＊工本是时：＊
＊（3＊＊＊
Section 1 Introduction. 1
Section 2 Study Area. 3
Section 3 Existing 2001 Conditions 7
3.1 Existing (2001) Traffic Volumes 7
3.2 Existing (2001) Traffic Operations 11
3.2.1 Existing (2001) Highway Segment Analysis 11
3.2.2 Existing (2001) Intersection Analysis 12
3.2.3 Existing (2001) Operational Analysis Summary 12
Section $4 \quad$ Safety 15
4.1 Safety Issues By Section 15
Section 5 Alternatives 29
5.1 Grandview Section 29
5.2 Florida Mesa and Valley Section 29
5.3 Dry Creek and Gem Village Section 30
5.4 Bayfield Section 30
Section 6 Travel Demand. 33
6.1 Traffic Volumes 33
6.1.1 Grandview Section. 33
6.1.2 Florida Mesa and Valley Section 33
6.1.3 Dry Creek and Gem Village Section 39
6.1.4 Bayfield Section 39
Section 72025 Analysis of Options That Were Dismissed 41
Section 82025 Operational Analysis 43
8.1 2025 Grandview Section Operational Analysis 43
8.1.1 2025 Grandview Section Highway Analysis 43
8.1.2 2025 Grandview Section Highway Analysis Comparison Summary 45
8.1.3 2025 Grandview Section Intersection Analysis 47
8.1.4 2025 Grandview Section Intersection Analysis Comparison Summary 49
8.2 2025 Florida Mesa and Valley Section Operational Analysis 51
8.2.1 2025 Florida Mesa and Valley Section Highway Analysis 51
8.2.2 2025 Florida Mesa and Valley Section Intersection Analysis. 52
8.2.3 2025 Florida Mesa and Valley Section Operational Analysis Summary 52
8.3 2025 Dry Creek and Gem Village Section Operational Analysis 53
8.3.1 2025 Dry Creek and Gem Village Section Highway Analysis 53
8.3.2 2025 Dry Creek and Gem Village Operational Analysis Summary 53
8.4 2025 Bayfield Section Operational Analysis 54
8.4.1 2025 Bayfield Section Highway Analysis 54
8.4.2 2025 Bayfield Section Intersection Analysis 54
8.4.3 2025 Bayfield Section Operations Analysis Summary 55
8.5 Summary 55
Section 9 References 57

LIST OF TABLES

Table 3.1 Existing US 160 Highway Segment Traffic Analysis Summary
Table 3.2 Existing US 160 Signalized Intersection Traffic Analysis Summary
Table 7.1 Grandview Section Alternative Options Intersection Analysis Summary
Table 8.1 Alternative G Modified, Highway Segment Traffic Operations Summary
Table 8.2 Alternative G Modified, Ramp Merge/Diverge and Weaving Area Traffic Operations Summary
Table 8.3 Alternative F Modified, Highway Segment Traffic Operations Summary
Table 8.4 Alternative F Modified, Ramp Merge/Diverge and Weaving Area Traffic Operations Summary
Table 8.5 Grandview Section Highway Segment Alternative Comparison Summary
Table 8.6 Grandview Section Ramp Merge/Diverge and Weaving Area Alternative Comparison Summary

Table 8.7 Alternative G Modified, Signalized Intersection Operations Summary
Table 8.8 Alternative F Modified, Signalized Intersection Operations Summary
Table 8.9 2025 Grandview Section Signalized Intersection Alternative Comparison Summary

LIST OF FIGURES

Figure 1 Location Map
Figure 2 Existing (2001) Daily and Peak-Hour Traffic Volumes
Figure 3 US 550 Accident Histogram from CR 220 to US 160
Figure 4 US 160 Accident Histogram West of Farmington Hill to SH 172/CR 234
Figure 5 US 160 Accident Histogram SH 172/CR 234 to CR 222/CR 223 (west)
Figure 6 US 160 Accident Histogram CR 222/CR 223 (west) to CR 502
Figure $7 \quad$ US 160 Accident Histogram CR 502 to East of Bayfield
Figure 82025 Seasonal Daily and Peak-Hour Traffic Volumes and Main Lane Laneage (Grandview Alternative G Modified, Florida Mesa and Valley Alternative C, Dry Creek \& Gem Village Alternative H, and Bayfield Alternative B)

Figure 92025 Seasonal Daily and Peak-Hour Traffic Volumes and Main Lane Laneage (Grandview Alternative F Modified, Florida Mesa and Valley Alternative A, Dry Creek \& Gem Village Alternative C, and Bayfield Alternative A)

LIST OF PHOTOS

Photo 1 Farmington Hill

LIST OF ATTACHMENTS

Attachment A	Existing Highway Segment Analyses
Attachment B	Existing Intersection Analyses
Attachment C	Grandview Section Trip Generation Tables
Attachment D	2025 Grandview Section Highway Analyses
	Attachment D-1 2025 Grandview Section, No Action Alternative, Highway Analyses
	Attachment D-2 2025 Grandview Section, Alternative G Modified, Highway Analyses
	Attachment D-3 2025 Grandview Section, Alternative F Modified, Highway Analyses
Attachment E	2025 Grandview Section Intersection Analyses
	Attachment E-1 2025 Grandview Section, No Action Alternative, Intersection Analyses
	Attachment E-2 2025 Grandview Section, Alternative G Modified, Intersection Analyses
	Attachment E-3 2025 Grandview Section, Alternative F Modified, Intersection Analyses
	Attachment E-4 2025 Grandview Section, Additional Analyses for At-Grade Options

Attachment F	2025 Florida Mesa and Valley Section Highway Analyses
	Attachment F-1 2025 Florida Mesa and Valley Section, No Action Alternative, Highway Analyses
	Attachment F-2 2025 Florida Mesa and Valley Section, Alternative C and Alternative A, Highway Analyses
Attachment G	2025 Florida Mesa and Valley Section Intersection Analyses
	Attachment G-1 2025 Florida Mesa and Valley Section, No Action Alternative, Intersection Analyses
	Attachment G-2 2025 Florida Mesa and Valley Section, Alternative C and Alternative A, Intersection Analyses
Attachment H	2025 Dry Creek and Gem Village Section Highway Analyses
	Attachment H-1 2025 Dry Creek and Gem Village Section, No Action Alternative, Highway Analyses
	Attachment H-2 2025 Dry Creek and Gem Village Section, Alternative H and Alternative C, Highway Analyses
Attachment I	2025 Bayfield Section Highway Analyses
	Attachment I-1 2025 Bayfield Section, No Action Alternative, Highway Analyses
	Attachment I-2 2025 Bayfield Section, Alternative B and Alternative A, Highway Analyses
Attachment J	2025 Bayfield Section Intersection Analyses
	Attachment J-1 2025 Bayfield Section, No Action Alternative, Intersection Analyses
	Attachment J-2 2025 Bayfield Section, Alternative B, Intersection Analyses
	Attachment J-3 2025 Bayfield Section, Alternative A, Intersection Analyses

FEIS Final Environmental Impact Statement
LOS Level of Service
MP milepost
mph miles per hour
WHI weighted hazard index

This report documents the existing and future alternative traffic conditions for the US 160 project corridor study area, and supplements the Final Environmental Impact Statement (FEIS) being prepared for this proposed roadway project. This report documents the existing (2001) and future year (2025) seasonal peak traffic conditions for roadways and intersections within the study area. The future year conditions examined consist of the No Action Alternative and other action alternatives that are described in detail in Chapter 2, Alternatives, of the FEIS. The action alternatives analyzed in this report represent the alternatives that were carried forward for detailed analysis in the FEIS.

The traffic study area is located in La Plata County, Colorado. The project length on US 160 would be 16.2 miles, extending from milepost (MP) 88.0, located east of Durango, to MP 104.2, located east of Bayfield. The project length on US 550 would be 1.2 miles, extending from MP 16.6, located at the US 160/US 550 (south) intersection, to MP 15.4, located south of the US 550/CR 220 intersection. The study area is shown in Figure 1, Location Map. The highway corridor includes four distinguishable geographic sections that have similar land use and traffic issues. The alternative analysis will focus on the four sections separately. The four sections are:

- Grandview section - US 160 from MP 88.0 to MP 91.8, and a portion of US 550 from MP 16.6 to MP 15.4.
- Florida Mesa and Valley section - US 160 from MP 91.8 to MP 94.2.
- Dry Creek and Gem Village section - US 160 from MP 94.2 to MP 101.6.
- Bayfield section - US 160 from MP 101.6 to MP 104.2.

This section summarizes the existing traffic volumes and Level of Service (LOS) for the roadways and intersections along the US 160 project corridor. The existing conditions analysis year used for this report is 2001. All traffic count data were collected by Bechtolt Engineering, LLC, on weekdays in June 2001. Since the traffic counts were conducted in June, they are representative of peak season traffic volumes.

3.1 EXISTING (2001) TRAFFIC VOLUMES

Twenty-four-hour machine traffic counts were conducted at the following locations:

- US 160 east and west of US 550 (south) (June 18-22, 2001)
- US 160 east and west of CR 222/CR 223 (west) (June 6-8, 2001)
- US 160 west of CR 508 (June 18-20, 2001)
- US 160 east and west of US 160 Business Route (US 160B) (east) (June 13-15, 2001)
- US 550 south of US 160 (June 18-22, 2001)
- SH 172/CR 234 north and south of US 160 (June 11-13, 2001)
- CR 222/CR 223 (west) north and south of US 160 (June 6-8, 2001)
- US 160B (east) south of US 160 (June 13-15, 2001)

Morning and evening peak-period turning movement count data were also collected at the following intersection locations:

- US 160 and US 550 (south) (June 5, 2001)
- US 160 and SH 172/CR 234 (June 12, 2001)
- US 160 and CR 222/CR 223 (west) (June 7, 2001)
- US 160 and CR 501 (June 20, 2001)

The existing daily and peak-hour turning movement traffic volume counts are shown in Figure 2, Existing (2001) Daily and Peak-Hour Traffic Volumes.

3.2 EXISTING (2001) TRAFFIC OPERATIONS

The existing (2001) levels of service for the highway segments and intersections along the project corridor were estimated using the existing lane configuration, the peak-hour traffic volumes shown in Figure 2, Existing (2001) Daily and Peak-Hour Traffic Volumes, and the procedures documented in the Highway Capacity Manual 2000 (HCM 2000). The following subsections summarize the results of these evaluations. The capacity analysis worksheets for the existing highway segment analyses and the intersection analyses are included in Attachments A and B, respectively.

3.2.1 Existing (2001) Highway Segment Analysis

Grandview Section

Through the Grandview section, US 160 is a two-lane highway with a passing lane eastbound from the intersection with US 550 (south) to the CR 233 (east) intersection. Passing is not permitted for 25 percent of the eastbound, and 100 percent of the westbound direction. The capacity analysis results indicate that during the AM peak hour, US 160 is currently operating at LOS C in the eastbound direction, and LOS F in the westbound direction. In addition, this analysis shows that during the PM peak hour, US 160 is operating at LOS D in the eastbound direction, and LOS E in the westbound direction.

Florida Mesa and Valley Section

Through the Florida Mesa and Valley section, US 160 is a two-lane highway. Passing is not permitted for 42 percent of the eastbound and 44 percent of the westbound direction. The capacity analysis results indicate that during the AM peak hour, US 160 is currently operating at LOS D in the eastbound direction, and LOS E in the westbound direction. In addition, this analysis shows US 160 is operating at LOS E in both the eastbound and westbound directions during the PM peak hour.

Dry Creek and Gem Village Section

Through the Dry Creek and Gem Village section, US 160 is a two-lane highway. Passing is not permitted for 58 percent of the eastbound, and 57 percent of the westbound direction. The capacity analysis results indicate that during the AM peak hour, US 160 is currently operating at LOS D in the eastbound direction, and LOS E in the westbound direction. In addition, this analysis shows that during the PM peak hour, US 160 is operating at LOS E in the eastbound direction, and LOS D in the westbound direction.

Bayfield Section

Through the Bayfield section, US 160 is a two-lane highway. Passing is not permitted for 72 percent of the eastbound, and 65 percent of the westbound direction. The capacity analysis results indicate that during the AM peak hour, US 160 is currently operating at LOS E in both the eastbound and westbound directions. In addition, this analysis shows that during the PM
peak hour, US 160 is operating at LOS E in the eastbound direction, and LOS D in the westbound direction.

3.2.2 Existing (2001) Intersection Analysis

Grandview Section

In the Grandview section, there are currently two signalized intersections on US 160 at US 550 (south) and SH 172/CR 234. The capacity analysis results indicate that the US 160 intersection with US 550 (south) is currently operating at LOS C during the AM and PM peak hours. The US 160 intersection with SH 172/CR 234 is currently operating at LOS C during the AM peak hour, and LOS D during the PM peak hour.

Florida Mesa and Valley Section

In the Florida Mesa and Valley section, an unsignalized intersection analysis was performed for the CR 222/CR 223 (west) intersection with US 160. The analysis indicates that all critical movements at this intersection are currently operating at LOS D or better.

Dry Creek and Gem Village Section

In the Dry Creek and Gem Village section, all of the intersections are minor unsignalized county roads, and, therefore, no intersections were analyzed in this section.

Bayfield Section

In the Bayfield section, there is currently one signalized intersection on US 160 at CR 501. The capacity analysis results indicate that this intersection is currently operating at LOS C during the AM and PM peak hours.

3.2.3 Existing (2001) Operational Analysis Summary

Table 3.1, Existing US 160 Highway Segment Traffic Analysis Summary, summarizes the existing traffic operations for the US 160 highway segments along the project corridor.

Table 3.1
Existing US 160 Highway Segment Traffic Analysis Summary

Highway Segment	Eastbound		Westbound	
	AM Peak LOS	$\begin{gathered} \text { PM Peak } \\ \text { LOS } \end{gathered}$	AM Peak LOS	$\begin{gathered} \text { PM Peak } \\ \text { LOS } \end{gathered}$
Grandview section				
US 550 (south) to SH 172/CR 234	C	D	F	E
Florida Mesa and Valley section				
SH 172/CR 234 to CR 222/CR 223 (west)	D	E	E	E
Dry Creek and Gem Village section				
CR 222/CR 223 (west) to Gem Village	D	E	E	D

Table 3.1
Existing US 160 Highway Segment Traffic Analysis Summary

Highway Segment	Eastbound		Westbound	
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS
Bayfield section	E	E	E	D

As seen in Table 3.1, most of the highway segments along the US 160 project corridor are operating at LOS D, or worse, during both the AM and PM peak hours. The poor operating conditions are a result of high traffic volumes in conjunction with steep grades and insufficient lanes for passing.

Table 3.2, Existing US 160 Signalized Intersection Traffic Analysis Summary, summarizes the existing intersection traffic operations at the signalized intersections along the US 160 corridor.

Table 3.2
Existing US 160 Signalized Intersection Traffic Analysis Summary

US 160 Intersection	Eastbound		Westbound		
	Delay (sec./veh.)	LOS	Delay (sec./veh.)	LOS	
Grandview section	23.6	C	25.0	C	
US 550 (south)	31.9	C	35.9	D	
SH 172/CR 234					
Bayfield section	24.7	C	26.7	C	
CR 501					

As seen in Table 3.2, the signalized intersections along the US 160 corridor are operating at LOS D, or better, during both the AM and PM peak hours.

US 160 has a higher-than-average number and severity of accidents in the state. Contributing to this rating is uncontrolled access; lack of shoulders, turning lanes, and wildlife crossings; and steep grades with insufficient lanes for passing. These problems are compounded by the increasingly high traffic demands that are being placed on this section of highway. Design improvements for US 160 are needed to reduce both the accident rates and the severity of the accidents, as well as mitigate wildlife collisions through the use of wildlife crossings.

During the 5-year period from December 31, 1996, through December 31, 2001, 532 accidents occurred on US 160 from west of the US 160/US 550 (south) intersection (MP 88.0) to east of Bayfield (MP 104.2). Of those accidents, 34 percent resulted in injuries and 1.3 percent resulted in fatalities. The most frequent accident types were rear-end (32 percent), animal (27 percent), and overturning (8 percent). Also, 42 percent of the accidents occurred at intersections, were intersection-related, or occurred at driveway accesses. Accidents typically occurred during daylight (65 percent) and under dry conditions (83 percent).
The accident data suggest that the most frequent accident types occurred at locations on US 160 with similar physical features. Rear-end, turning, and overturning accidents occurred most frequently in areas that lack turning lanes and have large numbers of access points, insufficient shoulders, steep grades, and steep embankments.

Specific segments of the corridor exhibited a higher frequency of animal-related accidents. These segments, typically 1,000 to 1,500 feet in length, are likely deer/elk migration routes that intersect the US 160 project corridor. Contributing factors to animal-related accidents are lack of wildlife crossings, insufficient shoulders, steep grades, and steep embankments. The highway characteristics described above contributed to the overall accident rate by forcing wildlife onto the highway and by limiting the ability of motorists to stop or make evasive maneuvers.

4.1 SAFETY ISSUES BY SECTION

The US 160 project corridor was divided into four sections for this accident analysis. US 550 from CR 220 to US 160 was also reviewed. Figures 3 through 7 are accident histograms depicting the types of accidents and accident severity for each highway section during the 5-year period of December 31, 1996, through December 31, 2001. An analysis of more recent data indicated similar traffic accident trends in the project corridor when compared to the 1996-2001 data. As development, tourism, and traffic increase, accident rates and severity are also expected to increase throughout the project corridor if no improvements are made.

Following is an analysis of the types and severity of accidents for each section of US 160. Hazardous sections of roadway are identified through calculation of the weighted hazard index (WHI). WHI is a statistic computed by considering accident frequency, accident severity, and traffic volumes, and comparing these data with the accident history of similar highways. Positive values of the WHI indicate highway sections that have an accident frequency and severity higher than the statewide average. All of the US 160 and US 550 sections analyzed yielded hazard indexes higher than the statewide average, demonstrating that the majority of the US 160 project corridor and the connecting US 550 segment are in need of improvement to reduce unsafe conditions.

US 550 - From CR 220 to US 160

This section of US 550 extends south from the US 160/US 550 (south) intersection as a two-lane highway, ascending from the Animas River valley to the Florida Mesa in an area known as Farmington Hill (Photo 1). The roadway is cut into the side of the Farmington Hill embankment and follows the sharp horizontal curves of the hillside at a steep grade, rising over 200 feet in approximately 0.66 mile. There are minimal paved shoulders of 2 feet or less. The traversable ground surface outside the roadway is as narrow as 5 feet in many places, and only one-third of the section has guardrail along the downward slope embankment, leaving little room for driver error or emergency stops. Outside the traversable area, the embankment both above and below the roadway is steep: approximately 34 degrees. The embankment below the roadway ranges

Photo 1 Farmington Hill from 46 to 290 feet in height. The north-facing slope of the road surface makes this area prone to winter icing. The steep embankment above the roadway comprises decomposed shale overlain by sandy cobbles and boulders, which are prone to sloughing onto the roadway surface, creating hazards for drivers. Because of the sharp horizontal curves, driver visibility along the road is short-as little as 100 feet at some locations; hence, assuming a 30 -miles per hour (mph) travel speed, drivers have only 2.0 seconds to react to roadway hazards.

The roadway conditions are factors in the type and severity of accidents occurring on Farmington Hill (Figure 3, US 550 Accident Histogram from CR 220 to US 160). The steep winding roadway, icing conditions, and roadway obstructions contribute to drivers losing control of their vehicles. If drivers lose control, the narrow shoulders, lack of guardrails, and steep embankments make it difficult for them to regain control once their vehicles leave the roadway. Accidents on Farmington Hill generally fall into two categories: drivers lose the ability to slow or stop their vehicles due to the steep grade and either strike vehicles located in front of them or run out into the US 160/US 550 (south) intersection, or drivers lose control and run off the roadway surface and down the steep embankment below the roadway.

US 160 - From West of the US 160/US 550 (South) Intersection to and Including the SH 172/CR 234 Intersection

This section (Figure 4, US 160 Accident Histogram West of Farmington Hill to SH 172/CR 234) is one of the most developed along the project corridor, and development in this area is increasing. Development is residential, commercial, and industrial. The existing traffic volumes in this section are the highest in the project corridor and are projected to more than double within the next 20 years. This segment also includes the heavily traveled Farmington Hill and the SH

172/CR 234 intersection with US 160. The data indicate that uncontrolled access and lack of turning lanes are contributing factors to accidents in this section.

US 160 - From the SH 172/CR 234 Intersection to and Including the CR 222/CR 223 (west) Intersection

This section [Figure 5, US 160 Accident Histogram SH 172/CR 234 to CR 222/CR 223 (west)] is semi-rural with sparse residential and commercial development. Development is expected to accelerate as residential density increases in the Grandview area and pushes growth to the east. The data indicate that uncontrolled access, lack of turning lanes, and insufficient shoulders are contributing factors to accidents in this section.

US 160 - From the CR 222/CR 223 (west) Intersection to and Including CR 502

This section [Figure 6, US 160 Accident Histogram CR 222/CR 223 (west) to CR 502] is rural with sparse residential and commercial development, with the exception of Gem Village. Development along US 160 in this region is generally occurring at a slower rate than other sections. However, development along the county road system is increasing, resulting in additional traffic demands at the existing county road connections.

The high percentage of animal-related accidents is due to this area being a prime migration corridor for wintering elk and mule deer. The data indicate that lack of wildlife crossings, insufficient shoulders, steep grades, and steep embankments are contributing factors to accidents in this section.

US 160 - From CR 502 to East of Bayfield

This is one of the more developed sections (Figure 7, US 160 Accident Histogram CR 502 to East of Bayfield) along the project corridor. Additionally, there are commercial developments currently in the planning and construction phases. Development consists of residential and commercial. The accident data along this section indicate that intersections, driveways, and lack of wildlife crossings are contributing factors to accidents, as well as insufficient shoulders and steep embankments.

There were two action alternatives, in addition to the No Action Alternative, in each of the four sections that were carried forward for detailed analysis and are analyzed in this report. These are described below.

5.1 GRANDVIEW SECTION

Alternative G Modified

From the west project limit to the US 160/US 550 (south) intersection, US 160 would be four lanes with an eastbound climbing lane and a westbound auxiliary lane. From the US 550 (south) intersection to the intersection with SH 172/CR 234, US 160 would be four lanes. There would be single point urban interchanges at CR 233 (west) and SH 172/CR 234. US 160 would remain on the existing alignment except near the SH 172/CR 234 intersection, where it would be shifted north to avoid Crestview Memorial Gardens.

US 550 would be four lanes from CR 220 to the intersection with US 160. US 550 would be realigned to the east of the existing US 550 and skirt the western edge of the Florida Mesa before connecting to US 160 with a trumpet interchange approximately 0.6 miles east of the existing US 160/US 550 (south) intersection.

Alternative F Modified

From the west project limit to the US 160/US 550 (south) intersection, US 160 would be four lanes with an eastbound climbing lane and a westbound auxiliary lane. From the US 550 (south) intersection to the intersection with SH 172/CR 234, US 160 would be four lanes. There would be a single point urban interchange at SH 172/CR 234. US 160 would remain on the existing alignment except near the SH 172/CR 234 intersection, where it would be shifted north to avoid Crestview Memorial Gardens.

US 550 would be four lanes from CR 220 to the intersection with US 160. US 550 would be realigned to the east of the existing US 550 and cross the top of the Florida Mesa before connecting to US 160 with a single point urban interchange at the existing US 160/CR 233(west) intersection location.

5.2 FLORIDA MESA AND VALLEY SECTION

Alternative C

US 160 would be four lanes and generally remain on the existing alignment, with slight shifts as necessary to avoid residential structures on the north side of US 160 and the Griffin Dairy farm complex on the south side of US 160. Continuous access roads would be constructed both north and south of the highway. CR 222 and CR 223 would be realigned and connect to access roads on both sides of US 160. A new intersection with US 160 would be created approximately 4,500 feet east of the existing CR 222/CR 223 (west) intersection. Because this is on the east side of the Florida River, new roadway connections would be made to CR 510 on the south and CR 223 on the north.

Alternative A

US 160 would be four lanes and generally remain on the existing alignment，with slight shifts as necessary to avoid residential structures on the north side of US 160 and the Griffin Dairy Farm complex on the south side of US 160 ．Continuous access roads would be constructed both north and south of the highway．CR 222 and CR 223 would be realigned and connect to US 160 at a new intersection approximately 500 feet west of the existing CR 222／CR 223 （west）intersection with US 160.

5．3 DRY CREEK AND GEM VILLAGE SECTION

Alternative H

US 160 would be four lanes and generally remain on the existing alignment with improvements for curvature，grades，and sight distance from the CR 222／CR 223 （west）intersection to the CR 223 （east）intersection．CR 223 would be realigned and connect to US 160 approximately 1，500 feet west of the existing US 160／CR 223 （east）intersection．To reduce impacts to high quality wetlands，a 36 －foot median would be used from MP 98 to MP 99 to separate opposing travel lanes．A 46 －foot median would be used in all other areas．Access roads are provided on both sides of US 160 between MP 94 and MP 95 and on the north side of US 160 between MP 96 and MP 97 to consolidate direct highway access and reduce out－of－direction travel．East of the US 160／CR 223 （east）intersection，US 160 would be realigned and bypass Gem Village to the south．The realigned US 160 would leave the existing US 160 on the west side of Gem Village near MP 100 and rejoin it near MP 101．No access roads would be constructed，but access would be provided at the east end of Gem Village．A one－way slip ramp would provide access for westbound traffic at the west end of Gem Village．

Alternative C

US 160 would be four lanes and generally remain on the existing alignment with improvements for curvature，grades，and sight distance．CR 223 would be realigned and connect to US 160 approximately 1,500 feet west of the existing US 160／CR 223 （east）intersection．To reduce impacts to high quality wetlands，a 36 －foot median would be used at this intersection to separate opposing travel lanes．A 46 －foot median would be used in all other areas．Access roads are provided on both sides of US 160 between MP 94 and MP 95 and on the north side of US 160 between MP 96 and MP 97 to consolidate direct highway access and reduce out－of－direction travel．In Gem Village，US 160 would be widened to the south．Access roads would be constructed on both sides of US 160 and access would be provided at the west end of Gem Village．

5．4 BAYFIELD SECTION

Alternative B

US 160 would be four lanes and generally remain on the existing alignment with improvements for curvature，grades，and sight distance．Three closely spaced intersections with US 160 ［US 160B（west），CR 506，and CR 502］would be consolidated into a single unsignalized
intersection. CR 502 would be realigned and connect to US 160 approximately 1,500 feet west of the existing US 160/CR 502 intersection. The realigned CR 502 would intersect CR 506 north of US 160 and continue south of US 160 to intersect with US 160B. This realignment would eliminate both of the existing US 160 intersections with CR 502 and CR 506. Access to US 160B would be maintained through an access road on the south side of US 160. The US 160/CR 501 intersection would remain a signalized intersection at its present location. The intersections of US 160B/CR 501 and US 160B/CR 521 would be reconstructed as a roundabout.

Alternative A

US 160 would be four lanes and generally remain on the existing alignment with improvements for curvature, grades, and sight distance. Three closely spaced intersections with US 160 [US 160B (west), CR 506, and CR 502] would be consolidated into a single unsignalized intersection. CR 502 would be realigned and connect to US 160 approximately 1,500 feet west of the existing US 160/CR 502 intersection. The realigned CR 502 would intersect CR 506 north of US 160 and continue south of US 160 to intersect with US 160B. This realignment would eliminate both of the existing US 160 intersections with CR 502 and CR 506. Access to US 160B would be maintained through an access road on the south side of US 160. CR 501 would be realigned and connect to US 160 approximately 800 feet west of the existing US 160/CR 501 intersection. This new intersection with US 160 would be a diamond interchange. From US 160 to the US 160B/CR 521 intersection, the existing CR 501 would be eliminated.

This section summarizes the development of the 2025 daily and peak-hour traffic volumes for the peak season conditions.

6.1 TRAFFIC VOLUMES

Traffic volumes for the project corridor were estimated using available data in the area including traffic impact reports, the US 550 and US 160 Feasibility Study, the Grandview Area Plan, and through coordination with CDOT, the City of Durango, and La Plata County. The following paragraphs describe the methodology used for assessing the design year 2025 traffic volumes for each of the sections along the corridor.

6.1.1 Grandview Section

The City of Durango’s Grandview Area Plan provided the basis for development of traffic volumes in the Grandview section. Through coordination with the City of Durango and La Plata County, the trips generated by the Grandview development were estimated according to the proposed land uses and the Institute of Transportation Engineer’s Trip Generation Manual. The trip generation tables for the Grandview section development are included in Attachment C, Grandview Section Trip Generation Tables. As shown in the trip generation tables, the total trips were reduced by 20 percent in Subareas I and III to account for internal and pass-by trips. This trip diversion rate was approved by the City of Durango, La Plata County, and CDOT. The trips were distributed based on the same distribution used for current traffic studies in the area (75 percent to/from the west, 20 percent to/from the east, and 5 percent to/from the north and south).

A 2025 seasonal background daily volume of 42,500 (a number approved by CDOT, the City of Durango, and La Plata County) was applied to the west of the project and used as a control volume for the project corridor through Grandview. The AM peak-hour background traffic was assigned using an AM peak hour to daily percentage of 6.4 percent, with a directional split of 35 percent eastbound and 65 percent westbound. The PM peak-hour background traffic was assigned using a PM peak hour to daily percentage of 10 percent, with a directional split of 56 percent eastbound and 44 percent westbound. The background volume does not include trips generated by the Grandview development. The trips generated by the Grandview development (shown in the trip generation tables in Attachment C, Grandview Section Trip Generation Tables) were added to the background traffic to estimate the total 2025 seasonal daily traffic. The 2025 seasonal daily and peak-hour volumes for Alternative G Modified and Alternative F Modified are shown in Figures 8 and 9, respectively.

6.1.2 Florida Mesa and Valley Section

The 2025 seasonal traffic volumes in the Florida Mesa and Valley section were developed according to the volumes entering and exiting the east end of the Grandview section. The turning volumes at the CR 222/CR 223 (west) intersection with US 160 were developed using a growth rate of 2.19 percent per year based on the state demographer's population forecasts. The 2025 seasonal daily and peak hour volumes for Alternative C and Alternative A are shown in Figures 8 and 9, respectively. The only difference between these two alternatives is the location of the CR 222/CR 223 (west) intersection; therefore, the traffic volumes are the same for both alternatives.

6.1.3 Dry Creek and Gem Village Section

The 2025 seasonal traffic volumes in the Dry Creek and Gem Village section were developed according to the volumes entering and exiting the east end of the Florida Mesa and Valley section, and the volumes entering and exiting the west end of the Bayfield section. There are no major intersections in the Dry Creek and Gem Village section; therefore, analysis was performed only for the US 160 main lane. The 2025 seasonal daily and peak-hour volumes for Alternative H and Alternative C are shown in Figures 8 and 9, respectively. The traffic volumes for theses alternatives are the same since the only difference between the alternatives is the alignment.

6.1.4 Bayfield Section

The 2025 seasonal traffic volumes in the Bayfield section were developed according to 2020 traffic projections from the 1999 Traffic Memorandum for US 160 in Bayfield, by URS Corporation. The 2020 traffic volumes from this memorandum were increased by 1.79 percent per year for five years to reflect the 2025 condition. This growth rate was based on the state demographer's population growth projection from 2020 to 2025. The 2025 seasonal daily and peak-hour volumes for Alternative B and Alternative A are shown in Figures 8 and 9, respectively.

This section documents the analysis of alternative options that were carried forward for analysis on this traffic study. The analysis focuses on two options that were considered but dismissed due to operational deficiencies and safety concerns. These two options are described in the following subsections.

Intersection Options in the Grandview Section

For Grandview section Alternative G Modified and Alternative F Modified, single-point urban interchanges were recommended on US 160 at the intersections of CR 233 (west) and SH 172/CR 234. These two locations were originally analyzed as intersections and the results are summarized in Table 7.1, Grandview Section Alternative Options Intersection Analysis Summary.

Table 7.1
Grandview Section Alternative Options Intersection Analysis Summary

US 160 Intersection	Alternative G Modified				Alternative F Modified			
	AM Peak		PM Peak		AM Peak		PM Peak	
	Delay (sec.Iveh.)	Level of Service	Delay (sec.Iveh.)	Level of Service	Delay (sec./veh.)	Level of Service	Delay (sec./veh.)	Level of Service
SH 172/CR 234								
Eastbound left	53.1	D	57.1	E	53.1	D	57.1	E
Eastbound through	35.8	D	68.2	E	35.8	D	68.2	E
Eastbound right	8.7	A	22.0	C	8.7	A	22.0	C
Westbound left	48.6	D	47.8	D	48.6	D	47.8	D
Westbound through	30.3	C	49.6	D	30.3	C	49.6	D
Westbound right	7.0	A	8.2	A	7.0	A	8.2	A
Northbound left	50.9	D	77.3	E	50.9	D	77.3	E
Northbound through	53.6	D	68.3	E	53.6	D	68.3	E
Northbound right	35.3	D	34.2	C	35.3	D	34.2	C
Southbound left	36.5	D	42.5	D	36.5	D	42.5	D
Southbound through	52.5	D	56.7	E	52.5	D	56.7	E
Southbound right	45.2	D	80.8	F	45.2	D	80.8	F
Overall	36.8	D	55.5	E	36.8	D	55.5	E
CR 233 (west) *								
Eastbound left	79.5	E	208.2	F	253.0	F	244.8	F
Eastbound through	50.9	D	225.0	F	78.6	E	496.0	F
Eastbound right	15.1	B	11.2	B	27.6	C	350.7	F
Westbound left	38.5	D	44.7	D	37.4	D	36.8	D
Westbound through	48.6	D	191.0	F	155.6	F	496.0	F
Westbound right	13.1	B	9.8	A	16.5	B	16.5	B
Northbound left	58.9	E	245.5	F	220.7	F	212.6	F
Northbound through	53.9	D	58.1	E	164.0	F	225.3	F
Northbound right	26.3	C	33.9	C	45.7	D	35.8	D
Southbound left	54.7	D	52.3	D	36.8	D	39.2	D
Southbound through	53.9	D	58.1	E	123.2	F	293.1	F
Southbound right	0.1	A	0.7	A	0.7	A	18.2	B
Overall	45.1	D	157.7	F	119.2	F	278.3	F

[^0]As seen in Table 7.1, an intersection at US 160 and SH 172/CR 234 would operate the same for both Alternative G Modified and Alternative F Modified. Overall, this intersection would operate at LOS D during the AM peak hour and LOS E during the PM peak hour. During the PM peak hour, six movements are projected to operate at LOS E and one movement at LOS F. The intersection at US 160/CR 233 (west) is projected to operate at LOS D during the AM peak hour and LOS F during the PM peak hour for Alternative G Modified and LOS F during both the AM and PM peak hours for Alternative F Modified. Several movements at this intersection are projected to operate at LOS F during the peak hours.

The results of the signalized intersection analysis for these two intersections would not meet the level of service criteria for the Grandview section; therefore, interchanges were recommended at these locations.

Three-Lane Highway Option

A three-lane highway option was considered for the US 160 corridor from US 550 (south) to Bayfield. The three-lane alternative was an improved two-lane that provided one 12 -foot travel lane in each direction and a center passing lane for use by only one travel direction at a time.

The traffic operations of a three-lane highway are similar to that of a two-lane highway. The direction of travel that has the passing lane would have an improved level of service but the opposing single travel lane would still result in unacceptable levels of service (LOS E or LOS F). This is due to the inability of the single lane of travel to pass slower-moving vehicles. Rolling terrain and truck percentages in excess of 5.0 percent also contribute to increased traffic congestion along the corridor.

The three-lane alternative also results in unrestricted access to US 160, with left turns allowed at all accesses to provide reasonable access to property owners along the corridor. The unrestricted access results in more conflict points along the corridor which increases the potential for accidents.

The three-lane option was dismissed as an alternative due to the safety concerns and the undesirable levels of service for the single-lane direction of travel.

This section documents the operational analysis conducted in support of the US 160 FEIS from Durango to Bayfield. The 2025 traffic operations for the highway sections and intersections were evaluated for the No Action Alternative as well as the two action alternatives in each of the four sections. The purpose of this analysis is to provide an objective and thorough evaluation of the traffic operations for each alternative, and a comparison between the alternatives. The 2025 peak hour levels of service were estimated using the peak-hour traffic volumes shown in Figures 8 and 9, and the methodologies described in the Highway Capacity Manual 2000 (HCM 2000).

8.1 2025 GRANDVIEW SECTION OPERATIONAL ANALYSIS

Operational analyses were performed in the Grandview section for the No Action Alternative, Alternative G Modified, and Alternative F Modified. The capacity analysis worksheets for the Grandview section highway analyses and the intersection analyses are included as Attachments D and E, respectively.

8.1.1 2025 Grandview Section Highway Analysis

No Action Alternative

The No Action Alternative would include a safety improvement currently under construction that would provide an additional lane westbound from SH 172/CR 234 to approximately 0.5 mile east of the US 550 (south) intersection with US 160. The resulting four-lane highway section from east of the US 160/US 550 (south) intersection to the US 160/CR 233 (west) intersection is projected to operate at LOS D eastbound, and LOS C westbound during the AM peak hour. It is projected to operate at LOS E eastbound, and LOS F westbound during the PM peak hour. Since the fourth lane westbound would end east of the US 160/US 550 (south) intersection, this transition back to a three-lane highway would be a bottleneck and result in additional congestion in this section. The four-lane highway section on US 160 between the CR 233 (west) and SH 172/CR 234 intersections is projected to operate at LOS B eastbound and westbound during the AM peak hour, and LOS C eastbound and westbound during the PM peak hour. Additional congestion would occur in this section due to the bottleneck east of SH 172/CR 234, as US 160 transitions back to a two-lane highway.

Alternative G Modified

Alternative G Modified would provide an access-controlled US 160 through the Grandview section. US 550 would be realigned to the east of the existing location and would also provide access from the north of US 160. There would be interchanges along US 160 at US 550 (south), CR 233 (west), and SH 172/CR 234. US 160 would be four lanes (two lanes in each direction) east of the US 550 (south) interchange, and four lanes (two lanes in each direction) plus an auxiliary lane and a climbing lane (one lane in each direction) west of the US 550 (south) interchange. Table 8.1, Alternative G Modified, Highway Segment Traffic Operations Summary, summarizes the US 160 highway segment levels of service along the corridor in the Grandview section for this alternative. Table 8.2, Alternative G Modified, Ramp Merge/Diverge and Weaving Area Traffic Operations Summary, summarizes the highway ramp junction
merge/diverge and weaving area levels of service along US 160 in the Grandview section for this alternative.

Table 8.1
Alternative G Modified, Highway Segment
Traffic Operations Summary

US 160 Highway Segment	Eastbound		Westbound	
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS
West of US 550 (south)	B	D	C	D
US 550 (south) to CR 233 (west)	C	D	C	D
CR 233 (west) to SH 172/CR 234	B	C	B	C

Table 8.2
Alternative G Modified, Ramp Merge/Diverge and Weaving Area Traffic Operations Summary

US 160 Location	Alternative G Modified				
	Merge/Diverge Area		Weaving Area		
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS	
Eastbound	B	D			
Off-Ramp to US 550 (south)	C	D			
On-Ramp from US 550 (south)	C	D			
Off-Ramp to CR 233 (west)	B	C			
On-Ramp to CR 233 (west)	B	C			
Off-Ramp to SH 172/CR 234	B	B			
On-Ramp to SH 172/CR 234		B	B		
Westbound	B	C			
Off-Ramp to SH 172/CR 234	B	C			
On-Ramp to SH 172/CR 234	N/A	N/A			
Off-Ramp to CR 233 (west)			B		
On-Ramp to CR 233 (west)		B			
Between CR 233 (west) On-Ramp and US 550 (south) Off-Ramp	C				
On-Ramp from northbound US 550 (south) (Loop)	B	C			
On-Ramp from southbound US 550 (south)	B	C			

Alternative F Modified

Alternative F Modified would provide an access-controlled US 160 through the Grandview section. US 550 would be realigned to connect with US 160 at CR 233 (west). Interchanges would be provided at the US 550 (south)/CR 233 (west) intersection and the SH 172/CR 234 intersection. US 160 would be four lanes (two lanes in each direction) between the US 550 (south)/CR 233 (west) and SH 172/CR 234 interchanges, and four lanes (two lanes in each direction) plus an auxiliary lane and a climbing lane (one lane in each direction) west of the US 550 (south)/CR 233 (west) interchange. Table 8.3, Alternative F Modified, Highway

Segment Traffic Operations Summary, summarizes the US 160 highway segment levels of service along the corridor in the Grandview section for this alternative. Table 8.4, Alternative F Modified, Ramp Merge/Diverge and Weaving Area Traffic Operations Summary, summarizes the highway ramp junction merge/diverge and weaving area levels of service along US 160 in the Grandview section for this alternative.

Table 8.3
Alternative F Modified, Highway Segment Traffic Operations Summary

US 160 Highway Segment	Eastbound		Westbound	
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS
West of US 550 (south)/CR 233 (west)	B	D	C	D
US 550 (south)/CR 233 (west) to SH 172/CR 234	B	C	B	C

Table 8.4
Alternative F Modified, Ramp Merge/Diverge and Weaving Area Traffic Operations Summary

US 160 Location	Alternative F Modified			
	Merge/Diverge Area		Weaving Area	
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS
Eastbound				
Off-Ramp to US 550 (south)	N/A	N/A		
On-Ramp from US 550 (south)	N/A	N/A		
Off-Ramp to CR 233 (west)	B	B		
On-Ramp to CR 233 (west)	B	C		
Off-Ramp to SH 172/CR 234	B	C		
On-Ramp to SH 172/CR 234	B	B		
Westbound				
Off-Ramp to SH 172/CR 234	B	B		
On-Ramp to SH 172/CR 234	B	C		
Off-Ramp to CR 233 (west)	B	C		
On-Ramp to CR 233 (west)	C	D		
Between CR 233 On-Ramp and US 550 (south) Off-Ramp			N/A	N/A
On-Ramp from northbound US 550 (south) (Loop)	N/A	N/A		
On-Ramp from southbound US 550 (south)	N/A	N/A		

8.1.2 2025 Grandview Section Highway Analysis Comparison Summary

Table 8.5, Grandview Section Highway Segment Alternative Comparison Summary, shows an alternative comparison of the levels of service for the highway segments along US 160 in the Grandview section.

Table 8.5
Grandview Section Highway Segment Alternative Comparison Summary

US 160 Highway Segment	No Action Alternative				Alternative G Modified				Alternative F Modified			
	Eastbound		Westbound		Eastbound		Westbound		Eastbound		Westbound	
	$\begin{gathered} \text { AM } \\ \text { Peak } \end{gathered}$	PM Peak	$\begin{gathered} \text { AM } \\ \text { Peak } \end{gathered}$	$\begin{gathered} \text { PM } \\ \text { Peak } \end{gathered}$	AM Peak	$\begin{array}{\|c} \text { PM } \\ \text { Peak } \end{array}$	AM Peak	$\begin{gathered} \text { PM } \\ \text { Peak } \end{gathered}$	AM Peak	PM Peak	AM Peak	PM Peak
	LOS											
West of US 550 (south)	D	F	D	F	B	D	C	D	B	D	C	D
US 550 (south) to CR 233 (west)	D	E	C	F	C	D	C	D	*	*	*	*
$\begin{aligned} & \text { CR } 233 \text { (west) to } \\ & \text { SH 172/CR } 234 \end{aligned}$	B	C	B	C	B	C	B	C	B	C	B	C

* For Alternative F Modified, US 550 is realigned to connect with CR 233

As seen in Table 8.5, the No Action Alternative would not provide the needed capacity for the 2025 design year. Although the safety improvement, currently under construction, would provide acceptable levels of service through a portion of the Grandview section, bottlenecks would occur at each end of the improvement as US 160 transitions back to existing lane geometry. The main lane segments for Alternative G Modified and Alternative F Modified are expected to operate at the same level of service.
Table 8.6, Grandview Section Ramp Merge/Diverge and Weaving Area Alternative Comparison Summary, shows a comparison of the levels of service for the ramp merge/diverge and weaving areas between Alternative G Modified and Alternative F Modified. The No Action Alternative does not include interchanges with ramps; therefore, it was not included in the comparison table.

Table 8.6
Grandview Section Ramp Merge/Diverge and Weaving Area Alternative Comparison Summary

US 160 Location	Alternative G Modified				Alternative F Modified			
	Merge/Diverge Area		Weaving Area		Merge/Diverge Area		Weaving Area	
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS
Eastbound								
Off-Ramp to US 550 (south)	B	D			N/A	N/A		
On-Ramp from US 550 (south)	C	D			N/A	N/A		
Off-Ramp to CR 233 (west)	C	D			B	B		
On-Ramp from CR 233 (west)	B	C			B	C		
Off-Ramp to SH 172/CR 234	B	C			B	C		
On-Ramp from SH 172/CR 234	B	B			B	B		
Westbound								
Off-Ramp to SH 172/CR 234	B	B			B	B		
On-Ramp from SH 172/CR 234	B	C			B	C		
Off-Ramp to CR 233 (west)	B	C			B	C		
On-Ramp from CR 233 (west)	N/A	N/A			C	D		

Table 8.6
Grandview Section Ramp Merge/Diverge and Weaving Area Alternative Comparison Summary

US 160 Location	Alternative G Modified				Alternative F Modified			
	Merge/Diverge Area		Weaving Area		Merge/Diverge Area		Weaving Area	
	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS	AM Peak LOS	PM Peak LOS
Between CR 233 (west) On-Ramp and US 550 (south) Off-Ramp			B	D			N/A	N/A
On-Ramp from northbound US 550 (south) (Loop)	B	C			N/A	N/A		
On-Ramp from southbound US 550 (south)	B	C			N/A	N/A		

Table 8.6 indicates that all ramp merge/diverge and weaving areas are projected to operate at LOS D or better for both alternatives. Alternative G Modified and Alternative F Modified are projected to have similar main lane merge/diverge traffic operations in the design year.

8.1.3 2025 Grandview Section Intersection Analysis

No Action Alternative

Signalized intersection analyses were performed for the No Action Alternative on US 160 at US 550 (south), CR 233 (west), and SH 172/CR 234. The results of the analyses indicate that all three intersections are projected to operate at LOS F during the AM and PM peak hours under the No Action Alternative.

Alternative G Modified

Alternative G Modified would have an interchange at the realigned US 160/US 550 (south) intersection with a signalized intersection on the north side and an unsignalized intersection on the south side of US 160. There are single-point urban interchanges on US 160 at the intersections with CR 233 (west) and SH 172/CR 234. Table 8.7, Alternative G Modified, Signalized Intersection Operations Summary, summarizes the results of the signalized intersections for this alternative at these locations in the Grandview section.

Table 8.7
Alternative G Modified,
Signalized Intersection Operations Summary

US 160 Intersection	Alternative G Modified			
	AM Peak		PM Peak	
	Delay sec/veh	Level of Service	Delay sec/veh	Level of Service
SH 172/CR 234 (west)				
Eastbound left	23.3	C	42.6	D
Eastbound right	33.4	C	34.2	C
Westbound left	22.3	C	35.6	D
Westbound right	23.3	C	9.0	A
Northbound left	28.7	C	10.6	B
Northbound through	28.3	C	40.6	D
Northbound right	8.0	A	22.4	C
Southbound left	22.8	C	9.3	A
Southbound through	28.0	C	38.5	D
Southbound right	9.3	A	39.8	D
Overall	24.7	C	28.8	C
CR 233 (west)				
Eastbound left	22.3	C	34.8	C
Eastbound right	30.5	C	18.7	B
Westbound left	17.9	B	25.0	C
Westbound right	23.4	C	16.1	B
Northbound left	21.2	C	17.0	B
Northbound through	37.6	D	38.8	D
Northbound right	9.2	A	15.6	B
Southbound left	21.0	C	15.1	B
Southbound through	37.6	D	38.8	D
Southbound right	0.1	A	0.7	A
Overall	18.7	B	17.5	B
US 550 (south) (north side)				
Eastbound left	22.1	C	26.2	C
Eastbound right	0.1	A	1.5	A
Westbound left	5.9	A	9.0	A
Westbound right	28.0	C	29.7	C
Northbound through	28.6	C	23.1	C
Southbound through	30.7	C	26.4	C
Southbound right	0.1	A	0.2	A
Overall	12.9	B	10.2	B

Alternative F Modified

Alternative F Modified would have single-point urban interchanges along US 160 at the US 550 (south)/CR 233 (west) and SH 172/CR 234 intersections. Table 8.8, Alternative F Modified, Signalized Intersection Operations Summary, summarizes the results of the signalized intersections for Alternative F Modified at these locations in the Grandview section.

Table 8.8
Alternative F Modified, Signalized Intersection Operations Summary

US 160 Intersection	Alternative F Modified			
	AM Peak		PM Peak	
	Delay sec/veh	Level of Service	Delay sec/veh	Level of Service
SH 172/CR 234 (west)				
Eastbound left	23.3	C	42.6	D
Eastbound right	33.4	C	34.2	C
Westbound left	22.3	C	35.6	D
Westbound right	23.3	C	9.0	A
Northbound left	28.7	C	10.6	B
Northbound through	28.3	C	40.6	D
Northbound right	8.0	A	22.4	C
Southbound left	22.8	C	9.3	A
Southbound through	28.0	C	38.5	D
Southbound right	9.3	A	39.8	D
Overall	24.7	C	28.8	C
US 550 (south)/CR 233 (west)				
Eastbound left	54.1	D	63.3	E
Eastbound right	Free-flow	Free-flow	Free-flow	Free-flow
Westbound left	25.9	C	26.8	C
Westbound right	33.9	C	35.9	D
Northbound left	54.3	D	63.5	E
Northbound through	54.7	D	49.2	D
Northbound right	18.1	B	15.1	B
Southbound left	26.9	C	30.0	C
Southbound through	51.3	D	52.7	D
Southbound right	Free-flow	Free-flow	Free-flow	Free-flow
Overall	44.2	D	49.5	D

8.1.4 2025 Grandview Section Intersection Analysis Comparison Summary

Table 8.9, 2025 Grandview Section Signalized Intersection Alternative Comparison Summary, shows an alternative comparison of the signalized intersection levels of service for the Grandview section.

Table 8.9
2025 Grandview Section Signalized Intersection Alternative Comparison Summary

US 160 Intersection	No Action Alternative				Alternative G Modified				Alternative F Modified			
	AM Peak		PM Peak		AM Peak		PM Peak		AM Peak		PM Peak	
	Delay sec.Iveh.	Level of Service	Delay sec./veh.	Level of Service	Delay sec./veh.	Level of Service	Delay sec./veh.	Level of Service	$\begin{gathered} \text { Delay } \\ \text { sec./veh. } \end{gathered}$	Level of Service	Delay sec.Iveh.	Level of Service
SH 172/CR 234												
Eastbound left	326.6	F	444.3	F	23.3	C	42.6	D	23.3	C	42.6	D
Eastbound through	260.9	F	471.1	F	N/A							
Eastbound right	7.4	A	18.4	B	33.4	C	34.2	C	33.4	C	34.2	C
Westbound left	51.9	D	52.2	D	22.3	C	35.6	D	22.3	C	35.6	D
Westbound through	124.1	F	406.3	F	N/A							
Westbound right	6.0	A	7.1	A	23.3	C	9.0	A	23.3	C	9.0	A
Northbound left	280.1	F	369.2	F	28.7	C	10.6	B	28.7	C	10.6	B
Northbound through	53.6	D	68.3	E	28.3	C	40.6	D	28.3	C	40.6	D
Northbound right	37.8	D	36.7	D	8.0	A	22.4	C	8.0	A	22.4	C
Southbound left	34.9	C	39.7	D	22.8	C	9.3	A	22.8	C	9.3	A
Southbound through	52.5	D	56.7	E	28.0	C	38.5	D	28.0	C	38.5	D
Southbound right	52.2	D	112.0	F	9.3	A	39.8	D	9.3	A	39.8	D
Overall	180.6	F	300.1	F	24.7	C	28.8	C	24.7	C	28.8	C
CR 233 (west)												
Eastbound left	900.4	F	884.2	F	22.3	C	34.8	C	54.1	D	63.3	E
Eastbound through	48.4	D	235.8	F	N/A							
Eastbound right	16.9	B	16.7	B	30.5	C	18.7	B	Freeflow	Freeflow	Freeflow	Freeflow
Westbound left	36.0	D	35.9	D	17.9	B	25.0	C	25.9	C	26.8	C
Westbound through	43.3	D	209.8	F	N/A							
Westbound right	16.5	B	16.4	B	23.4	C	16.1	B	33.9	C	35.9	D
Northbound left	221.6	F	1445.0	F	21.2	C	17.0	B	54.3	D	63.5	E
Northbound through	53.9	D	58.1	E	37.6	D	38.8	D	54.7	D	49.2	D
Northbound right	24.3	C	26.3	C	9.2	A	15.6	B	18.1	B	15.1	B
Southbound left	91.5	F	317.2	F	21.0	C	15.1	B	26.9	C	30.0	C
Southbound through	53.9	D	58.1	E	37.6	D	38.8	D	51.3	D	52.7	D
Southbound right	344.1	F	804.4	F	0.1	A	0.7	A	Freeflow	Freeflow	Freeflow	Freeflow
Overall	265.7	F	478.3	F	18.7	B	17.5	B	44.2	D	49.5	D
US 550 (south)												
Eastbound left	N/A	N/A	N/A	N/A	22.1	C	26.2	C	N/A	N/A	N/A	N/A
Eastbound through	302.5	F	334.5	F	N/A							
Eastbound right	2.2	A	12.8	B	0.1	A	1.5	A	N/A	N/A	N/A	N/A
Westbound left	428.0	F	428.0	F	5.9	A	9.0	A	N/A	N/A	N/A	N/A
Westbound through	Free-flow	Freeflow	Free-flow	Freeflow	N/A							
Westbound right	N/A	N/A	N/A	N/A	28.0	C	29.7	C	N/A	N/A	N/A	N/A
Northbound left	378.7	F	357.5	F	N/A							

Table 8.9
2025 Grandview Section Signalized Intersection Alternative Comparison Summary

US 160 Intersection	No Action Alternative				Alternative G Modified				Alternative F Modified			
	AM Peak		PM Peak		AM Peak		PM Peak		AM Peak		PM Peak	
	Delay sec./veh.	Level of Service	Delay sec./veh.	Level of Service								
Northbound through	N/A	N/A	N/A	N/A	28.6	C	23.1	C	N/A	N/A	N/A	N/A
Northbound right	30.1	C	35.5	D	N/A							
Southbound left	N/A											
Southbound through	N/A	N/A	N/A	N/A	30.7	C	26.4	C	N/A	N/A	N/A	N/A
Southbound right	N/A	N/A	N/A	N/A	0.1	A	0.2	A	N/A	N/A	N/A	N/A
Overall	274.0	F	261.1	F	12.9	B	10.2	B	N/A	N/A	N/A	N/A

Table 8.9 indicates that the three signalized intersections under the No Action Alternative are projected to operate at LOS F during the AM and PM peak hours and would not provide the capacity needed for the design year.
The intersection at US 160 and SH 172/CR 234 would operate the same for Alternative G Modified and Alternative F Modified. All movements at this intersection are projected to operate at LOS D or better during the AM and PM peak hours.

For the US 160/CR 233 (west) intersection, US 550 is realigned to join US 160 at the CR 233 (west) interchange under Alternative F Modified. Under Alternative G Modified, the US 160/US 550 (south) interchange is located to the west of the US 160/CR 233 (west) interchange. The US 160/CR 233 (west) interchange is projected to operate at LOS B overall during both the AM and PM peak hours for Alternative G Modified and LOS D during the AM and PM peak hours for Alternative F Modified. Table 8.9 indicates that the US 160/CR 233 (west) intersection in the Grandview G Modified alternative would have reserve capacity to accommodate additional growth beyond the 2025 design year. In comparison, for Alternative F Modified, this intersection is near capacity and would not accommodate any additional growth beyond the 2025 design year.

8.2 2025 FLORIDA MESA AND VALLEY SECTION OPERATIONAL ANALYSIS

Operational analyses were performed in the Florida Mesa and Valley section for the No Action Alternative, Alternative C, and Alternative A. The capacity analysis worksheets for the Florida Mesa and Valley section highway analyses and the intersection analyses are included in Attachments F and G, respectively.

8.2.1 2025 Florida Mesa and Valley Section Highway Analysis

No Action Alternative

Under the No Action Alternative, the existing roadway conditions would remain in the Florida Mesa and Valley section. US 160 is projected to operate at LOS E in the eastbound and

westbound directions during the AM peak hour, and LOS F in both directions during the PM peak hour.

Alternative C

Alternative C would provide four lanes (two in each direction) on US 160 through the Florida Mesa and Valley section, and would follow the existing alignment. US 160 is projected to operate at LOS A in both directions during the AM peak hour, and LOS B in both directions during the PM peak hour.

Alternative A

Alternative A would provide four lanes (two in each direction) on US 160 through the Florida Mesa and Valley section, and would follow the existing alignment. US 160 is projected to operate at LOS A in both directions during the AM peak hour, and LOS B in both directions during the PM peak hour.

8.2.2 2025 Florida Mesa and Valley Section Intersection Analysis

No Action Alternative

Under the No Action Alternative, the existing roadway conditions would remain in the Florida Mesa and Valley section. The critical movements at the US 160 and CR 222/CR 223 (west) unsignalized intersection are projected to operate at LOS E or worse during the AM peak hour, and LOS F during the PM peak hour.

Alternative C

Under Alternative C, the intersection of CR 222/CR 223 (west) with US 160 would be relocated to the east of the existing intersection and signalized. The signalized intersection is projected to operate at LOS C during the AM and PM peak hours.

Alternative A

Under Alternative A, the intersection of CR 222/CR 223 (west) with US 160 would be relocated to the west of the existing intersection and signalized. The signalized intersection is projected to operate at LOS C during the AM and PM peak hours.

8.2.3 2025 Florida Mesa and Valley Section Operational Analysis Summary

The No Action Alternative would not provide the needed capacity for the 2025 design year through the Florida Mesa and Valley section. US 160 is projected to operate at LOS E in both directions during the AM peak hour, and LOS F in both directions during the PM peak hour. The unsignalized intersection at CR 222/CR 223 (west) is projected to have failing critical movements during the AM and PM peak hours.
Alternative C and Alternative A are projected to operate the same through the Florida Mesa and Valley section. The only difference between the two action alternatives is the location of the

CR 222/CR 223 (west) intersection. US 160 is projected to operate at LOS A in both directions during the AM peak hour, and LOS B in both directions during the PM peak hours. The CR 222/CR 223 (west) signalized intersection with US 160 is projected to operated at LOS C during both the AM and PM peak hour. Alternative C and Alternative A would operate the same in this section and provide the needed capacity to accommodate the traffic demand beyond the 2025 design year.

8.32025 DRY CREEK AND GEM VILLAGE SECTION OPERATIONAL ANALYSIS

Operational analyses were performed in the Dry Creek and Gem Village section for the No Action Alternative, Alternative H, and Alternative C. The capacity analysis worksheets for the Dry Creek and Gem Village section highway analyses are included in Attachment H, 2025 Dry Creek and Gem Village Section Highway Analyses. The intersections along US 160 through the Dry Creek and Gem Village area are minor unsignalized county roads and were not analyzed for this report.

8.3.1 2025 Dry Creek and Gem Village Section Highway Analysis

No Action Alternative

Under the No Action Alternative, the existing roadway conditions would remain in the Dry Creek and Gem Village section. US 160 is projected to operate at LOS E in the eastbound and westbound directions during the AM and PM peak hours.

Alternative H

Alternative H would provide four lanes (two in each direction) on US 160 through the Florida Mesa and Valley section. This alternative would realign US 160 as a bypass south of Gem Village, and would rejoin the existing alignment at the east and west ends of Gem Village. US 160 is projected to operate at LOS A in both directions during the AM peak hour, and LOS B in both directions during the PM peak hour.

Alternative C

Alternative C would provide four lanes (two in each direction) on US 160 through the Dry Creek and Gem Village section. This alternative would remain on the existing alignment through this section. US 160 is projected to operate at LOS A in both directions during the AM peak hour, and LOS B in both directions during the PM peak hour.

8.3.2 2025 Dry Creek and Gem Village Operational Analysis Summary

The No Action Alternative would not provide the needed capacity for the 2025 design year through the Dry Creek and Gem Village section. US 160 is projected to operate at LOS E in both directions during the AM and PM peak hours.

Alternative H and Alternative C are projected to operate the same through the Dry Creek and Gem Village section. The only difference between these alternatives is the alignment of US 160
through Gem Village. US 160 is projected to operate at LOS A in both directions during the AM peak hour, and LOS B in both directions during the PM peak hour.

8.42025 BAYFIELD SECTION OPERATIONAL ANALYSIS

Operational analyses were performed in the Bayfield section for the No Action Alternative, Alternative B, and Alternative A. The capacity analysis worksheets for the Bayfield section highway analyses and the intersection analyses are included in Attachments I and J, respectively.

8.4.1 2025 Bayfield Section Highway Analysis

No Action Alternative

Under the No Action Alternative, the existing roadway conditions would remain in the Bayfield section. US 160 is projected to operate at LOS E in the eastbound and westbound directions during the AM and PM peak hours.

Alternative B

Alternative B would provide four lanes (two in each direction) on US 160 through the Bayfield section and would follow the existing alignment. US 160 is projected to operate at LOS A in both directions during the AM and PM peak hours.

Alternative A

Alternative A would provide four lanes (two in each direction) on US 160 through the Bayfield section and would follow the existing alignment. US 160 is projected to operate at LOS A in both directions during the AM and PM peak hours.

8.4.2 2025 Bayfield Section Intersection Analysis

No Action Alternative

Under the No Action Alternative, the existing roadway conditions would remain in the Bayfield section. The signalized intersection at US 160/CR 501 is projected to operate at LOS D overall during the AM peak hour, with the westbound and northbound approaches operating at LOS E. During the PM peak hour, the intersection is projected to operate at LOS F.

Alternative B

Under Alternative B, the intersection at US 160/CR 501 would remain a signalized intersection. The analysis results indicate the intersection is projected to operate at LOS C during the AM and PM peak hours.

Alternative A

Under Alternative A, a diamond interchange would be provided at the US 160/CR 501 intersection. The ramp terminal intersections on the north and south of US 160 are projected to operate at LOS C or better during the AM and PM peak hours.

8.4.3 2025 Bayfield Section Operations Analysis Summary

The No Action Alternative would not provide the needed capacity for the 2025 design year through the Bayfield section. US 160 is projected to operate at LOS E in both directions during the AM and PM peak hours. The US 160/CR 501 intersection is projected to operate at LOS D during the AM peak hour, and LOS F during the PM peak hour.
Although Alternative A would provide free flow movements through the Bayfield section, due to the diamond interchange at US 160/CR 501, the interchange would not be needed to provide acceptable levels of service through this section. US 160 is projected to operate at LOS A for both Alternative B and Alternative A through the Bayfield section. The intersections for both alternatives are projected to operate at LOS C or better during both the AM and PM peak hours.

8.5 SUMMARY

The No Action Alternative would not meet the capacity needs for the design year in any of the sections along the US 160 corridor.
The following subsections provide a summary of the traffic operational comparisons between the two action alternatives in each section along the US 160 corridor.

Grandview Section

- Alternative G Modified and Alternative F Modified would both provide acceptable levels of service in the Grandview section.
- Alternative G Modified provides three interchanges along US 160 in the Grandview section at US 550 (south), CR 233 (west), and SH 172/CR 234. These interchanges provide three access points to the north that distribute traffic onto US 160 from the projected residential commercial and hospital development on the north side of US 160.
- Alternative F Modified provides two interchanges along US 160 in this section at US 550 (south)/CR 233 (west) and SH 272/CR 234. This alternative provides two access points to the north for the projected development on the north side of US 160.
- The single-point urban interchange at US 160 and SH 172/CR 234 would operate the same for both action alternatives.
- The single-point urban interchange at US 160/CR 233 (west) would operate better under Alternative G Modified (LOS B) than Alternative F Modified (LOS D). Under Alternative F Modified, this intersection is near capacity and would not accommodate any additional growth beyond the design year 2025. Under Alternative G Modified, this intersection would have reserve capacity to accommodate additional growth beyond the 2025 design year.

Florida Mesa and Valley Section

Traffic operations for the two action alternatives in this section would be the same. The only difference between the action alternatives is the location of the CR 222/CR 223 (west) intersection with US 160.

Dry Creek and Gem Village Section

Traffic operations for the two action alternatives in this section would be the same. The only difference between the action alternatives is the alignment of US 160.

Bayfield Section

Traffic operations for the two action alternatives in this section would be similar. The only difference between the action alternatives is that Alternative A has a diamond interchange at US 160/CR 501 and Alternative B has an intersection. Both alternatives provide acceptable levels of service at the US 160/CR 501 intersection.

Highway Capacity Manual, 2000. 2000. Transportation Research Board, National Research Council. Washington, D.C.
Trip Generation Manual. 2003. $7^{\text {th }}$ edition. Institute of Transportation Engineers. Washington, D.C.

Attachment A

Existing Highway Segment Analyses

HCS2000: Two-Lane Highways Release 4.Id
URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad
Analyst DEA

Agency/Co. URS
Date Performed 3/19/2005
Analysis Time Period
Highway
AM PEAK
EB US 160
Erom/TO US 550 TO SH 172/CR 234
Jurisdiction
Analysis Year EXISTING
Description US 160

Input Data

\qquad Average Travel Speed

Direction An	Analysis(d)		Opposing (0)	
PCE for trucks, ET	1.9		1.5	
PCE for RVs, ER	1.1		1.1	
Heavy-vehicle adj. factor, (note-5) fHV	0.957		0.976	
Grade adj. factor, (note-1) fG	0.93		0.99	
Directional flow rate, (note-2) vi	520	pc / h	1232	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed volume, (note-3) Vf		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		60.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access points, (note-3) fA		3.0	mi / h	
Free-flow speed, FFSd		57.0	mi / h	
Adjustment for no-passing zones, fnp		0.6	mi / h	
Average travel speed, ATSd		42.8	mi / h	

\qquad

Direction Anal	Analysis (d)		Opposing (0)			
PCE for trucks, ET	1.5			1.0		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.976			1.000		
Grade adjustment factor, (note-1) fG	0.94			1.00		
Directional flow rate, (note-2) vi	505	pc / h		1189		pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	85.6	\%			
Adjustment for no-passing zones, fnp		1.3				
Percent time-spent-following, PTSFd		86.9	\%			

Level of Service and Other Performance Measures

Level of service, LOS E
Volume to capacity ratio, v / C
Peak 15-min vehicle-miles of travel, VMT15
Peak-hour vehicle-miles of travel, VMT60
Peak 15-min total travel time, TT15
0.31

347 veh-mi
1320 veh-mi
8.1 veh-h

Notes:

1. If the highway is extended segment (level) or rolling terrain, fG $=1.0$
2. If vi (vd or vo) $>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
3. For the analysis direction only.
4. Exhibit 20-21 provides factors a and b.
5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 3.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | 0.5 | mi |
| Length of passing lane including tapers, Lpl | 2.4 | mi |
| Average travel speed, ATSd (from above) | 42.8 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 86.9 | E |

Average Travel Speed

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 1.70 mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld -1.60 mi
Adj. factor for the effect of passing lane
on average speed, fpl
1.10

Average travel speed including passing lane, (note-2) ATSpl 46.4
Percent Time-Spent-Following \qquad
$\begin{aligned} & \text { Downstream length of two-lane highway within effective length } \\ & \text { of passing lane for percent time-spent-following, Lde } \\ & \text { Length of two-lane highway downstream of effective length of } \\ & \text { the passing lane for percent time-spent-following, Ld }\end{aligned} \quad-7.16 \mathrm{mi}$ mi
Level of Service and Other Performance Measures (note-4)

Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 7.5 veh-h

Notes:

1. If LOSd $=F$, passing lane analysis cannot be performed.
2. If Ld <0, use alternative Equation 20-22.
3. If Ld <0, use alternative Equation 20-20.
4. $v / C, V M T 15$, and VMT60 are calculated on Directional Two-Lane Highway Segment Worksheet.

HCS2000: Two-Lane Highways Release 4.1d
URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad
Analyst DEA

Agency/Co. URS
Date Performed 3/19/2005
Analysis Time Period
Highway
PM PEAK
EB US 160
From/To
US 550 TO SH $172 / \mathrm{CR} 234$
Jurisdiction
Analysis Year EXISTING
Description US 160

Input Data

Average Travel Speed

Direction
PCE for trucks, ET
PCE for RVs, ER
Heavy-vehicle adj. factor, (note-5) fHV
Grade adj. factor, (note-1) fG
Directional flow rate, (note-2) vi

Analysis(d)
1.5
1.1
0.976
0.99

1308
\qquad

Free-Flow Speed from Field Measurement:
Field measured speed, (note-3) S FM - mi/h
Observed volume, (note-3) Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, (note-3) BFES
60.0

Adj. for lane and shoulder width, (note-3) fLS
Adj. for access points, (note-3) fA
mi / h

Free-flow speed, FFSd
$57.0 \mathrm{mi} / \mathrm{h}$
Adjustment for no-passing zones, fnp
Average travel speed, ATSd
$0.7 \mathrm{mi} / \mathrm{h}$
$40.4 \mathrm{mi} / \mathrm{h}$
\qquad

Direction
PCE for trucks, ET
PCE for RVs, ER
Heavy-vehicle adjustment factor, fHV
Grade adjustment factor, (note-1) fG
Directional flow rate, (note-2) vi $1263 \mathrm{pc} / \mathrm{h}$
Base percent time-spent-following, (note-4) BPTSFd 87.6
Adjustment for no-passing zones, fnp
Percent time-spent-following, PTSFd

Analysis(d)
1.0
1.0
1.000
1.00

BPTSFd 87.6
4.2
91.7 \%

Opposing (o)
1.0
1.0
1.000
1.00
$716 \mathrm{pc} / \mathrm{h}$
\qquad Level of Service and Other Performance Measures \qquad
Level of service, LOS
Volume to capacity ratio, v/c
E

Peak $15-\mathrm{min}$ vehicle-miles of travel, VMT15
0.77

Peak-hour vehicle-miles of travel, VMT60
947 veh-mi
Peak 15-min total travel time, TT15 23.5 veh-h

Notes:

1. If the highway is extended segment (level) or rolling terrain, fG $=1.0$
2. If vi (vd or vo) $>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
3. For the analysis direction only.
4. Exhibit 20-21 provides factors a and b.
5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.

Passing Lane Analysis
Total length of analysis segment, Lt 3.0 mi
Length of two-lane highway upstream of the passing lane, Lu 0.5 mi
Length of passing lane including tapers, Lpl 2.4 mi
Average travel speed, ATSd (from above)
$40.4 \mathrm{mi} / \mathrm{h}$
Percent time-spent-following, PTSFd (from above)
91.7

Level of service, (note-1) LOSd (from above)
E

Average Travel Speed
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 1.70 mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld -1.60 mi
Adj. factor for the effect of passing lane
on average speed, fpl
1.11

Average travel speed including passing lane, (note-2) ATSpl 44.0

Percent Time-Spent-Following \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
3.60 mi

Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -3.50 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.62
Percent time-spent-following
including passing lane, (note-3) PTSFpl 62.7 \%
\qquad Level of Service and Other Performance Measures (note-4)

Level of service including passing lane, LOSpl
Peak 15-min total travel time, TT15 21.5 veh-h

Notes:

1. If LOSd $=F$, passing lane analysis cannot be performed.
2. If Ld < 0, use alternative Equation 20-22.
3. If Ld < 0, use alternative Equation 20-20.
4. v/c, VMT15 , and VMT60 are calculated on Directional Two-Lane Highway Segment Worksheet.

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period AM PEAK	Highway / Direction of Travel WB US 160 From/To US 550 TO SH 172/CR 234 Jurisdiction Analysis Year EXISTING
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.5 1.9
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9 or 20-17)	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.976 0.957
Grade adjustment factor ${ }^{1}$, f_{G} (Exhibit 20-7 or 20-13)	0.99 0.93
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	1232520
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $57.0 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad($ (Exhibit 20-19) $2.3 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.0 1.5
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000 0.976
Grade adjustment factor ${ }^{1}$, f_{G} (Exhibit 20-8 or 20-14)	1.00 0.94
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	1189 505
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF=100($1 \mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}$)	84.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	16.3
Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{\mathrm{np}}$	100.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	F
Volume to capacity ratio v/c v/c $=\mathrm{V}_{\mathrm{p}} / 1,700$	0.72
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{4}$ (V/PHF)	892
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}\left(\right.$ veh-mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} L_{4}$	3390
Peak 15-min total travel time, $\Pi_{15}($ veh-h $) \quad \Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$	21.7
Notes	
1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b. 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a	or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. ecific downgrade.

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period PM PEAK	Highway / Direction of Travel WB US 160 From/To US 550 TO SH 172/CR 234 lurisdiction Analysis Year EXISTING
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.5 1.5
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{H V}=1 /\left(1+P_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{R}-1\right)\right)$	0.976 0.976
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.99 0.99
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	741
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $57.0 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, f_{np} (Exhibit 20-19)	Base free-flow speed ${ }^{3}$, BFFS $_{F M}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{3}$; f_{A} (Exhibit 20-5) $3.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}}$ (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}$) $57.0 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ATS=FFS-0.00776v-f f_{np} $40.1 \mathrm{mi} / \mathrm{h}$
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.0 1.0
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $f_{H V} f_{H V}=1 /\left(1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right)$	1.000 1.000
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14)	1.00 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	716 1263
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }^{\text {b }}\right.$)	88.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	3.2
Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{n p}$	91.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	E
Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$	0.44
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) VMT ${ }_{15}=0.25 \mathrm{~L}_{4}$ (V/PHF)	537
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}\left(\right.$ ven- mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{\text {}}$	2040
Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh-h $) \quad \Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$	13.4
Notes	
1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b. 5. Use alternative Equation $20-14$ if some trucks operate at crawl speeds on a specific downgrade.	

General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period AM PEAK	Highway / Direction of Travel EB US 160 From/To SH 172/CR 234 TO CR 222/223 Junisdiction Analysis Year EXISTING
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.9 1.5
Passenger-car equivalents for RVs , E_{R} (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.957 0.976
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.93 0.99
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	278 621
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS} \mathrm{d}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{p}} \mathrm{f}_{\mathrm{HV}}\right)$ $58.0 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exnibit 20-19) $1.2 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{3}$, BFFS $_{\text {FM }}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{Ls}}($ Exh 20-5 $)$ $0.0 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}($ Exhibit 20-5) $2.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}}\left(\right.$ FSS=BFFS- $\mathrm{f}_{\mathrm{LS}}{ }^{\left.-\mathrm{f}_{\mathrm{A}}\right)}$ $58.0 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ATS=FFS-0.00776v $-f_{\mathrm{fp}}$ $49.8 \mathrm{mi} / \mathrm{h}$
Percent Time-Spent-Following	
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.5 1.0
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.976 1.000
Grade adjustment factor ${ }^{1}$, f_{G} (Exhibit 20-8 or 20-14)	0.94 1.00
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ($\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	270 600
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) \quad BPTSF $=100\left(1 \mathrm{e}^{\mathrm{av} \mathrm{v}^{\text {d }} \text {) }}\right.$)	63.6
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	7.7
Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{n \rho}$	71.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	D
Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$	0.16
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{\text {(}}$ (V/PHF)	62
Peak-hour vehicle-miles of travel, VMT_{60} (veh- mi) $\mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{1}$	235
Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh-h $) \quad \Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$	1.2
Notes	
1. If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b . 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.	
HCS2000 ${ }^{\text {TM }}$ Copyright © 2000 University of Flo	rida, All Rights Reserved Version 4

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period AM PEAK	Highway/Direction of Travel WB US 160 From/To SH 172/CR 234 TO CR 222/223 Jurisdiction Analysis Year EXISTING
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.5 1.9
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.976 0.957
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.99 0.93
Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathbf{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	621 278
Free-Flow Speed from Field Measurement	Estimated Free-Fiow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS} \mathrm{F}_{d} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}}\right)$ $58.0 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $2.6 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{3}, \mathrm{BFFS}_{\mathrm{FM}}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}$ (Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}($ Exhibit 20-5) $2.0 \mathrm{mi} / \mathrm{h}$ Free-fiow speed, $\mathrm{FFS}_{\mathrm{d}}\left(\right.$ FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $58.0 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ATS=FFS-0.00776 $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$ $48.5 \mathrm{mi} / \mathrm{h}$
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.0 1.5
Passenger-car equivalents for $R \mathrm{~V}$ s, E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14)	1.00 0.94
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	600270
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}_{\mathrm{d}}{ }^{\mathrm{b}} \text {) }}\right.$	73.7
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	16.9
Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{\mathrm{np}}$	90.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	E
Volume to capacity ratio v/c v/c $=\mathrm{V}_{\mathrm{p}} / 1,700$	0.37
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{1}(\mathrm{~V} / \mathrm{PHF}$)	150
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}\left(\right.$ veh- mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{4}$	570
Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh-h $) \quad \mathrm{TT}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.1
Notes	
1. If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b. 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.	

HCS2000 ${ }^{\text {TM }}$

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period AM PEAK	Highway/Direction of Travel EB US 160 From/To CR 222/223 TO GEM VILLAGE Jurisdiction EXISTING Analysis Year
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	2.5 1.9
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.930 0.957
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.71 0.93
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	295 384
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \quad \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{f} / \mathrm{f}_{\mathrm{HV}}\right)$ $58.8 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $2.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{3}, \mathrm{BFFS}_{\mathrm{FM}}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}}$ (FSS=BFFS-f $\mathrm{LS}^{\left.-\mathrm{f}_{\mathrm{A}}\right)}$ $58.8 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$ $51.0 \mathrm{mi} / \mathrm{h}$
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.8 1.5
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{H V}=1 /\left(1+P_{T}\left(E_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.962 0.976
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14)	0.77 0.94
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i}\left(\right.$ ($\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	263 373
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{\mathrm{d}}{ }^{\mathrm{b}}\right.$)	57.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	15.9
Percent time-spent-following, PTSF(\%) PTSF=BPTSF $+\mathrm{f}_{\mathrm{np}}$	73.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	D
Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$	0.17
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi)VMT ${ }_{15}=0.25 L_{4}$ (V/PHF)	292
Peak-hour vehicle-miles of travel, VMT_{60} (veh-mi) $\quad V M T_{60}=\mathrm{V}^{ \pm} \mathrm{L}_{t}$	1110
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $\quad \Pi_{15}=\mathrm{VMT} \mathrm{T}_{15} / \mathrm{ATS}$	5.7
Notes	
1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b . 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.	

HCS2000 ${ }^{\text {TM }}$

General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period PM PEAK	Highway/Direction of Travel WB US 160 From/To CR 222/223 TO GEM VILLAGE Jurisdiction EXISTING Analysis Year
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.9 1.9
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.957 0.957
Grade adjustment factor ${ }^{1,} \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.93 0.93
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ($\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{H}} \mathrm{V}^{*} \mathrm{f}_{\mathrm{G}}\right)$	367 491
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, FFS $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $58.8 \mathrm{mi} / \mathrm{h}$	
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	
Passenger-car equivalents for RV , E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.976 0.976
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14)	0.94 0.94
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	356
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1 \mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	65.2
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	12.6
Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{\text {np }}$	77.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	D
Volume to capacity ratio v/c v/c= $\mathrm{V}_{\mathrm{p}} / 1,700$	0.22
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) VMT ${ }_{15}=0.25 \mathrm{~L}_{\text {(}}(\mathrm{V} / \mathrm{PHF})$	489
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}\left(\right.$ veh-mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{4}$	1860
Peak $15-\mathrm{min}$ total travel time, $\mathrm{TT}_{15}($ veh -h$) \quad \mathrm{T}_{15}=\mathrm{VM} T_{15} / \mathrm{ATS}$	9.8
Notes	
1. If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b. 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a	or v_{0}) $>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. pecific downgrade.

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET			
General Information	Site Information		
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period AM PEAK	Highway / Direction of Travel From/To Jurisdiction Analysis Year	EB US 160GEM VILLAGE TO BAYFIELDEXISTING	
Input Data			
Average Travel Speed			
	Analysis Direction (d)	Opposing Direction (0)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.9	1.9	
Passenger-car equivalents for RVs , E_{R} (Exhibit 20-9 or 20-17)	1.1	1.1	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.957	0.957	
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.93	0.93	
Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	337	319	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed		
Field Measured speed $^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} \mathrm{f}_{\mathrm{HV}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, f_{np} (Exhibit 20-19)			
Percent Time-Spent-Following ______			
	Analysis Direction (d)	Opposing Direction (0)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.5	1.5	
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16)	1.0	1.0	
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}^{-1}}\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}{ }^{-1}\right)\right)$	0.976	0.976	
Grade adjustment factor ${ }^{1}$, f_{G} (Exhibit 20-8 or 20-14)	0.94	0.94	
Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	327	310	
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) \quad BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{\mathrm{d}}{ }^{\mathrm{b}}\right.$)	62.3		
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	20.2		
Percent time-spent-following, PTSF(\%) PTSF $=$ BPTSF $+\mathrm{f}_{\text {np }}$	82.5		
Level of Service and Other Performance Measures			
Level of service, LOS (Exhibit 20-3 or 20-4)	E		
Volume to capacity ratio v/c $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$	0.20		
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{\text {(}}$ (V/PHF)	150		
Peak-hour vehicle-miles of travel, VMT_{60} (veh- mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{1}$	570		
Peak 15-min total travel time, $\Pi_{15}($ veh -h$) \quad \mathrm{T}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.0		
Notes			
1. If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 3. For the analysis direction only. 4. Exhibit $20-21$ provides factors a and b . 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.			

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period PM PEAK	Highway / Direction of Travel EB US 160 From/To GEM VILLAGE TO BAYFIELD Jurisdiction Analysis Year EXISTING
Input Data	
	F Class I highway Class II highway Terrain Level Rolling Grade Length mi Up/down Peak-hour factor, PHF 0.95% No-passing zone 72 \% Trucks and Buses, P_{T} 5% \% Recreational vehicles, P_{R} 0% Access points $/ \mathrm{mi}$ 4
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.9 1.9
Passenger-car equivalents for RV s, E_{R} (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{H \mathrm{HV}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.957 0.957
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.93 0.93
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ (PHF* $\left.\mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	396 384
Free-Flow Speed from Fieid Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ Free-flow speed, $\mathrm{FFS}, \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $2.7 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{3}$, BFFS $_{F M}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS ${ }_{d}$ (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}$) $59.0 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ATS=FFSS-0.00776v ${ }_{p}-f_{n p}$ $50.2 \mathrm{mi} / \mathrm{h}$
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.5 1.5
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicie adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.976 0.976
Grade adjustment factor ${ }^{1}$, f_{G} (Exhibit 20-8 or 20-14)	0.94 0.94
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ($\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	385
Base percent time-spent-following ${ }^{4}, \mathrm{BPTSF}(\%) \quad$ BPTSF $=100\left(1-\mathrm{e}^{\text {av }}{ }_{\mathrm{d}}{ }^{\text {b }}\right.$)	64.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	17.1
Percent time-spent-following, PTSF(\%) PTSF=BPTSF $+\mathrm{f}_{\mathrm{np}}$	81.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	E
Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$	0.23
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) VMT ${ }_{15}=0.25 \mathrm{~L}_{\text {(}}(\mathrm{V} / \mathrm{PHF})$	176
Peak-hour vehicle-miles of travel, VMT_{60} (veh- mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	670
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $\quad \mathrm{T}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.5
Notes	
1.If the highway is extended segment (level) or roling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b. 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.	

HCS2000 ${ }^{\text {TM }}$
Version 4.1 d

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst DEA Agency or Company URS Date Performed $3 / 19 / 2005$ Analysis Time Period AM PEAK	Highway / Direction of Travel WB US 160 From/To GEM VILLAGE TO BAYFIELD Jurisdiction Analysis Year EXISTING
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15)	1.9 1.9
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}^{-1}}\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}^{-1}}\right)\right.$)	0.957 0.957
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13)	0.93 0.93
Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i}\left(\right.$ ($\left.\mathrm{HHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	319 337
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ veh $/ \mathrm{h}$ Free-flow speed, FFS d $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} \mathrm{f}_{\mathrm{HV}}\right)$ Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit $\left.20-19\right)$ $59.0 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{3}$, BFFS $_{F M}$ $60.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh $20-5)$ $0.0 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.0 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS ${ }_{\mathrm{d}}\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ATS=FFSS-0.00776 $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$ $51.0 \mathrm{mi} / \mathrm{h}$
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (0)
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16)	1.5 1.5
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10 or 20-16)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.976 0.976
Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14)	0.94 0.94
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ($\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$	310 327
Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{\mathrm{d}}{ }^{\mathrm{b}}\right.$)	61.3
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20)	18.8
Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{\mathrm{np}}$	80.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 or 20-4)	E
Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$	0.19
Peak 15-min veh-miles of travel, VMT_{15} (veh- mi)VMT ${ }_{15}=0.25 \mathrm{~L}_{\text {(}}$ (V/PHF)	142
Peak-hour vehicle-miles of travel, VMT_{60} (veh-mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} L_{4}$	540
Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh -h$) \quad \mathrm{TT}_{15}=\mathrm{VMT} \mathrm{I}_{15} / \mathrm{ATS}$	2.8
Notes	
1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b. 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade.	

[^1]| DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET | |
| :---: | :---: |
| General Information | Site Information |
| Analyst DEA
 Agency or Company URS
 Date Performed $3 / 19 / 2005$
 Analysis Time Period PM PEAK | Highway / Direction of Travel WB US 160
 From/To GEM VILLAGE TO BAYFIELD
 Jurisdiction
 Analysis Year |
| Input Data | |
| | |
| Average Travel Speed | |
| | Analysis Direction (d) \quad Opposing Direction (o) |
| Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9 or 20-15) | 1.9 1.9 |
| Passenger-car equivalents for RV s, E_{R} (Exhibit 20-9 or 20-17) | 1.1 1.1 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.957 0.957 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13) | 0.93 0.93 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 384 |
| Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed |
| Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ mi / h
 Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$
 Free-flow speed, FFS
 d
 FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$
 Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $2.6 \mathrm{mi} / \mathrm{h}$ | Base free-flow speed ${ }^{3}$, BFFS $_{F M}$ $60.0 \mathrm{mi} / \mathrm{h}$
 Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$
 Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.0 \mathrm{mi} / \mathrm{h}$
 Free-flow speed, $\mathrm{FFS}_{\mathrm{d}}\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}}{ }^{\left.-\mathrm{f}_{\mathrm{A}}\right)}\right.$ $59.0 \mathrm{mi} / \mathrm{h}$
 Average travel speed, ATS ATS=FFFS-0.00776v ${ }_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$ $50.4 \mathrm{mi} / \mathrm{h}$ |
| Percent Time-Spent-Following | |
| | Analysis Direction (d) \quad Opposing Direction (0) |
| Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10 or 20-16) | 1.5 1.5 |
| Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.976 0.976 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14) | 0.94 0.94 |
| Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{\star} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 373 年 385 |
| Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{\mathrm{d}}{ }^{\mathrm{b}}\right)$ | 63.1 |
| Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20) | 16.0 |
| Percent time-spent-following, PTSF(\%) PTSF=BPTSF $+{ }_{\text {f }}{ }_{\mathrm{np}}$ | 79.1 |
| Level of Service and Other Performance Measures | |
| Level of service, LOS (Exhibit 20-3 or 20-4) | D |
| Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$ | 0.23 |
| Peak 15-min veh-miles of travel, VMT_{15} (veh- mi) VMT ${ }_{15}=0.25 \mathrm{~L}_{\text {(}}(\mathrm{V} / \mathrm{PHF})$ | 171 |
| Peak-hour vehicle-miles of travel, VMT_{60} (veh-mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{4}$ | 650 |
| Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh-h $) \quad \mathrm{TT}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$ | 3.4 |
| Notes | |
| 1. If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
 3. For the analysis direction only. 4. Exhibit $20-21$ provides factors a and b.
 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade. | |

Attachment B
 Existing Intersection Analyses

HCS2000: Signalized Intersections Release 4.1d

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: AM PEAK HOUR
Project ID: US 160
E/W St: US 160

Inter.: US 160 / US 550
Area Type: All other areas
Jurisd:
Year : EXISTING 2001
N/S St: US 550

SIGNALIZED INTERSECTION SUMMARY

	Eastbound				Westbound			Northbound				Southbound				\|
	1	L	T	R	L	T	R		L	T	R	L		T	R	\|
No. Lanes	-		2	1	1	0	0		1	0	1	I	0	0	0	I
LGConfig	1		T	R	1 L				L		R	I				\|
Volume	1		410	130	120				480		30	1				I
Lane Width	1		12.0	12.0	112.0				12.0		12.0	1				।
RTOR Vol	1			0	1						0	1				,

Intersection Performance Summary

Appr/	Lane	Adj Sat		s	Lane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	v/c	g/C	Delay LOS	Delay LOS

Eastbound

	1070	3438	0.40	0.31	24.7	C	19.5	B
T	1162	1538	0.12	0.76	3.0	A		
R								
Westbound	229	1719	0.09	0.13	34.4	C		
L						34.4	C	

Northbound

L	669	1719	0.75	0.39	28.7	C		27.5
	889	1538	0.04	0.58	8.2	A		

Southbound

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: PM PEAK HOUR
Project ID: US 160
E/W St: US 160

Inter.: US 160 / US 550
Area Type: All other areas
Jurisd:
Year : EXISTING 2001
N/S St: US 550

SIGNALIZED INTERSECTION SUMMARY

	Eastbound			Westbound			Northbound			Southbound				1	
	L	T	R	1 L	T	R	L	T	R	\|		T	R	I	
No. Lanes		2	1	\| 1	0	0	11	0	1		0	0	0	\|	
LGConfig		T	R	\\| L			L		R					I	
Volume		1175	515	115			1250		25	1				I	
Lane Width		12.0	12.0	112.0			112.0		12.0	1				I	
RTOR Vol			0	1			1		0	1				1	

Duration $0.25 \quad$ Area Type: All other areas
Signal Operations

Intersection Performance Summary

Appr/	Lane	Adj Sat		s	Lane Group	Approach
Lane	Group	Flow Rate				
Grp	Capacity	(s)	v/c	g/C	Delay LoS	Delay LOS

Eastbound

T	1367	3438	0.90	0.40	33.8	C	24.9	C
R	1154	1538	0.47	0.75	4.5	A		
Westbound								
L	234	1719	0.07	0.14	33.3	C		
							33.3	C

Northbound

L	508	1719	0.52	0.30	26.7	C		
R	752	1538	0.03	0.49	11.7	B		C

Southbound

Intersection Delay $=25.0(\mathrm{sec} / \mathrm{veh}) \quad$ Intersection LOS $=\mathrm{C}$

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas
Jurisd:
Year : EXISTING 2001
N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY

Intersection Performance Summary

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas
Jurisd:
Year : EXISTING 2001
N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY

Intersection Performance Summary

Appr	Lane	Adj Sat	Ratios	Lane Group	Approach
Lane	Group	Flow Rate			
Grp	Capacity	(s)	$\overline{\mathrm{v} / \mathrm{C}} \mathrm{g} / \mathrm{C}$	$\overline{\text { Delay LOS }}$	$\overline{\text { Delay LOS }}$

TWO-WAY STOP CONTROL SUMMARY			
General Information		Site Information	
Analyst	DEA	Intersection	US 160/CR 222/223
Agency/Co.	URS	Jurisdiction	
Date Performed	3/19/2005	Analysis Year	EXISTING 2001
Analysis Time Period	AM PEAK		
Project Description US 160			
East/West Street: US 160		North/South Street:	2/CR 223
Intersection Orientatio	East-West	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	30	175	15	5	315	5
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95
Hourly Flow Rate (veh/h)	31	184	15	5	331	5
Proportion of heavy vehicles, P_{HV}	2	--	--	2	-	--
Median type	Undivided					
RT Channelized?			0			0
Lanes	0	1	1	0	1	0
Configuration	$L T$		R	LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	115	5	5	5	5	115
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95
Hourly Flow Rate (veh/h)	121	5	5	5	5	121
Proportion of heavy vehicles, P_{HV}	2	2	2	2	2	2
Percent grade (\%)	0			0		
Flared approach		N			N	
Storage		0			0	
RT Channelized?			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Control Delay, Queue Length, Level of Service									
Approach	EB	WB	Northbound				Southbound		
Movement	1	4	7	8	9	10	11	12	
Lane Configuration	$L T$	$L T R$		$L T R$			LTR		
Volume, $\mathrm{v}(\mathrm{vph})$	31	5		131			131		
Capacity, $\mathrm{c}_{\mathrm{m}}(\mathrm{vph})$	1223	1373		316			668		
v/c ratio	0.03	0.00		0.41			0.20		
Queue length (95\%)	0.08	0.01		1.96			0.72		
Control Delay (s/veh)	8.0	7.6		24.2			11.7		

TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	DEA
Agency/Co.	URS
Date Performed	$3 / 19 / 2005$
Analysis Time Period	PM PEAK

Intersection	US 160/CR 222/223
Jurisdiction	
Analysis Year	EXISTING 2001

Project Description US 160
East/West Street: US 160
Intersection Orientation: East-West

North/South Street: CR 222/CR 223
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	105	400	130	5	300	5
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95
Hourly Flow Rate (veh/h)	110	421	136	5	315	5
Proportion of heavy vehicles, P_{HV}	2	--	-	2	--	--
Median type	Undivided					
RT Channelized?			0			0
Lanes	0	1	1	0	1	0
Configuration	$L T$		R	LTR		
Upstream Signal		0			0	
Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	35	10	10	5	10	60
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95
Hourly Flow Rate (veh/h)	36	10	10	5	10	63
Proportion of heavy vehicles, P_{HV}	2	2	2	2	2	2
Percent grade (\%)	0			0		
Flared approach		N			N	
Storage		0			0	
RT Channelized?			0			0
Lanes	0	1	0	0	1	0
Configuration		LTR			LTR	

Control Delay, Queue Length, Level of Service

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT	LTR		LTR			LTR	
Volume, $\mathrm{v}(\mathrm{vph})$	110	5		56			78	
Capacity, $\mathrm{c}_{\mathrm{m}}(\mathrm{vph})$	1240	1014		210			460	
v/c ratio	0.09	0.00		0.27			0.17	
Queue length (95\%)	0.29	0.01		1.04			0.60	
Control Delay (s/veh)	8.2	8.6		28.3			14.4	

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501
Area Type: All other areas
Jurisd:
Year : EXISTING 2001
N/S St: CR 501

SIGNALIZED INTERSECTION SUMMARY

	Eastbound			Westbound			Northbound				Southbound				
	1 L	T	R	L	T	R	L		T	R	1 L		T	R	\|
	1			1			1				1				1
No. Lanes	1	1	0	\| 1	1	0	I	0	1	0	1	0	1	0	
LGConfig	1 L	TR		1 L	TR		I				1				\|
Volume	130	210	45	175	185	35	155		50	110	130		85	30	,
Lane Width	\| 12.	12.0		112.0	12.0		\|		12.		\|		12.		,
RTOR Vol	\|		0	1		0	I			0	\|			0	1

Intersection Performance Summary
Cycle Length: 90.0 secs

Apprl	Lane	Adj Sat	Ratios	Lane Group	Approach
Lane	Group	Flow Rate			
Grp	Capacity	(s)	$\overline{\mathrm{v} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$	Delay LOS	$\overline{\text { Delay LOS }}$

| Eastbound | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L | 295 | 1770 | 0.11 | 0.17 | 32.0 | C | | |
| TR | 590 | 1771 | 0.45 | 0.33 | 24.1 | C | 25.0 | C |

Westbound

| L | 295 | 1770 | 0.27 | 0.17 | 33.2 | C | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TR | 591 | 1774 | 0.39 | 0.33 | 23.4 | C | 25.9 | C |

Northbound
LTR
513
1538
$0.44 \quad 0.33$
24.1
C
24.1 C

Southbound
LTR
547
1641
0.28
0.33
22.3
C
22.3 C

Intersection Delay $=24.7$ (sec/veh) Intersection LOS $=C$

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501
Area Type: All other areas
Jurisd:
Year : EXISTING 2001

N/S St: CR 501

Intersection Performance Summary

Appr/ Lane Grp	Lane Group Capacity	Adj Sat Flow Rate (s)	Ratios			Approach
			v/c	g/C	$\overline{\text { Delay LOS }}$	
Eastbound						
L	334	1770	0.17	0.19	30.9 C	
TR	587	1762	0.50	0.33	24.7 C	25.7 C

Westbound

L	334	1770	0.41	0.19	32.9	C		
TR	592	1776	0.47	0.33	24.3	C	27.2	C

Northbound

LTR 488
1569
0.61
0.31
28.7

C
$28.7 C$
Southbound

| LTR | 512 | 1646 | 0.30 | 0.31 | 23.9 | C | 23.9 | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Intersection Delay $=26.7$ (sec/veh) Intersection LOS $=C$

Attachment C
 Grandview Section Trip Generation Tables

Table 5.1 Trip Generation in 2025 - Sub Area I

Land Use	Unit	Quantly	$\left\lvert\, \begin{gathered} \begin{array}{c} \text { No. of Tips } \\ \text { per Unit } \end{array} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \text { AM Peak } \\ & \begin{array}{c} \text { Hour Tips } \\ \text { per Unit } \end{array} \end{aligned}$	$\begin{aligned} & \text { PM Peak } \\ & \text { Hour Trips } \\ & \text { per Unit } \end{aligned}$	Daily Trips Generated	$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips } \\ \text { Generated } \\ \hline \end{gathered}$	${ }^{\text {AM Peak Hour }}$	AM Peak Hour	PM Peak Hour Trips Generated	PM Peak Hour Tinps in	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips Out } \end{gathered}$	Notes
Single Family Detached Housing	Dwelling Unit	725	9.57	0.75	1.01	6.938	544	136	408	732	461	271	1TE Code 210
Single Family Attached Housing	Dwelling	599	5.86	0.44	0.52	3,510	264	45	219	311	209	103	ITE Code 230
Mutil-Family Housing	Dwelling Unit dit	462	6.59	0.46	0.58	3,045	213	45	168	268	174	94	ITE Code 221
Regional Commerial	$\left\|\begin{array}{c} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{array}\right\|$	${ }^{328}$	49.21	1.84	3.87	16,141	604	308	296	1,269	622	647	ITE Code 813
Specialy Commerial	$\left\|\begin{array}{c} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{array}\right\|$	162	44.32	0.71	2.71	7,180	115	78	37	439	193	246	ITE Code 814
Mixed Comm/Light Industral Space	$\left\|\begin{array}{c} 1000 \mathrm{sf} \\ \text { Gross Floor } \\ \text { Area } \end{array}\right\|$	201	6.97	0.92	0.98	1.401	185	163	22	197	24	173	ITE Code 110
Mixed-Use Space	$\begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$	706	16.87	1.99	2.01	11.910	1,405	1.012	393	1,419	426	993	ITE Code 710 plus ITE Code 230
\|nstitutiona/Hospital area	$\left\lvert\, \begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}\right.$	342	17.57	1.20	1.18	6.009	410	275	135	404	133	270	ITE Code 610
Institutionau/School area	$\left\|\begin{array}{c} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{array}\right\|$	130	13.72	4.03	1.67	1,784	524	314	210	217	109	109	ITE Codes 520+522+530/3
Reginal Parks/Recreation Area	Acres	170	4.57	0.15	${ }^{0.26}$	777	26	15	${ }^{11}$	44	19	25	ITE Code 417
Neighbortiood Parks	Acres	4	1.59	0.01	0.06	6	0	0	0	0	0	0	ITE Code 411 for Daily, ITE Code 412 for Peak Hour
Total						58,701	4,288	2,390	1,899	5,301	2.370	2,931	
Total with 20\% diversion						46,961	3,430	1,912	1.519	4,241	1,996	2,345	

Table 5.2 Trip Generation in 2025 - Sub Area II

Land Use	Unit	Quantity	No. of Trips per Unit	$\begin{aligned} & \text { AM Peak } \\ & \text { Hour Trips } \\ & \text { per Unit } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Hour Trips } \\ \text { Her Unit } \\ \hline \end{array}$	Daily Trips Generated	$\begin{array}{\|c\|} \hline \text { AM Peak Hour } \\ \text { Trips } \\ \text { Generated } \\ \hline \end{array}$	AM Peak Hour Trips In	AM Peak Hour Tnps Out	$\begin{array}{\|l\|} \hline \text { PM Peak Hour } \\ \text { Gips } \\ \text { Generated } \end{array}$	$\left\{\begin{array}{l} \text { PM Peak Hour } \\ \text { Tnps In } \end{array}\right\}$	$\left\|\begin{array}{c} \text { PM Peak Hour } \\ \text { Típs Out } \end{array}\right\|$	Notes
Single Family Detached Housing	Dwelling Unit	92	9.57	0.75	1.01	880	69	17	52	93	59	${ }^{34}$	ITE Code 210
Singl e Famly Atached Housing	$\underset{\substack{\text { Dwelling } \\ \text { Unit }}}{ }$	0	5.86	0.44	0.52	0	0	0	0	0	0	0	ITE Code 230
Multr-Famly Housing	$\underset{\substack{\text { Uwelling } \\ \text { Unt }}}{\text { den }}$	269	6.59	0.46	0.58	1,773	124	26	${ }^{98}$	156	101	55	ITE Code 221
Regional Commerial	$\left\lvert\, \begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}\right.$		49.21	1.84	3.87	0	0	0	0	0	0	0	ITE Code 813
Specialy Commerial	$\left\lvert\, \begin{gathered} 1000 \text { sf } \\ \text { Gross floor } \\ \text { Area } \end{gathered}\right.$	212	44.32	0.71	2.71	9,396	151	102	48	575	253	322	ITE Code 814
Mixed Comm \sim Light Industrial Space	$\left\lvert\, \begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}\right.$	403	6.97	0.92	0.98	2,809	371	326	44	395	47	348	ITE Code 110
Mixed-Use Space	$\left\lvert\, \begin{gathered} 1000 \mathrm{sf} \\ \text { Gross Floor } \\ \text { Area } \end{gathered}\right.$		16.87	1.99	2.01	0	0	0	0	0	0	0	ITE Code 710 plus ITE Code 230
\|nstlutional/-Iospital area	$\left\|\begin{array}{c} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{array}\right\|$		17.57	1.20	1.18	0	0	0	0	0	0	0	ITE Code 610
Insilitional/School area	$\left\lvert\, \begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}\right.$		13.72	4.03	1.67	0	0	0	0	0	0	0	ITE Codes 520+522+530/3
Reginal Parks/Recreation Area	Acres		4.57	0.15	0.26	0	0	0	0	0	0	0	TE Code 417
Neighbortiood Parks	Acres		1.59	0.01	0.06	0	0	0	0	0	0	0	ITE Code 411 for Daily, ITE Code 412 for Peak Hour
Total						14,058	714	472	242	1,218	460	758	
Total with 0\% diversion						14,858	714	472	242	1,218	460	758	

Table 5.3 Trip Generation in 2025 - Subarea III

Land use	Unit	Ouantily	${ }^{\text {No. oft rios }}$	$\begin{gathered} \text { AM Peak } \\ \text { Hour Trips } \\ \text { per Unit } \end{gathered}$	$\begin{aligned} & \text { PM Peak } \\ & \text { Hour Trips } \\ & \text { per Unit } \end{aligned}$	Paily Generates	$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips } \\ \text { Generated } \end{gathered}$		$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips Out } \\ \hline \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips } \\ \text { Generated } \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips In } \end{gathered}$	\mid	Noles
Single Family Delacted Housing	melling Unin	150	9.57	0.75	1.01	${ }_{1}^{1.436}$	${ }^{113}$	${ }^{28}$	${ }_{84}$	152	95	${ }_{56}$	ITE Code 210
Single Family Atached Housing	Oweling	45	5.86	0.44	${ }^{0.52}$	264	${ }^{20}$	3	16	${ }^{23}$	16	8	Tre Code 330
Mull-Family Howsing	Dweling	${ }^{231}$	6.59	${ }^{0.46}$	0.58	1.522	106	${ }^{22}$	${ }^{84}$	134	${ }^{87}$	47	TTE Code 221
Regional Commerial	$\begin{gathered} 1000 \mathrm{sf} \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$		${ }^{4.21}$	1.84	${ }^{3.87}$	0	0	0	0	0	0	0	\|TE Code 813
Speealaly Commerial		175	44.32	0.71	2.71	7.756	124	${ }^{84}$	${ }^{40}$	474	209	266	TTE Code 814
Mreed CommLI.ght nousstral Space	$\begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$		6.97	0.92	0.98	0	0	0	0	0	0	0	Tre Code 110
Multipe-Use Space	$\begin{aligned} & 1000 \text { sf } \\ & \text { Gross Floor } \end{aligned}$	360	16.87	1.99	201	6,073	716	516	201	${ }^{24}$	217	507	TTE Code 710 olus ITE Code 230
Instulutoral/hosptala area			17.57	120	1.18	0	0	0	0	0	0	0	TEE Code 610
Institutionals chrol area	$\left\lvert\, \begin{gathered} \text { coos sif } \\ \substack{\text { cross fion } \\ \text { frea }} \\ \hline \end{gathered}\right.$		${ }^{13.72}$	4.03	1.67	0	0	0	0	0	0	0	TIE Codeses $520+522+53013$
Reginal PanksRectealion Atea	Acres		4.57	0.15	${ }^{0.26}$	0	0	0	0	0	0	0	TEE Code 417
Neightothod Paks	Acres		1.59	0.01	0.06	0	0	0	0	0	0	0	ITE Code 411 for Dally, TTE Code 412 for Peak Hour
Toal						17,051	1,079	${ }_{654}$	${ }^{425}$	1,507	${ }^{624}$	${ }^{88}$	
Total with 20\% diversion						13,641	${ }^{863}$	523	340	1,205	499	708	

Table 5.4 Trip Generation in 2025 - Sub Area IV

Land Use	Unit	Quantity	No. of Trips per Unit	$\begin{array}{\|l\|} \hline \text { AM Peak } \\ \text { Hour Tnis } \\ \text { per Unit } \end{array}$	$\begin{aligned} & \text { PM Peak } \\ & \text { Hour Ting } \end{aligned}$ per Unit	Dally Trips Generated	AM Peak Hour Trips Generated	AM Peak Hour Trips in	$\left\lvert\, \begin{gathered} \text { AM Peak Hour } \\ \text { Trips Out } \end{gathered}\right.$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Tips } \\ \text { Generated } \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips in } \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Tins Out } \end{gathered}$	Notes
Single Family Detached Housing	Dwelling Unit		9.57	0.75	1.01	0	0	0	0	0	0	0	ITE Code 210
Singl e Famly Attached Housing	$\underset{\substack{\text { Owelling } \\ \text { Unit }}}{ }$		5.86	0.44	0.52	0	0	0	0	0	0	0	ITE Code 230
Multi-Family Housing	$\underset{\substack{\text { Uwelling } \\ \text { Unit }}}{\text { den }}$		6.59	0.46	${ }^{0.58}$	0	0	0	0	0	0	0	ITE Code 221
Regional Commercial	$\begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$		49.21	1.84	3.87	0	0	0	0	0	0	0	ITE Code 813
Specialty Commerial	$\begin{gathered} 1000 \mathrm{sf} \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$	152	44.32	0.71	271	6,737	108	73	35	412	181	231	ITE Code 814
Mixed Comm/Light industral Space			6.97	0.92	0.98	0	0	0	0	0	0	0	ITE Code 110
Mixed-Use Space	$\begin{gathered} 1000 \mathrm{sf} \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$		16.87	1.99	2.01	0	0	0	0	0	0	0	ITE Code 710 plus ITE Code 230
Institutional/Hospital area			17.57	1.20	1.18	0	0	0	0	0	0	0	ITE Code 610
Institutiona/School area	1000 sf Gross Floor Gross Floor Area		13.72	4.03	1.67	0	0	0	0	0	0	0	ITE Codes $520+522+530 / 3$
Reginal Parks/Recrreation Area	Acres		4.57	0.15	${ }^{0.26}$	0	0	0	0	0	0	0	ITE Code 417
Neighbormood Parks	Acres		1.59	0.01	0.06	0	0	0	0	0	0	0	ITE Code 411 for Daily, ITE Code 412 for Peak Hour
Total						6,737	108	73	35	412	181	231	
Total with 0\% diversion						6,737	108	73	35	412	181	231	

Table 5.5 Trip Generation in 2025 - Sub Area V

Land Use	Unt	Ouanty	$\underbrace{\text { per }}_{\text {No.oftins }}$	$\begin{gathered} \text { AM Peak } \\ \text { Hour Trips } \\ \text { per Unit } \end{gathered}$	$\begin{gathered} \text { PM Peak } \\ \text { Hour Trips } \\ \text { per Unit } \end{gathered}$	$\underbrace{\text { Generated }}_{\text {Paliy } \text { Tips }}$	$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips } \\ \text { Generated } \end{gathered}$	$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips in } \end{gathered}$	$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips Out } \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips } \\ \text { Generated } \end{gathered}$	${ }_{\text {Pm Peak four }}^{\text {Tros }}$	PM Pean Hour	Notes
Singele Family Delacted Housing	velling Unill	${ }_{153}$	9.57	0.75	1.01	${ }^{1,464}$	115	29	${ }^{96}$	155	${ }^{97}$	57	TE Code 210
Singl e Fanly Atached flousing	Dwelling		5.66	0.44	0.52	0	0	0	0	0	0	0	re Code 230
Null-Fanily Housing	${ }^{\text {Onemelmg }}$		6.59	0.46	0.58	0	0	0	0	0	0	0	HTE Code 221
Regoloal Commerial			49.21	${ }^{1.94}$	3.87	0	0	0	0	0	0	0	TTE Code 813
Specialy Commerial		51	44.32	0.71	2.71	2,260	${ }^{36}$	25	12	${ }^{138}$	${ }^{6}$	77	TE Code 814
Mxeec CommLight noustral Space			6.97	0.92	0.98	0	0	0	0	0	0	0	\|TE Code 110
Mixed-Use Space	$\left\|\begin{array}{c} \text { cosos } \\ \text { Gross for } \\ \text { area } \end{array}\right\|$		16.87	1.99	2.01	0	0	0	0	0	0	0	\|TE Code 710 plus TTE Code 230
\|nstutuionalitospita rea	$\left\{\begin{array}{c} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{array}\right.$		17.57	1.20	1.18	0	0	0	0	0	0	0	TEE Code 610
Instutional/chool area	$\left\{\begin{array}{c} 1000 \mathrm{sf} \\ \text { Gross Floor } \\ \text { Area } \end{array}\right.$		${ }^{13.72}$	4.03	1.67	0	0	0	0	0	0	0	TE Codes 520+522+530/3
Regina ParassRecreation Area	Acres		4.57	0.15	${ }^{0.26}$	0	0	0	0	0	0	0	TEE Code 417
Neighoatrood Paks	Acras		1.59	0.01	0.06	0	0	0	0	0	0	0	TEE Code 411 for Daily, TTE Code 412 for Peak Hour
Toal						3,725	151	${ }^{53}$	${ }^{98}$	${ }^{293}$	${ }^{158}$	135	
roal						3,725	151	${ }^{53}$	98	${ }^{293}$	158	135	

Table 5.6 Trip Generation in 2025 - Grandview Area

Landuse	Unit	Quantiy	$\left\lvert\, \begin{gathered}\text { No.or Trips } \\ \text { per unit }\end{gathered}\right.$	$\begin{gathered} \text { AM Peak } \\ \text { Hour Trips } \\ \text { per Unit } \end{gathered}$	$\begin{gathered} \text { PM Peak } \\ \text { Hour Trips } \\ \text { per Unit } \end{gathered}$	Paly Trips	$\begin{gathered} \text { AM Peak Hour } \\ \text { Trips } \\ \text { Generated } \end{gathered}$		am eaak four	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips } \\ \text { Generated } \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips In } \\ \hline \end{gathered}$	$\begin{gathered} \text { PM Peak Hour } \\ \text { Trips Out } \end{gathered}$	Noles
Single Family Detacted Housing	veling Unit	${ }^{1.120}$	9.57	0.75	1.01	10.718	840	210	630	1.131	${ }^{713}$	419	ITE Code 210
Singl e Family Atached Housmg	Doveling	${ }^{644}$	5.86	0.44	0.52	3.774	${ }^{283}$	${ }^{48}$	235	${ }^{335}$	${ }^{224}$	111	TTE Code 230
Mult Famly Housing	${ }_{\substack{\text { Onelling } \\ \text { Unit }}}^{\text {den }}$	${ }^{962}$	6.59	0.46	0.58	6.340	${ }^{443}$	${ }^{93}$	350	558	${ }^{363}$	195	HEE Code 221
Regiona Commerial		${ }^{328}$	49.21	1.84	3.87	16,141	604	308	296	1,269	62	647	TTE Code 813
Seceialy Commerial		752	44.32	0.71	2.71	${ }^{33,329}$	534	363	171	2.038	${ }^{897}$	${ }^{1,141}$	\|TE Code 814
Mixed CommLight Industra Space		604	6.97	0.92	0.98	4,270	556	489	67	592	71	521	\|TE Code 110
Mreed-Use Spacemumitile Use	$\begin{gathered} 1000 \text { sf } \\ \text { Gross Floor } \\ \text { Area } \end{gathered}$	${ }^{1,066}$	16.87	1.99	2.01	17,983	2.121	${ }^{1.527}$	594	2.143	643	1.500	TTE Code 710 plus TEE Code 230
\|nssitutionalithospial area		342	17.57	1.20	1.18	6.009	410	275	${ }^{135}$	404	${ }^{133}$	270	ITE Code 610
Instutioralschoo a rea		130	13.72	4.03	1.67	1.784	524	314	210	217	109	109	TTE Codes 520+522+530/3
Reginal Panssifecreation Area	Acres	170	4.57	0.15	${ }^{0.26}$	77	${ }^{26}$	15	11	${ }^{44}$	19	${ }^{25}$	\|TE Code 417
Neightomood Paks	Acres	4	1.59	0.01	0.06	6	0	0	0	0	0	0	TEE Code 411 for Daily, TEE Code 412 for Peak Hour
Total						101,070	6,340	3,422	2.698	${ }^{8.731}$	${ }^{3,793}$	4938	
Toal with diversion						${ }^{85.20}$	${ }_{5.267}$	${ }^{3.033}$	${ }^{2,233}$	7,369	3,95	4,75	

Attachment D
 2025 Grandview Section Highway Analyses

Attachment D-1

2025 Grandview Section, No Action Alternative, Highway Analyses

URS Corporation

```
9 9 6 0 ~ F e d e r a l ~ D r i v e , ~ S u i t e ~ 3 0 0 ~
```

Colorado Springs, CO 80920

Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS \qquad

Analyst:	DEA
Agency/Co:	URS
Date:	$3 / 15 / 2005$
Analysis Period:	AM PEAK
Highway:	US 160
From/To:	WEST OF US 550
Jurisdiction:	
Analysis Year:	2025 NO ACTION
Project ID:	US 160 (DIRECTION $1=$ EASTBOUND)

Direction	1		2	
Lane width	12.0	ft	12.0	ft
Lateral clearance:				
Right edge	6.0	ft	6.0	ft
Left edge	6.0	ft	6.0	ft
Total lateral clearance	12.0	ft	12.0	ft
Access points per mile	4		4	
Median type	Divic		Divi	
Free-flow speed:	Base		Base	
FFS or BFFS	60.0	mph	60.0	mph
Lane width adjustment, FLW	0.0	mph	0.0	mph
Lateral clearance adjustment, FLC	0.0	mph	0.0	mph
Median type adjustment, FM	0.0	mph	0.0	mph
Access points adjustment, FA	1.0	mph	1.0	mph
Free-flow speed	59.0	mph	59.0	mph

VOLUME
Direction
Volume, V
Peak-hour factor, PHF
Peak 15-minute volume, v15
Trucks and buses

1		2	
2700	vph	3080	vph
0.95		0.95	
711		811	
5	$\%$	5	$\%$
0	$\%$	0	$\%$
Rolling		Rolling	
0.00	$\%$	0.00	$\%$
0.00	mi	0.00	mi
2		2	
1.00		1.00	
2.5		2.5	
2.0		0.0	
0.930			
1527			
pephpl			
RESULTS			

Direction	1		2	
Flow rate, vp	1527	pcphpl	1742	pophpl
Free-flow speed, FFS	59.0	mph	59.0	mph
Avg. passenger-car travel speed, S	58.6	mph	57.4	mph
Level of service, LOS	D		D	
Density, D	26.1	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	30.4	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

URS Corporation

9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS \qquad

Analyst:	DEA
Agency/Co:	URS
Date:	$3 / 15 / 2005$
Analysis Period: PM PEAK	
Highway:	US 160
From/To:	WEST OF US 550
Jurisdiction:	
Analysis Year:	2025 NO ACTION
Project ID:	US 160 (DIRECTION $1=$ EASTBOUND)

Direction	1		2	
Volume, V	4265	vph	4290	vph
Peak-hour factor, PHF	0.95		0.95	
Peak 15-minute volume, v15	1122		1129	
Trucks and buses	5	\%	5	\%
Recreational vehicles	0	\%	0	\%
Terrain type	Rolling		Rolling	
Grade	0.00	\%	0.00	\%
Segment length	0.00	mi	0.00	mi
Number of lanes	2		2	
Driver population adjustment, fP	1.00		1.00	
Trucks and buses PCE, ET	2.5		2.5	
Recreational vehicles PCE, ER	2.0		2.0	
Heavy vehicle adjustment, fHV	0.930		0.930	
Flow rate, vp	2413	pophpl	2427	pcphpl

\qquad

Direction	1		2	
Flow rate, vp	2413	pcphpl	2427	pcphpl
Free-flow speed, FFS	59.0	mph	59.0	mph
Avg. passenger-car travel speed, S		mph		mph
Level of service, LOS	F		F	
Density, D		$\mathrm{pc} / \mathrm{mi} / 1$		$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920

Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS \qquad

Analyst:	DEA
Agency/Co:	URS
Date:	$3 / 15 / 2005$
Analysis Period:	AM PEAK
Highway:	US I60
From/To:	EAST OF US 550 TO CR 233
Jurisdiction:	
Analysis Year:	2025 NO ACTION
Project ID:	US 160 (DIRECTION $1=$ EASTBOUND)

\qquad FREE-FLOW SPEED

Direction
Lane width
Lateral clearance:
Right edge
Left edge
Total lateral clearance
Access points per mile
Median type
Free-flow speed:
FFS or BFFS
Lane width adjustment, FLW
Lateral clearance adjustment, FLC
Median type adjustment, FM
Access points adjustment, FA
Free-flow speed

1
12.0
6.0
6.0
12.0

12
Divided
Base
60.0
0.0
0.0
0.0
3.0
57.0

VOLUME

Direction	1		2	
Volume, V	2870	vph	2375	vph
Peak-hour factor, PHF	0.95		0.95	
Peak 15-minute volume, v15	755		625	
Trucks and buses	5	\%	5	\%
Recreational vehicles	0	\%	0	\%
Terrain type	Rolling		Rolling	
Grade	0.00	\%	0.00	\%
Segment length	0.00	mi	0.00	mi
Number of lanes	2		2	
Driver population adjustment, fP	1.00		1.00	
Trucks and buses PCE, ET	2.5		2.5	
Recreational vehicles PCE, ER	2.0		2.0	
Heavy vehicle adjustment, fHV	0.930		0.930	
Flow rate, vp	1623	pcphpl	1343	pcphpl

\qquad

Direction	1		2	
Flow rate, vp	1623	pcphpl	1343	pophpl
Free-flow speed, FFS	57.0	mph	57.0	mph
Avg. passenger-car travel speed, S	56.1	mph	57.0	mph
Level of service, LOS	D		C	
Density, D	28.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	23.6	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS \qquad

Analyst: DEA
Agency/Co: URS
Date: 3/15/2005
Analysis Period: PM PEAK
Highway: US 160
From/TO: EAST OF US 550 TO CR 233
Jurisdiction:
Analysis Year: 2025 NO ACTION
Project ID: US 160 (DIRECTION $1=$ EASTBOUND)

Direction	1	2		
Lane width	12.0	ft	12.0	ft
Lateral clearance:				
Right edge	6.0	ft	6.0	ft
Left edge	6.0	ft	6.0	ft
Total lateral clearance	12.0	ft	12.0	ft
Access points per mile	12		12	
Median type	Divid		Divid	
Free-flow speed:	Base		Base	
FFS or BFFS	60.0	mph	60.0	mph
Lane width adjustment, FLW	0.0	mph	0.0	mph
Lateral clearance adjustment, FLC	0.0	mph	0.0	mph
Median type adjustment, FM	0.0	mph	0.0	mph
Access points adjustment, FA	3.0	mph	3.0	mph
Free-flow speed	57.0	mph	57.0	mph

Direction	1		2	
Volume, V	3500	vph	3965	vph
Peak-hour factor, PHF	0.95		0.95	
Peak 15-minute volume, v15	921		1043	
Trucks and buses	5	\%	5	\%
Recreational vehicles	0	\%	0	\%
Terrain type	Rolling		Rolling	
Grade	0.00	\%	0.00	\%
Segment length	0.00	mi	0.00	mi
Number of lanes	2		2	
Driver population adjustment, fP	1.00		1.00	
Trucks and buses PCE, ET	2.5		2.5	
Recreational vehicles PCE, ER	2.0		2.0	
Heavy vehicle adjustment, fHV	0.930		0.930	
Flow rate, vp	1980	pcphpl	2243	pcphpl
RESULTS				

URS Corporation

9960 Federal Drive, Suite 300
Colorado Springs, CO 80920

Phone:
Fax:
E-mail:
OPERATIONAL ANALYSIS \qquad

Analyst:	DEA
Agency/Co:	URS
Date:	$3 / 15 / 2005$
Analysis Period:	AM PEAK
Highway:	US 160
From/To:	CR 233 TO SH $172 / \mathrm{CR} 234$
Jurisdiction:	
Analysis Year:	2025 NO ACTION
Project ID:	US 160 (DIRECTION $1=$ EASTBOUND)

FREE-FLOW SPEED

Direction	1		2	
Lane width	12.0	ft	12.0	ft
Lateral clearance:				
Right edge	6.0	ft	6.0	ft
Left edge	6.0	ft	6.0	ft
Total lateral clearance	12.0	ft	12.0	ft
Access points per mile	12		12	
Median type	Divided		Divided	
Free-flow speed:	Base		Base	
FFS or BFFS	60.0	mph	60.0	mph
Lane width adjustment, FLW	0.0	mph	0.0	mph
Lateral clearance adjustment, FLC	0.0	mph	0.0	mph
Median type adjustment, FM	0.0	mph	0.0	mph
Access points adjustment, FA	3.0	mph	3.0	mph
Free-flow speed	57.0	mph	57.0	mph
VOLUME				
Direction	1		2	
Volume, V	1605	vph	1685	vph
Peak-hour factor, PHF	0.95		0.95	
Peak 15-minute volume, v15	422		443	
Trucks and buses	5	\%	5	\%
Recreational vehicles	0	\%	0	\%
Terrain type	Rolling		Rolling	
Grade	0.00	\%	0.00	\%
Segment length	0.00	mi	0.00	mi
Number of lanes	2		2	
Driver population adjustment, fP	1.00		1.00	
Trucks and buses PCE, ET	2.5		2.5	
Recreational vehicles PCE, ER	2.0		2.0	
Heavy vehicle adjustment, fHV	0.930		0.930	
Flow rate, vp	908	pcphpl	953	pcphpl

_RESULTS \qquad

Direction	1		2	
Flow rate, vp	908	pophpl	953	pcphpl
Free-flow speed, FFS	57.0	mph	57.0	mph
Avg. passenger-car travel speed, S	57.0	mph	57.0	mph
Level of service, LOS	B		B	
Density, D	15.9	$\mathrm{pc} / \mathrm{mi} / \ln$	16.7	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

HCS2000: Multilane Highways Release 4.1d

URS Corporation
9960 Federal Drive, Suite 300

Phone:
Fax:
E-mail:
OPERATIONAL ANALYSIS \qquad

Analyst:	DEA
Agency/Co:	URS
Date:	$3 / 15 / 2005$
Analysis Period:	PM PEAK
Highway:	US 160
From/To:	CR 233 TO SH $172 / \mathrm{CR} 234$
Jurisdiction:	
Analysis Year:	2025 NO ACTION
Project ID:	US 160 (DIRECTION $1=$ EASTBOUND)

FREE-FLOW SPEED

Direction	1		2	
Lane width	12.0	ft	12.0	$f t$
Lateral clearance:				
Right edge	6.0	ft	6.0	ft
Left edge	6.0	$f t$	6.0	ft
Total lateral clearance	12.0	$f t$	12.0	ft
Access points per mile	12		12	
Median type	Divided		Divided	
Free-flow speed:	Base		Base	
FFS or BFFS	60.0	mph	60.0	mph
Lane width adjustment, FLW	0.0	mph	0.0	mph
Lateral clearance adjustment, FLC	0.0	mph	0.0	mph
Median type adjustment, FM	0.0	mph	0.0	mph
Access points adjustment, FA	3.0	mph	3.0	mph
Free-flow speed	57.0	mph	57.0	mph
VOLUME				
Direction	1		2	
Volume, V	2525	vph	2290	vph
Peak-hour factor, PHF	0.95		0.95	
Peak 15-minute volume, v15	664		603	
Trucks and buses	5	\%	5	\%
Recreational vehicles	0	\%	0	\%
Terrain type	Rolling		Rolling	
Grade	0.00	\%	0.00	\%
Segment length	0.00	mi	0.00	mi
Number of lanes	2		2	
Driver population adjustment, $f P$	1.00		1.00	
Trucks and buses PCE, ET	2.5		2.5	
Recreational vehicles PCE, ER	2.0		2.0	
Heavy vehicle adjustment, fHV	0.930		0.930	
Flow rate, vp	1428	pophpl	1295	pcphpl

Direction	1		2	
Flow rate, vp	1428	pcphpl	1295	pcphpl
Eree-flow speed, FFS	57.0	mph	57.0	mph
Avg. passenger-car travel speed, S	56.9	mph	57.0	mph
Level of service, LOS	C		C	
Density, D	25.1	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	22.7	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$

Attachment D-2

2025 Grandview Section, Alternative G Modified (Preferred Alternative), Highway Analyses

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, Co 80920

Phone: Fax:
E-mail:
Operational Analysis \qquad

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	AM PEAK
Freeway/Direction:	EASTBOUND US 160
From/To:	WEST OF US 550
Jurisdiction:	
Analysis Year:	2025 ALT 1G
Description: US 160	

Flow Inputs and Adjustments

	Flow Inputs and Adjustments	
Volume, V		
Peak-hour factor, PHF	2700	veh/h
Peak 15-min volume, v15	0.95	
Trucks and buses	711	V
Recreational vehicles	5	$\%$
Terrain type:	0	Rolling
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	2.5	
Recreational vehicle PCE, ER	2.0	
Heavy vehicle adjustment, fHV	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Driver population factor, fp	1.00	1018

Speed Inputs and Adjustments
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
FFS or BFFS
Lane width adjustment, fiw
Lateral clearance adjustment, fLC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
0.50	interchange $/ \mathrm{mi}$
3	
Measured	
60.0	mi / h
0.0	mi / h
0.0	mi / h
0.0	mi / h
3.0	mi / h
60.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	1018	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, s	60.0	mj / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	17.0	

Level of service, LOS
B
Overall results are not computed when free-flow speed is less than 55 mph.

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	3	
Free-flow speed:	Measured	mi / h
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	3.0	mi / h
Free-flow speed, FFS	60.0	

Flow rate, vp		
Free-flow speed, FFS	1609	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Average passenger-car speed, m	60.0	mi / h
Number of lanes, N	60.0	mi / h
Density, D	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, Los	26.8	

[^2]URS Corporation

```
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
```

Operational Analysis \qquad

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	AM PEAK
Freeway/Direction:	EASTBOUND US 160
From/To:	US 550 TO CR 233
Jurisdiction:	
Analysis Year: 2025 ALT IG Description: US 160	

Description: US 160

Flow Inputs and Adjustments \qquad
Volume, v
$2500 \quad \mathrm{veh} / \mathrm{h}$

Peak-hour factor, PHF
0.95

Peak 15 -min volume, v15
658
Trucks and buses
$5 \quad$ V

Recreational vehicles
0 \%

Terrain type:
Rolling
Grade
0.00 \%

Segment length
0.00 mi

Trucks and buses PCE, ET
2.5

Recreational vehicle PCE, ER
Heavy vehicle adjustment, fHV
2.0

Driver population factor, fp
0.930

Flow rate, vp
1.00
$1414 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	2	
Free-flow speed:	Measu	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fid	0.0	mi / h
Number of lanes adjustment, fN	4.5	mi / h
Free-flow speed, FFS	60.0	mi / h
	Urban	
LOS and Performance Measures		
Flow rate, vp	1414	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi/h
Average passenger-car speed, S	60.0	mi/h
Number of lanes, N	2	
Density, D	23.6	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	C	

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
Operational Analysis \qquad

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	PM PEAK
Freeway/Direction:	EASTBOUND US 160
From/To:	US 550 TO CR 233
Jurisdiction:	
Analysis Year:	2025 ALT 1G
Description: US 160	

Flow Inputs and Adjustments \qquad

	Flow Inputs and Adjustments	
Volume, V		
Peak-hour factor, PHF	3190	veh/h
Peak 15-min volume, v15	0.95	
Trucks and buses	839	v
Recreational vehicles	5	$\%$
Terrain type:	0	$\%$
\quad Grade	Rolling	
Segment length	0.00	$\%$
Trucks and buses PCE, ET	0.00	mi
Recreational vehicle PCE, ER	2.5	
Heavy vehicle adjustment, fHV	2.0	
Driver population factor, fp	0.930	
Flow rate, vp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments

	Speed Inputs and Adjustments___	
Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange $/ \mathrm{mi}$
Number of lanes, N	2	
Free-flow speed:	Measured	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fid	0.0	mi / h
Number of lanes adjustment, fN	4.5	mi / h
Free-flow speed, FFS	60.0	mi / h

LOS and Performance Measures

Flow rate, vp	1805	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, S	59.6	mi / h
Number of lanes, N	2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	30.3	D
Level of service, LOS		
Overall results are not computed when free-flow speed is less than 55 mph.		

HCS2000: Basic Freeway Segments Release 4.1d
URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail: Operational Analysis \qquad

Analyst:	DEA	
Agency or Company:	URS	
Date Performed:	$4 / 21 / 2005$	
Analysis Time Period:	AM PEAK	
Freeway/Direction:	EASTBOUND US 160	
From/To:	CR 233 to SH 172/CR 234	
Jurisdiction:		
Analysis Year: 2025 ALT 1G Description: US 160		

Flow Inputs and Adjustments \qquad

Volume, V	1605	$\mathrm{veh} / \mathrm{h}$
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	422	v
Trucks and buses	5	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Rolling	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	2.5	
Recreational vehicle PCE, ER	2.0	
Heavy vehicle adjustment, fHV	0.930	
Driver population factor, fp	1.00	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Flow rate, vp	908	

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	2	
Free-flow speed:	Measured	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	4.5	mi / h
Free-flow speed, FFS	60.0	mi / h
		Urban Freeway

LOS and Performance Measures \qquad

Flow rate, vp	908	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, S	60.0	mi / h
Number of lanes, N	2	
Density, D	15.1	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	B	

Overall results are not computed when free-flow speed is less than 55 mph .

```
HCS2000: Basic Freeway Segments Release 4.1d
```

URS Corporation

```
9 9 6 0 ~ F e d e r a l ~ D r i v e , ~ S u i t e ~ 3 0 0 ~
Colorado Springs, CO }8092
Phone: Fax:
```

	Operational Analysis__
	DEA
Analyst:	URS
Agency or Company:	$4 / 21 / 2005$
Date Performed:	PM PEAK
Analysis Time Period:	EASTBOUND US 160
Freeway/Direction:	CR 233 to SH 172/CR 234
From/To:	
Jurisdiction:	$2025 \mathrm{ALT} \mathrm{1G}$
Analysis Year:	

Flow Inputs and Adjustments

Volume, V	2525	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	664	V
Trucks and buses	5	$\%$
Recreational vehicles	0	Rolling
Terrain type:	0.00	$\%$
Grade	0.00	mi
Segment length	2.5	
Trucks and buses PCE, ET	2.0	
Recreational vehicle PCE, ER	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Heavy vehicle adjustment, fHV	1.00	

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	2	
Free-flow speed:	Measured	mi / h
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	4.5	mi / h
Free-flow speed, FFS	60.0	

LOS and Performance Measures \qquad
Flow rate, vp

1429	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
60.0	mi / h
60.0	mi / h
2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
23.8	

Free-flow speed, FFS
Average passenger-car speed, S
60.0

Number of lanes, N
Density, D
23.8

Level of service, LOS
C
Overall results are not computed when free-flow speed is less than 55 mph.
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:

Operational Analysis

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	AM PEAK
Freeway/Direction:	WESTBOUND US 160
From/To:	SH 172/CR 234 TO CR 233
Jurisdiction:	
Analysis Year: Description: US 160	2025 ALT 1G

Flow Inputs and Adjustments \qquad

Volume, V	1685	$\mathrm{veh} / \mathrm{h}$
Peak-hour factor, PHF	0.95	
Peak ls-min volume, v15	443	v
Trucks and buses	5	$\%$
Recreational vehicles	0	Rolling
Terrain type:	0.00	
Grade	0.00	m
Segment length	2.5	
Trucks and buses PCE, ET	2.0	
Recreational vehicle PCE, ER	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	953	

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	2	
Free-flow speed:	Measured	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	4.5	mi / h
Free-flow speed, FFS	60.0	mi / h

LOS and Performance Measures \qquad

Flow rate, vp	953	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, s	60.0	mi / h
Number of lanes, N	2	
Density, D	15.9	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	B	

URS Corporation

```
9960 Federal Drive, Suite 300
Colorado Springs, CO }8092
Phone: Fax:
E-mail:
```

Operational Analysis

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	PM PEAK
Freeway/Direction:	WESTBOUND US 160
From/To:	SH 172/CR 234 TO CR 233

Jurisdiction:
Analysis Year: 2025 ALT 1G
Description: US 160

Flow Inputs and Adjustments

Volume, V	2290	$\mathrm{veh} / \mathrm{h}$
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	603	v
Trucks and buses	5	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Rolling	0.00
Grade	0.00	mi
Segment length	2.5	
Trucks and buses PCE, ET	2.0	
Recreational vehicle PCE, ER	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1296	

Speed Inputs and Adjustments

HCS2000: Basic Freeway Segments Release 4.1d
URS Corporation

```
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
```

Operational Analysis
\qquad

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	AM PEAK
Freeway/Direction:	WESTBOUND US 160
From/To:	CR 233 TO US 550
Jurisdiction:	
Analysis Year:	2025 ALT 1G
Description: US 160	

\qquad Flow Inputs and Adjustments

Volume, V	2130	veh/h
Peak-hour factor, PHF	0.95	V
Peak 15-min volume, v15	561	$\%$
Trucks and buses	5	$\%$
Recreational vehicles	0	Rolling
Terrain type:	0.00	$\%$
Grade	0.00	mi
Segment length	2.5	
Trucks and buses PCE, ET	2.0	
Recreational vehicle PCE, ER	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1205	

\qquad Speed Inputs and Adjustments

Lane width	ft	
Right-shoulder lateral clearance	12.0	ft
Interchange density	6.0	interchange/mi
Number of lanes, N	0.50	
Free-flow speed:	2	mi / h
FFS or BFFS	Measured	mi / h
Lane width adjustment, fLW	60.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	0.0	mi / h
Free-flow speed, FFS	4.5	

LOS and Performance Measures

Flow rate, vp	1205	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, mi / h		
Number of lanes, N	60.0	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	2	
Level of service, LOS	20.1	C
Overall results are not computed when free-flow speed is less than 55 mph.		

HCS2000: Basic Freeway Segments Release 4.1d
URS Corporation

```
9960 Federal Drive, Suite 300
Colorado Springs, CO }8092
Phone: Fax:
E-mail:
```

Operational Analysis \qquad

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	PM PEAK
Freeway/Direction:	WESTBOUND US 160
From/To:	CR 233 TO US 550
Jurisdiction:	
Analysis Year:	2025 ALT 1G
Description: US 160	

Description: US 160

Flow Inputs and Adjustments \qquad

Volume, V	3510	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	924	v
Trucks and buses	5	$\%$
Recreational vehicles	0	Rolling
Terrain type:	0.00	$\%$
Grade	0.00	mi
Segment length	2.5	
Trucks and buses PCE, ET	2.0	
Recreational vehicle PCE, ER	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Heavy vehicle adjustment, fHV	1.00	
Driver population factor, fp	1986	

Speed Inputs and Adjustments
Lane width
Right-shoulder lateral clearance
Interchange density
Number of lanes, N
Free-flow speed:
\quad FFS or BFFS
Lane width adjustment, fLW
Lateral clearance adjustment, fIC
Interchange density adjustment, fID
Number of lanes adjustment, fN
Free-flow speed, FFS

12.0	ft
6.0	ft
0.50	interchange $/ \mathrm{mi}$
2	
Measured	
60.0	mi / h
0.0	mi / h
0.0	mi / h
0.0	mi / h
4.5	mi / h
60.0	mi / h
Urban Freeway	

LOS and Performance Measures \qquad

Flow rate, vp	1986	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, S	58.1	mi / h
Number of lanes, N	2	
Density, D	34.2	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

Overall results are not computed when free-flow speed is less than 55 mph.

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	3	
Free-flow speed:	Meas	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	3.0	mi / h
Free-flow speed, FFS	60.0	mi / h
	Urba	
LOS and Per	Mea	
Flow rate, vp	1162	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, S	60.0	mi / h
Number of lanes, N	3	
Density, D	19.4	$\mathrm{pc} / \mathrm{mi} / \ln$
Level of service, LOS	C	

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, Co 80920
Phone: Fax:
E-mail:
Operational Analysis \qquad

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	PM PEAK
Freeway/Direction:	WESTBOUND US 160
From/To:	WEST OF US 550
Jurisdiction:	
Analysis Year:	2025 ALT 1G
Description: US 160	

	Flow Inputs and Adjustments	
Volume, V		
Peak-hour factor, PHF	4290	$\mathrm{veh} / \mathrm{h}$
Peak 15-min volume, v15	0.95	V
Trucks and buses	1129	$\%$
Recreational vehicles	5	$\%$
Terrain type:	0	Rolling
\quad Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	2.5	
Recreational vehicle PCE, ER	2.0	
Heavy vehicle adjustment, fHV	0.930	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Driver population factor, fp	1.00	

1 pc/h/ln

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	3	
Free-flow speed:	Measured	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	3.0	mi / h
Free-flow speed, FFS	60.0	mi / h

LOS and Performance Measures

Flow rate, vp	1618	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, S	60.0	mi / h
Number of lanes, N	3	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	27.0	
Level of service, LOS	D	

Overall results are not computed when free-flow speed is less than 55 mph.
\qquad
\qquad of \qquad

Description Eastbound US 160 Off-Ramp
Computed by \qquad Sheet \qquad of \qquad to US 550 Am Peak Checked by \qquad Date

ANALYZED AS A LANE DROP AT OFF-RAMP
Upstream of off-Ramp

$$
\begin{aligned}
2700 \text { eph } / 0.95 * 0.93 & =3,056 / 3 \\
\text { Density } & =1,019 / 60
\end{aligned}=16.98 \quad(\text { Los B) } \mathrm{B}) .
$$

Downstream of off-Ramp

$$
\begin{aligned}
1.905 \text { vph } / 0.95 * 0.93 & =2,156 / 2=1,078 \text { pephpl } \\
\text { Density } & =1,078 / 6
\end{aligned}=17.97(\operatorname{Los} B)
$$

Ramp
795 ph $/ 0.95 \times 0.971=862$ pcph $<2,100$ (maximum for 1 -lane ramp)
\therefore under capacity
\qquad
\qquad of \qquad

Description Eastbound US 160 Off-Ramp
Computed by \qquad Date to US 550 Pm Peak Checked by \qquad

ANALYZED AS A LANE DROP AT OFF-RAMP

Upstream of off -Ramp

$$
\begin{aligned}
& 4,265 \text { vph } / 0.95 * 0.93=4,827 / 3=1,609 \text { pephol } \\
& \text { Density }=1,609 / 60=26.82 \text { (LOS D) }
\end{aligned}
$$

Downstream of off -Ramp

$$
\begin{gathered}
\text { 2,725 vph } / 0.95 * 0.93=3,084 / 2=1,542 \text { pephpl } \\
\text { Density }=1,542 / 60=25.7 \quad(\operatorname{Los} C)
\end{gathered}
$$

Ramp
$1,540 \mathrm{vph} / 0.95 * 0.971=1,669 \mathrm{pcph}<2,100$ (maximum for 1 -lane ramp)
\therefore under capacity

RAMPS AND RAMP JUNCTIONS WORKSHEET

RAMPS AND RAMP JUNCTIONS WORKSHEET

Conversion to pc / h Under Base Conditions

(pc/h)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	Truck	\%Rv	f_{HV}	f_{p}	$\begin{aligned} & v=\mathrm{V} / \mathrm{PHF} \\ & \mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{p}} \\ & \hline \end{aligned}$
Freeway	2525	0.95	Rolling	5	0	0.930	1.00	2857
Ramp	1180	0.95	Rolling	2	0	0.971	1.00	1279
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of v_{12}			
$\begin{aligned} & \hline V_{12}=V_{F}\left(P_{F M}\right) \\ & L_{E Q}=\text { (Equation 25-2 or 25-3) } \\ & P_{F M}=\text { using Equation (Exhibit 25-5) } \\ & V_{12}=\mathrm{pc} / \mathrm{h} \end{aligned}$					$\begin{aligned} & \quad V_{12}=V_{R}+\left(V_{F}-V_{R}\right) P_{F D} \\ & L_{E Q}=\text { (Equation 25-8 or 25-9) } \\ & P_{F D}=1.000 \quad \text { using Equation (Exhibit 25-11) } \\ & V_{12}=2857 \mathrm{pc} / \mathrm{h} \end{aligned}$			

Capacity Checks
Capacity Checks

$S=54.8 \mathrm{mph}($ Exhibit $25-14) \quad \mid S=\operatorname{mph}($ Exhibit 25-15)

$S=\quad 54.7 \mathrm{mph}($ Exhibit 25-14) $\quad S=\quad \operatorname{mph}($ Exhibit 25-15)

RAMPS AND RAMP JUNCTIONS WORKSHEET

Conversion to pc / h Under Base Conditions

(pc / h)	$\begin{array}{c\|} \mathrm{V} \\ (\mathrm{Veh} / \mathrm{hr}) \end{array}$	PHF	Terrain		Truck	\%Rv		f_{HV}	f_{p}		$\begin{aligned} & \mathrm{V}=\mathrm{V} / \mathrm{PHF} \\ & \mathrm{f} H \mathrm{f} \end{aligned}$		
Freeway	935	0.95	Rolling		5	0		. 930	1.00		1058		
Ramp	135	0.95	Rolling		2	0		. 971	1.00		146		
UpStream													
DownStream													
Merge Areas						Diverge Areas							
Estimation of v_{12}						Estimation of v_{12}							
$$						$\begin{aligned} & L_{E Q}=(\text { Equation } 25-8 \text { or } 25-9) \\ & P_{F D}=1.000 \text { using Equation (Exhibit 25-11) } \\ & V_{12}=1058 \mathrm{pc} / \mathrm{h} \end{aligned}$							
Capacity Checks						Capacity Checks							
	Actual	Maximum		LOS F?			Actual		Maximum		LOS F?		
$V_{\text {FO }}$	See Exhibit 25 7	$\left\lvert\, \begin{gathered} \text { See Exhibit } 25- \\ 7 \end{gathered}\right.$					$\mathrm{V}_{\mathrm{FI}}=\mathrm{V}_{\mathrm{F}}$	1058	4600		No		
				V_{12}	1058	4400:All		No					
$\mathrm{V}_{\mathrm{R} 12}$		4600:All						$\begin{gathered} V_{F O}=V_{F}- \\ V_{R} \end{gathered}$		912	4600		No
						V_{R}		146	2100		No		

Level of Service Determination (if not F)
$\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$
$\mathrm{D}_{\mathrm{R}}=\quad(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$
LOS $=\quad$ (Exhibit 25-4)
Speed Estimation
$M_{S}=$ (Exibit 25-19)
$\mathrm{S}_{\mathrm{R}}=\quad \mathrm{mph}$ (Exhibit 25-19)
$S_{0}=\quad \mathrm{mph}$ (Exhibit 25-19)
$\mathrm{S}=\quad \mathrm{mph}($ Exhibit 25-14)

Level of Service Determination (if not F)
$D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.0009 \mathrm{~L}_{\mathrm{D}}$
$\mathrm{D}_{\mathrm{R}}=10.7(\mathrm{pc} / \mathrm{mi} / \mathrm{nn})$
LOS $=$ B (Exhibit 25-4)
Speed Estimation
$\mathrm{D}_{\mathrm{s}}=0.376$ (Exhibit 25-19)
$\mathrm{S}_{\mathrm{R}}=\quad 53.2 \mathrm{mph}$ (Exhibit 25-19)
$S_{0}=\quad \mathrm{N} / \mathrm{A} \mathrm{mph}$ (Exhibit 25-19)
$S=53.2 \mathrm{mph}($ Exhibit 25-15)

$S=\quad 54.6 \mathrm{mph}($ Exhibit $25-14) \quad S=\quad \operatorname{mph}($ Exhibit 25-15)
HCS2000 ${ }^{\mathrm{TM}} \quad$ Copyright © 2000 University of Florida, All Rights Reserved Version 4.1d

$S=54.2 \mathrm{mph}($ Exhibit 25-14) $\quad S=\quad \mathrm{mph}($ Exhibit 25-15)

FREEWAY WEAVING WORKSHEET			
General Information		Site Information	
Analyst DEA Agency/Company URS Date Performed $3 / 15 / 2005$ Analysis Time Period AM PEAK		Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year	WESTBOUND US 160 CR 233 ON TO US 550 OFF 2025 ALT $1 G$
Inputs			
Freeway free-flow speed, SFF (mi/h) Weaving number of lanes, N Weaving seg length, L (ft) Terrain	60 3 2070 Rolling	Weaving type Volume ratio, VR Weaving ratio, R	$\begin{aligned} & A \\ & 0.49 \\ & 0.33 \end{aligned}$

Conversions to pc/h Under Base Conditions

Notes

a. Weaving segments longer than 2500 ft . are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions".
b. Capacity constrained by basic freeway capacity.
c. Capacity occurs under constrained operating conditions.
d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queuing are expected in such cases.
e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases.
. Capacity constrained by maximum allowable weaving flow rate: $2,800 \mathrm{pc} / \mathrm{h}$ (Type A), 4,000 (Type B), 3,500 (Type C).
9. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases.
h. Type B weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases.
i. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.

FREEWAY WEAVING WORKSHEET								
General Information				Site Information				
Analyst Agency/Company Date Performed Analysis Time Period	DEA URS 3/15/2005 PM PEAK			Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year		WESTBOUND US 160 CR 233 ON TO US 550 OFF 2025 ALT 1G		
Inputs								
Freeway free-flow speed, SFF (mi/h) Weaving number of lanes, N Weaving seg length, L (ft) Terrain		60 3 2070 Rolling		Weaving type Volume ratio, VR Weaving ratio, R		$\begin{aligned} & \text { A } \\ & 0.51 \\ & 0.19 \end{aligned}$		
Conversions to pc/h Under Base Conditions								
(pc/h) V	PHF	Truck \%	RV \%	E_{T}	E_{R}	fHv	$f \mathrm{f}$	v
Vo1 1673	0.95	5	0	2.5	2.0	0.930	1.00	1893
Vo2 38	0.95	5	0	2.5	2.0	0.930	1.00	42
Vw1 337	0.95	5	0	2.5	2.0	0.930	1.00	381
$V_{\text {w2 }}$ 1462	0.95	5	0	2.5	2.0	0.930	1.00	1654
VW			2035	Vnw				1935
V								3970
Weaving and Non-Weaving Speeds								
	Unconstrained				Constrained			
	Weaving ($\mathrm{i}=\mathrm{w}$)		Non-Weaving ($\mathrm{i}=\mathrm{nw}$)		Weaving($\mathrm{i}=\mathrm{w}$)		Non-Weaving ($=n w$)	
a(Exhibit 24-6)								
b(Exhibit 24-6)								
C (Exhibit 24-6)								
d (Exhibit 24-6)								
Weaving intensity factor, Wi								
$\begin{aligned} & \text { Neaving and non-weaving } \\ & \text { speeds, Si (mi/h) } \\ & \hline \end{aligned}$								
Number of lanes required for unconstrained operation, Nw Maximum number of lanes, Nw (max) F If Nw < Nw(max) unconstrained operation				$\begin{aligned} & 1.77 \\ & 1.40 \end{aligned}$	f $\mathrm{Nw}>$	(max) con	ed ope	
Weaving Segment Speed, Density, Level of Service, and Capacity								
Weaving segment speed, S (mi/h)			38.57					
Weaving segment density, D ($\mathrm{pc} / \mathrm{mi/h}$)			34.31					
Level of service, LOS			D					
Capacity of base condition, c_{b} (pc/h)			4948					
Capacity as a 15-minute flow rate, c (veh/h)			4603					
Capacity as a full-hour volume, c_{h} (veh/h)			4373					
Notes								
a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25 , "Ramps and Ramp Junctions". 6. Capacity constrained by basic freeway capacity. c. Capacity occurs under constrained operating conditions. d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45 . Poor operations and some local queving are expected in such cases, e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35 . Poor operations and some local queuing are expected in such cases. 1. Capacity constrained by maximum allowable weaving flow rate: 2,800 pch (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20 . Poor operations and some local queuing are expected in such cases, h. Type 8 weaving segments do not operate well at volume ratios greater than 0.80 . Poor operations and some local queuing are expected in such cases. Type C weaving segments do not operate well at volume ratios greater than 0.50 . Poor operations and some local queuing are expected in such cases.								

\qquad
\qquad of \qquad Description Westbound US 160 On -Ramp Computed by \qquad Sheet \qquad of \qquad from Northbound US 550 AM PeaK Checked by \qquad Date \qquad

ANALYZED AS A LANE ADDITION AT ON-RAmP

Upstream of On-Ramp

$$
\begin{gathered}
1,750 \mathrm{rph} / 0.95 * 0.93=1,981 / 2=991 \text { pephpl } \\
\text { Density }=991 / 60=16.52(\text { Los } B)
\end{gathered}
$$

Downstream of On -Ramp

$$
2,695 \mathrm{vph} / 0.95 * 0.93=3,050 / 3=1.017 \text { pephpl }
$$

Density $=1,017 / 60=16.95(\operatorname{Los} B)$
Ramp
$945 \mathrm{vph} / 0.95 * 0.971=1,024$ pugh $<2,000$ (maximum for 1 -lane loop ramp) \therefore under capacity
\qquad Project No. \qquad
\qquad of
\qquad Date
from Northbound US 550 PM Peak \qquad
\qquad

ANALYZED AS A LANE ADDITION AT ON-RAMP

Upstream of On-Ramp

$$
\begin{aligned}
& 3,135 \text { ph } / 0.95 * 0.93=3548 / 2=1,774 \text { pcphpl } \\
& \text { Density }=1,774 / 60=29.57(\text { Los } D)
\end{aligned}
$$

Downstream of On-Ramp

$$
\begin{gathered}
3,700 \mathrm{vph} / 0.95 * 0.93=4,188 / 3=1.396 \text { pcphpl } \\
\text { Density }=1,396 / 60=23.27(\text { LoS C) }
\end{gathered}
$$

Ramp
$565 \mathrm{vph} / 0.95 * 0.971=612$ piph $<2,000$ (maximum for 1 -lane loop ramp) \therefore under capacity

$\left\lvert\, \begin{array}{ll}S_{0}= & \mathrm{N} / \mathrm{A} \mathrm{mph}(\text { Exhibit 25-19) } \\ \mathrm{S}= & 55.4 \mathrm{mph} \text { (Exhibit 25-14) }\end{array}\right.$
$\left\lvert\, \begin{array}{ll}S_{0}= & m p h \\ S= & \text { (Exhibit 25-19) } \\ S \text { (Exhibit 25-15) }\end{array}\right.$
$H C S 2000^{\mathrm{TM}}$

$\begin{array}{ll}S_{0}= & \mathrm{N} / \mathrm{A} \mathrm{mph}(\text { Exhibit } 25-19) \\ \mathrm{S}= & 54.2 \mathrm{mph} \text { (Exhibit 25-14) }\end{array}$

Attachment D-3
2025 Grandview Section, Alternative F Modified, Highway Analyses

URS Corporation

9960 Federal Drive, Suite 300	
Colorado Springs, Co 80920	
Phone:	
E-max:	

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	3	
Free-flow speed:	Measured	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	3.0	mi / h
Free-flow speed, FFS	60.0	mi / h

	LOS and Performance Measures	
Flow rate, vp		
Free-flow speed, FFS	1018	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Average passenger-car speed, s	60.0	mi / h
Number of lanes, m	60.0	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Density, D	3	17.0
Level of service, LOS	B	
Overall results are not computed when free-flow speed is less than 55 mph.		

HCS2000: Basic Freeway Segments Release 4.1d
URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
Operational Analysis

Analyst:	DEA
Agency or Company:	URS
Date Performed:	$4 / 21 / 2005$
Analysis Time Period:	PM PEAK
Freeway/Direction:	EASTBOUND US 160
From/To:	WEST OF US 550/CR 233

Jurisdiction: $\quad 2025$ ALT 1F
Description: US 160
Flow Inputs and Adjustments \qquad

Volume, V	4265	veh/h
Peak-hour factor, PHF	0.95	
Peak 15-min volume, v15	1122	V
Trucks and buses	5	$\%$
Recreational vehicles	0	$\%$
Terrain type:	Rolling	
Grade	0.00	$\%$
Segment length	0.00	mi
Trucks and buses PCE, ET	2.5	
Recreational vehicle PCE, ER	2.0	
Heavy vehicle adjustment, fHV	0.930	
Driver population factor, fp	1.00	
Flow rate, vp	1609	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$

Speed Inputs and Adjustments

Lane width	12.0	ft
Right-shoulder lateral clearance	6.0	ft
Interchange density	0.50	interchange/mi
Number of lanes, N	3	
Free-flow speed:	Measured	
FFS or BFFS	60.0	mi / h
Lane width adjustment, fLW	0.0	mi / h
Lateral clearance adjustment, fLC	0.0	mi / h
Interchange density adjustment, fID	0.0	mi / h
Number of lanes adjustment, fN	3.0	mi / h
Free-flow speed, FFS	60.0	mi / h

LOS and Performance Measures
\qquad
\qquad

Flow rate, vp	1609	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$
Free-flow speed, FFS	60.0	mi / h
Average passenger-car speed, S	60.0	mi / h
Number of lanes, N	3	
Density, D	26.8	$\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Level of service, LOS	D	

[^3]```
HCS2000: Basic Freeway Segments Release 4.Id
URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
```

Operational Analysis

| Analyst: | DEA |  |
| :--- | :--- | :--- |
| Agency or Company: | URS |  |
| Date Performed: | $4 / 21 / 2005$ |  |
| Analysis Time Period: | AM PEAK |  |
| Freeway/Direction: | EASTBOUND US 160 |  |
| From/To: | $550 / C R 233$ to SH 172/CR 234 |  |
| Jurisdiction: |  |  |
| Analysis Year: | 2025 ALT $1 F$ |  |
| Description: US 160 |  |  |

$\qquad$ Flow Inputs and Adjustments

| Volume, V | 1605 | $\mathrm{veh} / \mathrm{h}$ |
| :--- | :--- | :--- |
| Peak-hour factor, PHF | 0.95 | v |
| Peak 15-min volume, v15 | 422 | $\%$ |
| Trucks and buses | 5 | $\%$ |
| Recreational vehicles | 0 |  |
| Terrain type: | Rolling | 0.00 |
| Grade | 0.00 | mi |
| Segment length | 2.5 |  |
| Trucks and buses PCE, ET | 2.0 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| Recreational vehicle PCE, ER | 0.930 |  |
| Driver population factor, fp | 1.00 |  |

Speed Inputs and Adjustments

| Lane width | 12.0 | ft |
| :--- | :--- | :--- |
| Right-shoulder lateral clearance | 6.0 | ft |
| Interchange density | 0.50 | interchange/mi |
| Number of lanes, N | 2 |  |
| Free-flow speed: | Measured | $\mathrm{mi} / \mathrm{h}$ |
| FFS or BFFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lane width adjustment, fLW | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lateral clearance adjustment, fLC | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Interchange density adjustment, fiD | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes adjustment, fN | 4.5 | $\mathrm{mi} / \mathrm{h}$ |
| Free-flow speed, FFS | 60.0 |  |

LOS and Performance Measures

| Flow rate, vp |  |  |
| :--- | :--- | :--- |
| Free-flow speed, FFS | 908 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| Average passenger-car speed, S | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes, N | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Density, D | 2 |  |
| Level of service, LOS | 15.1 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |

Overall results are not computed when free-flow speed is less than 55 mph.

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, Co 80920
Phone:
E-mail:

|  | Operational Analysis |
| :--- | :--- |
|  | Dnalyst: |
| Agency or Company: | URS |
| Date Performed: | $4 / 21 / 2005$ |
| Analysis Time Period: | PM PEAK |
| Freeway/Direction: | EASTBOUND US 160 |
| From/To: | $550 /$ CR 233 to SH 172/CR 234 |
| Jurisdiction: |  |
| Analysis Year: | 2025 ALT 1F |
| Description: US 160 |  |

$\qquad$ Flow Inputs and Adjustments $\qquad$

| Volume, V | 2525 | $\mathrm{veh} / \mathrm{h}$ |
| :--- | :--- | :--- |
| Peak-hour factor, PHF | 0.95 | v |
| Peak 15-min volume, v15 | 664 | $\%$ |
| Trucks and buses | 5 | $\%$ |
| Recreational vehicles | 0 | Rolling |
| Terrain type: | 0.00 | $\%$ |
| Grade | 0.00 | mi |
| Segment length | 2.5 |  |
| Trucks and buses PCE, ET | 2.0 |  |
| Recreational vehicle PCE, ER | 0.930 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| Heavy vehicle adjustment, fHV | 1.00 |  |

Speed Inputs and Adjustments

| Lane width | 12.0 | ft |
| :--- | :--- | :--- |
| Right-shoulder lateral clearance | 6.0 | ft |
| Interchange density | 0.50 | interchange/mi |
| Number of lanes, N | 2 |  |
| Free-flow speed: | Measured |  |
| FFS or BFFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lane width adjustment, fLW | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lateral clearance adjustment, fLC | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Interchange density adjustment, fID | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes adjustment, fN | 4.5 | $\mathrm{mi} / \mathrm{h}$ |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |

LOS and Performance Measures

| Flow rate, vp | 1429 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| :--- | :--- | :--- |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Average passenger-car speed, S | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes, N | 2 |  |
| Density, D | 23.8 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| Level of service, LOS | C |  |

Overall results are not computed when free-flow speed is less than 55 mph.

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920

Phone: Fax:
E-mail:
Operational Analysis $\qquad$

| Analyst: | DEA |
| :--- | :--- |
| Agency or Company: | URS |
| Date Performed: | $4 / 21 / 2005$ |
| Analysis Time Period: | AM PEAK |
| Freeway/Direction: | WESTBOUND US |
| From/To: | SH 172/CR 23 |
| Jurisdiction: |  |
| Analysis Year: | 2025 ALT 1F |
| Description: US 160 |  |

Flow Inputs and Adjustments $\qquad$

| Volume, V | 1685 | veh/h |
| :--- | :--- | :--- |
| Peak-hour factor, PHF | 0.95 |  |
| Peak 15-min volume, v15 | 443 | v |
| Trucks and buses | 5 | $\%$ |
| Recreational vehicles | 0 | $\%$ |
| Terrain type: | Rolling |  |
| Grade | 0.00 | $\%$ |
| Segment length | 0.00 | mi |
| Trucks and buses PCE, ET | 2.5 |  |
| Recreational vehicle PCE, ER | 2.0 |  |
| Heavy vehicle adjustment, fHV | 0.930 | $\mathrm{pc/h} / \mathrm{ln}$ |
| Driver population factor, fp | 1.00 | 953 |

$\qquad$ Speed Inputs and Adjustments

| Lane width | 12.0 | ft |
| :--- | :--- | :--- |
| Right-shoulder lateral clearance | 6.0 | ft |
| Interchange density | 0.50 | interchange/mi |
| Number of lanes, N | 2 |  |
| Free-flow speed: | Measured |  |
| FFS or BFFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lane width adjustment, fLW | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lateral clearance adjustment, fLC | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Interchange density adjustment, fid | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes adjustment, fN | 4.5 | $\mathrm{mi} / \mathrm{h}$ |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |

LOS and Performance Measures $\qquad$

| Flow rate, vp | 953 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| :--- | :--- | :--- |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Average passenger-car speed, s | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes, N | 2 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| Density, D | 15.9 |  |

Overall results are not computed when free-flow speed is less than 55 mph.

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, Co 80920
Phone:
E-mail: Fax:

|  | Operational Analysis |
| :--- | :--- |
| Analyst: | DEA |
| Agency or Company: | URS |
| Date Performed: | $4 / 21 / 2005$ |
| Analysis Time Period: | PM PEAK |
| Freeway/Direction: | WESTBOUND US 160 |
| From/To: | SH 172/CR 234 to US 550/CR 233 |
| Jurisdiction: | 2025 ALT 1F |
| Analysis Year: |  |

Flow Inputs and Adjustments

| Volume, V | 2290 | $\mathrm{veh} / \mathrm{h}$ |
| :--- | :--- | :--- |
| Peak-hour factor, PHF | 0.95 | V |
| Peak 15-min volume, v15 | 603 | $\%$ |
| Trucks and buses | 5 | $\%$ |
| Recreational vehicles | 0 | Rolling |
| Terrain type: | 0.00 | $\%$ |
| Grade | 0.00 | mi |
| Segment length | 2.5 |  |
| Trucks and buses PCE, ET | 2.0 |  |
| Recreational vehicle PCE, ER | 0.930 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| Heavy vehicle adjustment, fHV | 1.00 |  |

Speed Inputs and Adjustments

| Lane width | 12.0 | ft |
| :--- | :--- | :--- |
| Right-shoulder lateral clearance | 6.0 | ft |
| Interchange density | 0.50 | interchange/mi |
| Number of lanes, N | 2 |  |
| Free-flow speed: | Measured | $\mathrm{mi} / \mathrm{h}$ |
| FFS or BFFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lane width adjustment, fLW | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lateral clearance adjustment, fLC | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Interchange density adjustment, fid | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes adjustment, fN | 4.5 | $\mathrm{mi} / \mathrm{h}$. |
| Free-flow speed, FFs | 60.0 |  |

LOS and Performance Measures

| Flow rate, vp | 1296 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| :--- | :--- | :--- |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Average passenger-car speed, m | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes, N | 2 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| Density, D | 21.6 | C |
| Level of service, Los |  |  |
| Overall results are not computed when free-flow speed is less than 55 mph. |  |  |

HCS2000: Basic Freeway Segments Release 4.1d
URS Corporation

```
9 9 6 0 ~ F e d e r a l ~ D r i v e , ~ S u i t e ~ 3 0 0 ~
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
```

Operational Analysis

| Analyst: | DEA |
| :--- | :--- |
| Agency or Company: | URS |
| Date Performed: | $4 / 21 / 2005$ |
| Analysis Time Period: | AM PEAK |
| Freeway/Direction: | WESTBOUND US 160 |
| From/To: | WEST OF US 550/CR 233 |
| Jurisdiction: |  |
| Analysis Year: | 2025 ALT 1F |

Description: US 160

Flow Inputs and Adjustments $\qquad$

| Volume, V | 3080 | veh/h |
| :--- | :--- | :--- |
| Peak-hour factor, PHF | 0.95 | v |
| Peak 15-min volume, v15 | 811 | $\%$ |
| Trucks and buses | 5 | $\%$ |
| Recreational vehicles | 0 | Rolling |
| Terrain type: | 0.00 | $\%$ |
| Grade | 0.00 | mi |
| Segment length | 2.5 |  |
| Trucks and buses PCE, ET | 2.0 |  |
| Recreational vehicle PCE, ER | 0.930 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| Heavy vehicle adjustment, fHV | 1.00 |  |
| Driver population factor, fp | 1162 |  |

Speed Inputs and Adjustments

| Lane width | 12.0 | ft |
| :--- | :--- | :--- |
| Right-shoulder lateral clearance | 6.0 | ft |
| Interchange density | 0.50 | interchange/mi |
| Number of lanes, N | 3 |  |
| Free-flow speed: | Measured | $\mathrm{mi} / \mathrm{h}$ |
| FFS or BFFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lane width adjustment, fLW | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lateral clearance adjustment, fLC | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Interchange density adjustment, fid | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes adjustment, fN | 3.0 | $\mathrm{mi} / \mathrm{h}$ |
| Free-flow speed, FFS | 60.0 |  |

LOS and Performance Measures $\qquad$

| Flow rate, vp | 1162 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| :--- | :--- | :--- |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Average passenger-car speed, S | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes, N | 3 |  |
| Density, D | 19.4 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| Level of service, LOS | C |  |

Overall results are not computed when free-flow speed is less than 55 mph.

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone: Fax:
E-mail:
Operational Analysis

|  | Operational Analysis |
| :--- | :--- |
| Analyst: | DEA |
| Agency or Company: | URS |
| Date Performed: | $4 / 21 / 2005$ |
| Analysis Time Period: | PM PEAK |
| Freeway/Direction: | WESTBOUND US 160 |
| From/To: | WEST OF US 550/CR 233 |
| Jurisdiction: |  |
| Analysis Year: | 2025 ALT 1F |
| Description: US 160 |  |

Flow Inputs and Adjustments $\qquad$

| Volume, V | 4290 | $\mathrm{veh} / \mathrm{h}$ |
| :--- | :--- | :--- |
| Peak-hour factor, PHF | 0.95 |  |
| Peak 15-min volume, v15 | 1129 | v |
| Trucks and buses | 5 | $\%$ |
| Recreational vehicles | 0 | $\%$ |
| Terrain type: | Rolling |  |
| Grade | 0.00 | $\%$ |
| Segment length | 0.00 | mi |
| Trucks and buses PCE, ET | 2.5 |  |
| Recreational vehicle PCE, ER | 2.0 |  |
| Heavy vehicle adjustment, fHV | 0.930 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| Driver population factor, fp | 1.00 |  |

Speed Inputs and Adjustments

| Lane width | 12.0 | ft |
| :--- | :--- | :--- |
| Right-shoulder lateral clearance | 6.0 | ft |
| Interchange density | 0.50 | interchange/mi |
| Number of lanes, N | 3 |  |
| Free-flow speed: | Measured |  |
| FFS or BFFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lane width adjustment, fLW | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Lateral clearance adjustment, fLC | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Interchange density adjustment, fID | 0.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes adjustment, fN | 3.0 | $\mathrm{mi} / \mathrm{h}$ |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |

LOS and Performance Measures $\qquad$

| Flow rate, vp | 1618 | $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ |
| :--- | :--- | :--- |
| Free-flow speed, FFS | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Average passenger-car speed, $S$ | 60.0 | $\mathrm{mi} / \mathrm{h}$ |
| Number of lanes, N | 3 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |
| Density, D | 27.0 | D |
| Level of service, LOS |  |  |
| Overall results are not computed when free-flow speed is less than 55 mph. |  |  |

Job US 160 ALT IF
Project No. $\qquad$
$\qquad$ of $\qquad$
Description Eastbound US 160 off-Ramp
Computed by $\qquad$ Sheet $\qquad$ of $\qquad$ to CR 233 Am Peak Checked by $\qquad$ Date $\qquad$ $3 / 15 / 05$


ANALYZED AS A MAJOR DIVERGE

Upstream of off-Ramp
2,700 ph $/ 0.95 * 0.93=3,056 / 3=1,019$ pcphpl
Density $=1.019 * 0.0109=11.11(\operatorname{Los} B)$
Downstream of off-Ramp
870 vph $/ 0.95 * 0.93=985 / 2=493$ pephpl
Density $=493 \% / 60=8.22($ LOS A)
Ramp
$1,830 \mathrm{vph} / 0.95 * 0.971=1.984 \mathrm{pcph}<4,100$ (maximum for 2 -lane ramp)
$\therefore$ under capacity
job US 160 ALT IF
Project No. $\qquad$
$\qquad$ of $\qquad$
Description Eastbound US 160 off-Ramp
Computed by $\qquad$ Date
$\qquad$ of $\qquad$ to CR 233 Pm Peak Checked by $\qquad$ Date


ANALYZED AS A MAJOR DIVERGE

Upstream of off-Ramp

$$
\begin{gathered}
4,265 \text { vph } / 0.95 * 0.93=4,827 / 3=1.609 \text { pcphpl } \\
\text { Density }=1.609 * 0.0109=17.54(\text { LoS B })
\end{gathered}
$$

Downstream of Off-Ramp
$1.710 \mathrm{vph} / 0.95 * 0.93=1.935 / 2=968$ pephpl
Density $=968 / 60=16.13(\operatorname{LOS} B)$
Ramp
$2,555 \mathrm{vph} / 0.95 * 0.971=2,770$ peph $<4,100$ (maximum for 2 -lane ramp)
$\therefore$ under capacity






| $S=\quad 54.8 \mathrm{mph}($ Exhibit 25-14) | $\mathrm{S}=\quad \operatorname{mph}($ Exhibit 25-15) |  |
| :--- | :--- | :--- |
| $H C S 2000^{\mathrm{TM}}$ | Copyright © 2000 University of Florida, All Rights Reserved | Version 4.1d |


$S=\quad 54.7 \mathrm{mph}($ Exhibit $25-14) \quad \mid S=\quad \operatorname{mph}($ Exhibit 25-15)



$S=\quad 54.6 \mathrm{mph}($ Exhibit 25-14)
$S=\quad \operatorname{mph}($ Exhibit 25-15)
HCS2000 ${ }^{\mathrm{TM}}$
Copyright © 2000 University of Florida, All Rights Reserved
Version 4.1d


| $\mathrm{S}=54.2 \mathrm{mph}($ Exhibit 25-14) | $\mathrm{S}=\quad \operatorname{mph}($ Exhibit 25-15) |  |
| :--- | :--- | :--- |
| $H C S 2000^{\mathrm{TM}}$ | Copyright © 2000 University of Florida, All Rights Reserved | Version 4.1d |



$\qquad$ 1 of $\qquad$ Description Westbound US 160 On-Ramp Project No. $\qquad$ Sheet $\qquad$ of $\qquad$ from CR 233 Am Peak Computed by $\qquad$ Date $\qquad$ Checked by $\qquad$


ANALYZED AS A MAJOR MERGE

Upstream of On-Ramp

$$
\begin{gathered}
1,050 \text { uph } / 0.95 * 0.93=1,188 / 2=594 \text { pcphpl } \\
\text { Density }=594 / 60=9.90(\operatorname{Los} A)
\end{gathered}
$$

Downstream of On-Ramp

$$
3,080 \mathrm{vph} / 0.95 * 0.93=3,486 / 3=1,162 \text { pcphpl }
$$

$$
\text { Density }=1,162 / 60=19.37(\operatorname{Los} c)^{\prime}
$$

Ramp
$2,030 \mathrm{vph} / 0.95 * 0.971=2,201 \mathrm{pcph}<4,100$ (maximum for 2 -lane ramp) $\because$ under capacity
$\qquad$ of $\qquad$
Description Westbound US 160 On-Ramp
Computed by $\qquad$ Date from CR 233 Pm Peak Checked by $\qquad$


ANALYZED AS A MAJOR MERGE

Upstream of On -Ramp

$$
\begin{gathered}
1,710 \text { ph } / 0.95 * 0.93=1.935 / 2=968 \text { pephpl } \\
\text { Density }=968 / 60=16.13(\text { LoS B })
\end{gathered}
$$

Downstream of On-Ramp

$$
\begin{gathered}
\text { 4. } 290 \mathrm{vph} / 0.95 * 0.93=4.856 / 3=1.619 \text { pephpl } \\
\text { Density }=1619 / 60=26.98 \text { (LOS D) }
\end{gathered}
$$

Ramp
$2,580 \mathrm{vph} / 0.95 * 0.971=2,797 \mathrm{peph}<4,100$ (maximum for 2 -lane ramp)
$\therefore$ under capacity

## Attachment E

## 2025 Grandview Section Intersection Analyses

Attachment E-1
2025 Grandview Section, No Action Alternative, Intersection Analyses

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK HOUR
Project ID: US 160
E/W St: US 160

Inter.: US $160 /$ US 550
Area Type: All other areas
Jurisd:
Year : 2025 NO ACTION
N/S St: US 550

SIGNALIZED INTERSECTION SUMMARY


| Duration | 0.25 | Area Type: All other areas |
| :--- | :--- | :--- |
| Signal Operations |  |  |


| Phase Combination | 1 | 2 | 34 | 1 |  |  | 5 | $6 \quad 7$ | 7 - 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EB Left |  |  |  | 1 | NB | Left | A |  |  |  |
| Thru |  | A |  | 1 |  | Thru |  |  |  |  |
| Right |  | A |  | 1 |  | Right | A |  |  |  |
| Peds |  |  |  | I |  | Peds |  |  |  |  |
| WB Left | A |  |  | \| | SB | Left |  |  |  |  |
| Thru |  |  |  | \| |  | Thru |  |  |  |  |
| Right |  |  |  | I |  | Right |  |  |  |  |
| Peds |  |  |  | 1 |  | Peds |  |  |  |  |
| NB Right | A |  |  | , | EB | Right | A |  |  |  |
| SB Right |  |  |  | 1 | WB | Right |  |  |  |  |
| Green | 10.0 | 55.0 |  |  |  |  | 40.0 |  |  |  |
| Yellow | 4.0 | 4.0 |  |  |  |  | 4.0 |  |  |  |
| All Red | 1.0 | 1.0 |  |  |  |  | 1.0 |  |  |  |
|  |  |  |  |  |  |  | Cycle | Length: | : 120.0 | - secs |

Intersection Performance Summary
Cycle Length: 120.0 secs
$\qquad$


## Eastbound

| T | 1576 | 3438 | 1.59 | 0.46 | 302.5 | F | 267.4 | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | 1282 | 1538 | 0.26 | 0.83 | 2.2 | A |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 143 | 1719 | 1.77 | 0.08 | 428.0 | F |  |  |
|  |  |  |  |  |  |  | 428.0 | F |
| Northbound |  |  |  |  |  |  |  |  |
| L | 573 | 1719 | 1.74 | 0.33 | 378.7 | F |  |  |
|  |  |  |  |  |  |  | 260.4 | F |
| R | 705 | 1538 | 0.72 | 0.46 | 30.1 | C |  |  |

```
Intersection Delay = 274.0 (sec/veh) Intersection LOS = F
```

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: PM PEAK HOUR
Project ID: US 160
E/W St: US 160

Inter.: US 160 / US 550
Area Type: All other areas
Jurisd:
Year : 2025 NO ACTION
N/S St: US 550

SIGNALIZED INTERSECTION SUMMARY


| Duration 0.25 | Area Type: All other areas |
| ---: | ---: | ---: |
| Signal Operations |  |



Intersection Performance Summary

| Appr/ | Iane Group | Adj Sat Flow Rate | Ratios |  | Lane Group | Approach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Grp | Capacity | (s) | V/C | g/C | Delay LOS | Delay LoS |

Eastbound


```
Intersection Delay = 261.1 (sec/veh) Intersection LOS = F
```

HCS2000: Signalized Intersections Release 4.1d

Analyst: DEA
Agency: URS
Date: 3/6/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 NO ACTION
N/S St: CR 233

SIGNALIZED INTERSECTION SUMMARY

|  | Eastbound |  |  | \| Westbound |  |  | Northbound |  |  | Southbound |  |  | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | T | R | L | T | R | L | T | R | L | T | R | 1 |
| No. Lanes | -1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | $1-2$ | 1 | 1 |  |
| LGConfig | L | T | R | \| L | T | R | 1 L | T | R | 1 L | T | R | 1 |
| Volume | 11215 | 1300 | 355 | 195 | 1255 | 335 | 1180 | 60 | 50 | 1255 | 60 | 940 | \| |
| Lane Width | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | I |
| RTOR Vol | 1 |  | 0 | 1 |  | 0 | 1 |  | 0 | 1 |  | 0 | 1 |



| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 443 | 1770 | 2.89 | 0.25 | 900.4 | F |  |  |
| T | 1432 | 3438 | 0.96 | 0.42 | 48.4 | D | 405.2 | F |
| R | 857 | 1583 | 0.44 | 0.54 | 16.9 | B |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 443 | 1770 | 0.23 | 0.25 | 36.0 | D |  |  |
| T | 1432 | 3438 | 0.92 | 0.42 | 43.3 | D | 37.6 | D |
| R | 857 | 1583 | 0.41 | 0.54 | 16.5 | B |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 148 | 1770 | 1.28 | 0.08 | 221.6 | F |  |  |
| T | 155 | 1863 | 0.41 | 0.08 | 53.9 | D | 152.7 | F |
| R | 594 | 1583 | 0.09 | 0.38 | 24.3 | C |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 286 | 3433 | 0.94 | 0.08 | 91.5 | F |  |  |
| T | 155 | 1863 | 0.41 | 0.08 | 53.9 | D | 279.0 | F |
| R | 594 | 1583 | 1.66 | 0.38 | 344.1 | F |  |  |
|  | Intersection Delay $=265.7$ ( $\mathrm{sec} / \mathrm{veh}$ ) Intersection LOS $=\mathrm{F}$ |  |  |  |  |  |  |  |

Analyst: DEA
Agency: URS
Date: 3/6/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 NO ACTION
N/S St: CR 233

SIGNALIZED INTERSECTION SUMMARY


Cycle Length: 120.0 secs
Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(\mathrm{s})$ | $\overline{\mathrm{v} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ |  | Delay LOS |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 443 | 1770 | 2.85 | 0.25 | 884.2 | F |  |  |
| T | 1432 | 3438 | 1.44 | 0.42 | 235.8 | F | 436.5 | F |
| R | 857 | 1583 | 0.42 | 0.54 | 16.7 | B |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 443 | 1770 | 0.21 | 0.25 | 35.9 | D |  |  |
| T | 1432 | 3438 | 1.38 | 0.42 | 209.8 | F | 175.5 | F |
| R | 857 | 1583 | 0.40 | 0.54 | 16.4 | B |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 148 | 1770 | 4.05 | 0.08 | 1445 | F |  |  |
| T | 155 | 1863 | 0.57 | 0.08 | 58.1 | E | 1035 | F |
| R | 594 | 1583 | 0.27 | 0.38 | 26.3 | C |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 286 | 3433 | 1.55 | 0.08 | 317.2 | F |  |  |
| T | 155 | 1863 | 0.57 | 0.08 | 58.1 | E | 672.2 | F |
| R | 594 | 1583 | 2.69 | 0.38 | 804.4 | F |  |  |
|  | Intersection Delay $=478.3$ (sec/veh) $\quad$ Intersection LOS $=\mathrm{F}$ |  |  |  |  |  |  |  |

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas
Jurisd:
Year : 2025 NO ACTION
N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY


Cycle Length: 120.0 secs
Intersection Performance Summary


Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas Jurisd:
Year : 2025 NO ACTION

N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY

|  | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 L | T | R | L | T | R | L | T | R | L | T | R |  |
|  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |
| No. Lanes | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| LGConfig | 1 L | T | R | L | T | R | L | T | R | 1 L | T | R |  |
| Volume | 1385 | 1345 | 795 | 1115 | 1245 | 90 | 1640 | 105 | 105 | 1135 | 80 | 405 |  |
| Lane Width | 112.0 | 12.0 | 12.0 | \| 12.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 |  |
| RTOR Vol | 1 |  | 0 |  |  | 0 | 1 |  | 0 | \| |  | 0 |  |



Cycle Length: 120.0 secs
Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios |  | Lane Group | Approach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | (s) | $\overline{v / c}$ | g/C | Delay LOS | Delay LOS |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 221 | 1770 | 1.83 | 0.13 | 444.3 | F |  |  |
| T | 724 | 1810 | 1.96 | 0.40 | 471.1 | F | 324.5 | F |
| R | 1055 | 1583 | 0.79 | 0.67 | 18.4 | B |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 221 | 1770 | 0.55 | 0.13 | 52.2 | D |  |  |
| T | 724 | 1810 | 1.81 | 0.40 | 406.3 | F | 353.4 | F |
| R | 1055 | 1583 | 0.09 | 0.67 | 7.1 | A |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 398 | 1770 | 1.69 | 0.22 | 369.2 | F |  |  |
| T | 155 | 1863 | 0.72 | 0.08 | 68.3 | E | 290.8 | F |
| R | 396 | 1583 | 0.28 | 0.25 | 36.7 | D |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 398 | 1770 | 0.36 | 0.22 | 39.7 | D |  |  |
| T | 155 | 1863 | 0.54 | 0.08 | 56.7 | E | 89.1 | F |
| R | 396 | 1583 | 1.08 | 0.25 | 112.0 | F |  |  |
|  | Inter | on De | 300. | ( sec | ) In | e | tion | $S=E$ |

## Attachment E-2

2025 Grandview Section, Alternative G Modified (Preferred Alternative), Intersection Analyses

Analyst: DEA
Agency: URS
Date: 3/11/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/US 550 NORTH SIDE
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1G

N/S St: US 550 NORTH SIDE

SIGNALIZED INTERSECTION SUMMARY


Southbound

| T | 414 | 1863 | 0.42 | 0.22 | 30.7 | C | 9.3 | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R | 1583 | 1583 | 0.26 | 1.00 | 0.1 | A |  |  |
|  | Intersection Delay | $=12.9$ | (sec/veh) | Intersection | LOS | $=\mathrm{B}$ |  |  |

Analyst: DEA
Agency: URS
Date: $3 / 11 / 2005$
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/US 550 NORTH SIDE
Area Type: All other areas
Jurisd:
Year : 2025 ALT IG

N/S St: US 550 NORTH SIDE

SIGNALIZED INTERSECTION SUMMARY


Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(\mathrm{s})$ | $\overline{\mathrm{V} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ |  | Delay LOS |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 1030 | 3433 | 0.49 | 0.30 | 26.2 | C |  |  |
|  |  |  |  |  |  |  | 9.2 | A |
| R | 1583 | 1583 | 0.70 | 1.00 | 1.5 | A |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 1042 | 1770 | 0.24 | 0.59 | 9.0 | A |  |  |
|  |  |  |  |  |  |  | 16.4 | B |
| R | 369 | 1583 | 0.38 | 0.23 | 29.7 | C |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| T | 559 | 1863 | 0.13 | 0.30 | 23.1 | C | 23.1 | C |

Southbound

| T | 559 | 1863 | 0.48 | 0.30 | 26.4 | C | 8.1 | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R | 1583 | 1583 | 0.39 | 1.00 | 0.2 | A |  |  |
|  | Intersection Delay | $=10.2$ | $(\mathrm{sec} / \mathrm{veh})$ | Intersection | LOS $=$ | B |  |  |



Rights Reserved

| TWO-WAY STOP CONTROL SUMMARY |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Information |  |  | Site Information |  |  |  |
| Analyst Agency/Co. Date Performed Analysis Time Period | DEA <br> URS <br> 3/11/2 <br> PM P |  | Intersect |  | 160 R UTH 2 AL | $550$ |
| Project Description US 160 |  |  |  |  |  |  |
| EastWest Street: US 160 RAMP |  |  | North/South Street: US 550 SOUTH SIDE |  |  |  |
| Intersection Orientation: North-South |  |  | Study Period (hrs): 0.25 |  |  |  |
| Vehicle Volumes and Adjustments |  |  |  |  |  |  |
| Major Street | Northbound |  |  | Southbound |  |  |
| Movement | 1 | 2 | 3 | 4 | 5 | 6 |
|  | L | T | R | L | T | R |
| Volume | 0 | 635 | 295 | 170 | 1230 | 0 |
| Peak-Hour Factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly Flow Rate, HFR | 0 | 668 | 310 | 178 | 1294 | 0 |
| Percent Heavy Vehicles | 0 | -- | - | 2 | -- | - |
| Median Type | Undivided |  |  |  |  |  |
| RT Channelized |  |  | 0 |  |  | 0 |
| Lanes | 0 | 2 | 1 | 1 | 2 | 0 |
| Configuration |  | $T$ | $R$ | $L$ | $T$ |  |
| Upstream Signal |  | 0 |  |  | 0 |  |
| Minor Street | Westbound |  |  | Eastbound |  |  |
| Movement | 7 | 8 | 9 | 10 | 11 | 12 |
|  | L | T | R | L | T | R |
| Volume | 0 | 0 | 0 | 0 | 0 | 0 |
| Peak-Hour Factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly Flow Rate, HFR | 0 | 0 | 0 | 0 | 0 | 0 |
| Percent Heavy Vehicles | 0 | 0 | 0 | 0 | 0 | 0 |
| Percent Grade (\%) | 0 |  |  | 0 |  |  |
| Flared Approach |  | $N$ |  | $N$ |  |  |
| Storage |  | 0 |  |  | 0 |  |
| RT Channelized |  |  | 0 |  |  | 0 |
| Lanes | 0 | 0 | 0 | 0 | 0 | 0 |
| Configuration |  |  |  |  |  |  |

Delay, Queue Length, and Level of Service

| Approach | NB | SB | Westbound |  |  | Eastbound |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 |
| Lane Configuration |  | L |  |  |  |  |  |  |
| $v(\mathrm{vph})$ |  | 178 |  |  |  |  |  |  |
| $\mathrm{C}(\mathrm{m})(\mathrm{vph})$ |  | 701 |  |  |  |  |  |  |
| $\mathrm{v} / \mathrm{c}$ |  | 0.25 |  |  |  |  |  |  |
| $95 \%$ queue length |  | 1.01 |  |  |  |  |  |  |
| Control Delay |  | 11.9 |  |  |  |  |  |  |
| LOS |  | $B$ |  |  |  |  |  |  |
| Approach Delay | -- | - |  |  |  |  |  |  |
| Approach LOS | -- | - |  |  |  |  |  |  |

Rights Reserved

Analyst: DEA
Agency: URS
Date: 3/6/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1G - SPUI
N/S St: CR 233

SIGNALIZED INTERSECTION SUMMARY


Analyst: DEA
Agency: URS
Date: 3/6/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 ALT IG - SPUI
N/S St: CR 233

SIGNALIZED INTERSECTION SUMMARY

|  | Eastbound |  |  | Westbound |  |  | Northbound |  |  | 1 Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 L | T | R | L | T | R | L | T | R | L | T | R |  |
|  | I | 0 | 1 | 1 | 0 | 1 | - | 1 | 1 | 2 | 1 | 1 |  |
| LGConfig | 1 L |  | R | 1 L |  | R | 1 L | T | R | L | T | R | 1 |
| Volume | 1720 |  | 345 | 190 |  | 190 | \| 570 | 85 | 150 | 1250 | 85 | 930 | I |
| Lane Width | 112.0 |  | 12.0 | 112.0 |  | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 1 |
| RTOR Vol | 1 |  | 0 | \| |  | 0 | \| |  | 0 | 1 |  | 0 | I |

Duration $0.25 \quad$ Area Type: All other areas
Signal Operations


Intersection Performance Summary


Analyst: DEA
Agency: URS
Date: 1/26/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas Jurisd:
Year : 2025 ALT 1G - SPUI
N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY


Intersection Performance Summary


Analyst: DEA
Agency: URS
Date: 1/26/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1G - SPUI

N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY

|  | I Eastbound |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  | I | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  | \| L | T | R | L | T |  | R | L | T | R |  | L | T | R | I |
| No. Lanes | 1-2 | 0 | 1 | 1 | 0 |  | 1 | \| 2 | 1 | 1 |  | 1 | 1 | 1 |  |
| LGConfig | 1 L |  | R | \| L |  |  | R | \| L | T | R |  | \| L | T | R |  |
| Volume | 1385 |  | 795 | 1115 |  |  | 90 | 1640 | 105 | 105 |  | 1135 | 80 | 405 |  |
| Lane Width | 112.0 |  | 12.0 | 112.0 |  |  | 12.0 | 112.0 | 12.0 | 12.0 |  | 112.0 | 12.0 | 12.0 |  |
| RTOR Vol | । |  | 0 | । |  |  | 0 | । |  | 0 |  |  |  | 0 | I |
| Duration | 0.25 |  | Area | $\begin{array}{r} \text { Type } \\ S i \end{array}$ | $\begin{gathered} \text { All } \\ \text { gnal } \end{gathered}$ |  | ther perat | areas <br> ions |  |  |  |  |  |  |  |
| Phase Comb | natio | 1 | 2 | -3 |  | 4 |  |  | 5 |  | 6 | 7 |  | 8 |  |
| EB Left |  | A |  |  |  |  | 1 NB | Left | A |  |  |  |  |  |  |
| Thru |  |  |  |  |  |  | 1 | Thru |  |  | A |  |  |  |  |
| Right |  |  |  |  |  |  | 1 | Right |  |  | A |  |  |  |  |
| Peds |  |  |  |  |  |  | I | Peds |  |  |  |  |  |  |  |
| WB Left |  | A |  |  |  |  | \| SB | Left | A |  |  |  |  |  |  |
| Thru |  |  |  |  |  |  | I | Thru |  |  | A |  |  |  |  |
| Right |  |  |  |  |  |  | I | Right |  |  | A |  |  |  |  |
| Peds |  |  |  |  |  |  | \| | Peds |  |  |  |  |  |  |  |
| NB Right |  | A |  |  |  |  | \\| EB | Right | A |  |  |  |  |  |  |
| SB Right |  | A |  |  |  |  | 1 WB | Right | A |  |  |  |  |  |  |
| Green |  | 14.0 |  |  |  |  |  |  | 51.0 |  | 0.0 |  |  |  |  |
| Yellow |  | 4.0 |  |  |  |  |  |  | 4.0 |  | . 0 |  |  |  |  |
| All Red |  | 1.0 |  |  |  |  |  |  | 1.0 |  | . 0 |  |  |  |  |

Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios |  | Lane Group | Approach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | (s) | $\mathrm{v} / \mathrm{c}$ | $g / C$ | Delay LOS | Delay LOS |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 534 | 3433 | 0.76 | 0.16 | 42.6 | D | 36.9 | D |
|  |  |  |  |  |  |  |  |  |
| R | 897 | 1583 | 0.93 | 0.57 | 34.2 | C |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| I | 275 | 1770 | 0.44 | 0.16 | 35.6 | D | 23.9 | C |
|  |  |  |  |  |  |  |  |  |
| R | 897 | 1583 | 0.11 | 0.57 | 9.0 | A |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 1945 | 3433 | 0.35 | 0.57 | 10.6 | B | 15.8 | B |
| T | 207 | 1863 | 0.54 | 0.11 | 40.6 | D |  |  |
| R | 510 | 1583 | 0.22 | 0.32 | 22.4 | C |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 1003 | 1770 | 0.14 | 0.57 | 9.3 | A | 33.0 | C |
| T | 207 | 1863 | 0.41 | 0.11 | 38.5 | D |  |  |
| R | 510 | 1583 | 0.84 | 0.32 | 39.8 | D |  |  |
|  | Intersection Delay $=28.8$ |  |  | ( sec) | ) Intersection LOS = C |  |  |  |

## Attachment E-3

2025 Grandview Section, Alternative F Modified, Intersection Analyses

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/US 550/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1F

N/S St: US 550/CR 233

SIGNAIIZED INTERSECTION SUMMARY


Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios |  | Lane Group | Approach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | (s) | $\overline{v / c}$ | $g / \mathrm{C}$ | Delay LOS | Delay LOS |


| Eastbound |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| L | 1287 | 3433 | 0.97 | 0.38 | 54.1 | D |

Westbound

| L | 1287 | 3433 | 0.25 | 0.38 | 25.9 | C | 30.1 | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| R | 567 | 1583 | 0.62 | 0.36 | 33.9 | C |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 1230 | 3433 | 0.96 | 0.36 | 54.3 | D | 44.5 | D |
| T | 264 | 1863 | 0.66 | 0.14 | 54.7 | D |  |  |
| R | 884 | 1583 | 0.57 | 0.56 | 18.1 | B |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 1230 | 3433 | 0.22 | 0.36 | 26.9 | C |  |  |
| T | 264 | 1863 | 0.58 | 0.14 | 51.3 | D | 35.8 | D |

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/US 550/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1F
N/S St: US 550/CR 233

SIGNALIZED INTERSECTION SUMMARY

|  | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | T | R | L | T | R | L | T | R | L | T | R | I |
| No. Lanes | 12 | 0 | 0 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 |  |
| LGConfig | 1 L |  |  | 1 L |  | R | 1 L | T | R | \| L | T |  |  |
| Volume | \| 1165 |  |  | 1250 |  | 330 | 11105 | 190 | 400 | 1415 | 215 |  |  |
| Lane Width | \| 12.0 |  |  | 112.0 |  | 12.0 | \|12.0 | 12.0 | 12.0 | \| 12.0 | 12.0 |  |  |
| RTOR Vol | \| |  |  | \| |  | 0 | 1 |  | 0 | 1 |  |  |  |



Cycle Length: 120.0 secs
Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios |  | Lane Group | Approach |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | (s) | v/c | $g / C$ | Delay LOS | Delay LOS |

Eastbound


Intersection Delay $=49.5$ (sec/veh) Intersection LOS $=D$

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas Jurisd:
Year : 2025 ALT 1F - SPUI

N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY


Cycle Length: 90.0 secs
Intersection Performance Summary


| Eastbound |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 1068 | 3433 | 0.26 | 0.31 | 23.3 | C | 28.9 | C |  |
|  |  |  |  |  |  |  |  |  |  |
| R | 475 | 1583 | 0.72 | 0.30 | 33.4 | C |  |  |  |
| Westbound |  |  |  |  |  |  |  |  |  |
| L | 551 | 1770 | 0.12 | 0.31 | 22.3 | C | 22.8 | C |  |
|  |  |  |  |  |  |  |  |  |  |
| R | 475 | 1583 | 0.16 | 0.30 | 23.3 | C |  |  |  |
| Northbound |  |  |  |  |  |  |  |  |  |
| L | 1030 | 3433 | 0.64 | 0.30 | 28.7 | C | 27.0 | C |  |
| T | 414 | 1863 | 0.14 | 0.22 | 28.3 | C |  |  |  |
| R | 932 | 1583 | 0.07 | 0.59 | 8.0 | A |  |  |  |
| Southbound |  |  |  |  |  |  |  |  |  |
| L | 531 | 1770 | 0.10 | 0.30 | 22.8 | C | 13.5 | B |  |
| T | 414 | 1863 | 0.10 | 0.22 | 28.0 | C |  |  |  |
| R | 932 | 1583 | 0.29 | 0.59 | 9.3 | A |  |  |  |
| Intersection Delay $=24.7$ |  |  |  | ( sec | Intersection LOS $=\mathrm{C}$ |  |  |  |  |

Analyst: DEA
Agency: URS
Date: 1/26/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1F - SPUI

N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY


Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(\mathrm{s})$ | $\overline{\mathrm{v} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ | Delay LOS | Delay LOS |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 534 | 3433 | 0.76 | 0.16 | 42.6 | D | 36.9 | D |
|  |  |  |  |  |  |  |  |  |
| R | 897 | 1583 | 0.93 | 0.57 | 34.2 | C |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 275 | 1770 | 0.44 | 0.16 | 35.6 | D | 23.9 | C |
|  |  |  |  |  |  |  |  |  |
| R | 897 | 1583 | 0.11 | 0.57 | 9.0 | A |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 1945 | 3433 | 0.35 | 0.57 | 10.6 | B | 15.8 | B |
| T | 207 | 1863 | 0.54 | 0.11 | 40.6 | D |  |  |
| R | 510 | 1583 | 0.22 | 0.32 | 22.4 | C |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 1003 | 1770 | 0.14 | 0.57 | 9.3 | A | 33.0 | C |
| T | 207 | 1863 | 0.41 | 0.11 | 38.5 | D |  |  |
| R | 510 | 1583 | 0.84 | 0.32 | 39.8 | D |  |  |
|  | Inter | on D | 28.8 | (sec) | ) I | ter | tion | $S=C$ |

## Attachment E-4

2025 Grandview Section, Additional Analyses for At-Grade Options

Analyst: DEA
Agency: URS
Date: 3/6/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 233
Area Type: All other areas Jurisd:
Year : 2025 ALT 1G - AT GRADE

N/S St: CR 233

SIGNALIZED INTERSECTION SUMMARY

|  | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | T | R | L | T | R | L | T | R | L | T | R | I |
|  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |
| No. Lanes | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 |  |
| LGConfig | L | T | R | L | T | R | 1 L | T | R | 1 L | T | R | 1 |
| Volume | 1735 | 1410 | 355 | 195 | 1395 | 195 | 1180 | 60 | 50 | 1145 | 60 | 555 | 1 |
| Lane Width | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | \| 12.0 | 12.0 | 12.0 | \| |
| RTOR Vol | \| |  | 0 | \| |  | 0 | 1 |  | 0 | \| |  | 0 |  |



Intersection Performance Summary


Analyst: DEA
Agency: URS
Date: 3/6/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 233
Area Type: All other areas
Jurisd:
Year : 2025 ALT IG - AT GRADE
N/S St: CR 233


Cycle Length: 120.0 secs
Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(s)$ | $\overline{v / C}$ | $g / \bar{C}$ | $\overline{D e l a y ~ L O S}$ |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 572 | 3433 | 1.33 | 0.17 | 208.2 | F |  |  |
| T | 1576 | 3438 | 1.42 | 0.46 | 225.0 | F | 198.1 | F |
| R | 989 | 1583 | 0.37 | 0.63 | 11.2 | B |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 295 | 1770 | 0.32 | 0.17 | 44.7 | D |  |  |
| T | 1576 | 3438 | 1.34 | 0.46 | 191.0 | F | 170.2 | F |
| R | 989 | 1583 | 0.20 | 0.63 | 9.8 | A |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 429 | 3433 | 1.40 | 0.13 | 245.5 | F |  |  |
| T | 155 | 1863 | 0.57 | 0.08 | 58.1 | E | 186.4 | F |
| R | 462 | 1583 | 0.34 | 0.29 | 33.9 | C |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 429 | 3433 | 0.61 | 0.13 | 52.3 | D |  |  |
| T | 155 | 1863 | 0.57 | 0.08 | 58.1 | E | 14.8 | B |
| R | 1583 | 1583 | 0.62 | 1.00 | 0.7 | A |  |  |
|  | Intersection Delay $=157.7$ (sec/veh) Intersection LOS $=\mathrm{F}$ |  |  |  |  |  |  |  |

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/US 550/CR 233
Area Type: All other areas Jurisd:
Year : 2025 ALT 1F - AT GRADE
N/S St: US 550/CR 233

SIGNALIZED INTERSECTION SUMMARY


Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | (s) | $\overline{v / C}$ | $g / \mathrm{C}$ | $\overline{\text { Delay LOS }}$ | $\overline{\text { Delay LOS }}$ |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 858 | 3433 | 1.45 | 0.25 | 253.0 | F |  |  |
| T | 903 | 3610 | 1.01 | 0.25 | 78.6 | E | 142.5 | F |
| R | 857 | 1583 | 0.80 | 0.54 | 27.6 | C |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 858 | 3433 | 0.37 | 0.25 | 37.4 | D |  |  |
| T | 903 | 3610 | 1.22 | 0.25 | 155.6 | F | 106.9 | F |
| R | 857 | 1583 | 0.41 | 0.54 | 16.5 | B |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 858 | 3433 | 1.37 | 0.25 | 220.7 | F |  |  |
| T | 155 | 1863 | 1.12 | 0.08 | 164.0 | F | 167.8 | F |
| R | 594 | 1583 | 0.85 | 0.38 | 45.7 | D |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 858 | 3433 | 0.31 | 0.25 | 36.8 | D |  |  |
| T | 155 | 1863 | 0.99 | 0.08 | 123.2 | F | 21.3 | c |
| R | 1583 | 1583 | 0.61 | 1.00 | 0.7 | A |  |  |
|  | Intersection Delay $=119.2(\mathrm{sec} / \mathrm{veh}) \quad$ Intersection LOS $=\mathrm{F}$ |  |  |  |  |  |  |  |

Analyst: DEA Inter.: US 160/US 550/CR 233

Agency: URS
Date: 3/15/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Area Type: All other areas
Jurisd:
Year : 2025 ALT 1F - AT GRADE
N/S St: US 550/CR 233

SIGNALIZED INTERSECTION SUMMARY

|  | \| Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  | \| | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  | 1 L | T | R | L | T | R | L | T | R | L | T | R | I |
|  | 1 |  |  | 1 |  |  | 1 |  |  | 1 |  |  | 1 |
| No. Lanes | 12 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 |
| LGConfig | \| L | T | R | L | T | R | L | T | R | 1 L | T | R | 1 |
| Volume | 11165 | 1710 | 1390 | 1250 | 1710 | 330 | 11105 | 190 | 400 | 1415 | 215 | 1475 | \\| |
| Lane Width | \| 12.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | \| 12.0 | 12.0 | 12.0 | 1 |
| RTOR Vol | 1 |  | 0 | 1 |  | 0 | 1 |  | 0 | \| |  | 0 | 1 |



Intersection Performance Summary
Cycle Length: 120.0 secs

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :--- | :--- | :--- |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(s)$ | $\overline{v / C}$ | $g / \bar{C}$ | $\overline{D e l a y ~ L O S}$ |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 858 | 3433 | 1.43 | 0.25 | 244.8 | F |  |  |
| $T$ | 903 | 3610 | 1.99 | 0.25 | 496.0 | F | 380.0 | F |
| R | 857 | 1583 | 1.71 | 0.54 | 350.7 | F |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 858 | 3433 | 0.31 | 0.25 | 36.8 | D |  |  |
| T | 903 | 3610 | 1.99 | 0.25 | 496.0 | F | 376.8 | F |
| R | 857 | 1583 | 0.40 | 0.54 | 16.5 | B |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 858 | 3433 | 1.36 | 0.25 | 212.6 | F |  |  |
| T | 155 | 1863 | 1.29 | 0.08 | 225.3 | F | 172.3 | F |
| R | 594 | 1583 | 0.71 | 0.38 | 35.8 | D |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 858 | 3433 | 0.51 | 0.25 | 39.2 | D |  |  |
| T | 155 | 1863 | 1.46 | 0.08 | 293.1 | F | 50.4 | D |
| R | 1583 | 1583 | 0.98 | 1.00 | 18.2 | B |  |  |
|  | Intersection Delay $=278.3$ (sec/veh) (ntersection LOS $=\mathrm{F}$ |  |  |  |  |  |  |  |

Analyst: DEA
Agency: URS
Date: 1/26/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas Jurisd:
Year : 2025 ALT 1G/1F - AT GRADE
N/S St: SH 172/CR 234


Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | (s) | $\overline{\mathrm{V} / \mathrm{C}}$ | $\mathrm{g} / \overline{\mathrm{C}}$ |  | $\overline{\text { Delay LOS }}$ |


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 429 | 3433 | 0.64 | 0.13 | 53.1 | D |  |  |
| T | 1347 | 3438 | 0.80 | 0.39 | 35.8 | D | 33.1 | C |
| R | 1055 | 1583 | 0.32 | 0.67 | 8.7 | A |  |  |
| Westbound |  |  |  |  |  |  |  |  |
| L | 221 | 1770 | 0.31 | 0.13 | 48.6 | D |  |  |
| T | 1347 | 3438 | 0.63 | 0.39 | 30.3 | C | 29.8 | c |
| R | 1055 | 1583 | 0.07 | 0.67 | 7.0 | A |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 801 | 3433 | 0.83 | 0.23 | 50.9 | D |  |  |
| T | 155 | 1863 | 0.37 | 0.08 | 53.6 | D | 49.9 | D |
| R | 396 | 1583 | 0.16 | 0.25 | 35.3 | D |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 413 | 1770 | 0.13 | 0.23 | 36.5 | D |  |  |
| T | 155 | 1863 | 0.27 | 0.08 | 52.5 | D | 44.8 | D |
| R | 396 | 1583 | 0.68 | 0.25 | 45.2 | D |  |  |
|  | Intersection Delay $=36.8$ |  |  | ( $\mathrm{sec} / \mathrm{veh}$ ) |  | Intersection LOS = D |  |  |

Analyst: DEA
Agency: URS
Date: 1/26/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/SH 172-CR 234
Area Type: All other areas
Jurisd:
Year : 2025 ALT 1G/1F - AT GRADE
N/S St: SH 172/CR 234

SIGNALIZED INTERSECTION SUMMARY

|  | Eastbound |  |  | Westbound |  |  | I Northbound |  |  | Southbound |  |  | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | T | R | L | T | R | L | T | R | L | $T$ | R | I |
|  |  |  |  |  |  |  | 1 |  |  | I |  |  |  |
| No. Lanes | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |  |
| LGConfig | 1 L | T | R | 1 L | T | R | 1 L | T | R | \| L | T | R | 1 |
| Volume | 1385 | 1345 | 795 | 1115 | 1245 | 90 | 1640 | 105 | 105 | \|135 | 80 | 405 | I |
| Lane Width | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | I |
| RTOR Vol | 1 |  | 0 | 1 |  | 0 | 1 |  | 0 | \| |  | 0 |  |



Intersection Performance Summary


## Attachment F

2025 Florida Mesa and Valley Section Highway Analyses

Attachment F-1
2025 Florida Mesa and Valley Section, No Action Alternative, Highway Analyses

| General Information | Site Information |
| :---: | :---: |
| Analyst DEA <br> Agency or Company URS <br> Date Performed $3 / 19 / 2005$ <br> Analysis Time Period AM PEAK | Highway / Direction of Travel EB US 160 <br> From/To FLORIIA MESA <br> Jurisdiction  <br> Analysis Year 2025 NO ACTION |
| Input Data |  |
|  |  |
| Average Travel Speed |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (0) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9 or 20-15) | 1.5 1.5 |
| Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17) | 1.1 1.1 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.976 0.976 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13) | 0.99 0.99 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i}\left(\right.$ (PHF** $\left.\mathrm{HV}^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 1232 1019 |
| Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed |
| Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$ <br> Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ <br> Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}{ }^{+0.00776\left(\mathrm{~V}_{\mathrm{f}} \mathrm{f}_{\mathrm{HV}}\right)}$ $58.0 \mathrm{mi} / \mathrm{h}$ <br> Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $0.7 \mathrm{mi} / \mathrm{h}$ |  |
| Percent Time-Spent-Following |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (0) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{H V} \mathrm{f}_{H V}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{R}-1\right)\right)$ | 1.000 1.000 |
| Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14) | 1.00 1.00 |
| Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ( $\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} f_{\mathrm{G}}\right)$ | 1189 984 |
| Base percent time-spent-following ${ }^{4}, \operatorname{BPTSF}(\%) \quad$ BPTSF $=100\left(1-\mathrm{e}^{\text {av }}{ }^{\text {b }}\right.$ ) | 89.6 |
| Adj. for no-passing zone, $\mathrm{f}_{\text {np }}(\%)$ (Exhibit. 20-20) | 3.0 |
| Percent time-spent-following, PTSF(\%) PTSF $=$ BPTSF $+f_{\text {np }}$ | 92.6 |
| Level of Service and Other Performance Measures |  |
| Level of service, LOS (Exhibit 20-3 or 20-4) | E |
| Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$ | 0.72 |
| Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh- mi)VMT 15 $_{15}=0.25$ L $_{\text {(V/PHF) }}$ | 892 |
| Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}$ (veh- mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{4}$ | 3390 |
| Peak 15-min total travel lime, $\mathrm{TT}_{15}$ (veh-h) $\Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$ | 22.4 |
| Notes |  |
| 1.If the highway is extended segment (level) or roling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$. <br> 3. For the analysis direction only. 4. Exhibit $20-21$ provides factors $a$ and $b$. <br> 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade. |  |





## Attachment F-2

2025 Florida Mesa and Valley Section, Alternative C (Preferred Alternative) and Alternative A, Highway Analyses

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-mail:
OPERATIONAL ANALYSIS

|  |  |
| :--- | :--- |
| Analyst: | DEA |
| Agency/Co: | URS |
| Date: | $3 / 15 / 2005$ |
| Analysis Period: | AM PEAK |
| Highway: | US 160 |
| From/To: | WEST OF CR 222/223 |
| Jurisdiction: |  |
| Analysis Year: | 2025 |
| Project ID: | US 160 |


| Direction | Eastbound 1 |  | Westbound 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Lane width | 12.0 | ft | 12.0 | ft |
| Lateral clearance: |  |  |  |  |
| Right edge | 6.0 | ft | 6.0 | ft |
| Left edge | 6.0 | ft | 6.0 | ft |
| Total lateral clearance | 12.0 | ft | 12.0 | ft |
| Access points per mile | 2 |  | 2 |  |
| Median type | Divided |  | Divid |  |
| Free-flow speed: | Base |  | Base |  |
| FFS or BFFS | 60.0 | mph | 60.0 | mph |
| Lane width adjustment, FLW | 0.0 | mph | 0.0 | mph |
| Lateral clearance adjustment, FLC | 0.0 | mph | 0.0 | mph |
| Median type adjustment, FM | 0.0 | mph | 0.0 | mph |
| Access points adjustment, FA | 0.5 | mph | 0.5 | mph |
| Free-flow speed | 59.5 | mph | 59.5 | mph |


| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Volume, V | 1130 | vph | 935 | vph |
| Peak-hour factor, PHF | 0.95 |  | 0.95 |  |
| Peak 15-minute volume, v15 | 297 |  | 246 |  |
| Trucks and buses | 5 | \% | 5 | \% |
| Recreational vehicles | 0 | \% |  | \% |
| Terrain type | Rolling |  | Rolling |  |
| Grade | 0.00 | \% | 0.00 | \% |
| Segment length | 0.00 | mi | 0.00 | mi |
| Number of lanes | 2 |  | 2 |  |
| Driver population adjustment, fP | 1.00 |  | 1.00 |  |
| Trucks and buses PCE, ET | 2.5 |  | 2.5 |  |
| Recreational vehicles PCE, ER | 2.0 |  | 2.0 |  |
| Heavy vehicle adjustment, fHV | 0.930 |  | 0.930 |  |
| Flow rate, vp | 639 | pcphpl | 529 | pcphpl |


| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Flow rate, vp | 639 | pcphpl | 529 | pcphpl |
| Free-flow speed, FFS | 59.5 | mph | 59.5 | mph |
| Avg. passenger-car travel speed, $S$ | 59.5 | mph | 59.5 | mph |
| Level of service, LOS | A |  | A |  |
| Density, D | 10.7 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ | 8.9 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS

|  |  |
| :--- | :--- |
| Analyst: | DEA |
| Agency/Co: | URS |
| Date $:$ | $3 / 15 / 2005$ |
| Analysis Period: PM PEAK |  |
| Highway: | US 160 |
| From/To: | WEST OF CR $222 / 223$ |
| Jurisdiction: |  |
| Analysis Year: | 2025 |
| Project ID: | US 160 |

FREE-FLOW SPEED

| Direction | $\begin{aligned} & \text { Eastbound } \\ & 1 \end{aligned}$ |  | $\begin{aligned} & \text { Westwound } \\ & 2 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Lane width | 12.0 | ft | 12.0 | ft |
| Lateral clearance: |  |  |  |  |
| Right edge | 6.0 | ft | 6.0 | ft |
| Left edge | 6.0 | ft | 6.0 | ft |
| Total lateral clearance | 12.0 | ft | 12.0 | $f t$ |
| Access points per mile | 2 |  | 2 |  |
| Median type | Divided |  | Divided |  |
| Free-flow speed: | Base |  | Base |  |
| FFS or BFFS | 60.0 | mph | 60.0 | mph |
| Lane width adjustment, FLW | 0.0 | mph | 0.0 | mph |
| Lateral clearance adjustment, FLC | 0.0 | mph | 0.0 | mph |
| Median type adjustment, FM | 0.0 | mph | 0.0 | mph |
| Access points adjustment, FA | 0.5 | mph | 0.5 | mph |
| Free-flow speed | 59.5 | mph | 59.5 | mph |

$\qquad$ VOLUME
Direction
Volume, $V$
Peak-hour factor, PHF
Peak 15 -minute volume, v15
Trucks and buses
Recreational vehicles
Terrain type
Grade
Segment length
Number of lanes
Driver population adjustment, fP
Trucks and buses PCE, ET
Recreational vehicles PCE, ER
Heavy vehicle adjustment, fHV
Flow rate, vp

| 1 |  | 2 |  |
| :--- | :--- | :--- | :--- |
| 1585 | vph | 1450 | vph |
| 0.95 |  | 0.95 |  |
| 417 |  | 382 |  |
| 5 | $\%$ | 5 | $\%$ |
| 0 | $\%$ | 0 | $\%$ |
| Rolling |  | Rolling |  |
| 0.00 | $\%$ | 0.00 | $\%$ |
| 0.00 | mi | 0.00 | mi |
| 2 |  | 2 |  |
| 1.00 |  | 1.00 |  |
| 2.5 |  | 2.5 |  |
| 2.0 |  | 2.0 |  |
| 0.930 |  | 0.930 |  |
| 896 | pcphpl | 820 | pcphpl |


| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Flow rate, vp | 896 | pophpl | 820 | pophpl |
| Free-flow speed, FFS | 59.5 | mph | 59.5 | mph |
| Avg. passenger-car travel speed, $S$ | 59.5 | mph | 59.5 | mph |
| Level of service, LOS | B |  | B |  |
| Density, D | 15.1 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ | 13.8 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |

## Attachment G

2025 Florida Mesa and Valley Section Intersection Analyses

## Attachment G-1

2025 Florida Mesa and Valley Section, No Action Alternative, Intersection Analyses


| LOS | $A$ | $B$ | $F$ | $E$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Approach delay <br> (s/veh) | - | - | 3257 | 48.1 |  |
| Approach LOS | - | - | $F$ | $E$ |  |
| $H C S 2000^{\mathrm{TM}}$ | Copyright © 2003 University of Florida, All Rights Reserved | Version 4.1d |  |  |  |

## TWO-WAY STOP CONTROL SUMMARY

| General Information |  |
| :--- | :--- |
| Analyst | DEA |
| Agency/Co. | URS |
| Date Performed | $3 / 19 / 2005$ |
| Analysis Time Period | PM PEAK |

Site Information

| Intersection | US 160/CR 222/223 |
| :--- | :--- |
| Jurisdiction |  |
| Analysis Year | 2025 NO ACTION |
|  |  |

Project Description US 160
East/West Street: US 160
Intersection Orientation: East-West

North/South Street: CR 222/CR 223
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

| Major Street | Eastbound |  |  | Westbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | 1 | 2 | 3 | 4 | 5 | 6 |
|  | L | T | R | L | T | R |
| Volume (veh/h) | 100 | 1320 | 165 | 15 | 1340 | 10 |
| Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly Flow Rate (veh/h) | 105 | 1389 | 173 | 15 | 1410 | 10 |
| Proportion of heavy vehicles, $\mathrm{P}_{\mathrm{HV}}$ | 2 | -- | -- | 2 | - | -- |
| Median type | Undivided |  |  |  |  |  |
| RT Channelized? |  |  | 0 |  |  | 0 |
| Lanes | 0 | 1 | 1 | 0 | 1 | 0 |
| Configuration | $L T$ |  | $R$ | LTR |  |  |
| Upstream Signal |  | 0 |  |  | 0 |  |
| Minor Street | Northbound |  |  | Southbound |  |  |
| Movement | 7 | 8 | 9 | 10 | 11 | 12 |
|  | L | T | R | L | T | R |
| Volume (veh/h) | 60 | 10 | 15 | 5 | 5 | 50 |
| Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly Flow Rate (veh/h) | 63 | 10 | 15 | 5 | 5 | 52 |
| Proportion of heavy vehicles, $\mathrm{P}_{\mathrm{HV}}$ | 2 | 2 | 2 | 2 | 2 | 2 |
| Percent grade (\%) | 0 |  |  | 0 |  |  |
| Flared approach |  | $N$ |  |  | $N$ |  |
| Storage |  | 0 |  |  | 0 |  |
| RT Channelized? |  |  | 0 |  |  | 0 |
| Lanes | 0 | 1 | 0 | 0 | 1 | 0 |
| Configuration |  | LTR |  |  | LTR |  |

Control Delay, Queue Length, Level of Service

| Approach | EB | WB | Northbound |  |  | Southbound |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 |
| Lane Configuration | $L T$ | $L T R$ |  | $L T R$ |  |  | $L T R$ |  |
| Volume, v (vph) | 105 | 15 |  | 88 |  |  | 62 |  |
| Capacity, $\mathrm{c}_{\mathrm{m}}(\mathrm{vph})$ | 479 | 423 |  |  |  |  |  |  |
| v/c ratio | 0.22 | 0.04 |  |  |  |  |  |  |
| Queue length (95\%) | 0.83 | 0.11 |  |  |  |  |  |  |
| Control Delay (s/veh) | 14.6 | 13.8 |  |  |  |  |  |  |


| LOS | $B$ | $B$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Approach delay (s/veh) | -- | -- |  |  |
| Approach LOS | -- | - |  |  |
| $H C S 2000^{\text {TM }}$ |  | 200 | ersity of Florida, All Rights Reserved | Version 4.1d |

## Attachment G-2

2025 Florida Mesa and Valley Section, Alternative C (Preferred Alternative) and Alternative A, Intersection Analyses

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 222/223
Area Type: All other areas
Jurisd:
Year : 2025

N/S St: CR 222/223

SIGNALIZED INTERSECTION SUMMARY


Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(s)$ | $\overline{v / C} \quad g / C$ | Delay LOS |  |


| Eastbound |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 197 | 1770 | 0.16 | 0.11 | 36.6 | D |  |  |  |
| T | 1337 | 3438 | 0.83 | 0.39 | 29.4 | C | 28.7 | C | C |
| R | 967 | 1583 | 0.05 | 0.61 | 7.0 | A |  |  |  |
| Westbound |  |  |  |  |  |  |  |  |  |
| L | 197 | 1770 | 0.08 | 0.11 | 36.1 | D |  |  |  |
| T | 1337 | 3438 | 0.47 | 0.39 | 20.9 | C | 21.0 | C |  |
| R | 967 | 1583 | 0.01 | 0.61 | 6.9 | A |  |  |  |
| Northbound |  |  |  |  |  |  |  |  |  |
| L | 295 | 1770 | 0.72 | 0.17 | 43.5 | D |  |  |  |
| T | 207 | 1863 | 0.02 | 0.11 | 35.7 | D | 42.0 | D | D |
| R | 440 | 1583 | 0.04 | 0.28 | 23.7 | C |  |  |  |
| Southbound |  |  |  |  |  |  |  |  |  |
| L | 295 | 1770 | 0.04 | 0.17 | 31.5 | C |  |  |  |
| T | 207 | 1863 | 0.05 | 0.11 | 35.9 | D | 27.2 | C | C |
| R | 440 | 1583 | 0.32 | 0.28 | 26.2 | C |  |  |  |
|  | Intersection Delay $=27.7$ |  |  | ( sec | ) | e | tion | S | $=C$ |

HCS2000: Signalized Intersections Release 4.1d

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 222/223
Area Type: All other areas Jurisd:
Year : 2025

N/S St: CR 222/223

SIGNALIZED INTERSECTION SUMMARY


Intersection Performance Summary


## Attachment H

2025 Dry Creek and Gem Village Section Highway Analyses

## Attachment H-1 2025 Dry Creek and Gem Village Section, No Action Alternative, Highway Analyses




| DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET |  |
| :---: | :---: |
| General Information | Site Information |
| Analyst DEA <br> Agency or Company URS <br> Date Performed $3 / 19 / 2005$ <br> Analysis Time Period AM PEAK | Highway/ Direction of Travel WB US 160 <br> From/To GEM VILLAGE <br> Jurisdiction  <br> Analysis Year 2025 NO ACTION |
| Input Data |  |
|  | F Class I highway Class II highway  <br> Terrain Level F Rolling <br> Grade Length mi Up/down <br> Peak-hour factor, PHF $0.95 \%$  <br> No-passing zone 57  <br> \% Trucks and Buses , $\mathrm{P}_{\mathrm{T}}$ $5 \%$  <br> \% Recreational vehicles, $\mathrm{P}_{\mathrm{R}}$ $0 \%$  <br> Access points/ mi 5  |
| Average Travel Speed |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (0) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{T}$ (Exhibit 20-9 or 20-15) | 1.5 1.5 |
| Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17) | 1.1 1.1 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.976 0.976 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13) | 0.99 0.99 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ( $\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 1008 817 |
| Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed |
| Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$ <br> Observed volume ${ }^{3}, V_{f}$ veh/h <br> Free-flow speed, FFS  <br> d  <br> FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(V_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $58.8 \mathrm{mi} / \mathrm{h}$ <br> Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $1.0 \mathrm{mi} / \mathrm{h}$ | Base free-flow speed ${ }^{3}$, BFFS $_{F M}$ $60.0 \mathrm{mi} / \mathrm{h}$ <br> Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh $20-5)$ $0.0 \mathrm{mi} / \mathrm{h}$ <br> Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$ <br> Free-flow speed, FFS ${ }_{d}\left(\right.$ FSS=BFFS-f ${ }_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}$ ) $58.8 \mathrm{mi} / \mathrm{h}$ <br> Average travel speed, ATS ATS=FFFS-0.00776. $\mathrm{v}_{\mathrm{p}}{ }^{-f} \mathrm{np}$ $43.5 \mathrm{mi} / \mathrm{h}$ |
| Percent Time-Spent-Following |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (o) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{T}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 1.000 1.000 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or $20-14$ ) | 1.00 1.00 |
| Directional flow rate ${ }^{2}, \mathrm{v}_{\mathrm{i}}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 974 789 |
| Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{\mathrm{d}}{ }^{\mathrm{b}}\right.$ ) | 85.2 |
| Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20) | 5.9 |
| Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{\text {np }}$ | 91.1 |
| Level of Service and Other Performance Measures |  |
| Level of service, LOS (Exhibit 20-3 or 20-4) | E |
| Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$ | 0.59 |
| Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{\text {( }}$ (V/PHF) | 1461 |
| Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}$ (veh-mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{4}$ | 5550 |
| Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh $/ \mathrm{h}) \quad \Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$ | 33.6 |
| Notes |  |
| 1. If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$. <br> 3. For the analysis direction only. 4. Exhibit 20-21 provides factors a and b . <br> 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade. |  |


| DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET |  |
| :---: | :---: |
| General Information | Site Information |
| Analyst DEA <br> Agency or Company URS <br> Date Performed $3 / 19 / 2005$ <br> Analysis Time Period PM PEAK | Highway/Direction of Travel WB US 160 <br> From/To GEM VILLAGE <br> Jurisdiction  <br> Analysis Year 2025 NO ACTION |
| Input Data |  |
|  |  |
| Average Travel Speed |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (0) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9 or 20-15) | 1.5 1.5 |
| Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17) | 1.1 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.976 0.976 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13) | 0.99 0.99 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{* f_{\mathrm{H}}}{ }^{*}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 943 1101 |
| Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed |
| Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$ <br> Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ <br> Free-flow speed, $\mathrm{FFS} \mathrm{S}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $58.8 \mathrm{mi} / \mathrm{h}$ <br> Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{rpp}}$ (Exhibit 20-19) | Base free-flow speed ${ }^{3}$, BFFS $_{F M}$ $60.0 \mathrm{mi} / \mathrm{h}$ <br> Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$ <br> Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$ <br> Free-flow speed, $\mathrm{FFS}_{\mathrm{d}}$ (FSS=BFFS-f $\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}$ ) $58.8 \mathrm{mi} / \mathrm{h}$ <br> Average travel speed, ATS ATS=FFS-0.00776v $\mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$ $42.1 \mathrm{mi} / \mathrm{h}$ |
| Percent Time-Spent-Following |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (0) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathbf{T}}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 1.000 1.000 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14) | 1.00 1.00 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} f_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 911 |
| Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{d}{ }^{\text {b }}\right.$ ) | 88.5 |
| Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20) | 3.2 |
| Percent time-spent-following, PTSF(\%) PTSF=BPTSF+f ${ }_{\mathrm{np}}$ | 91.7 |
| Level of Service and Other Performance Measures |  |
| Level of service, LOS (Exhibit 20-3 or 20-4) | E |
| Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$ | 0.55 |
| Peak $15-\mathrm{min}$ veh-miles of travel, $\mathrm{VMT}_{15}$ (veh- mi) VMT ${ }_{15}=0.25 L_{4}$ (V/PHF) | 1366 |
| Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}$ (veh-mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$ | 5190 |
| Peak 15-min total travel time, $\mathrm{TT}_{15}($ veh-h $) \quad \mathrm{T}_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$ | 32.5 |
| Notes |  |
| 1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$. <br> 3. For the analysis direction only. 4. Exhibit 20-21 provides factors $a$ and $b$. <br> 5. Use alternative Equation $20-14$ if some trucks operate at crawl speeds on a specific downgrade. |  |

## Attachment $\mathrm{H}-2$

2025 Dry Creek and Gem Village Section, Alternative H (Preferred Alternative) and Alternative C, Highway Analyses

URS Corporation

```
9960 Federal Drive, Suite 300
Colorado Springs, CO }8092
```

```
Phone:
```

Fax:
E-mail:

|  |  |
| :--- | :--- |
|  |  |
| Analyst: | DEA |
| Agency/Co: | URS |
| Date: | 3/15/2005 |
| Analysis Period: | AM PEAK |
| Highway: | US 160 |
| From/TO: | CR $222 / 223$ TO GEM VILLAGE |
| Jurisdiction: |  |
| Analysis Year: | 2025 |
| Project ID: | US 160 |


| Direction | Eastbound 1 |  | Westbound 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Lane width | 12.0 | ft | 12.0 | ft |
| Lateral clearance: |  |  |  |  |
| Right edge | 6.0 | ft | 6.0 | ft |
| Left edge | 6.0 | ft | 6.0 | ft |
| Total lateral clearance | 12.0 | ft | 12.0 | ft |
| Access points per mile | 3 |  | 2 |  |
| Median type | Divided |  | Divid |  |
| Free-flow speed: | Base |  | Base |  |
| FFS or BFFS | 60.0 | mph | 60.0 | mph |
| Lane width adjustment, FLW | 0.0 | mph | 0.0 | mph |
| Lateral clearance adjustment, FLC | 0.0 | mph | 0.0 | mph |
| Median type adjustment, FM | 0.0 | mph | 0.0 | mph |
| Access points adjustment, FA | 0.8 | mph | 0.5 | mph |
| Free-flow speed | 59.3 | mph | 59.5 | mph |
|  | VOLUME |  |  |  |
| Volume, v Direction | 1 |  | 2 |  |
|  | 1080 | vph | 625 | vph |
| Peak-hour factor, PHF | 0.95 |  | 0.95 |  |
| Peak 15-minute volume, v15 | 284 |  | 164 |  |
| Trucks and buses | 5 | \% | 5 | \% |
| Recreational vehicles | 0 | \% | 0 | \% |
| Terrain type | Rolling |  | Rolli |  |
| Grade | 0.00 | \% | 0.00 | \% |
| Segment length | 0.00 | mi | 0.00 | mi |
| Number of lanes | 2 |  | 2 |  |
| Driver population adjustment, fP | 1.00 |  | 1.00 |  |
| Trucks and buses PCE, ET | 2.5 |  | 2.5 |  |
| Recreational vehicles PCE, ER | 2.0 |  | 2.0 |  |
| Heavy vehicle adjustment, fHV | 0.930 |  | 0.930 |  |
| Flow rate, vp | 611 | pcphpl | 353 | pcphpl |


| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Flow rate, vp | 611 | pcphpl | 353 | pcphpl |
| Free-flow speed, FFS | 59.3 | mph | 59.5 | mph |
| Avg. passenger-car travel speed, | 59.3 | mph | 59.5 | mph |
| Level of service, LOS | A |  | A |  |
| Density, D | 10.3 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ | 5.9 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ | Overall results are not computed when free-flow speed is less than 45 mph.

URS Corporation
9960 Federal Drive, Suite 300
Colorado Springs, CO 80920
Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS $\qquad$
Analyst: DEA
Agency/Co: URS
Date: 3/15/2005
Analysis Period: PM PEAK
Highway: US 160
From/To: CR 222/223 TO GEM VILLAGE
Jurisdiction:
Analysis Year: 2025
Project ID: US 160

| Direction | Eastbound 1 |  | Westbound2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Lane width | 12.0 | ft | 12.0 | $f t$ |
| Lateral clearance: |  |  |  |  |
| Right edge | 6.0 | ft | 6.0 | ft |
| Left edge | 6.0 | ft | 6.0 | ft |
| Total lateral clearance | 12.0 | ft | 12.0 | ft |
| Access points per mile | 3 |  | 2 |  |
| Median type | Divided |  | Divided |  |
| Free-flow speed: | Base |  | Base |  |
| FFS or BFFS | 60.0 | mph | 60.0 | mph |
| Lane width adjustment, FLW | 0.0 | mph | 0.0 | mph |
| Lateral clearance adjustment, FLC | 0.0 | mph | 0.0 | mph |
| Median type adjustment, FM | 0.0 | mph | 0.0 | mph |
| Access points adjustment, FA | 0.8 | mph | 0.5 | mph |
| Free-flow speed | 59.3 | mph | 59.5 | mph |
| VOLUME |  |  |  |  |
| Direction | 1 |  | 2 |  |
| Volume, V | 1340 | vph | 1365 | vph |
| Peak-hour factor, PHF | 0.95 |  | 0.95 |  |
| Peak 15-minute volume, v15 | 353 |  | 359 |  |
| Trucks and buses | 5 | \% | 5 | \% |
| Recreational vehicles | 0 | \% | 0 | \% |
| Terrain type | Rolling |  | Rolling |  |
| Grade | 0.00 | \% | 0.00 | \% |
| Segment length | 0.00 | mi | 0.00 | mi |
| Number of lanes | 2 |  | 2 |  |
| Driver population adjustment, fP | 1.00 |  | 1.00 |  |
| Trucks and buses PCE, ET | 2.5 |  | 2.5 |  |
| Recreational vehicles PCE, ER | 2.0 |  | 2.0 |  |
| Heavy vehicle adjustment, fHV | 0.930 |  | 0.930 |  |
| Flow rate, vp | 758 | pcphpl | 772 | pcphpl |
|  | RESULTS |  |  |  |

FREE-FLOW SPEED

VOLUME

| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Flow rate, vp | 758 | pcphpl | 772 | pcphpl |
| Free-flow speed, FFS | 59.3 | mph | 59.5 | mph |
| Avg. passenger-car travel speed, $S$ | 59.3 | mph | 59.5 | mph |
| Level of service, LOS | B |  | B |  |
| Density, D | 12.8 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ | 13.0 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |

## Attachment I <br> 2025 Bayfield Section Highway Analyses

## Attachment l-1

2025 Bayfield Section, No Action Alternative, Highway Analyses

| DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information | Site Information |  |  |
| Analyst DEA <br> Agency or Company URS <br> Date Performed $3 / 19 / 2005$ <br> Analysis Time Period AM PEAK | Highway / Direction of Travel <br> From/To <br> Jurisdiction <br> Analysis Year | EB US 160 Bayfield 2025 NO ACTION |  |
| Input Data |  |  |  |
|  | Terrain Grade L Peak-ho No-pass <br> \% Truck <br> \% Recre <br> Access | highway <br> E Level <br> th mi Up <br> actor, PHF <br> zone <br> nd Buses, $\mathrm{P}_{\mathrm{T}}$ <br> nal vehicles, $P_{R}$ <br> ts/ mi | highway <br> ing <br> \% |
| Average Travel Speed |  |  |  |
|  | Analysis Direction (d) | Opposing Direction (0) |  |
| Passenger-car equivalents for trucks, $\mathrm{E}_{T}$ (Exhibit 20-9 or 20-15) | 1.5 | 1.5 |  |
| Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17) | 1.1 | 1.1 |  |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.976 | 0.976 |  |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13) | 0.99 | 0.99 |  |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ( $\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 599 | 670 |  |
| Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed |  |  |
| Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$ <br> Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ <br> Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \quad \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$ <br> Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad$ (Exhibit 20-19) $1.6 \mathrm{mi} / \mathrm{h}$ |  |  |  |
| Percent Time-Spent-Following [__ |  |  |  |
|  | Analysis Direction (d) | Opposing Direction (o) |  |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10 or 20-16) | 1.0 | 1.0 |  |
| Passenger-car equivalents for $R$ Vs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10 or 20-16) | 1.0 | 1.0 |  |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 1.000 | 1.000 |  |
| Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or 20-14) | 1.00 | 1.00 |  |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}\left(\right.$ ( $\left.\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 579 | 647 |  |
| Base percent time-spent-following ${ }^{4}$, BPTSF $(\%) \quad$ BPTSF $=100\left(1-\mathrm{e}^{\left.\mathrm{av}_{\mathrm{d}}{ }^{\mathrm{b}}\right)}\right.$ | 77.1 |  |  |
| Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20) | 9.4 |  |  |
| Percent time-spent-following, PTSF(\%) PTSF $=$ BPTSF $+\mathrm{f}_{\mathrm{np}}$ | 86.5 |  |  |
| Level of Service and Other Performance Measures |  |  |  |
| Level of service, LOS (Exhibit 20-3 or 20-4) | E |  |  |
| Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$ | 0.35 |  |  |
| Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{\text {( }}$ (V/PHF) | 289 |  |  |
| Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}\left(\right.$ veh- mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}$ | 1100 |  |  |
| Peak 15-min total travel time, $\mathrm{TT}_{15}$ (veh-h) $\Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$ | 6.1 |  |  |
| Notes |  |  |  |
| 1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$. 3. For the analysis direction only. 4. Exhibit $20-21$ provides factors a and b . <br> 5. Use aiternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade. |  |  |  |


| DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET |  |
| :---: | :---: |
| General Information | Site Information |
| Analyst DEA <br> Agency or Company URS <br> Date Performed $3 / 19 / 2005$ <br> Analysis Time Period PM PEAK | Highway / Direction of Travel EB US 160 <br> From/To  <br> Jurisdiction BAYFIELD <br> Analysis Year 2025 NO ACTION |
| Input Data |  |
|  |  |
| Average Travel Speed |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (0) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9 or 20-15) |  |
| Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9 or 20-17) | 1.1 1.1 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}} \quad \mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 0.976 0.957 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7 or 20-13) | 0.99 0.93 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{i} /\left(\mathrm{PHF}^{*} \mathrm{f}_{H}{ }^{*} \mathrm{f}_{G}\right)$ | 823 473 |
| Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed |
| Field Measured speed ${ }^{3}, \mathrm{~S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$ <br> Observed volume ${ }^{3}, \mathrm{~V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$ <br> Free-flow speed, $\mathrm{FFS}_{\mathrm{d}} \mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$ <br> Adjustment for no-passing zones, $\mathrm{f}_{\mathrm{np}} \quad($ Exhibit 20-19) $2.3 \mathrm{mi} / \mathrm{h}$ | Base free-flow speed ${ }^{3}$, BFFS $_{\text {FM }}$ $60.0 \mathrm{mi} / \mathrm{h}$ <br> Adj. for lane width and shoulder width, ${ }^{3} \mathrm{f}_{\mathrm{LS}}($ Exh 20-5) $0.0 \mathrm{mi} / \mathrm{h}$ <br> Adj. for access points ${ }^{3}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 20-5) $1.0 \mathrm{mi} / \mathrm{h}$ <br> Free-flow speed, FFS ${ }_{d}\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $59.0 \mathrm{mi} / \mathrm{h}$ <br> Average travel speed, ATS ATS=FFSS-0.00776 $\mathrm{v}_{\mathrm{p}}{ }^{-\mathrm{f}_{\mathrm{np}}}$ $46.6 \mathrm{mi} / \mathrm{h}$ |
| Percent Time-Spent-Following |  |
|  | Analysis Direction (d) $\quad$ Opposing Direction (o) |
| Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10 or 20-16) | 1.0 1.5 |
| Passenger-car equivalents for RV , $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10 or 20-16) | 1.0 1.0 |
| Heavy-vehicle adjustment factor, $\mathrm{f}_{H V} \mathrm{f}_{H V}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$ | 1.000 0.976 |
| Grade adjustment factor ${ }^{1}, \mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8 or $20-14$ ) | 1.00 0.94 |
| Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) \mathrm{v}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}}{ }^{*} \mathrm{f}_{\mathrm{G}}\right)$ | 795 459 |
| Base percent time-spent-following ${ }^{4}$, BPTSF(\%) BPTSF $=100\left(1-\mathrm{e}^{\mathrm{av}}{ }_{\mathrm{d}}{ }^{\mathrm{b}}\right.$ ) | 77.7 |
| Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}}(\%)$ (Exhibit. 20-20) | 14.1 |
| Percent time-spent-following, PTSF(\%)PTSF=BPTSF+f ${ }_{\mathrm{np}}$ | 91.8 |
| Level of Service and Other Performance Measures |  |
| Level of service, LOS (Exhibit 20-3 or 20-4) | E |
| Volume to capacity ratio $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 1,700$ | 0.48 |
| Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh- mi) $\mathrm{VMT}_{15}=0.25 \mathrm{~L}_{4}$ (V/PHF) | 397 |
| Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}\left(\right.$ veh - mi) $\quad \mathrm{VMT}_{60}=\mathrm{V}^{*} \mathrm{~L}_{4}$ | 1510 |
| Peak 15-min total travel time, $\Pi_{15}\left(\right.$ veh-h) $\quad \Pi_{15}=\mathrm{VMT}_{15} / \mathrm{ATS}$ | 8.5 |
| Notes |  |
| 1.If the highway is extended segment (level) or rolling terrain, $f_{G}=1.0 \quad$ 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{0}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$. <br> 3. For the analysis direction only. 4. Exhibit 20-21 provides factors $a$ and $b$. <br> 5. Use alternative Equation 20-14 if some trucks operate at crawl speeds on a specific downgrade. |  |




HCS2000 ${ }^{\text {TM }}$

## Attachment l-2

2025 Bayfield Section, Alternative B (Preferred Alternative) and Alternative A, Highway Analyses

## URS Corporation

```
9960 Federal Drive, Suite 300
```

Colorado Springs, CO 80920
Phone: Fax:
E-mail:

|  |  |
| :--- | :--- |
| Analyst: | DEA |
| Agency/Co: | URS |
| Date: | $3 / 15 / 2005$ |
| Analysis Period: | AM PEAK |
| Highway: | US 160 |
| From/To: | GEM VILLAGE TO BAYFIELD |
| Jurisdiction: |  |
| Analysis Year: | 2025 |
| Project ID: | US 160 |

FREE-FLOW SPEED


VOLUME

| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Volume, V | 750 | vph | 925 | vph |
| Peak-hour factor, PHF | 0.95 |  | 0.95 |  |
| Peak 15-minute volume, v15 | 197 |  | 243 |  |
| Trucks and buses | 5 | \% | 5 | \% |
| Recreational vehicles | 0 | \% | 0 | \% |
| Terrain type | Rolling |  | Rolling |  |
| Grade | 0.00 | \% | 0.00 | \% |
| Segment length | 0.00 | mi | 0.00 | mi |
| Number of lanes | 2 |  | 2 |  |
| Driver population adjustment, fP | 1.00 |  | 1.00 |  |
| Trucks and buses PCE, ET | 2.5 |  | 2.5 |  |
| Recreational vehicles PCE, ER | 2.0 |  | 2.0 |  |
| Heavy vehicle adjustment, fHV | 0.930 |  | 0.930 |  |
| Flow rate, vp | 424 | pcphpl | 523 | pcphpl |
|  | RESULTS |  |  |  |


| Direction | 1 |  | 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Flow rate, vp | 424 | pcphpl | 523 | pophpl |
| Free-flow speed, FFS | 59.5 | mph | 59.5 | mph |
| Avg. passenger-car travel speed, $S$ | 59.5 | mph | 59.5 | mph |
| Level of service, LOS | A |  | A |  |
| Density, D | 7.1 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ | 8.8 | $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ |

```
9 9 6 0 ~ F e d e r a l ~ D r i v e , ~ S u i t e ~ 3 0 0 ~
```

Colorado Springs, CO 80920

Phone:
Fax:
E-mail:

OPERATIONAL ANALYSIS $\qquad$

| Analyst: | DEA |
| :--- | :--- |
| Agency/Co: | URS |
| Date: | $3 / 15 / 2005$ |
| Analysis Period: | PM PEAK |
| Highway: | US I60 |
| From/To: | GEM VILLAGE TO BAYFIELD |
| Jurisdiction: |  |
| Analysis Year: | 2025 |
| Project ID: | US 160 |


| Direction | Eastbound <br> 1 |  | Westbound 2 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Lane width | 12.0 | ft | 12.0 | ft |
| Lateral clearance: |  |  |  |  |
| Right edge | 6.0 | $f t$ | 6.0 | $f t$ |
| Left edge | 6.0 | ft | 6.0 | ft |
| Total lateral clearance | 12.0 | ft | 12.0 | ft |
| Access points per mile | 2 |  | 2 |  |
| Median type | Divided |  | Divid |  |
| Free-flow speed: | Base |  | Base |  |
| FFS or BFFS | 60.0 | mph | 60.0 | mph |
| Lane width adjustment, FLW | 0.0 | mph | 0.0 | mph |
| Lateral clearance adjustment, FLC | 0.0 | mph | 0.0 | mph |
| Median type adjustment, FM | 0.0 | mph | 0.0 | mph |
| Access points adjustment, FA | 0.5 | mph | 0.5 | mph |
| Free-flow speed | 59.5 | mph | 59.5 | mph |

VOLUME

Direction
Volume, $V$
Peak-hour factor, PHF

| $\quad 1$ |  | 2 |  |
| :--- | :--- | :--- | :--- |
| 1010 | vph | 865 | vph |
| 0.95 |  | 0.95 |  |
| 266 |  | 228 |  |
| 5 | $\%$ | 5 | $\%$ |
| 0 | $\%$ | 0 | $\%$ |
| Rolling |  | Rolling |  |
| 0.00 | $\%$ | 0.00 | $\%$ |
| 0.00 | mi | 0.00 | mi |
| 2 |  | 2 |  |
| 1.00 |  | 1.00 |  |
| 2.5 |  | 2.5 |  |
| 2.0 |  | 2.0 |  |
| 0.930 |  | 0.930 |  |
| 571 | pcphpl | 489 | pcphpl |

$\qquad$
$\left.\begin{array}{lllll} & \text { Direction } & 1 & & 2 \\ \text { Flow rate, vp } & & 571 & \text { pcphpl } & 489\end{array}\right]$ pcphpl

Overall results are not computed when free-flow speed is less than 45 mph .

## Attachment J

2025 Bayfield Section Intersection Analyses

## Attachment J-1

2025 Bayfield Section, No Action Alternative, Intersection Analyses

Analyst: DEA
Agency: URS
Date: 3/18/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501
Area Type: All other areas
Jurisd:
Year : 2025 NO ACTION
N/S St: CR 501

SIGNALIZED INTERSECTION SUMMARY




Northbound
LTR
477
1430
0.94
0.33
55.4 E
55.4
E

Southbound
LTR
566
1697
0.42
0.33
23.7 C 23.7
C
Intersection Delay $=51.9 \quad(\mathrm{sec} / \mathrm{veh}) \quad$ Intersection LOS $=\mathrm{D}$

| Analyst: DEA | Inter.: US $160 / C R 501$ |
| :--- | :--- |
| Agency: URS | Area Type: All other areas |
| Date: $3 / 18 / 2005$ | Jurisd: |
| Period: PM PEAK | Year : 2025 NO ACTION |
| Project ID: US 160 |  |
| E/W St: US 160 | $\mathrm{~N} / \mathrm{S}$ St: CR 501 |

SIGNALIZED INTERSECTION SUMMARY



Intersection Performance Summary


| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(s)$ | $\overline{v / C}$ | $g / C$ | $\overline{D e l a y ~ L O S}$ |

Lane Group Approach

| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 374 | 1770 | 0.18 | 0.21 | 29.4 | C |  |  |
| TR | 611 | 1773 | 1.19 | 0.34 | 129.9 | F | 121.3 | F |
| Westbound |  |  |  |  |  |  |  |  |
| L | 374 | 1770 | 1.01 | 0.21 | 85.5 | F |  |  |
| TR | 610 | 1771 | 0.59 | 0.34 | 25.7 | C | 56.4 | E |

Northbound
LTR
418
1506
1.02
0.28
81.5 F
$81.5 \quad \mathrm{~F}$

Southbound
LTR
383
1378
0.64
0.28
32.3

C 32.3
C

Intersection Delay $=81.9$ (sec/veh) Intersection LOS $=F$

## Attachment J-2 <br> 2025 Bayfield Section, Alternative B (Preferred Alternative), Intersection Analyses

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501 NORTH SIDE
Area Type: All other areas
Jurisd:
Year : 2025 BAYFIELD B ALT.

N/S St: CR 501



Intersection Performance Summary
Cycle Length: 90.0 secs

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |  |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| Lane | Group | Flow Rate |  |  |  |  |
| Grp | Capacity | $(s)$ | $\overline{v / C} \quad g / C$ |  | Delay LOS | $\overline{\text { Delay LOS }}$ |

Eastbound

Westbound

| L | 590 | 1770 | 0.54 | 0.33 | 25.5 | C | 25.0 | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| R | 528 | 1583 | 0.06 | 0.33 | 20.5 | C |  |  |
| Northbound |  |  |  |  |  |  |  |  |
| L | 295 | 1770 | 0.34 | 0.17 | 33.8 | C |  |  |
| T | 1035 | 1863 | 0.15 | 0.56 | 9.8 | A | 19.3 | B |

Southbound

| T | 621 | 1863 | 0.27 | 0.33 | 22.2 | C | 16.9 | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R | 1143 | 1583 | 0.06 | 0.72 | 3.7 | A |  |  |
|  | Intersection Delay | $=21.0$ | (sec/veh) | Intersection | LOS | $=$ | $C$ |  |

HCS2000: Signalized Intersections Release 4.1d

| Analyst: DEA | Inter.: US $160 / C R$ 501 NORTH SIDE |
| :--- | :--- |
| Agency: URS | Area Type: All other areas |
| Date: $3 / 15 / 2005$ | Jurisd: |
| Period: PM PEAK | Year : 2025 BAYFIELD B ALT. |
| Project ID: US 160 |  |
| E/W St: US 160 | $N / S$ St: CR 501 |

SIGNALIZED INTERSECTION SUMMARY


Duration $0.25 \quad$| Area Type: All other areas |
| ---: |
| Signal Operations |

$\qquad$

| Phase Combination | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |

EB Left
Thru
Right Peds
WB Left A
Thru
Right A
Peds

A
EB Right
NB Right
SB Right
Green
Yellow
30.0

All Red
4.0
-
NB Left

Thru A A
Right
Peds
SB Left
Thru A
Right A
Peds

WB Right

| 15.0 | 30.0 |
| :--- | :--- |
| 4.0 | 4.0 |
| 1.0 | 1.0 |
| Cycle Length: 90.0 |  |

Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group | Approach |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(\mathrm{s})$ | $\overline{\mathrm{v} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ | $\overline{\text { Delay LOS }}$ | $\overline{\text { Delay LOS }}$ |

Eastbound

Westbound

| L | 590 | 1770 | 0.64 | 0.33 | 27.8 | C |  | 26.9 | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R | 528 | 1583 | 0.12 | 0.33 | 20.9 | C |  |  |  |
| Northbound | 295 | 1770 | 0.21 | 0.17 | 32.8 | C |  |  |  |
| L | 1035 | 1863 | 0.14 | 0.56 | 9.7 | A | 16.8 | B |  |
| T |  |  |  |  |  |  |  |  |  |

Southbound
T
621
1863
0.30
0.33
22.5
C 17.7
B
R

| 1143 | 1583 | 0.06 | 0.72 | 3.6 | C | 17.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | B

HCS2000: Signalized Intersections Release 4.1d

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501 SOUTH SIDE
Area Type: All other areas
Jurisd:
Year : 2025 BAYFIELD B ALT.
N/S St: CR 501

|  | Eastbound |  |  | Westbound |  |  |  | \| Northbound |  |  |  | 1 Southbound |  |  | \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | T | R | L |  | T | R | 1 | L | T | R | 1 L | T | R | \| |
| No. Lanes | 1 | 0 | 1 |  | 0 | 0 | 0 |  |  | 1 | 1 | \| 1 | 1 | 0 | । |
| LGConfig | 1 L |  | R |  |  |  |  | I |  | T | R | 1 L | T |  | I |
| Volume | 170 |  | 140 |  |  |  |  | 1 |  | 170 | 255 | 120 | 445 |  | 1 |
| Lane Width | 112.0 |  | 12.0 |  |  |  |  | I |  | 12.0 | 12.0 | 112.0 | 12.0 |  | 1 |
| RTOR Vol | 1 |  | 0 |  |  |  |  | । |  |  | 0 | 1 |  |  | 1 |

Duration $0.25 \quad$ Area Type: All other areas
Signal Operations
$\qquad$

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Phase Combination | 1 | 2 | 3 | 4 |

Thru
Right A
Peds
WB Left
Thru
Right Peds
NB Right A
SB Right
Green 30.0
Yellow
4.0
1.0

A

4 |
NB Left
Thru A
Right
A
Peds
SB Left A
Thru A A
Right
Peds
EB Right
WB Right

| $15.0 \quad 30.0$ |  |
| :--- | :--- |
| 4.0 | 4.0 |
| 1.0 | 1.0 |
| Cycle Length: $90.0 \quad$ secs |  |

Intersection Performance Summary


| Eastbound |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 590 | 1770 | 0.13 | 0.33 | 21.0 | C |  |  |
|  |  |  |  |  |  |  | 21.9 | C |
| R | 528 | 1583 | 0.28 | 0.33 | 22.3 | C |  |  |

Northbound

| T | 621 | 1863 | 0.29 | 0.33 | 22.4 | C | 11.5 | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | 1143 | 1583 | 0.23 | 0.72 | 4.3 | A |  |  |
| Southbound |  |  |  |  |  |  |  |  |
| L | 295 | 1770 | 0.07 | 0.17 | 31.7 | C |  |  |
| T | 1035 | 1863 | 0.45 | 0.56 | 12.2 | B | 13.0 | B |

Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501 SOUTH SIDE
Area Type: All other areas
Jurisd:
Year : 2025 BAYFIELD B ALT.
N/S St: CR 501

SIGNALIZED INTERSECTION SUMMARY



Intersection Performance Summary

| Appr $/$ |  | Adj Sat Elow Rate (s) | Ratios |  | Lane Group |  | Approach |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Group |  |  |  |  |  |  |  |
| Grp | Capacity |  | $\mathrm{v} / \mathrm{c}$ | $\mathrm{g} / \mathrm{C}$ | Dela | LOS | Dela | OS |
| Eastbou |  |  |  |  |  |  |  |  |
| L | 590 | 1770 | 0.12 | 0.33 | 20.9 | C |  |  |
|  |  |  |  |  |  |  | 21.5 | C |
| R | 528 | 1583 | 0.23 | 0.33 | 21.9 | C |  |  |
| Westbo |  |  |  |  |  |  |  |  |

Northbound

| T | 621 | 1863 | 0.22 | 0.33 | 21.8 | C | $10.0-$ | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R | 1143 | 1583 | 0.25 | 0.72 | 4.4 | A |  |  |
| Southbound | 295 | 1770 | 0.16 | 0.17 | 32.4 | C |  |  |
| L | 1035 | 1863 | 0.50 | 0.56 | 12.7 | B | 14.3 | B |
| T |  |  |  |  |  |  |  |  |
|  |  | Intersection Delay | $=13.9$ | (sec/veh) | Intersection LOS $=$ | B |  |  |

Attachment J-3
2025 Bayfield Section, Alternative A, Intersection Analyses

```
Analyst: DEA
Agency: URS
Inter.: US 160/CR 501
 Area Type: All other areas
Date: 3/15/2005
Period: AM PEAK
Project ID: US 160
E/W St: US 160
Jurisd:
Year : 2025 BAYFIEID A ALT.
N/S St: CR 501
```

SIGNALIZED INTERSECTION SUMMARY

|  | Eas | tboun |  |  | tbou |  | Nort | thbound | und |  |  | uthbou | und | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | T | R | 1 L | T | R | L | T | R |  | \| L | T | R | । |
|  | 1 |  |  | , |  |  | 1 |  |  |  |  |  |  |  |
| No. Lanes | \| 1 | 2 | 1 |  | 2 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 |  |
| LGConfig | 1 L | T | R | 1 L | T | R | \| L | T | R | 1 | \| L | T | R |  |
| Volume | 170 | 340 | 140 | 1305 | 455 | 30 | 195 | 75 | 255 |  | 120 | 140 | 65 | \| |
| Lane Width | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 | 112.0 | 12.0 | 12.0 |  | 112.0 | 12.0 | 12.0 |  |
| RTOR Vol | 1 |  | 0 | 1 |  | 0 | , |  | 0 |  | 1 |  | 0 |  |
| Duration | 0.25 |  | Area | Type | All | other | areas |  |  |  |  |  |  |  |
|  |  |  |  |  | gnal | Operat | ions |  |  |  |  |  |  |  |
| Phase Comb | nation | 1 | 2 | 3 | 4 | \| |  | 5 |  | 6 | 7 |  | 8 |  |
| EB Left |  | A |  |  |  | \| NB | Left | A |  |  |  |  |  |  |
| Thru |  |  | A |  |  | 1 | Thru |  |  | A |  |  |  |  |
| Right |  |  | A |  |  | \| | Right |  |  | A |  |  |  |  |
| Peds |  |  |  |  |  | \| | Peds |  |  |  |  |  |  |  |
| WB Left |  | A |  |  |  | \| SB | Left | A |  |  |  |  |  |  |
| Thru |  |  | A |  |  | , | Thru |  |  | A |  |  |  |  |
| Right |  |  | A |  |  | 1 | Right |  |  | A |  |  |  |  |
| Peds |  |  |  |  |  | 1 | Peds |  |  |  |  |  |  |  |
| NB Right |  | A |  |  |  | 1 EB | Right | A |  |  |  |  |  |  |
| SB Right |  | A |  |  |  | 1 WB | Right | A |  |  |  |  |  |  |
| Green |  | 20.0 | 24.0 |  |  |  |  | 15.0 |  | 1.0 |  |  |  |  |
| Yellow |  | 4.0 | 4.0 |  |  |  |  | 4.0 |  | . 0 |  |  |  |  |
| All Red |  | 1.0 | 1.0 |  |  |  |  | 1.0 |  | . 0 |  |  |  |  |

Intersection Performance Summary
Cycle Length: 90.0 secs



Analyst: DEA
Agency: URS
Date: 3/15/2005
Period: PM PEAK
Project ID: US 160
E/W St: US 160

Inter.: US 160/CR 501
Area Type: All other areas
Jurisd:
Year : 2025 BAYFIELD A ALT.
N/S St: CR 501

SIGNALIZED INTERSECTION SUMMARY


Cycle Length: 90.0 secs
Intersection Performance Summary

| Appr/ | Lane | Adj Sat | Ratios | Lane Group |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Lane | Group | Flow Rate |  |  |  |
| Grp | Capacity | $(\mathrm{s})$ | $\overline{\mathrm{v} / \mathrm{C}} \quad \mathrm{g} / \mathrm{C}$ |  | Delay LOS |




[^0]:    * For Alternative F Modified, US 550 is realigned to connect to US 160 at CR 233 (west).

[^1]:    HCS2000 ${ }^{\text {TM }}$

[^2]:    Overall results are not computed when free-flow speed is less than 55 mph.

[^3]:    Overall results are not computed when free-flow speed is less than 55 mph .

