.9	50	22	28	11.8	-	-	-	-	-	-	-			
5B	9	Shale	CL	A-7-6(31)) 0.4	0.4	0.4	98.9	47	18	29	11.6	123.9	32,417	-	-	-	-	-			
5C	12	Shale	-	-	-	-	-	-	-	-	-	-	-	-	-	0.014	3.04	5.64	300			
7C	13	Shale	CL	A-7-6(25)) 2.2	1.0	0.6	96.2	45	21	24	11.5	114.4	8,701	-	-	-	_	-			
8B	9	Clay	CL	A-7-6(28)) 0.1	0.3	3.0	96.7	45	18	27	30.5	92.0	-	0.0/1.0	-	-	-	-			
8C	14	Shale	СН	A-7-6(27)) 1.0	3.2	3.6	92.2	51	25	26	21.3	-	-	-	-	-	-	-			
9A	4	Shale	СН	A-7-6(32)) 0.1	0.5	1.9	97.5	50	20	30	21.0	107.0	-	0.5/1.0	-	-	-	-	-		
11A	4	Clay	CL	A-7-6(21)) 6.3	4.4	6.0	83.4	45	20	25	14.6	-	-	-	-	-	_	-			
11B	9	Shale	CL	A-7-6(25)) 0.4	0.2	0.4	99.0	43	20	23	11.8	123.0	-	-	-	-	-	-	ITTPE OF MATERIAL		
12A	4	Shale	CL	A-7-6(28)) 0.1	0.4	1.0	98.5	45	19	26	13.5	118.6	21,677	1.1/1.0	-	-	-	-	-	TES	ST BORING
13B	10	Shale	CL	A-7-6(25)) 0.3	0.7	0.9	98.1	44	21	23	12.3	-	-	-	-	-	_	-	-		o 3" Hole Size
21A	39.5-41.7	Shale	CL	A-4(9)	0.0	0.2	1.0	98.7	27	17	10	9.4	- 1	613,440	-	- 1	-	-	-			
21B	51.0-56.1	Shale	CL	A-6(17)	1.2	0.3	1.7	96.8	35	18	17	4.5	-	384,480	-	-	-	-	-		Blows per foot"[R = Refusal on SP1	30,09,1A] Sample Ni T
22A	30.0-35.0	Shale	СН	A-7-6(32)	0.1	1.6	3.2	95.2	55	26	29	9.6	- 1	-	-	- 1	- 1	_	-		C = California Samp	le (*
22B	66.5-70.0	Shale	CL	A-6(12)	0.0	0.2	1.2	98.6	30	17	13	3.5	- 1	319,680	-	-	-	-	-		50 Plaws in 0.1 ft	0.1 Water Level
																					JU BIOWS IN 0.1 IT	
23A	34.0-36.5	Shale	CL	A-7-6(21)) 0.0	0.2	0.8	99.0	42	23	19	5.9	-	-	-	-	-	-	-			
23B	62.0-68.0	Shale	CL	A-6(11)	0.0	0.0	1.3	98.6	30	18	12	3.5	-	161,280	-	-	-	_	-	-	Core Recovery	50
24A	30.9-33.0	Shale	CL	A-6(20)	0.0	0.1	1.0	98.9	40	22	18	4.9	-	27,360	-	-	-	-	-	1	R.Q.D.	25 25 *Standard Penetration
24B	55.0-57.5	Shale	CL	A-6(15)	0.0	0.4	1.8	97.8	33	18	15	2.5	-	410,400	-	<u> </u>	-	-	-]		CAASHTO T
Print	Date: 10)/22/2013					1					Shee	et Re	visions			Color	ado D	enart	ment of Transportation	As Construc	ted
Drawi	ng File Nar	ne:14934geoshee	et04.dgn				_			Date	:]	Comn	nents		In	it.		<u> </u>	opurt		No. Rovisions:	
Horiz.	Scale: 1:20	JU hniad Dramer	Ve	rt. Scale:	As N		ЧŒ	<u> </u>			-+						-Ô	DOT	4670 H	Holly Street, Unit A	INU INEVISIONS:	
2(01)	Geotec	nnicai Program	1			HUL	12	$ \ge $	\vdash		-+]		TO ANG DO DE TA VION	Denver Phone:	,CU 80216 303-398-6601 FAX:303-398-6504	Revised:	Designe
								\dashv	\vdash		_				_		Staff	Geote	echnic	al Program HCI	Void:	Detaile
							10)			- 1				1		Juil					∎ Sheet :

BORING LOGS

	•						~ ^ 1	_			`	~~	BOR	ING #		
		D 0 7	T	G	EOL	OGI	CAL	. E	SOF	IINC	a L(UG			21	
DEPARTM	ENT OF TRA	NSPORTATIO		OJECT ID HB 092 UTE	2 A-020 OUNTY	SA 14934 S	PROJI 4 STRUCTU	ECT I IRE/E	NAME SENT	Stingel's	Hill	LOCATION	DATI	E DRIL 8/	LED /19/13	
ТОР НО		TOT		H 92	Delt				MM 14.4, E. of Hotchkiss							
5,	370.7ft		60.0	Dft	CONVEN	N: 359	9,480	E: (336,42	1		B. T	B. Taylor/D. Novak			
ELEV (ft)	DEPTH (ft)	LOG	DESCRIPTION						IS BLOWS BLOWS BLOWS IS WPLE TYPE ID BLOWS BLOWS BLOWS IS C%/RQD%							
5370 - - 5365	5.0		no reco 2' blow clay, fill cobbles	out into sa (same as s, etc.)	nd, browni surface ma	sh-gray grav aterial - basa	velly alt		-5.0		<u>73%</u> 50%					
_ 	10.0		dark bro (~13" o	own-gray g f fill)	ravelly cla <u>j</u>	y to clay-sha	ale		- 10.0		<u>72%</u> 43%					
	15.0		dark gray shale - difficult to remove from pipe						- 15.0		<u>100%</u> 0%					
5350	20.0-		dark gray shale						-20.0		<u>100%</u> 0%					
-	22.5		dark gra	ay shale					-22.5		<u>100%</u> 0%					
5345	25.0-		dark gra	ay shale wi	th clay laye	er		X	-25.0		<u>100%</u> 53%					
	27.5 		dark gra	ay shale in	terbedded	with clay lay	yer	X	-27.5		<u>100%</u> 33%					
5340	30.0-		dark gra sample	ay shale in wrapped	terbedded	with clay lay	vers,	H	-30.0		<u>100%</u> 0%					
	32.5		dark gra sample	ay shale in wrapped	terbedded	with clay lay	yers,	X	-32.5		<u>100%</u> 13%					
	35.0		dark gra	ay shale in	terbedded	with clay lay	yers	Ä	-35.0		<u>100%</u> 90%					
	37.5		dark gra rotten o	ay shale in dor	terbedded	with clay lay	yers -	H	-37.5		<u>100%</u> 93%					
	SPT		C	ON'T		GRAB			SHELE	BY		ORE		CAL	IFORNIA	
H ₂ OD	EPTH (f	t) <u>▼</u> 14	.0							NOTES	: CME	55, Wireline				
D	ATE	8/19	9/13													
r ∏ T	IME															

	^					F			\ 4		BORING #		
		QOT	l G	EULUU		_ C	JUL	IIINC		JG		21	
			PROJECT ID HB 09	SA 2A-020 14	PROJ 1934	ECT	NAME	Stinael's	Hill		DATE DRIL 8/	LED 19/13	
DEPARTN	IENT OF TRAI	NSPORTATION	ROUTE C	COUNTY Delta	STRUCTI	JRE/I	BENT /			LOCATION MM 14	4. E. of H	otchkiss	
TOP H	OLE ELEV	TOTA	L DEPTH	SURVEY INFO	350 120	Ę۰	, 336 13.	1	(GEOLOGIST/FO	REMAN		
,			00.01	IN.	000,400	ц.		· 	%	D. 16			
ELEV (ft)	DEPTH (ft)	LOG	DE	ESCRIPTION		MPLE TYI	DEPTH (ft)	AMPLE II BLOWS	N-VALUE 5C%/RQD	SPT D	ΑΤΑ	WELL DIAGRAM	
5000				1 watural break in a	ere ofter 4"	SA	40.0	S		5 10	20 40 70		
		da re pi	ark gray snale, emaining was ur resent	Thatural break in c	il shell	X	40.0		100%				
- 5325 -	45.0-	bl	ack shale - no l	oreaks			-45.0		<u>100%</u> 100%				
5320	50.0	bl	ack to dark gra	y shale with last 12	", light gray		-50.0		77% 70%				
-													
5315		~: be	2" of light gray s edded shale (sa	shale - 58" dark gra Imple wrapped)	iy thinly		- 55.0		100% 97%				
5310	60.0	T	otal Boring Dep	th 60.0ft									
-													
<u>5305</u>													
5300													
5295													
	SPT		CON'T	GRA	В		SHELE	BY			CAL	IFORNIA	
	EPTH (ft	t) ▼ 14.0	0						6: CME	55, Wireline			
	TIME	8/19/	13			_		_					

		$\overline{)}$	7	G	ΕO		GICA		BOF	RINC	G L(OG	BOF	RING	# •••	
DEPARTM	IENT OF TRAI	NSPORTATIO		DJECT ID HB 092	2A-02	0 1 Y	A PF 14934 STRU			Stingel's	s Hill	LOCATION	DAT	E DR	LL B/20/13	
TOPU		TOT	S	H 92		Delta			/			MM 14	.4, E	. of I	Hotchki	SS
ТОР НС 5,	5,369.2ft 70.0ft N: 359,4								336,50	3		B. T	FOREMAN . Taylor/D. Novak			
ELEV (ft)	DEPTH (ft)	LOG	DESCRIPTION						DEPTH (ft)	SAMPLE ID BLOWS	N-VALUE REC%/RQD%	SPT D	W DIAC	WELL DIAGRAM		
		t li	brownish gray clay, highly weathered shale, little to no fill						0.0		<u>57%</u> 15%					
-		k	prownis	sh gray thir	nly bedo	ded shale			-5.0		<u>65%</u> 40%					
	9.0-	b	brownish gray shale with clay layers gray/red mix shale, calcite layers						— 9.0 ─ 10.0		<u>100%</u> 92% <u>100%</u> 100%					
	12.5	(gray shale with brownish red staining nodules (siderite?) top ~8" - light grayish brown into dark gray clay/shale, color transition likely represents lowest water table @ ~16' depth						- 12.5 - 14.5		<u>100%</u> 46%					
	15.0-								11.0		<u>100%</u> 36%					
	20.0-	c	dark gra	ay shale, t	hinly be	edded			-20.0		<u>100%</u> 47%					
5345	22.5	v	very da ayers	rk gray sh	ale, thir	nly beddeo	d, little clay	K	-22.5		<u>100%</u> 67%					
_	25.0-	v	very da ight gra pyrite?,	rk gray sha ay clay (wa metallic m	ale, thir ashed m ninerals	nly beddeo nostly out)	d, layer of), with	K	-25.0		<u>80%</u> 57%					
5340	27.5	v	/ery da	rk gray sh	ale, witl	h clay laye	ər	Ŕ	-27.5		<u>100%</u> 100%					
5335	30.0	v	very dark gray shale, clay layer ~ 2" thick, wrapped sample						-30.0		<u>100%</u> 75%					
5330	35.0		very da silt/mud ayers ii	rk gray sh Istone, she n upper ~1	ale, thir ell fossi 2"	n bedding Is present	to massive t, pyrite, clay		- 35.0		<u>100%</u> 100%					
		1		UN'I	K	◆} GR	AB		SHEL	BY NOTE:		50RE 55. Wireline		CA	LIFOR	AIA
		·)														
і Т	IME	+								-						
	<u>\$</u>			G		GICA		BOF	RINC	310	OG	BORING #	ŧ			
------------	---------------------	---------	----------------------	-----------------------------	-----------------------------------	-----------------	-----------	------------	--------------------	---------------------	-------------------	--------------	------------------			
	j J	001		V									22			
\swarrow				HB 092	2A-020	14934	JECI	NAME	Stingel's	s Hill		DATE DR	111ED 3/20/13			
DEPARTM	IENT OF TRANS	SPORTAT		UTE C H 92	OUNTY Delta	STRUC	TURE/	/BENT /			LOCATION MM 14	1.4, E. of ⊦	lotchkiss			
TOP HO	OLE ELEV 369 2ft	TO	TAL DEF 70 (>TH Oft	SURVEY INFO	D N: 359 466	F۰	336 50	3	(GEOLOGIST/FC	DRÉMAN	ovak			
,			70.0	511		11.000,100	ш.			%						
ELEV (ft)	DEPTH (ft	LOG		DE	SCRIPTION	N	SAMPLE TY	DEPTH (ft	SAMPLE II BLOWS	N-VALUE REC%/RQD	SPT D	DATA	WELL DIAGRAM			
-	40.0		very da	irk gray bla	ck shale to silt	mudstone, no		40.0		<u>100%</u>	5 10					
-			breaks		a pynie presen		N			10070						
5325	45.0-							- 15 0								
-			very da fossil sl	ırk gray/bla hells & pyr	ick shale to silt/ ite present	/mudstone,		40.0		<u>100%</u> 100%						
5320																
_	50.0-		very da	ırk gray/bla	ick shale/siltsto	ne/mudstone,		-50.0		<u>80%</u>						
			25" ligh fossils	it gray laye present	r with clay part	washed out,	Ν			80%						
-																
5315	55.0							55.0								
_			very da 3" clay	ırk gray/bla layer	ick shale/silt/mi	udstone, with		55.0		<u>100%</u> 96%						
-							N									
5310	59.0-		vorv da	urk grav/bla	ock shale/siltsto	ne/mudstone		- 59.0		100%						
	60.0-		very da	irk gray/bla	ick shale/siltsto	ne/mudstone,		-60.0		100%						
-			no clay	, small am	ount of pyrite		Ν			100%						
-																
5305	65.0-		مام براد میں			audatana) na		- 65.0		1000/						
-			clay, wi	rapped sar	nple	nudstone), no				45%						
2 -							H									
5300																
- 10	70.0		Total B	oring Dept	h 70.0ft											
5295																
5290																
	SPT		С	ON'T	G 🔄	RAB	Ì	SHEL	BY		ORE	CAL	IFORNIA			
	EPTH (ft)						_			S: CME	55, Wireline					
T	IME															

				G	EOI	-00	GICA	LE	BOF	RINC	G LO	OG	BOF	ring	#
DEPARTM	ENT OF TRANS	SPORTAT		OJECT ID HB 09 UTE	2A-020	SA 14	PRC 1934 STRUCT	JECT	NAME	Stingel's	s Hill	LOCATION	DAT	E DF	L RILLED B/20/13
ТОР НО		TO	TAL DEF	Н 92 РТН	De SURVE	elta 7 INFO			/		0	MM 14 GEOLOGIST/FC	I.4, E	. of I AN	Hotchkiss
5,	381.0ft		70.0	Oft		N:	359,487	E:	336,75	0		B. T	aylor	/D. N	lovak
ELEV (ft)	DEPTH (ft)	LOG		DE	ESCRIP	TION		SAMPLE TYPE	DEPTH (ft)	SAMPLE ID BLOWS	N-VALUE REC%/RQD%	SPT [DATA	40 7	WELL DIAGRAM
5380 - - - 5375 -	4.0		light bro light bro dark bro (gypsur	own clay 8 own clay 8 own/gray 9 m?) filled f	a mud a shale shale & cla ractures	ay, with n	nineral	X	0.0 4.0 5.0		73% 52% <u>100%</u> 83% <u>100%</u> 38%				
- 	10.0		gray sh fracture	nale with in es	iterbeddeo	d clay, mi	neral filled		—10.0		<u>100%</u> 57%				
-	12.5		gray sh	ale with m	nineral fille	d fracture	es		- 12.5		<u>100%</u> 30%				
- 	15.0		gray sh filled fra	ale, reddig actures	sh brown s	staining 8	& mineral		- 15.0		<u>100%</u> 27%				
- - 5360 -	19.0-		gray sh gray sh mineral	nale with cl nale interbe lized fracti	ay, minera edded with ures	al filled fr	actures d layers,	X	19.0 20.0		<u>92%</u> 0% <u>100%</u> 31%				
- - 5355 -	24.0-		gray sh dark gra	ale, miner ay shale ir	alized frac	cture d with cla	ıy		-24.0 -25.0		<u>67%</u> 33% <u>100%</u> 70%				
2 – 5350	30.0-		dark gra	ay shale, t	hinly bedo	ded			-30.0		<u>100%</u> 95%				
5345	35.0		very da light gra	ırk gray sh ay muddy	ale, thinly clay, wrap	bedded, pped sam	~7" very ple		-35.0		<u>100%</u> 73%				
			-						0				_		
			C	ON'T		∦ GRA	NB		SHEL	3Y		55. Wireline		CA	LIFORNIA
T	IME									-					

											• •	BORING #	
		007	T	G		GICA		SOF	RINC	à L(OG		23
			PRO	OJECT ID	A-020 1	4934 PRO	JECT	NAME	Stingel's	Hill		DATE DRI	LLED /20/13
DEPARTM	ENT OF TRAN	SPORTATIO				STRUCT	URE/	BENT	oungore				otobkieg
TOP HO	DLE ELEV	тот	AL DEF	<u>п 92 </u> РТН (8	SURVEY INFO			/		C	GEOLOGIST/FO	. <u>4, Е. ОГ</u> REMAN	OLCHKISS
5,	381.0ft		70.0	Oft	N	: 359,487	E:	336,75	0		B. Ta	aylor/D. No	ovak
ELEV (ft)	DEPTH (ft)	LOG		DES	SCRIPTION		SAMPLE TYPE	DEPTH (ft)	SAMPLE ID BLOWS	N-VALUE REC%/RQD%	SPT D	ATA 20 40 70	WELL DIAGRAM
5340	40.0		very da	rk gray shal av muddy cl	e, thinly bedded	l, ~3" very ent (shells)		40.0		<u>100%</u> 72%			
-			iigrit gre							7270			
 	45.0	, 	very da present pyrite sl	rk gray shal t into very da hale/siltstor	e, thinly beddec ark gray/black m e/mudstone	l, fossils nassive		—45.0		<u>100%</u> 72%			
 	50.0-	,	very da (siltston	rk gray/blac ne/mudstone	k massive shale ə), fossil shells	9		-50.0		<u>100%</u> 100%			
 	55.0-		very da (siltston unbroke	rk gray/blac ne/mudstone en	k massive shale e), fossil shells,	e core was		- 55.0		<u>100%</u> 100%			
 	60.0-		very da (siltston gray sha	rk gray/blac ne/mudstone ale & clay la	k massive shale e), with ~4" sect ayer, fossil shell:	e ion of light s & pyrite		- 60.0		<u>100%</u> 93%			
 	65.0		very da (siltston pyrite, v	rk gray/blac ne/mudstone wrapped sar	k massive shale e), few small fos nple	e sil shells &		-65.0		<u>97%</u> 97%			
5310	70.0		Total Bo	oring Depth	70.0ft								
	-												
5305	-												
			-	<u></u>						-			
				ON'T	GR/	AB		SHELE	3Y		55. Wireline		IFORNIA
T	IME								-				

			1	G	E	OL	00	GIC	;AL	. E	BOF	RINC	G L(OG	BC	RIN	G #	
		DOT	PRO		<u> </u>			<u></u>									וופר	24
				HB 09) 2A-(020	1	4934				Stingel's	s Hill				8/	/21/13
DEPARIM	ENT OF TRANS			H 92		Delt	a	SI		RE/E	3ENT /			MM 14	.4, E	E. o	f H	otchkiss
TOP HC	DLE ELEV 382.6ft	TOTA	L DEF 60.0	PTH Oft	SUI	RVEY	INFO N	: 359,4	483	E: :	336,83	8		GEOLOGIST/FO B. Ta	REN aylo	/AN r/D.	No	ovak
	t)									ЪЕ	t)	Δ						
ELEV (ft)	DEPTH (f	LOG		D	ESC	RIPT	ION			AMPLE TY	DEPTH (f	SAMPLE I BLOWS	N-VALUE REC%/RQI	SPT D	AT	Ą		WELL DIAGRAM
	F	fil								S	0.0		<u>20%</u>	5 10	20	40	70	
_5380	- F												0%					
5375	5.0	b re	rown s eddish	hale & cl -brown st	ay, th aining	inly be g in fra	dded, s ctures	some			-5.0		<u>88%</u> 33%					
-	10.0	d.	ark bro eddish	own shale brown st	e & cl	ay, thin g in fra	ily bedo	ded, &			- 10.0		<u>100%</u> 20%					
5370		m	ninerali	zation														
	15.0-	da re fr	ark bro eddish acture	own-gray -brown st s	shale aining	e, thinly g & mir	v bedde neraliza	ed, ation in			- 15.0		<u>88%</u> 32%					
_ 	20.0	g	ray sha taining	ale, thinly & minera	v bedo alizati	ded, ree on in fi	ddish-b racture	orown s			-20.0		<u>90%</u> 33%					
5355	25.0-	g	ray sha taining	ale, thinly in fractu	/ bedo res, s	ded, ree come cl	ddish-b lay laye	orown ers			-25.0		<u>97%</u> 43%					
	30.0-	d. ir	ark gra	ay shale, ires, wraj	thinly oped	bedde core	ed, sorr	ne gypsi	um		-30.0		<u>95%</u> 50%					
<u>5350</u>	35.0-	d	ark gra	ay shale,	thinly	bedde	ed, inter	rbeddec	d		-35.0		<u>100%</u>					
5345			iay, lig	nt gray cl	ay ~3	s", foss	II shells	s preser	nt				88%					
	SPT		C	ON'T			GRA	AB			SHELE	BY					⊔Ш ;AL	IFORNIA
	EPTH (ft)											NOTE	S: CME	55, Wireline				-
D	ATE																	
} T	IME																	

	•										.	~~	BORING	#
		07		G	EOL	-06	iICA		BOF		j L(OG		24
			PRO	OJECT ID	2A-020	SA 14	934 PRO	JECT	NAME	Stingel's	s Hill		DATE DR	ILLED 3/21/13
DEPARTM	ENT OF TRAN	SPORTAT			OUNTY	lta	STRUCT	URE/	/BENT /	<u> </u>		LOCATION	4 F of F	Hotchkiss
TOP HO	DLE ELEV	ТОТ		PTH	SURVEY	/ INFO	050 400	г.	,	0	(GEOLOGIST/FC	REMAN	
5,	382.61		60.0	JIT		IN:	359,483	<u>Е:</u>	336,83	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	B. I	aylor/D. N	Iovak
ELEV (ft)	DEPTH (ft)	LOG		DE	SCRIP	TION		SAMPLE TYF	DEPTH (ft)	SAMPLE ID BLOWS	N-VALUE REC%/RQD9	SPT D)ATA	WELL DIAGRAM
_	40.0		dark gra	ay shale, th ack shale (ninly bedd siltstone/r	led, into v nudstone	very dark e). shell		40.0		<u>100%</u> 77%			
5340			fossils				,,	X						
-	45.0		very da shell fo:	rk gray/bla ssils, ~1" c	ck shale/s lay layer -	siltstone/r - only nat	mudstone ural break		-45.0		<u>100%</u> 100%			
-	50.0		very da (siltstor	rk gray/bla ne/mudstor	ck shale ne), shell f	fossils, no	o clay		- 50.0		<u>100%</u> 100%			
	55.0		very da (siltstor layers ~	rk gray/bla ne/mudstor ~1" thick, w	ck shale ne), shell f rapped sa	fossils, fe ample	w clay		- 55.0		<u>95%</u>			
								Ν						
_	60.0		Total B	oring Dept	h 60 0ft									
	-		rota D	oring bopt										
5320	-													
_	-													
-														
5315	-													
-														
	_													
5310														
5 -	-													
	-													
5305														
	-													
	SPT	'[C	ON'T		GRA	В		SHEL	BY			CA	LIFORNIA
	EPTH (ft)							_			S: CME	55, Wireline		
	IME									-				

MEMORANDUM

MATERIALS AND GEOTECHNICAL BRANCH GEOTECHNICAL PROGRAM 4670 HOLLY STREET, UNIT A, DENVER, COLORADO 80216

303-398-6604 FAX 303-398-6504

STA 092A-024 SH-92 Stengel's Hill SA 17772

TO: Behrooz Far, CDOT Staff Bridge

FROM: David Thomas, Geotechnical Program

DATE: April 10, 2013

SUBJECT: GEOTECHNICAL RECOMMENDATIONS FOR STATE HIGHWAY 92 RETAINING WALL AT MM 15.1 (STENGEL'S HILL)

1.0 INTRODUCTION

This report presents geotechnical exploration observations and recommendations for a planned retaining wall as part of planned improvements along SH-92 near the intersection of the Union Pacific Railroad (UPRR). The wall is to be located at mile marker 15.1 along SH-92 between Delta and Hotchkiss. Currently, the UPRR is an at-grade crossing with SH-92. To increase safety, a bridge raising SH-92 is proposed allowing UPRR to cross underneath SH-92. To improve the line of sight and the approach alignment to the bridge, SH-92 is being shifted to the south requiring excavation and a retaining wall. It is proposed that the retaining wall be a cast in place (CIP) wall that will extend 372 feet from approximately STA 442+00 to STA 445+72 with a maximum height of 10 feet. The wall will be placed on top of a cut slope ranging from 2:1 to 4:1 (horizontal to vertical) with a maximum height of approximately 7 feet.

The purpose of the geotechnical exploration is to characterize physical properties of foundation materials at the proposed structure location. Foundation recommendations are provided for design and construction of the proposed structures. The scope of work was based on conversations with Mike Perez with URS Corporation, Inc. and Hans Egghart, CDOT Region 3.

2.0 GEOTECHNICAL INVESTIGATION

Geotechnical field activities were completed between March 5 and 6, 2012. Two borings (TH1 and TH2) were advanced using a CME 55 all-terrain drill rig with hollow stem auger techniques. The borings were advanced along SH-92 for the proposed wall location as determined by rig access and utility clearances. TH1 was advanced on top of the slope along the right of way fence and TH2 was advanced along the grade of SH-92 due to utility constraints. Standard penetration tests using split spoon samplers and California samplers were performed in the borings at select intervals in general accordance with ASTM D-1586 and D-3550, respectively. Traffic control was provided by CDOT Maintenance Patrol 33.

2.1 GEOLOGY

The geology of the soils to be excavated consists of interbedded medium dense to very dense clayey sand with gravel and stiff clay with sand. Cobbles up to 4 inches in diameter were encountered in TH1 at approximately 20 feet bgs. Claystone bedrock was encountered at a depth of 24 feet below ground surface (bgs) in TH1 and 5 feet bgs in TH2. Groundwater was only encountered during drilling at TH1 at a depth of 18.5 feet bgs. The geology sheet and boring logs are presented in Attachment 1 and Attachment 2, respectively.

2.2 PHYSICAL PROPERTIES

AASHTO classifications for the clayey sand was A-2-6 (0) to A-7-6 (7) and the clay ranged from A-6 (8) to A-7-6 (32), and bedrock ranged from A-7-6 (27) to A-7-6 (32). Clay and bedrock samples from TH2 were found to be highly plastic with liquid limits up to 56 and plasticity indices up to 33 indicating a marginal potential for swell per AASHTO LRFD Bridge Design Table 10.4.6.3-1. Unconfined compressive strength testing of bedrock samples resulted in 8.1 kips per square foot (ksf). These values are believed to be low since samples were collected using a California sampler causing disturbance in the sample. Detailed material properties are presented on the engineering geology sheet in Attachment 1.

3.0 RECOMMENDATIONS

The subsurface conditions are favorable for a CIP retaining wall at the road cut. For retaining walls, it is assumed new fill will consist of Class 1 Structure Backfill. Class 1 Structure Backfill should be compacted to at least 95 percent of the maximum dry density and within 2 percent of optimum moisture content as determined by AASHTO T180 (ASTM D 1557) and as described in Section 206 of the 2011 CDOT *Standard Specification for Road and Bridge Construction*. Retaining wall parameters for design are presented in Table 1. Lateral pressures must be reevaluated when sloping backfill or surcharge loads exist. Temporary excavation support may be required where slopes above the groundwater table are steeper than 1:1 (H:V). Parameters presented in Table 1 also are suitable for temporary excavation support design.

The bearing material will be the clayey sand or clay. Nominal bearing capacity values were calculated based on wall design options provided by Craig Parent with URS (Attachment 3), including current groundwater conditions, footer widths from 6 to 12 feet, a 2:1 slope in front of the wall toe, varying distances between the footer and the slope, and a minimum 3 feet of embedment for frost protection is recommended. Table 2 summarizes the bearing capacities for the different wall configurations.

The coefficient of sliding resistance (μ) that may be used between concrete and undisturbed foundation material is 0.32 for clay and 0.40 for clayey sand. It will be important to maintain a good drainage at the base of the retaining wall in order to prevent the clay from becoming saturated. A bearing resistance factor of 0.55 for gravity walls may be applied when using the Load Resistance Factor Design (LRFD) method. The global stability of the walls should be verified after final design is completed.

	Typical	Internal	~	Earth F	Pressure Coef	ficients
Material	Total Unit Weight γ _T (pcf)	Friction Angle ¢ (degrees)	Cohesion C (psf)	Active (Ka)	At Rest (Ko)	Passive (Kp)
New Class 1 Structure Backfill	125	34	0	0.28	0.44	3.5
Clayey Sand	125	30	0	0.33	0.50	3.0
Clay	120	20	100	0.49	0.65	2.0

TABLE 1. Material Parameters for Retaining Walls and Temporary Excavations

TABLE 2. Wall Nominal Bearing Capacities

a	Footer	Footer	Nominal Bearing	g Capacities (ksf)
Station	Width (ft)	Placement	Sand	Clay
443	6	А	10.5	5.3
443	7	В	9.7	6.2
444	9	А	10.6	4.7
444	12	В	7.2	6.2

Note: See Attachment 3 for additional information.

Please contact the Geotechnical Program at 303-398-6604 with questions.

REVIEW: Conroy

COPY: Eller – Region 3 RTD Znamenacek – Region 3 West Engineering Program Engineer Alexander – Region 3 West Engineering RE Egghart – Region 3 West Engineering Goodrich – Region 3 Materials Engineer Perez – URS Corporation Schiebel/Hernandez – Staff Materials and Geotechnical Conroy – Geotechnical Program

GEOLOGY SHEET

STA 092A-024 SH-92 Stengel's Hill SA 17772

442+00			443+00					444+00	445+00	
SH-92 (proposed)										
SH-92 (existing))		• 2				/	- Proposed Wall	Boring	locations ar
									1	
5520 -	:									
5510 -									1☆	
Elevations are estimated	-							12,7 13,7		
5500 —	-							C		
5490 -	-		2						10 m 10 m 10 m	
5480 —			_ 10, 2A					c [29]	11F	
	-		C 18 2B					31 		
5470 —			C 33 2C							
5460			50/6" 2E							
	The	e boring logs of t	he above te	st holes an	d geotechi	nical repo	rt are c	n file in the Geotechnical Program Office, S	Staff Materials and Geotech	hnical Branc
	SUMMARY	OF TEST RE	SULTS					TYPE OF MATERIAL		
Sample Depth Classification	Grading Analysis Percent	(AASHTO) Atterberg Limits	Water Content	Uniaxial Compressive	Wate Swell Solub	r le Soil pH	Resistivity	Clay	TEST BC	
Number (feet) Corps of Engrs. or USCS Visual	AASHTO Gravel Coarse Fi Sand Sc	ine Silt L.L. P.L. P and Clay LW PW I	.I. W Densit W % (Ib/ft ³) Strength) (psf)	(%) Sulfat (%)	es (H ₂ 0/CaCl ₂)	Saturated	Clavey Sand	Blows per feet* 70.00	3" Hole Size
1A 4 Clayey Sand SC 1B 9 Clay CL	A-7-6(7) 28.4 14 10 A-6(8) 4.5 10.7 29	0.5 47.1 45 22 2 9.7 55.1 36 16 2	23 11.0 – 20 11.7 –	-					R = Refusal on SPT OC = California Sample (7)	Jumpie Num (היי
1C 14 Clayey Sand SC	A-2-6(0) 1.7 22.8 44	4.6 31.0 25 14 1	13.9 110.4	+ -		-	-	Weathered Claystone	50/0.1	∽ Water Level
ZA 4 Clay CH 2B 9 Claystone CH 2C 14 Claystone CH	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.2 89.1 56 23 3 2.3 94.3 50 18 3 3.1 82.6 54 23 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- - - - - - - - - - - - - -			-	Claystone		
									Core Recovery 50 R.Q.D. 25	*Standard Penetration Tr (AASHTO T 20
Print Date: 4/10/2013			Sheet Re	visions		Colora		partment of Transportation	As Constructed	-
Drawing File Name: 14934geosheet03.dgn Horiz. Scale: 1:40	. Scale: As Noted	Date:	Comments		Init.				No Revisions:	1
Staff Geotechnical Program	HCL							4670 Holly Street, Unit A Denver, CD 80216 Denver303 308 5501 544 303 305 5551	Revised:	Designer
		\square				DEPARTMENT OF TR	Geote	chnical Proaram HCI	Void:	Detailer:
	[C				1					Sheet St

BORING LOGS

STA 092A-024 SH-92 Stengel's Hill SA 17772

PROPOSED WALL DESIGNS

STA 092A-024 SH-92 Stengel's Hill SA 17772

MEMORANDUM

MATERIALS AND GEOTECHNICAL BRANCH GEOTECHNICAL PROGRAM 4670 HOLLY STREET, UNIT A, DENVER, COLORADO 80216

303-398-6604 FAX 303-398-6504

HB 092A-020 SH-92 & UPRR SA 14934

TO: Ronald Alexander, Region 3 North Engineering RE

FROM: David Thomas, Geotechnical Program

DATE: September 14, 2012

SUBJECT: EMBANKMENT REVIEW FOR STATE HIGHWAY 92 & UNION PACIFIC RAIL ROAD INTERSECTION

1.0 INTRODUCTION

This report presents geotechnical observations and recommendations concerning embankment construction for planned improvements along SH-92 near the intersection of the Union Pacific Railroad (UPRR). The intersection is located at mile marker 14.4 along SH-92 between Delta and Hotchkiss. Currently, the UPRR is an at-grade crossing with SH-92. To increase safety, a bridge raising SH-92 is proposed allowing UPRR to cross underneath SH-92.

Retaining walls along the railroad will be required to contain the approximately 45 feet high embankment fill required to construct the bridge approaches. The embankment will be sloped on the opposite side into native soil. The embankment for each bridge approach is planned to be constructed using A-6/A-7-6 material due to its availability in Region 3 and the high cost to import better material. The embankment is planned to be 45 feet high with slopes of 2:1 to 3:1 (H:V) depending on right of way restrictions. The embankment will take approximately 271,000 cubic yards (cu. yds.) to construct.

2.0 MATERIAL PROPERTIES

Concerns were raised by Staff Bridge and Region 3 on potential stability and settlement issues of the embankment after construction and if increasing the construction compaction from 95% to 97% would help reduce settlement. To help answer these questions, Donald Green with Region 3 collected four samples from the Buckwheat Way Stockpile. The stockpile consists of approximately 60,000 to 70,000 cu. yds. of soil that is similar to the soil planned to be used in the embankments and is also planned to be used in the embankment construction as well.

2.1 SAMPLE ANALYSIS

We received the four samples consisting of about 2 square feet per sample of clayey soils. Each sample was analyzed for classification, proctor testing, sulfate content, chlorides, pH, and resistivity. The samples were dried to a temperature of 140 degrees per Colorado Procedure 20-08 due to the gypsum content previously seen in the Region. Based on the classification and

proctor tests, select samples were further tested at 95% or 97% density at a range up to -2% optimum moisture per CDOT Standard Specification 203.07 to simulate conditions after construction. These additional tests included direct shear, 1-D consolidation, and swell testing

2.2 PHYSICAL PROPERTIES

AASHTO classifications for the clay ranged from A-6 (16) to A-7-6 (26). Swell testing of the clay resulted in swells ranging from 2% to 7% under a surcharge pressure of 200 pounds per square feet (psf). Detailed material properties including direct shear testing results are presented in Attachments 1 and 2.

2.3 GEOCHEMICAL PROPERTIES

The samples were analyzed for percent sulfate, pH, percent chlorides, and resistivity. Based on the results of water soluble sulfate testing obtained from CP 2103, the potential for sulfate attack on Portland cement concrete in direct contact with the bedrock is classified as a Class 3 exposure per Table 601-2 of the CDOT 2011 *Standard Specifications for Road and Bridge Construction* Section 601. The result for resistivity, sulfates, and chlorides suggests a strong corrosion towards metal based on values per Table C.1 of FHWA report FHWAO-IF-3-017, *Geotechnical Engineering Circular No.* 7 - *Soil Nail Walls*. Detailed material properties are presented in Attachments 1 and 2.

3.0 DISCUSSION & RECOMMENDATIONS

It should be understood that the laboratory results and the calculations based on these results represent a trace fraction of the total 271,000 cu. yds. of soil to be placed during the embankment construction. It is not feasible or practical to test large sections of the embankments. Because of this, the results discussed should be taken as guidelines for design and construction of the embankment.

3.1 SWELLING

Swelling will be a concern under the pavement and along the slopes of the embankment. Results show a swelling potential of up to 7% which represents a high probability of damage risk according to Table 2.7 of the CDOT *2013 Pavement Design Manual*. Subgrade treatment or an alternative subgrade material should be considered under the pavement to minimize pavement impacts and damage due to swell. The proposed slopes of the embankment are mostly 2:1 (H:V). This slope along with the high swell potential will likely cause localized slope failures such as soil creep, slumping, "popcorn" texture, and other maintenance issues when the soils become saturated from precipitation or snow melt. Alternatives are to shallow the slopes (3:1 or better), promote and accelerate vegetation growth, or armor the slopes with stone or other material that also promotes drainage away from the slope.

3.2 CONSOLIDATION

It was assumed that the worse settlement and area of highest concern would be at the full height of the embankment where it approached the bridge structure. Therefore, consolidation and time rate of consolidation calculations assumed the total height of the embankment was 45 feet, consisted of 4 layers (three at 10 feet thick and the upper at 15 feet thick) placed one at a time, and drainage paths would be along the layer interfaces. Using the 1-D consolidation sample laboratory results, consolidation of the constructed soils may be on the order of 10 inches near the bridge. It was calculated that in the first year, up to 4 inches of settlement may occur with the remaining 6 inches over 9 years. Additional minor consolidation may take place after the 9 years. The consolidation would be less the farther from the bridge one got. No significant improvement was observed between samples that were compacted at 95% vs. 97%. Consolidation will likely be worse if proper construction oversight is not performed. There are multiple options that could be considered that should reduce the risk of consolidation:

- Use an alternate material for the embankment fill that is less susceptible to consolidation such as material with lower fines content. One way would be to construct a MSE wall on the other side (opposite of the planned MSE along the railroad) since the required reinforcement for the tall MSE wall would nearly span the width of the roadway.
- Use light weigh fill within the core or thickest areas of the embankment.
- Surcharge the embankment along the bridge approaches.

If any of these options are selected, the global stability of the embankment should be verified once the final design has been completed.

3.3 GLOBAL STABILITY

For the current design, the global stability was verified using sections provided by Region 3. A slope stability model was created using Slope/W at the highest embankment heights with and without MSE walls. The soil values inputted into the model were based on the laboratory data results and field data collected during drilling. The models resulted in a global stability factor of safety greater than 1.3 which is the industry standard and in Federal Highway Administration publications. This does not mean that localized slope failures will not occur in the embankment as discussed in Section 3.1.

Please contact the Geotechnical Program at 303-398-6604 with any questions.

HB 092A-020 SH-92 & UPRR SA 14934 Page 4 of 4

REVIEW: Conroy

COPY: Eller – Region 3 RTD Mertes – Region 3 West Engineering Program Engineer Egghart – Region 3 West Engineering Goodrich – Region 3 Materials Engineer Far – Staff Bridge Henry/Hernandez – Staff Materials and Geotechnical Conroy – Geotechnical Program

LABORATORY TESTING SUMMARY

HB 092A-020 SH-92 & UPRR SA 14934

LABORATORY TEST SUMMARY SH-92 West of Hotchkiss

				AA	SHTO (Fradati	on							Direct	Shear				Water		
					Coarse	Fine	Silt &				Water	Dry	Peak	Peak	Residual	Residual			Soluble		Resistivity
Sample	Visual			Gravel	Sand	Sand	Clay	Liquid	Plastic	Plasticity	Content*	Density	Friction	Cohesion	Friction	Cohesion	Swell	Chlorides	Sulfates	Soil pH	Ω-cm
No.	Description	USCS	AASHTO	(%)	(%)	(%)	(%)	Limit	Limit	Index	(%)	(lb/ft ³)	Angle (°)	(psf)	Angle (°)	(psf)	(%/ksf)	(% mass)	(% mass)	$(H_2O/CaCl_2)$	Saturated
1	Clay	CL	A-6 (16)	0.7	5.4	9.4	84.5	35	15	20	14.1	107^{\dagger}	26.7	2,134	32.9	1,305	2.0	0.0187	0.90	7.01	400
2	Clay	CL	A-6 (18)	0.9	6.1	7.2	85.7	39	18	21	15.3	103 [‡]	30.9	1,984	37.7	994	2.7	0.0190	1.30	7.84	300
3	Clay	CL	A-7-6 (25)	0.4	3.0	5.5	91.9	44	18	26	16.4	99 [‡]	35.5	1,781	33.0	1,337	7.0	0.0088	0.80	6.95	260
4	Clay	CL	A-7-6 (26)	0.6	2.0	4.3	93.1	44	17	27	16.3	102^{\dagger}	18.1	3,288	33.0	1,337	5.0	0.0164	2.10	7.78	190

 \ast - Value is optimum moisture up to -2% based on T99 standard proctor test.

[†] - Value is 97% density based on T99 standard proctor test.

[‡] - Value is 95% density based on T99 standard proctor test.

All samples were dried at 140° F due to high gypsum content per CP 20-08.

LABORATORY TESTING RESULTS

HB 092A-020 SH-92 & UPRR SA 14934

	- 11	÷	н	-	_
			н	-	-
_	-11	H	н	-	_
			н		
			ш		

Project: Reported to:

CTL # <u>DN46162-300</u> CDOT Materials Laboratory 4670 Holly Street, Unit A Denver, Colorado 80216 Attn: David Thomas

Date:	07/17/12
Reported by:	PSH

Sample Information

Sample Number:	1	Depth:
Field Sheet Number:	208108	
Project Number:	STA092-024	

Sieve Analysis (T 11, T 27)

		Percent	
Sieve Size	Wt. Retained	Retained	Percent Passing
3"	100 contraction	0.0	
1 1/2"		0.0	
1"		0.0	
3/4"		0.0	
1/2"		0.0	
3/8"	Department of the	0.0	
#4	0.0	0.0	100
#10	1.9	0.7	99
#16	2.3	0.8	98
#40	12.4	4.6	94
#50	4.3	1.6	92
#100	7.9	2.9	89
#200	13.3	4.9	84.5

Dry Soil Weight

272.3

Moisture Content (%) (AASHTO T 265)		
Dry Density (pcf)		
Percent Gravel		0.7
Percent Sand		14.8
Percent Coarse Sand		5.4
Percent Fine Sand		9.4
Percent Silt and Clay		84.5
Liquid Limit (AASHTO T 89)		35
Plasticity Index (AASHTO T 90)		20
AASHTO Classification (AASHTO M 145)		A-6 (16)
USCS Classification (ASTM D 2487)		CL
Sulfate Content (SO ₄)		0.900
Chloride Ion In Water (ASTM D 512-89)		0.0187
PH of Soil for Corrosion Testing (ASTM G 51-95)		7.010
Wenner Four-Electrode (ASTM G 57-95a)	*	States and and

*Measured in ohm-centimeters

(As received) (Saturated) 1300 @ 13.3% 400 @ 28.5%

Compaction Test Results

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Results

FIG. 2

PROJECT NO. GS5617-125

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-1-Consolidation test

FIG. 4

Test Results

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-1-Consolidation test

FIG. 5

Results

PROJECT NO. GS5617-125

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-1-Consolidation test

FIG. 6

Test Results

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-1-Consolidation test

FIG. 7

ONE-DIMENSIONAL CONSOLIDATION CALCULATION SHEET

PROJECT NO: PROJECT NAME: Sample Description: Sample Location: Date:

DN46162-300 CDOT Clay, Sandy A-6 (16) S-1 FS208108 7/30/2012

Density

SAMPLE INFORMATION

Diameter (in.):	1.935
Length, H (in.):	0.750
Volume (in ³):	2.21
Total volume, V ₀ (cm ³):	36.14
Wet soil/ring wt (g):	310.60
Ring wt (g):	239.90
Wet wt, $W_{t,0}$ (g):	70.70
Wet unit wt (g/cc):	1.96
Wet unit wt (pcf):	122.1
Dry density (pcf):	107.0

Moisture

	Before (Trimmings)	After (Total Sample)
Dish No.:	50	24
Dish/wet soil (g):	342.70	298.70
Dish/dry soil (g):	328.80	291.30
Dish wt (g):	230.30	229.20
Water wt (g):	13.90	7.40
Soil wt (g):	98.50	62.10
Moisture (%):	14.1	11.9

Input Data

SAMPLE CALCULATIONS

Initial volume (cm ³):	36.14
Unit weight of water, γ_w (g/cc):	1.00
Specific Gravity, G _s :	2.70
Initial volume of solids, $V_s=W_s/\gamma_wG_s$ (cm ³):	23.00
Initial volume of voids, $V_{v,0}=V_0-V_s$ (cm ³):	13.14
Initial volume of water, $V_{w,0}=(W_{t,0}-W_s)/\gamma_w$ (cm ³):	8.60
Initial degree of saturation, $S_0 = V_{w,0}/V_{v,0}$ (%):	65.44
Initial void ratio, $e_{0=}V_{v,0}/V_s$:	0.57
Final void ratio, e _f :	0.00

Final volume of water, $V_{w,f} = (W_{t,f} - W_s)/\gamma_w$ (cm³): Final volume of voids, $V_{v,f}=e_f^*V_s$ (cm³): Final degree of saturation, $S_f = V_{w,f}/V_{v,f}$ (%):

G _s assumed or from lab data?	

7.4

0.00

#DIV/0!

W _{t,0} =Initial total sample weight	
W _{t,f} =Final total sample weight	
V ₀ =Total sample volume	
W _s =Soil weight	

Liquid Limit:	35
Plasticity Index:	20
Percent Gravel:	0.7
Percent Sand:	14.8
Percent Silt and Clay:	84.5
CALCULATION OF % EXPANSION/COMPRESSION AND VOID RATIOS

NO

Cell filled with water (yes/no)?:

Machine No.: 109

Final Readings:

Load No.	Start Date and Time	Pressure (psf)	Final Reading (10 ⁻⁴ in.)	Machine Deflection (10 ⁻⁴ in.)	Net Reading (10 ⁻⁴ in.)	ΔH (in.)	Expansion/ Compression, +/- (%)	Δe	Void Ratio, e	C=-Δe/Δ log σ
Initial	7/30/2012 8:56	0	3520	0	3520	0.0000	0.00	0.000	0.571	
1	7/30/2012 8:11	500	3440	11	3451	-0.0069	-0.92	-0.014	0.557	
2	7/31/2012 8:12	1000	3355	21	3376	-0.0144	-1.92	-0.030	0.541	0.0522
3	8/1/2012 7:15	2000	3295	28	3323	-0.0197	-2.63	-0.041	0.530	0.0369
4	8/2/2012 7:27	4000	3191	43	3234	-0.0286	-3.81	-0.060	0.511	0.0619
5	8/3/2012 7:27	8000	3098	61	3159	-0.0361	-4.81	-0.076	0.496	0.0522

Expansion/Compression (%)= $\Delta H/H$

 $\Delta e = (\Delta H/H)^*(1+e_0)$

Colorado Department of Transportation DIRECT SHEAR TEST REPORT (AASHTO T 236)

Field Sheet No.	:	208110 (#1)	Project ID	:	14934
Date Received	:	7/23/2012	Project	:	HB 092A-020
Item Number	:	203	Location	:	SH 92 and UPRR
Lab Test No.	:	2012-077	Test Date	:	07/31/2012
			Source	:	Stockpile
			Region	:	3
Classification	:	N/A	Compaction Method	:	T 99 (A)
Liquid Limit	:	N/A	Max. Dry Dens. (pcf)	:	109.8
Plastic Limit	:	N/A	Optimum Moisture	:	16.5%
Plastic Index	:	N/A			

Specimens were compacted to 95% of AASHTO T 180 Method A at optimum moisture content.

Specimen Preparation	Stage 1	Stage 2	Stage 3
Surcharge Pressure (ksf)	1.73	3.19	6.01
Compacted Dry Density (pcf)	105.8	105.8	105.9
Moisture Content	16.2%	16.2%	16.1%
Percent of Maximum Dry Density	96.4%	96.4%	96.5%

Project Specifications: Peak Friction Angle: Residual Friction Angle:

26.7 degrees 32.9 degrees

Distribution:

Central Laboratory Region Materials Engineer C.K. Su Soils and Rockfall Program

-	-11	н	F	-
_	-11	н	F	_
	П	Π		
	Ш	П		

Project: Reported to: CTL # <u>DN46162-300</u> CDOT Materials Laboratory 4670 Holly Street, Unit A Denver, Colorado 80216 Attn: David Thomas

Date:	07/17/12		
Reported by:	PSH		

Sample Information

Sample Number:	2	Depth:
Field Sheet Number:	208108	
Project Number:	STA092-024	

Sieve Analysis (T 11, T 27)

01	We Deteland	Percent	Design Design
Sieve Size	wt. Retained	Retained	Percent Passing
3"		0.0	
1 1/2"		0.0	
1"		0.0	
3/4"		0.0	
1/2"		0.0	1.1
3/8"		0.0	
#4	0.0	0.0	100
#10	1.8	0.9	99
#16	2.8	1.4	98
#40	9.1	4.7	93
#50	3.0	1.5	91
#100	5.4	2.8	89
#200	5.6	2.9	85.7

Dry Soil Weight

193.7

Moisture Content (%) (AASHTO T 265)		
Dry Density (pcf)		
Percent Gravel		0.9
Percent Sand		13.4
Percent Coarse Sand		6.1
Percent Fine Sand		7.2
Percent Silt and Clay		85.7
Liquid Limit (AASHTO T 89)		39
Plasticity Index (AASHTO T 90)		21
AASHTO Classification (AASHTO M 145)		A-6 (18)
USCS Classification (ASTM D 2487)		CL
Sulfate Content (SO ₄)		1.300
Chloride Ion In Water (ASTM D 512-89)		0.019
PH of Soil for Corrosion Testing (ASTM G 51-95)		7.840
Wenner Four-Electrode (ASTM G 57-95a)	*	

*Measured in ohm-centimeters

(As received) (Saturated) 1400 @ 12.8% 300 @ 34.4%

Compaction Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Swell Consolidation Test Results

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Results

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-2-Consolidation test

FIG. 3

Results

FIG. 4

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-2-Consolidation test

PROJECT NO. GS5617-125

FIG. 5

PROJECT NO. GS5617-125

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-2-Consolidation test

FIG. 6

Test Results

FIG. 7

ONE-DIMENSIONAL CONSOLIDATION CALCULATION SHEET

PROJECT NO: PROJECT NAME: Sample Description: Sample Location: Date:

DN46162-300 CDOT Clay, Sandy A-6 (18) S-2 FS208108 7/30/2012

Density

SAMPLE INFORMATION

Diameter (in.):	1.935
Length, H (in.):	0.750
Volume (in ³):	2.21
Total volume, V ₀ (cm ³):	36.14
Wet soil/ring wt (g):	271.20
Ring wt (g):	202.50
Wet wt, $W_{t,0}$ (g):	68.70
Wet unit wt (g/cc):	1.90
Wet unit wt (pcf):	118.7
Dry density (pcf):	102.9

Moisture

Sample)
249
247.70
289.37
229.90
-41.67
59.47

Input Data

SAMPLE CALCULATIONS

Initial volume (cm ³):	36.14
Unit weight of water, γ_w (g/cc):	1.00
Specific Gravity, G _s :	2.70
Initial volume of solids, $V_s=W_s/\gamma_wG_s$ (cm ³):	22.03
Initial volume of voids, $V_{v,0}=V_0-V_s$ (cm ³):	14.12
Initial volume of water, $V_{w,0}=(W_{t,0}-W_s)/\gamma_w$ (cm ³):	9.23
Initial degree of saturation, $S_0 = V_{w,0}/V_{v,0}$ (%):	65.39
Initial void ratio, $e_{0=}V_{v,0}/V_s$:	0.64
Final void ratio, e _f :	0.00

Final volume of water, $V_{w,f}=(W_{t,f}-W_s)/\gamma_w$ (cm³): Final volume of voids, $V_{v,f} = e_f^* V_s$ (cm³): Final degree of saturation, $S_f = V_{w,f}/V_{v,f}$ (%):

-41.67
0.00
#DIV/0!

G_s assumed or from lab data?

ASSUMED

$W_{t,0}$ =Initial total sample weight	Liquid Limit:	39
$W_{t,f}$ =Final total sample weight	Plasticity Index:	21
V ₀ =Total sample volume	Percent Gravel:	0.9
W _s =Soil weight	Percent Sand:	13.4
	Percent Silt and Clay:	85.7

CALCULATION OF % EXPANSION/COMPRESSION AND VOID RATIOS

NO

Cell filled with water (yes/no)?:

Machine No.: 107

Final Readings:

Load No.	Start Date and Time	Pressure (psf)	Final Reading (10 ⁻⁴ in.)	Machine Deflection (10 ⁻⁴ in.)	Net Reading (10 ⁻⁴ in.)	ΔH (in.)	Expansion/ Compression, +/- (%)	Δe	Void Ratio, e	C=-Δe/Δ log σ
Initial	7/30/2012 8:23	0	3850	0	3850	0.0000	0.00	0.000	0.641	
1	7/30/2012 8:28	500	3763	10	3773	-0.0077	-1.03	-0.017	0.624	
2	7/31/2012 7:17	1000	3688	15	3703	-0.0147	-1.96	-0.032	0.609	0.0509
3	8/1/2012 7:27	2000	3615	28	3643	-0.0207	-2.76	-0.045	0.596	0.0436
4	8/2/2012 7:27	4000	3511	49	3560	-0.0290	-3.87	-0.063	0.577	0.0603
5	8/3/2012 7:28	8000	3358	67	3425	-0.0425	-5.67	-0.093	0.548	0.0981

Expansion/Compression (%)= $\Delta H/H$

 $\Delta e = (\Delta H/H)^*(1+e_0)$

Colorado Department of Transportation DIRECT SHEAR TEST REPORT (AASHTO T 236)

Field Sheet No.	:	208110 (#2)	Project ID	:	14934
Date Received	:	7/23/2012	Project	:	HB 092A-020
Item Number	:	203	Location	:	SH 92 and UPRR
Lab Test No.	:	2012-078	Test Date	:	08/1/2012
			Source	:	Stockpile
			Region	:	3
Classification	:	N/A	Compaction Method	:	T 99 (A)
Liquid Limit	:	N/A	Max. Dry Dens. (pcf)	:	108.5
Plastic Limit	:	N/A	Optimum Moisture	:	17.0%
Plastic Index	:	N/A			

Specimens were compacted to 95% of AASHTO T 180 Method A at optimum moisture content.

Specimen Preparation	Stage 1	Stage 2	Stage 3
Surcharge Pressure (ksf)	1.72	3.19	5.99
Compacted Dry Density (pcf)	103.7	103.7	103.7
Moisture Content	16.8%	16.8%	16.8%
Percent of Maximum Dry Density	95.5%	95.6%	95.5%

Project Specifications: Peak Friction Angle: Residual Friction Angle:

30.9 degrees 37.7 degrees

Distribution:

Central Laboratory Region Materials Engineer C.K. Su Soils and Rockfall Program

Project: Reported to: CTL # <u>DN46162-300</u> CDOT Materials Laboratory 4670 Holly Street, Unit A Denver, Colorado 80216 Attn: David Thomas

Date:	07/17/12	
Reported by:	PSH	

Sample Information

Sample Number:	3	Depth:	
Field Sheet Number:	208108		
Project Number:	STA092-024		

Sieve Analysis (T 11, T 27)

	and the second	Percent	Charles and the second
Sieve Size	Wt. Retained	Retained	Percent Passing
3"		0.0	
1 1/2"		0.0	
1"		0.0	
3/4"		0,0	
1/2"		0.0	1
3/8"		0.0	
#4	0.0	0.0	100
#10	1.0	0.4	100
#16	1.1	0.5	99
#40	5.6	2.5	97
#50	2.7	1.2	95
#100	4.7	2.1	93
#200	4.9	2.2	91.1
	the second se		

Dry Soil Weight

225.6

Moisture Content (%) (AASHTO T 265)		
Dry Density (pcf)		
Percent Gravel		0.4
Percent Sand		8.4
Percent Coarse Sand		3.0
Percent Fine Sand		5.5
Percent Silt and Clay		91.1
Liquid Limit (AASHTO T 89)		44
Plasticity Index (AASHTO T 90)		26
AASHTO Classification (AASHTO M 145)		A-7-6 (25)
USCS Classification (ASTM D 2487)		CL
Sulfate Content (SO ₄)		0.8
Chloride Ion In Water (ASTM D 512-89)		0.0088
PH of Soil for Corrosion Testing (ASTM G 51-95)		6.950
Wenner Four-Electrode (ASTM G 57-95a)	*	

*Measured in ohm-centimeters

(As received) (Saturated) 1100 @ 14.9% 260 @ 42.6%

COLORADO DEPARTMENT OF TRANSPORTATION

Compaction Test Results

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-3-Consolidation test

FIG. 2

Results

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-3-Consolidation test

FIG. 4

Test Results

MEEKER ELEMENTARY SCHOOL PROJECT NO. GS5617-125

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-3-Consolidation test

FIG. 5

Results

20

SAMPLE DESCRIPTION: Clay, Slightly Sandy A-7-6 (25) LOCATION: S-3 FS208108 LOAD NO. 5 PRESSURE 8000 psf TEST PROCEDURE: ASTM D2435

10

MEEKER SCHOOL DISTRICT RE-1 C/O VANIR CONSTRUCTION MANAGEMENT, INC. MEEKER ELEMENTARY SCHOOL PROJECT NO. GS5617-125 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-3-Consolidation test

3620

3600

3580

3560

3540

3520

3500

3480

3460

0

Net Reading (10⁻⁴ inches)

LIQUID LIMIT: 44 % PLASTICITY INDEX: 26 % GRAVEL: 0 % SAND: 9 % SILT AND CLAY: 91 %

40

One Dimensional Consolidation Test Results

30

ONE-DIMENSIONAL CONSOLIDATION CALCULATION SHEET

Density

PROJECT NO: PROJECT NAME: Sample Description: Sample Location: Date: DN46162-300 CDOT Clay, Slightly Sandy A-7-6 (25) S-3 FS208108 7/30/2012

SAMPLE INFORMATION

Diameter (in.):	1.935
Length, H (in.):	0.750
Volume (in ³):	2.21
Total volume, V ₀ (cm ³):	36.14
Wet soil/ring wt (g):	279.64
Ring wt (g):	213.45
Wet wt, $W_{t,0}$ (g):	66.19
Wet unit wt (g/cc):	1.83
Wet unit wt (pcf):	114.3
Dry density (pcf):	98.2

Moisture

	Before (Trimmings)	After (Total Sample)
Dish No.:	75	33
Dish/wet soil (g):	579.75	294.73
Dish/dry soil (g):	530.48	286.29
Dish wt (g):	229.70	229.40
Water wt (g):	49.27	8.44
Soil wt (g):	300.78	56.89
Moisture (%):	16.4	14.8

Input Data

SAMPLE CALCULATIONS

Initial volume (cm ³):	36.14
Unit weight of water, γ_w (g/cc):	1.00
Specific Gravity, G _s :	2.70
Initial volume of solids, $V_s=W_s/\gamma_wG_s$ (cm ³):	21.07
Initial volume of voids, $V_{v,0}=V_0-V_s$ (cm ³):	15.07
Initial volume of water, $V_{w,0}=(W_{t,0}-W_s)/\gamma_w$ (cm ³):	9.30
Initial degree of saturation, $S_0 = V_{w,0}/V_{v,0}$ (%):	61.70
Initial void ratio, $e_{0=}V_{v,0}/V_s$:	0.72
Final void ratio, e _f :	0.00

Final volume of water, $V_{w,f}=(W_{t,f}-W_s)/\gamma_w$ (cm³): Final volume of voids, $V_{v,f}=e_f^*V_s$ (cm³): Final degree of saturation, $S_f=V_{w,f}/V_{v,f}$ (%):

0.00
#DIV/0!

G_s assumed or from lab data?

ASSUMED	
---------	--

8.44

$W_{t,0}$ =Initial total sample weight	
$W_{t,f}$ =Final total sample weight	
V ₀ =Total sample volume	
W _s =Soil weight	

Liquid Limit:	44
Plasticity Index:	26
Percent Gravel:	0.4
Percent Sand:	8.5
Percent Silt and Clay:	91.1

CALCULATION OF % EXPANSION/COMPRESSION AND VOID RATIOS

NO

Cell filled with water (yes/no)?:

Machine No.: 54

Final Readings:

Load No.	Start Date and Time	Pressure (psf)	Final Reading (10 ⁻⁴ in.)	Machine Deflection (10 ⁻⁴ in.)	Net Reading (10 ⁻⁴ in.)	ΔH (in.)	Expansion/ Compression, +/- (%)	Δe	Void Ratio, e	C=-Δe/Δ log σ
Initial	7/30/2012 9:47	0	3882	0	3882	0.0000	0.00	0.000	0.715	
1	7/30/2012 10:02	500	3778	17	3795	-0.0087	-1.16	-0.020	0.695	
2	7/31/2012 10:03	1000	3695	27	3722	-0.0160	-2.13	-0.037	0.679	0.0555
3	8/1/2012 10:03	2000	3642	33	3675	-0.0207	-2.76	-0.047	0.668	0.0357
4	8/2/2012 10:03	4000	3578	42	3620	-0.0262	-3.49	-0.060	0.655	0.0418
5	8/3/2012 10:03	8000	3472	52	3524	-0.0358	-4.77	-0.082	0.633	0.0729

Expansion/Compression (%)=ΔH/H

 $\Delta e = (\Delta H/H)^*(1+e_0)$

Colorado Department of Transportation DIRECT SHEAR TEST REPORT (AASHTO T 236)

Field Sheet No.	:	208110 (#3)	Project ID	:	14934
Date Received	:	7/23/2012	Project	:	HB 092A-020
Item Number	:	203	Location	:	SH 92 and UPRR
Lab Test No.	:	2012-079	Test Date	:	08/2/2012
			Source	:	Stockpile
			Region	:	3
Classification	:	N/A	Compaction Method	:	T 99 (A)
Liquid Limit	:	N/A	Max. Dry Dens. (pcf)	:	103.5
Plastic Limit	:	N/A	Optimum Moisture	:	18.5%
Plastic Index	:	N/A			

Specimens were compacted to 95% of AASHTO T 180 Method A at optimum moisture content.

Specimen Preparation	Stage 1	Stage 2	Stage 3
Surcharge Pressure (ksf)	1.70	3.25	6.00
Compacted Dry Density (pcf)	98.6	98.7	98.7
Moisture Content	18.3%	18.2%	18.3%
Percent of Maximum Dry Density	95.3%	95.4%	95.3%

Project Specifications: Peak Friction Angle: Residual Friction Angle:

35.5 degrees 33.0 degrees

Distribution:

Central Laboratory Region Materials Engineer C.K. Su Soils and Rockfall Program

-	-	H	н	-	-
	-1	ü	п		
	÷	H	H	-	-
		н	ш		
	- 1	ш			

Project: Reported to: CTL # <u>DN46162-300</u> CDOT Materials Laboratory 4670 Holly Street, Unit A Denver, Colorado 80216 Attn: David Thomas

Date:	07/17/12
Reported by:	PSH

Sample Information

Sample Number:	4	Depth:
Field Sheet Number:	208108	
Project Number:	STA092-024	

Sieve Analysis (T 11, T 27)

	WA Detained	Percent	Deveent Develop
Sieve Size	wt. Retained	Retained	Percent Passing
3"		0.0	
1 1/2"		0.0	
1"		0.0	
3/4"		0.0	
1/2"		0.0	
3/8"		0.0	
#4	0.0	0.0	100
#10	1.4	0.6	99
#16	0.9	0.4	99
#40	3.7	1.6	97
#50	1.3	0.6	97
#100	3.3	1.4	95
#200	5.2	2.3	93.1

Dry Soil Weight

229.8

Moisture Content (%) (AASHTO T 265)		
Dry Density (pcf)		
Percent Gravel		0.6
Percent Sand		6.3
Percent Coarse Sand		2.0
Percent Fine Sand		4.3
Percent Silt and Clay		93.1
Liquid Limit (AASHTO T 89)		44
Plasticity Index (AASHTO T 90)		27
AASHTO Classification (AASHTO M 145)		A-7-6 (26)
USCS Classification (ASTM D 2487)		CL
Sulfate Content (SO ₄)		2.1
Chloride Ion In Water (ASTM D 512-89)		0.0164
PH of Soil for Corrosion Testing (ASTM G 51-95)		7.78
Wenner Four-Electrode (ASTM G 57-95a)	*	

*Measured in ohm-centimeters

(As received) (Saturated)

560 @ 17.9% 190 @ 45.5%

Compaction Test Results

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Swell Consolidation Test Results

CDOT LABORATORY TESTING PROJECT NO. DN46,162-300 S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\Swell data

Results

FIG. 2

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-4-Consolidation test

FIG. 6

PROJECT NO. GS5617-125

S:\PROJECTS\46100\DN46162.000 CDOT\300\FS208108\S-4-Consolidation test

FIG.7

Results

ONE-DIMENSIONAL CONSOLIDATION CALCULATION SHEET

Density

PROJECT NO: PROJECT NAME: Sample Description: Sample Location: Date: DN46162-300 CDOT Clay, Slightly Sandy A-7-6 (26) S-4 FS208108 7/30/2012

SAMPLE INFORMATION

Diameter (in.):	1.935
Length, H (in.):	0.750
Volume (in ³):	2.21
Total volume, V ₀ (cm ³):	36.14
Wet soil/ring wt (g):	322.51
Ring wt (g):	253.89
Wet wt, $W_{t,0}$ (g):	68.62
Wet unit wt (g/cc):	1.90
Wet unit wt (pcf):	118.5
Dry density (pcf):	101.9

Moisture

	Before (Trimmings)	After (Total Sample)
Dish No.:	188	291
Dish/wet soil (g):	509.21	297.11
Dish/dry soil (g):	470.05	287.82
Dish wt (g):	229.50	229.50
Water wt (g):	39.16	9.29
Soil wt (g):	240.55	58.32
Moisture (%):	16.3	15.9

Input Data

SAMPLE CALCULATIONS

Initial volume (cm ³):	36.14
Unit weight of water, γ_w (g/cc):	1.00
Specific Gravity, G _s :	2.70
Initial volume of solids, $V_s=W_s/\gamma_wG_s$ (cm ³):	21.60
Initial volume of voids, $V_{v,0}=V_0-V_s$ (cm ³):	14.54
Initial volume of water, $V_{w,0}=(W_{t,0}-W_s)/\gamma_w$ (cm ³):	10.30
Initial degree of saturation, $S_0 = V_{w,0}/V_{v,0}$ (%):	70.83
Initial void ratio, $e_{0=}V_{v,0}/V_s$:	0.67
Final void ratio, e _f :	0.00

Final volume of water, $V_{w,f}=(W_{t,f}-W_s)/\gamma_w$ (cm³): Final volume of voids, $V_{v,f}=e_f^*V_s$ (cm³): Final degree of saturation, $S_{f}=V_{w,f}/V_{v,f}$ (%):

9.29
0.00
#DIV/0!

G_s assumed or from lab data?

 $W_{t,0}$ =Initial total sample weight $W_{t,f}$ =Final total sample weight V_0 =Total sample volume W_s =Soil weight

Liquid Limit:	44
Plasticity Index:	27
Percent Gravel:	0.6
Percent Sand:	6.3
Percent Silt and Clay:	93.1

CALCULATION OF % EXPANSION/COMPRESSION AND VOID RATIOS

NO

Cell filled with water (yes/no)?:

Machine No.: 54

Final Readings:

Load No.	Start Date and Time	Pressure (psf)	Final Reading (10 ⁻⁴ in.)	Machine Deflection (10 ⁻⁴ in.)	Net Reading (10 ⁻⁴ in.)	ΔH (in.)	Expansion/ Compression, +/- (%)	Δe	Void Ratio, e	C=-Δe/Δ log σ
Initial	7/30/2012 9:11	0	3603	0	3603	0.0000	0.00	0.000	0.673	
1	7/30/2012 9:26	500	3491	2	3493	-0.0110	-1.47	-0.025	0.649	
2	7/31/2012 9:27	1000	3389	5	3394	-0.0209	-2.79	-0.047	0.627	0.0734
3	8/1/2012 9:27	2000	3307	7	3314	-0.0289	-3.85	-0.064	0.609	0.0593
4	8/2/2012 9:27	4000	3203	12	3215	-0.0388	-5.17	-0.087	0.587	0.0734
5	8/3/2012 9:27	8000	3043	19	3062	-0.0541	-7.21	-0.121	0.553	0.1134

Expansion/Compression (%)= $\Delta H/H$

 $\Delta e = (\Delta H/H)^*(1+e_0)$

Colorado Department of Transportation DIRECT SHEAR TEST REPORT (AASHTO T 236)

Field Sheet No.	:	208110 (#4)	Project ID	:	14934
Date Received	:	7/23/2012	Project	:	HB 092A-020
Item Number	:	203	Location	:	SH 92 and UPRR
Lab Test No.	:	2012-080	Test Date	:	08/3/2012
			Source	:	Stockpile
			Region	:	3
Classification	:	N/A	Compaction Method	:	T 99 (A)
Liquid Limit	:	N/A	Max. Dry Dens. (pcf)	:	105.8
Plastic Limit	:	N/A	Optimum Moisture	:	17.5%
Plastic Index	:	N/A			

Specimens were compacted to 95% of AASHTO T 180 Method A at optimum moisture content.

Specimen Preparation	Stage 1	Stage 2	Stage 3
Surcharge Pressure (ksf)	1.72	3.15	6.01
Compacted Dry Density (pcf)	102.1	102.1	102.0
Moisture Content	17.4%	17.3%	17.4%
Percent of Maximum Dry Density	96.5%	96.5%	96.4%

Project Specifications: Peak Friction Angle: Residual Friction Angle:

18.1 degrees 33.0 degrees

Distribution:

Central Laboratory Region Materials Engineer C.K. Su Soils and Rockfall Program