Bus Only Shoulders in the Twin Cities

Colorado DOT
February 2, 2012

Presented by Carl Jensen,
Mn/DOT Team Transit Project Manager
Outline

- Background
- History
- Safety
 - Law
 - Enforcement
- Benefits
- Design
- Maintenance
- Funding
- Driver Training
BACKGROUND

- Increasing **congestion** in the Twin Cities
- Not possible to “build” out of congestion
- Need for innovative ways to increase capacity
- Use existing infrastructure
- **Team Transit** a partnership of Mn/DOT, Metro Transit, Cities, Counties and other and other stakeholders.
HISTORY OF BOSs

- First pilot project on Highway 252 (arterial)
- First use of freeway shoulder during spring flood of 1993
 - Governor Carlson called emergency meeting to find a solution
- Authority to Law
SAFETY
Safety Statistics by Mn/DOT

- In Jan 2001 Mn/DOT conducted crash analysis* on the existing 175 miles of BOS. Over nine years there were only 20 crashes involving a bus, and each crash involved property damage only.

- In 2009, 17 years of operation, over 290 miles of BOS, and only one injury crash.

*crashes recorded by State Patrol
SAFETY

Safety Statistics by Mn/DOT update 2011

- Mn/DOT updated the crash findings in Mid 2011, records from 2007 to 2009 on the existing miles of BOS, which is now 296 miles. There has been 1 additional injury accident, the driver of the SOV was at fault.

*crashes recorded by State Patrol
Safety Statistics by Metro Transit for 2003

- Collisions: 21
- Sideswipes/mirror hits: 19
- Total Losses: $7,680
- Largest Loss: $3,000

- 1718 express trips per day can use shoulders
- 36,500 express trips per month
- Monthly express trips per collision = 13,908
- Single trip collision probability: Once every 27.3 years.
Why is it safe?

- Operational Guidelines:
 - Low speeds, <35 mph
 - Speeds not >15 mph faster than adjacent traffic
 - Must yield to any vehicle entering, merging within, or exiting through the shoulder
 - Must re-enter mainline where shoulder is obstructed (vehicle, debris, incident, etc.)

- Accountable, Professional Drivers
- BOS use not required
- Visible, big bus
- High vantage point for bus drivers
- Small number of vehicles, large number of people moved
BOS into Law

- Uniform Vehicle Code
 - prohibits driving on shoulders
 - Operational Guidelines & Alternate Standard
- Originally, buses operated on the shoulder under the authority of the Commissioner of Transportation (pilot projects)
- Passage of a BOS law in codified regulations and standards and made it possible for law enforcement to issue tickets for improper use
- Charter buses
Enforcement

- Tickets not typically to bus drivers
 - Garage supervisors go out and radar “clock” buses and fix any problems
- Gradation of realization (started without public awareness campaigns)
- Copycat fear not realized
- “Jealous Motorist” occasional problem
Bus-Only Shoulder Benefits

- **Move** the most people through congestion on existing infrastructure

- **Travel time** savings = advantage for rider AND $$ for transit provider

- **Reliability**, buses on schedule despite congestion

- **Ridership** increased = less people in cars

- **Rider perception** time savings 2X greater than actual
Economic Benefits

Capital Cost comparison

- LRT projects vary in cost from $15 million to $100 million per mile, with the average cost per mile approximately $46 million.
- Cheapest BRT option - $2.5 million to $2.9 million per mile, mixed flow with general traffic, excluding any cost associated with acquiring the right of way.
- BOS in the Twin Cities range from as little as $1,500 per mile to $200,000 per mile (2007 dollars: avg $150,000 per mile).

- Operational costs (actual numbers difficult)
 - fewer buses and drivers needed
DESIGN

- **BOS width**
 - 10’ min (absolute value)
 - 11.5’ min next to barriers like bridges (12’ preferred)
 - 12’ new construction

- **Thickness**
 - Determined by analysis based on soil conditions and the number of buses that will be using the segment
 - As a rule of thumb, the minimum thickness is 7” of bituminous
 - Enough to compensate for variety of underlying material
 - Matches curb and gutter for good compaction
 - Full depth concrete for constructability

- **Catch basins**
 - Reinforced as caution
 - Sump reduced from 0.33’ (4”) to 0.1’ (1.5”) or less with Water Resources review.
DESIGN

● Noise Walls
 ● Due to updates in 23 CFR 772 a noise analysis is required if the project will be using Federal Funds.
 ● The addition of a through-traffic lane(s). This includes the addition of a through-traffic lane that functions as a HOV lane, High-Occupancy Toll (HOT) lane, bus lane, or truck climbing lane.
 ● As of January 2012, we have not used any Federal Funds on a stand alone bus shoulder project. We believe that an analysis would not require the installation of noise walls with a bus shoulder project.

● Rumble Strips
● Ramp volumes
Signs

- **Watch for Buses on Shoulder sign** (posted at entrance ramps or cross streets)
- **Exception sign** (posted at “pinch point” on BOS)
- **Typical Shoulder sign** (posted approx every 1 mile) “Begin” or “End” signs may be posted above this sign
- **No Special Pavement Markings**
MAINTENANCE

● Maintenance, Snow Removal and Plowing
 ● Shoulders cleared of obstructions and snow as part of normal maintenance activities.
 ● Routine done in off-peak hrs
 ● Maintain BOS (adequate thickness) with mainline

● Emergency Response
 ● Non-issue
 ● Bus moves out of way for ANYTHING in the shoulder
FUNDING

- **Capital Costs**
 - Mn/DOT – construction
 - $2 million budget
 - Metro Transit – park and rides
 - 1996 – Mn/DOT contributes directly to transit projects
 - 1997 – Team Transit Set-Aside of $2 million/year
 - 2003 bonding package - $46 million to capital costs
 - 2006 – Team Transit budget halved to $1 million
 - 2008 – Bonding Package of $20 million for transit advantages
 - Current budget – varies form $1 to $3 million/year

- **Operational Costs**
 - Transit Providers (like Metro Transit)
 - FTA – Fixed-guideway funding – $14.7 million in 2002
 - FTA no longer classifies Bus Only Shoulders as a fixed-guideway
Driver Training

- Training Manual
- Class time
- Route & Safety Pamphlets
- Video
- On-board training
Website

http://www.dot.state.mn.us/teamtransit/

Transit providers in the metro area

Metro Transit
Metro Commuter Services
Andoka Traveler
Hawthorne Light Rail Transit
Maple Grove
Minneapolis Valley
Plymouth Mhtlink
Southwest Transit
Blue Xpress

Planned Transit Corridors

Contact Us
MnDOT Team Transit
Project Manager:
Pam Jansen
1500 W. County Rd B-2
Roseville MN, 55113
Ph: 651/224-7711

Bus-only shoulders

Current and Planned Bus Only Shoulders

Goal: To move the most people through congestion
- To invest in highway transit advantage capital improvements that will support and encourage transit use in congested corridors
- To interact with local agencies involved in transit for a seamless system of information sharing and project coordination
- To preserve the more than 200 miles of bus shoulders in the Metro
- To inform other DOTs on the cost-effective advantages and other transit advantages of bus shoulder use

Training for bus drivers (video)

General Information
- Transit advantage fact sheet
- Bus only shoulders fact sheet
- MnPASS

Statutory and Regulations
- Bus shoulder law
- Commission's order
- Guidelines on shoulder use by buses
- Operating rules
- FAQs

Technical Information
- Geometric design statements

History
- History of bus shoulders in the Twin Cities (pdf)

Park and Ride Lots
- General Information
- Metropolitan Council 2030 Park and Ride Plan
- Outside Metro Area
Thank You

Minnesota Department of Transportation

www.dot.state.mn.us/metro/teamtransit/

Contact Carl Jensen
Team Transit PM
Carl.Jensen@state.mn.us
Phone: 651-234-7711