Appendices

Appendix A. US 36 / SH 66 InterGovernmental Agreement

INTERGOVERNMENTAL AGREEMENT
 AMONG
 THE TOWN OF LYONS, THE CITY OF LONGMONT, THE TOWN OF MEAD, THE TOWN OF FIRESTONE, THE COUNTY OF BOULDER, THE COUNTY OF WELD, AND
 THE STATE OF COLORADO DEPARTMENT OF TRANSPORTATION

THIS AGREEMENT (hereinafter referred to as the "Agreement") is entered into effective as of the date defined below by and among the Cities/Towns of Lyons, Longmont, Mead, and Firestone and the Counties of Boulder and Weld (hereinafter referred to collectively as the "Cities and Counties"), and the State of Colorado, Department of Transportation (hereinafter referred to as the "Department"), said parties being referred to collectively herein as the "Agencies."

RECITALS:

WHEREAS, The Agencies are authorized by the provisions of Article XIV, Section 18(2)(a), Colorado Constitution, and Sections 29-1-201, et. seq., C.R.S., to enter into contracts with each other for the performance of functions that they are authorized by law to perform on their own; and

WHEREAS, Each Agency is authorized by Section 43-2-147(1)(a), C.R.S., to regulate access to public highways within its jurisdiction; and

WHEREAS, The coordinated regulation of vehicular access to public highways is necessary to maintain the efficient and smooth flow of traffic without compromising pedestrian and alternative modes of transportation circulation, to reduce the potential for traffic accidents, to protect the functional level and optimize the traffic capacity, to provide an efficient spacing of traffic signals, and to protect the public health, safety and welfare; and

WHEREAS, The Agencies desire to provide for the coordinated regulation of vehicular access for the section of United States Highway 36 between McConnell Drive (M.P 21.00) and Highland Drive (M.P. 21.764), and the section of Colorado State Highway 66 between Highland Drive (M.P. 28.693) and Weld County Road 19 (M.P. 47.912) (hereinafter referred to as the "Segment"), which is within the jurisdiction of the Agencies; and

WHEREAS, The Agencies desire to collaborate to assure all transportation modes including pedestrian, bicycle, vehicle, and mass transit are given sufficient consideration and adequate funding support with each transportation improvement project that affects access within the identified project limits; and

WHEREAS, The Agencies are authorized pursuant to Section 2.12 of the 2002 State Highway Access Code, 2 C.C.R. 601-1 (the "Access Code") to achieve such objective by written agreement among themselves adopting and implementing a comprehensive and mutually acceptable highway access control plan for the Segment for the purposes recited above; and

WHEREAS, The development of this Access Control Plan adheres to the requirements of the Access Code, Section 2.12.

NOW THEREFORE, for and in consideration of the mutual promises and undertakings herein contained, the Agencies agree as follows:

1. The Access Control Plan dated March 2020 for the Segment (hereinafter referred to as the "Access Control Plan") is attached hereto as Exhibit A and incorporated herein.
2. The Agencies shall regulate access to the Segment in compliance with the Access Control Plan, the Highway Access Law, section 43-2-147, C.R.S., (the "Access Law") and the applicable sections of the Access Code. Vehicular access to the Segment shall be permitted when such access is in compliance with the Access Control Plan, the Access Law and the applicable sections of the Access Code.
3. Accesses that were in existence in compliance with the Access Law prior to the effective date of this Agreement may continue in existence until such time as a change in the access is required by the Access Control Plan or in the course of highway reconstruction. When closure, modification, or relocation of access is necessary or required, the Agency(ies) having jurisdiction shall utilize appropriate legal process to affect such action.
4. Actions taken by any Agency with regard to transportation planning and traffic operations within the areas described in the Access Control Plan shall be in conformity with this Agreement. Per Section 2.12 (3) of the Access Code, design waivers may be approved if agreed upon by the Agencies having jurisdiction.
5. Parcels of real property created after the effective date of this Agreement that adjoin the Segment shall not be provided with direct access to the Segment unless the location, use and design thereof conform to the provisions of this Agreement.
6. This Agreement supersedes and controls all prior written, oral agreements, and representations of the Agencies and constitutes the whole agreement between them with respect to regulating vehicular access to the Segment. No additional or different oral representation, promise or agreement shall be binding on either Agency. This agreement may be amended or terminated only in writing executed by the Agencies with express authorization from their respective governing bodies or legally designated officials. Upon thirty-day notice, any party to this Agreement may withdraw from the Agreement in writing, without consent of the other party. To the extent the Access Control Plan, attached as Exhibit A to this Agreement, is modified by a change, closure, relocation, consolidation or addition of an access, the Agencies may amend the attached Exhibit A so long as the amendment to the Access Control Plan is executed in writing and amended in accord with the Access Law and Access Code. The Access Control Plan Amendment Process has been included in Exhibit B. This Agreement is based upon and is intended to be consistent with the Access Law and the Access Code as now or hereafter constituted. An amendment to either the Access Law or the Access Code that becomes effective after the effective date of this Agreement and that conflicts irreconcilably with an express provision of this Agreement may be grounds for revision of this Agreement.
7. This Agreement does not create any current financial obligation for any Agency. Any future financial obligation of any Agency shall be subject to the execution of an appropriate encumbrance document, where required. Agencies involved in or affected by any particular or site-specific undertaking provided for herein will cooperate with each other to agree upon a fair and equitable allocation of the costs associated therewith, however, notwithstanding any provision of this Agreement, no Agency shall be required to expend its public funds for such undertaking without the express prior approval of its governing body, director, and if required, state controller. All financial obligations of the

Agencies hereunder shall be contingent upon sufficient funds therefore being appropriated, budgeted, and otherwise made available as provided by law.
8. Should any one or more sections or provisions of this Agreement be judicially determined to be invalid or unenforceable, such judgment shall not affect, impair or invalidate the remaining provisions of this Agreement, the intention being that the various provisions hereof are severable.
9. By signing this Agreement, the Agencies acknowledge and represent to one another that all procedures necessary to validly contract and execute this Agreement have been performed, and that the persons signing for each Agency have been duly authorized by such Agency to do so.
10. No portion of this Agreement shall be deemed to constitute a waiver, express or implied, of any of the immunities, rights, benefits, protections or other provisions of the Colorado Governmental Immunity Act, C.R.S. Section 24-10-101, et. seq. Nor shall any portion of this Agreement be deemed to have created a duty of care that did not previously exist with respect to any person not a party to this Agreement.
11. It is expressly understood and agreed that the enforcement of the terms and conditions of this Agreement, and all rights of action relating to such enforcement, shall be strictly reserved to the undersigned parties and nothing in this Agreement shall give or allow any claim or right of action whatsoever by any other person not included in this Agreement. It is the express intention of the undersigned parties that any entity other than the undersigned parties receiving services or benefits under this Agreement shall be an incidental beneficiary only.
12. This Agreement may be executed in counterparts, each of which shall be deemed an original and all of which together shall constitute one original Agreement. Facsimile signature shall be as effective as an original signature.
13. Effective Date. The Effective Date of this Agreement shall be the date of the last party to sign.

IN WITNESS WHEREOF, the Agencies have executed this Agreement effective as of the day and year last above written.

Town of Lyons, Colorado

Mayor, Town of Lyons

APPROVED AS TO FORM:
Town Attorney \quad Date

City of Longmont, Colorado

Mayor, City of Longmont

APPROVED AS TO FORM:

City Attorney Date

Town of Mead, Colorado

Mayor, Town of Mead

APPROVED AS TO FORM:

ATTEST:

Town Clerk

ATTEST:

City Clerk

ATTEST:

Town Clerk

Town of Firestone, Colorado

Mayor, Town of Firestone

APPROVED AS TO FORM:
Town Attorney Date

County of Boulder, Colorado

Commissioner, County of Boulder

APPROVED AS TO FORM:

County of Weld, Colorado

Commissioner, County of Weld

APPROVED AS TO FORM:
County Attorney Date

State of Colorado

Department of Transportation
Region 4 Regional Transportation Date
Director

ATTEST:

City Clerk

ATTEST:

County Clerk Date

ATTEST:

County Clerk Date

CONCUR:
Statewide Access Program Date
Administrator

"EXHIBIT - A"
 UNITED STATES HIGHWAY 36 AND COLORADO STATE HIGHWAY 66 (US 36 MP 21.00-MP 21.764 AND CO 66 MP 28.693-MP 47.912) ACCESS CONTROL PLAN
 March 2020

Town of Lyons, City of Longmont, Town of Mead, Town of Firestone, Boulder County, Weld County, and the State of Colorado Department of Transportation

I. PURPOSE

The purpose of this Access Control Plan (ACP) is to provide the Agencies with a comprehensive roadway access control plan for the pertinent segment of United States Highway 36 between McConnell Drive (M.P 21.00) and Highland Drive (M.P. 21.764), as well as the section of Colorado State Highway 66 between Highland Drive (M.P. 28.693) and Weld County Road 19 (M.P. 47.912).

II. AUTHORITY

The development of this Access Control Plan was completed pursuant to the requirements of the Access Code, Section 2.12, and adopted by the attached Agreement.

III. RESPONSIBILITIES

It is the responsibility of each of the Agencies to this Agreement to ensure that vehicular access to the Segment shall only be in conformance with this Agreement. The cost of access improvements, closures and modifications shall be determined pursuant to section 43-2-147(6) C.R.S., the Agreement, and this Access Control Plan. All access construction shall be consistent with the design criteria and specifications of the Access Code.

IV. EXISTING AND FUTURE ACCESS

A. The attached table provides a listing of each existing and future access point in the Segment. For each access point the following information is provided: location, description of the current access status, the future configuration (Access Plan), and the condition(s) for change. All access points along United States Highway 36 and Colorado State Highway 66 are defined by the approximate Department reference point (in hundredths of a mile) based on CDOT Highway Segment Description Mileposts. All access points are located at the approximate centerline of the access ($+/-50$ feet) unless otherwise noted in the Access Control Plan and associated tables. Exhibits graphically illustrating the Access Plan are attached for reference. In case of discrepancy, the Access Control Plan Table takes precedence.
B. All highway design and construction will be based on the assumption that the Segment will have a sufficient cross section to accommodate all travel lanes and sufficient right-of-way to accommodate longitudinal installation of utilities.

V. ACCESS MODIFICATION

Any proposed access modification including but not limited to an addition must be in compliance with this Agreement and the current Access Code design standards unless the Agency or Agencies having jurisdiction approves a design waiver under the waiver subsection of the Code.

Any access described in this section, which requires changes or closure as part of this Agreement or if significant public safety concerns develop, including but not limited to, when traffic operations have deteriorated, a documented accident history pattern has occurred, or when consistent complaints are received, may be closed, relocated, or consolidated, or turning movements may be restricted, or the access may be brought into conformance with this Access Control Plan, when a formal written request

Exhibit A

United States Highway 36 and Colorado State Highway 66
Access Control Plan
documenting reasons for the change is presented by the Agency(ies) having jurisdiction, with Department concurrence, or in the opinion of the Department, with the appropriate jurisdictional agency's concurrence, any of the following conditions occur:
a. The access is determined to be detrimental to the public's health, safety and welfare;
b. the access has developed an accident history that in the opinion of the Agency(ies) having jurisdiction or the Department is correctable by restricting the access;
c. the access restrictions are necessitated by a change in road or traffic conditions;
d. there is an approved (by the Agency(ies) having jurisdiction) change in the use of the property that would result in a change in the type of access operation as defined by the Access Code;
e. a highway reconstruction project provides the opportunity to make highway and access improvements in support of this Access Control Plan; or
f. the existing development does not allow for the proposed street and road network.

Access construction shall be consistent with the design and specifications of the current State Highway Access Code.

"EXHIBIT - B"
 UNITED STATES HIGHWAY 36 AND COLORADO STATE HIGHWAY 66 (US 36 MP 21.00-MP 21.764 AND CO 66 MP 28.693-MP 47.912) ACCESS CONTROL PLAN AMENDMENT PROCESS

1. A request for an amendment of the Access Control Plan must be initiated by one of the Agencies. The initiating Agency will be responsible for the costs associated with completing and documenting the Amendment.
2. Amendment requests must be submitted to and agreed upon by the affected jurisdictions: Department staff, City staff and/or County staff of the Intergovernmental Agreement, depending on the property location. The property or properties that are directly affected by the proposed amendment must be located within a jurisdiction's boundaries or within the boundaries of a legally recognized planning area, such as a Growth Management Area, for the jurisdiction to be considered an affected jurisdiction.
3. An amendment request shall include hard copy and electronic files of the following:
a) Description of changes to the Access Control Plan requested
b) Justification for the Amendment
c) Traffic Impact Study or analysis, depending upon the magnitude of the change requested. Any affected jurisdiction of the Intergovernmental Agreement can request this supporting documentation.
d) Amended Access Control Plan Table
e) Amended Access Control Plan Exhibit(s)/Map(s)
4. The Agencies shall review the submittal concurrently for completeness and for consistency with the access objectives, principles, and strategies described in the Colorado State Highway 66 Access Control Plan (March 2020) executive summary and Appendix for this corridor and with the design criteria and permit process of the State Highway Access Code.
5. Prior to approval of an amendment, all property owners directly affected by the amendment must be notified in writing and be given thirty (30) calendar days to state any objections. If an objection is lodged, approval of the amendment must be referred to the Agencies respective governing bodies. Depending on the magnitude of the change requested, a public meeting may be required. Any affected jurisdiction of the Intergovernmental Agreement can request a public meeting. The Agency initiating the amendment request shall be responsible for all public notification and public process, unless otherwise agreed to by the Agencies.
6. Amendments must be approved in writing by the following authorized designated officials: Regional Transportation Director for the Department, the City Manager and/or County Manager. At the authorized designated official's discretion, approval may be referred to their respective governing bodies: Chief Engineer for the Department and local elected officials for the City and County.
7. A written amendment must include the following:
a) Declarations page defining the parties, effective date, and details of the amendment. Refer to sample amendment attached to this Exhibit as Exhibit C.

Exhibit B

United States Highway 36 and Colorado State Highway 66
Access Control Plan Amendment Process
b) Signatures page for authorized designated officials. Refer to Exhibit C.
c) Amended Access Control Plan table and exhibits. Table and exhibits should be replaced in their entirety.

A signed amendment must be attached to the original Intergovernmental Agreement.
8. If a minimum of 66% (aka, five) of the affected jurisdictions of the Intergovernmental Agreement do not come to agreement on a proposed amendment, the content of the original Access Control Plan remains intact.

"EXHIBIT - C"
 SAMPLE AMENDMENT TO INTERGOVERNMENTAL AGREEMENT AMONG THE TOWN OF LYONS, THE CITY OF LONGMONT, THE TOWN OF MEAD, THE TOWN OF FIRESTONE, THE COUNTY OF BOULDER, THE COUNTY OF WELD, AND THE STATE OF COLORADO DEPARTMENT OF TRANSPORTATION
 DATED

WHEREAS:

The Town of Lyons, the City of Longmont, the Town of Mead, the Town of Firestone, the County of Boulder, and the County of Weld (hereinafter referred to collectively as the "Cities and Counties") and the State of Colorado, Department of Transportation (hereinafter referred to as the "Department"), said parties being referred to collectively herein as the "Agencies", entered into an Agreement on \qquad
, 2020 to adopt an Access Control Plan dated March, 2020 for the section of United States Highway
36 between McConnell Drive (M.P 21.00) and Highland Drive (M.P. 21.764), and the section of Colorado State Highway 66 between Highland Drive (M.P. 28.693) and Weld County Road 19 (M.P. 47.912) (hereinafter referred to as the "Segment").

The Agencies desire to amend this Agreement in accordance with the attached table for the Segment.
NOW, THEREFORE, the Agencies do hereby agree:
The Agreement and the terms and conditions therein shall remain unchanged other than those sections and exhibits listed below:

The attached table and exhibits for United States Highway 36 and Colorado State Highway 66 in Exhibit A shall be replaced with the table attached to this Amendment.

IN WITNESS WHEREOF, the parties hereto have executed this Amendment as of the day and year written above:

Town of Lyons, Colorado

Town Administrator Date

City of Longmont, Colorado

City Manager Date

Town of Mead, Colorado

Town Manager
Date

Town of Firestone, Colorado

Town Manager Date

County of Boulder, Colorado

County Manager Date

County of Weld, Colorado
County Manager Date

State of Colorado, Department of Transportation

[^0]
Appendix B. Existing Access Maps

Parcel Boundary/ ROW Boundary
Municipal Boundary

O Milepost
Full Movement (Signalized)
Full Movement (Unsignalized)

- 3/4 Movement
\times Access Closed
\triangle Right-in, Right-out only
Emergency Access Only
At-Grade Rail Crossing

Ave ${ }^{\text {SH }}$ En Planning and

Parcel Boundary/ ROW Boundary
Municipal Boundary

Floodplain

O Milepost
Full Movement (Signalized) Full Movement (Unsignalized)
-3/4 Movement
\triangle Right-in, Right-out only Emergency Access Only
At-Grade Rail Crossing
X Access Closed
y
$+$

SH66 ACP - Existing Access Configuration

Rivers/ Streams
Floodplain
Milepost
Parcel Boundary/ ROW Boundary
Full Mov
nt (Signalized)
Full Movement (Unsignalized)

3/4 Movement
\times Access Closed
\triangle Right-in, Right-out only
Emergency Access Only
At-Grade Rail Crossing

A

Map Sheet 10

*Note: Map Sheets may overlap

SH66 ACP - Existing Access Configuration

Floodplain
O Milepost
Parcel Boundary/ ROW Boundary
Municipal Boundary

Full Movement (Signalized)
Full Movement (Unsignalized)

- 3/4 Movement
\triangle Right-in, Right-out only
Emergency Access Only
At-Grade Rail Crossing

- 3/4 Movement
\triangle Right-in, Right-out only
Emergency Access Only
At-Grade Rail Crossing

SH66 ACP - Existing Access Configuration

Legend
Rivers/ Streams
Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary

Floodplain
O Milepost
Full Movement (Signalized)
Full Movement (Unsignalized)
\triangle Right-in, Right-out only Emergency Access Only

At-Grade Rail Crossing

X Access Closed
x -者

SH66 ACP - Existing Access Configuration Map Sheet 14

SH66 ACP - Existing Access Configuration
nn Rivers/Streams
Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
-
Milepost
full (Signalized) Full Movement (Unsignalized)

Milepost
Full Movement (Signalized)
Full Movement (Unsignalized)

- 3/4 Movement
\triangle Right-in, Right-out only Emergency Access Only

At-Grade Rail Crossing
\times Access Closed
Access

A

- Existing Access Configuration

Map Sheet 22
*Note: Map Sheets may overlap
Actyy $\begin{aligned} & \text { SH } \\ & \text { Environmental Linkages Study }\end{aligned}$

Appendix C. Public Involvement Material

C.1. Open House 1 Postcard Notification

\& Environmental Linkages (PEL) study and ACP from
Lyons to Weld County Road 19. These meetings are a continuation of the study that began in 2017. You received this notice because your address is within $1 / 2$ mile of the project corridor. However, we want input from the greater community, so please invite neighbors and community members.
*Both meetings will provide the same content.

> Next Steps:
> Late Spring 2019-Share \& present draft ACP for public input

summer 2019 - Share final PEL \& ACP
to public to public questionnaire and webmap. For information and to learn more about the
project, visit: https://www.codot.gov/library/studies/co-66-pel
 transportation alternatives and learn about CDOT's risk and resiliency
 will make recommendations for future changes to the location and design of driveways and intersections.
Thursday, April 18, 2019 | 4:30 to 7:30 p.m.* Longs Peak Middle School 1500 14th Avenue
Longmont, CO 80501 Weld County Southwest Services Complex
4209 County Road $241 / 2$ Longmont, CO 80504 Longs Peak

Requests for communication assistance or reasonable accommodations for special needs can be made by contacting the project prior to the meeting at 720-200-8978.

Tuesday, April 16, 2019 | 4:30 to 7:30 p.m.*

The Colo

CDOT
C.2. Open House 2 Postcard Notification and Boards
The Colorado Department of Transportation (CDOT) is hosting an Open House to present the Draft SH 66 Access Control Plan (ACP). This plan is related but separate from the overall SH 66 Planning and Environmental Linkages Study from Lyons to Weld County Road 19. The ACP is assessing all existing and proposed intersections and driveways along the highway. The ACP will include recommendations for changes to the location and design of access points to improve safety and the movement of all forms of transportation. The recommendations of the plan will be gradually implemented over time as funding becomes available, as redevelopment occurs, and as safety needs arise. What changes to access could the plan include?

- Consolidate, close, and/or move access points
- Restrict certain movements
- Provide access using alternative routes such as frontage roads
- Recommend potential locations for traffic signals, roundabouts,
- Recommend potential locations for traffic signals, roundabouts, or interchanges
How can I get involved to help develop a successful Access Control Plan?
Attend the Open House on July 25th
- Learn about the methods and benefits of access management
- Fill out a comment form at the Open House or on the project's website: https://www.codot.gov/library/studies/co-66-pel Input received at the Open House and from the website will be used to develop the Final Access Control Plan scheduled to be adopted
in fall, 2019 . in fall, 2019.
Your attendance and input are needed!

[^1]YOU'RE INVITED

Thursday, July 25, 2019 | Anytime from 4:30 to 7:00 p.m Longmont Senior Center, Room D \& E

Longmont, CO 80501
Requests for communication assistance or reasonable accommodations for special needs can be made by contacting the project prior to the Open House at 720-200-8978.

We
 to the SH 66

 Access Control Plan

 Access Control Plan

 Open House

 Open House July 25, 2019

Thank you for attending!

Purpose of tonight's meeting:

- Present the Access Control Plan's purpose, goals, and study process
- Present the draft Access Control Plan
- Gather your comments regarding the proposed recommendations

COLORADO

Department of Transportation

What Is an Access Control Plan?

Any intersection or driveway along a roadway is called an access point

- At access points there is a potential for conflicts between all modes of transportation (vehicle, pedestrian, and bicycle) compromising the overall safety for travelers
- Vehicles turning into and out of access points can cause other vehicles to slow down, resulting in delay, congestion, or crashes
An Access Control Plan:
- Determines what access points will be allowed
- Establishes where accesses will be located
- Determines what kind of traffic movements will be allowed at each access
- Identifies alternative access routes and circulation as necessary
- Ensures each abutting property has access directly to SH 66 or to local roadways
- Is a long-range vision for the corridor
- Will not determine the future number of lanes or design features of SH 66

Implementation of the SH 66 Access Control Plan will occur in phases or incrementally over time based on:

- Safety needs
- The development and redevelopment process
- Available funding
- Traffic needs

\square There are no planned projects or identified funding that would change existing access

Overview

What are the goals of this Access Control Plan?

Identify improvements to the local transportation network that promote safety for all modes of transportation
\square Blend the corridor vision from the PEL with the requirements of the CDOT State Highway Access Code
\square Assist future development and redevelopment along SH 66 by identifying the locations and type of access

To provide efficient movement for all modes of transportation along SH 66

Why does SH 66 need an Access Control Plan?

SH 66 has 373 existing access points (driveways and intersections) within the study area limits from Lyons (McConnell Dr) to WCR 19, which is an average of nearly 19 accesses per mile

Controlling the number of access points on SH 66:

- Reduces conflict points where a crash may occur on the highway. This is applicable not only for vehicles, but also for pedestrians and bicycles having to cross multiple driveways on the corridor
- Creates fewer locations for vehicles to brake or turn onto or off the highway resulting in more efficient travel for through traffic
- Makes the corridor more visually appealing to drivers and visitors by reducing the number of driveways

1 SH 66 Access Control Plan

Existing Access Summary

S	Number of Accesses						Segment Length (miles)	Access Density (\#/mile)
	Public			Private		Total		
	FM	PM	Other	FM	PM			
McConnell Dr to 87th St	33	0	0	112	12	160	5.8	28
87th St to County Line Road	23	2	2	51	5	83	4.8	17
County Line Road to Weld County Rd 7	11	0	2	34	0	47	2.8	17
Weld County Rd 7 to Weld County Rd 11	14	1	0	7	0	22	1.8	12
Weld County Rd 11 to Weld County Rd 19	23	0	0	38	0	61	3.9	15
Totals	104	3	4	242	20	373	19.2	18

NOTE: Public accesses are named roads or right of ways maintained by CDOT, County, or Town/City

Current \& Future Traffic Volumes

	Existing Average Daily Traffic Volumes	2040 Projected Average Daily Traffic Volumes	Increase
McConnell Dr to 87th St	14,000	16,000	14%
87th St to County Line Road	27,000	38,950	44%
County Line Road to Weld County Rd 7	23,350	30,000	28%
Weld County Rd 7 to Weld County Rd 11	23,600	33,200	41%
Weld County Rd 11 to Weld County Rd 19	11,900	15,000	26%

Without an access control plan visitors, residents, property owners, and businesses along the SH 66 corridor could experience:

Greater number of crashes involving vehicles, pedestrians, or bicyclists
■ Increased traffic congestion, resulting in higher levels of pollution and more delays
■ A loss of visual appeal along the roadway, which may result in a loss of visitor stops and economic impacts for business owners

SH 66 Access Control Plan

Access Conversion with Median Treatment
 - Restrict some or all turning movements Reduce the number of conflicts \square between left turning vehicles and through vehicles on the highway

Access Relocation

- Access to local properties through secondary roads
- Reduce the number of access locations where vehicles may enter or exit the highway
■ Reduce the number of conflict points

Access Realignment

■ Align opposite approaches
■ Create a more traditional intersection design

Access Consolidation

■ Consolidate adjacent access points into one location

- The number of conflict points are reduced

Parallel Access Route

\square Provide access to properties via a new access road (such as a frontage road)

- Reduces the number of access points along the highway

Types of Accesses

Right-in, Right-out

■ Only right turns are allowed

- Traffic median prevents left turns and straight movements - these movements must be completed at another intersection

3/4 Movement

Right-in, right-out, and left-in are allowed

- Traffic median prevents left-out and straight movements - these movements must be completed at another intersection

Full Movement/Roundabout

Grade-Separated

■ All movements in all directions are allowed
■ Some movements will occur at-grade and may require a traffic signal
■ May require the need to close nearby access

Access Control Plan Process

Develop Draft ACP based on PEL recommendations, input from local agencies, and CDOT

Revise Access Control Plan based on input from local agencies, the public, and final PEL recommendations

Accept the final plan

Specify how elements of the plan can be changed in the future

Prepare, sign, and adopt an Intergovernmental Agreement between Town of Lyons, City of Longmont, Town of Mead, Town of Firestone, Boulder County, Weld County, and CDOT

Report outcomes to the Colorado Transportation
Commission and get approval from the CDOT
State Access Manager so the plan becomes law

Continuing coordination between Town of Lyons, City of Longmont, Town of Mead, Town of Firestone, Boulder County, Weld County, and CDOT to ensure proper implementation of the plan in the future

What are the Expected Benefits of the SH 66 Access Control Plan?

The following is a summary of the potential improvements and benefits when the Access Control Plan is implemented:

Improve Safety for All Modes of Transportation

\square The potential of high-speed rear-end, broadside, and sideswipe accidents between vehicles is reduced

- Future locations where pedestrian and bicyclists can cross the highway at a traffic signal are identified

■ Opportunities to build sidewalks/paths are included

Improve Traffic Flow

\square Greater spacing of accesses reduces congestion caused by vehicles turning onto and off of SH 66

Reduce Traffic Conflicts

Restricting the types of access allowed results in fewer conflict points between modes of transportation

Provide Adequate Access to Adjacent Land Uses

- All properties have access to SH 66 or local roads

■ Better use of the secondary street system or shared access locations
The recommended Access Control Plan meets the established goals for the project by improving traffic flow, reducing the number of conflicts, improving safety for all modes of transportation, and providing access to the adjacent land uses.

SH 66 Roadway Segment	Total Existing	Number of Accesses with ACP Implemented						Segment Length (miles)	Access Density (\#/mile)
		Public			Private		Total		
		FM	PM	Other	FM	PM			
McConnell Dr to 87th St	160	9	7	0	1	19	36	5.8	6
87th St to County Line Road	83	9	13	2	2	3	29	4.8	6
County Line Road to Weld County Rd 7	47	6	3	2	0	7	18	2.8	6
Weld County Rd 7 to Weld County Rd 11	22	7	4	0	1	1	13	1.8	7
Weld County Rd 11 to Weld County Rd 19	61	12	2	2	4	3	23	3.9	6
Totals	373	43	29	6	8	33	119	19.2	6
	NOTE: Public Private FM $=f$ $\mathrm{PM}=\mathrm{p}$ Other	access access ull mov partial = railro	are nar ses inclu ement moveme ad cross	med roads de business ing	r right and re	of ways idential	maintained driveways.	by CDOT, County,	or Town/City

Conflict Points

SINGLE-LANE ROUNDABOUT ACCESS

C.3. Open House 3 Postcard Notification and Boards

Wednesday, September 25, 2019 4:30 to 7:30 p.m.* Weld County Southwest Service Complex 4209 County Road $241 / 2$
Longmont, CO 80504 4209 County Road $241 / 2$
Longmont, CO 80504

Thursday, September 26, 2019 4:30 to 7:30 p.m.* Longs Peak Middle School 1500 14th Avenue

Longmont, CO 80501
Attendees will be able to view and provide feedback on:

- The RECOMMENDED projects along the entire project corridor
- The potential environmental impacts associated with each
recommendation
- List of future access changes
CDOT will also be accepting public feedback through an online
Attendees will be able to view and provide feedback on:
- The RECOMMENDED projects along the entire project corridor
- The potential environmental impacts associated with each
recommendation
- List of future access changes
CDOT will also be accepting public feedback through an online
Attendees will be able to view and provide feedback on:
- The RECOMMENDED projects along the entire project corridor
- The potential environmental impacts associated with each
recommendation
- List of future access changes
CDOT will also be accepting public feedback through an online
Attendees will be able to view and provide feedback on:
- The RECOMMENDED projects along the entire project corridor
- The potential environmental impacts associated with each
recommendation
- List of future access changes
CDOT will also be accepting public feedback through an online
Attendees will be able to view and provide feedback on:
- The RECOMMENDED projects along the entire project corridor
- The potential environmental impacts associated with each
recommendation
- List of future access changes
CDOT will also be accepting public feedback through an online
Attendees will be able to view and provide feedback on:
- The RECOMMENDED projects along the entire project corridor
- The potential environmental impacts associated with each
recommendation
- List of future access changes
CDOT will also be accepting public feedback through an online questionnaire. For more information and to learn about the project, visit: questionnaire. For more information and to learn about the project, visit:
https://www.codot.gov/library/studies/co-66-pel

Requests for communication assistance or reasonable accommodations for special needs can be made by calling 720-200-8978 prior to the meeting.
The Colorado Department of Transportation (CDOT) is hosting a final set of public meetings for the SH 66 Planning \& Environmental Linkages (PEL) study and Access Control Plan (ACP) from Lyons to Weld County Road 19. These meetings will be the final chance to review planning documents and provide feedback before the PEL and ACP are finalized in late 2019. You received this notice because your address is within $1 / 2$ mile of the project corridor. However, we want input from the greater community, so please invite neighbors and community members. *Both meetings will provide the same content.

"

$1600^{2 \times 5}$

CDOT

Welcome
 $$
\begin{aligned} & \text { to the } \\ & \text { SH } 66 \end{aligned}
$$

Planning and Environmental Linkages Study and Access Control Plan

Public Meeting SEPTEMBER 25 \& 26, 2019

Thank you for attending! We are pleased you are here to hear more about the SH 66 Corridor! We are eager to share with you the future vision for the corridor!

How to get the most out of this meeting:

- View the displays and talk with our project team members to learn more and share your ideas
- Participate in the interactive activities
- Fill out a project comment card and drop it in the box

COLORADO

Department of Transportation

What Is an Access Control Plan?

Any intersection or driveway along a roadway is called an access point

- At access points there is a potential for conflicts between all modes of transportation (vehicle, pedestrian, and bicycle) compromising the overall safety for travelers
- Vehicles turning into and out of access points can cause other vehicles to slow down, resulting in delay, congestion, or crashes
An Access Control Plan:
- Determines what access points will be allowed
- Establishes where accesses will be located
- Determines what kind of traffic movements will be allowed at each access
- Identifies alternative access routes and circulation as necessary
- Ensures each abutting property has access directly to SH 66 or to local roadways
- Is a long-range vision for the corridor
- Will not determine the future number of lanes or design features of SH 66

Implementation of the SH 66 Access Control Plan will occur in phases or incrementally over time based on:

- Safety needs
- The development and redevelopment process
- Available funding
- Traffic needs

\square There are no planned projects or identified funding that would change existing access

SH 66 Access Control Plan

Access Conversion with Median Treatment
 - Restrict some or all turning movements Reduce the number of conflicts \square between left turning vehicles and through vehicles on the highway

Access Relocation

- Access to local properties through secondary roads
- Reduce the number of access locations where vehicles may enter or exit the highway
■ Reduce the number of conflict points

Access Realignment

■ Align opposite approaches
■ Create a more traditional intersection design

Access Consolidation

■ Consolidate adjacent access points into one location

- The number of conflict points are reduced

Parallel Access Route

\square Provide access to properties via a new access road (such as a frontage road)

- Reduces the number of access points along the highway

Types of Accesses

Right-in, Right-out

■ Only right turns are allowed

- Traffic median prevents left turns and straight movements - these movements must be completed at another intersection

3/4 Movement

Right-in, right-out, and left-in are allowed

- Traffic median prevents left-out and straight movements - these movements must be completed at another intersection

Full Movement/Roundabout

Grade-Separated

■ All movements in all directions are allowed
■ Some movements will occur at-grade and may require a traffic signal
■ May require the need to close nearby access

Access Control Plan Process

Develop Draft ACP based on PEL recommendations, input from local agencies, and CDOT

Revise Access Control Plan based on input from local agencies, the public, and final PEL recommendations

Accept the final plan

Specify how elements of the plan can be changed in the future

Prepare, sign, and adopt an Intergovernmental Agreement between Town of Lyons, City of Longmont, Town of Mead, Town of Firestone, Boulder County, Weld County, and CDOT

Report outcomes to the Colorado Transportation
Commission and get approval from the CDOT
State Access Manager so the plan becomes law

Continuing coordination between Town of Lyons, City of Longmont, Town of Mead, Town of Firestone, Boulder County, Weld County, and CDOT to ensure proper implementation of the plan in the future

What are the Expected Benefits of the SH 66 Access Control Plan?

The following is a summary of the potential improvements and benefits when the Access Control Plan is implemented:

Improve Safety for All Modes of Transportation

\square The potential of high-speed rear-end, broadside, and sideswipe accidents between vehicles is reduced

- Future locations where pedestrian and bicyclists can cross the highway at a traffic signal are identified

■ Opportunities to build sidewalks/paths are included

Improve Traffic Flow

\square Greater spacing of accesses reduces congestion caused by vehicles turning onto and off of SH 66

Reduce Traffic Conflicts

Restricting the types of access allowed results in fewer conflict points between modes of transportation

Provide Adequate Access to Adjacent Land Uses

- All properties have access to SH 66 or local roads

■ Better use of the secondary street system or shared access locations
The recommended Access Control Plan meets the established goals for the project by improving traffic flow, reducing the number of conflicts, improving safety for all modes of transportation, and providing access to the adjacent land uses.

Conflict Points

SINGLE-LANE ROUNDABOUT ACCESS

SH 66 Roadway Segment	Segment Length (miles)	Number of Existing Accesses						Access Density (\#/mile)	Number of Accesses with ACP Implemented						Access Density (\#/mile)
		Public			Private		Total		Public			Private		Total	
		FM	PM	Other	FM	PM			FM	PM	Other	FM	PM		
McConnell Dr to 87th St	5.8	33	0	0	112	15	160	28	9	7	0	1	17	34	6
87th St to County Line Road	4.8	23	2	2	51	5	83	17	13	9	2	2	4	30	6
County Line Road to WCR 7	2.8	11	0	2	34	0	47	17	6	3	2	0	7	18	6
WCR 7 to WCR 11	1.8	14	1	0	7	0	22	12	9	2	0	1	1	13	7
WCR 11 to WCR 19	3.9	23	0	0	38	0	61	15	14	0	0	4	5	23	6
Totals	19.2	104	3	4	242	20	373	18	51	21	4	8	34	118	6
	NOTE: Public accesses are named roads or right of ways maintained by CDOT, County, or Town/City Private accesses include business and residential driveways. FM = full movement PM = partial movement Other = railroad crossing														

C.4. SH 66 Coalition Presentation 1

SH 66 Planning and Environmental Linkages Study

Introduction to Access Control
Presentation to SH 66 Coalition
March 22, 2019

What is an Access Control Plan?

- Blend of the agencies' vision for the corridor, the requirements of the State Highway Access Code, and the PEL recommendations
- Determines how to provide property owners reasonable access to the highway
- Identifies improvements to the local transportation network to support vehicle movement and property access
- Determines where accesses will ultimately be located to better assist in the development/redevelopment process

Why develop an Access Control Plan on SH 66?

- SH 66 has approximately 370 access points (driveways and intersections) from Lyons (McConnell Dr) to WCR 19
- A reduction in the number of accesses improves safety for all modes of transportation, reduces driveway clutter, and improves traffic flow
- Provide CDOT and agencies with a document to assist future development with the site planning process and to streamline access permitting
- To support the functional classification recommendations being developed in the PEL
- The ACP will provide the corridor with a framework for future development that accommodates regional, intra-city, and inter-city travel needs

What an Access Control Plan Does

- Optimizes the number and location of access points on the corridor
- Recommends where accesses may be consolidated, relocated, or restricted
- Identifies the type of allowed traffic movements and traffic control at each access point
- Identifies conditions for when access changes will occur
- In some instances an interim access condition may be identified
- Ensures legal access to all properties
- Blends the corridor vision established as part of the PEL study with a legally binding document for access on the corridor

What an Access Control Plan Does NOT Do

- Determine the number of future lanes on the corridor
- Design the future roadway layout
- Identify funding for improvements
- Require immediate changes to properties
- "Take away access"
- The ACP Recommendations is a long-term planning document that will be implemented over time, primarily as development and redevelopment occur
(000) Preliminary SH 6 ACP Schedule

Task	2019											
	Completed as part of PEL	February	March	April	May	June	July	August	September	October	November	December
Access Control Plan Kickoff Meeting												
Data Collection												
Traffic Operations Analysis												
Presentation to SH 66 Coalition												
Initial Public Open House (jointly with PEL)												
Develop Draft Access Control Plan												
Outreach Meetings with Local Agencies												
Submit Draft ACP for Agency Input and Review												
Second Public Open House												
Modify Plan based on Stakeholder input and Final PEL												
Final Public Open House (jointly with PEL)												
One-on-one Meetings												
Presentation to SH 66 Coalition												
Final Acess Control Plan and Documentation												
Submit Final ACP for Agency Review												
IGA Adoption Process												

Steps to Adopt/Implement an Access Control Plan

- Study, propose, and accept final Access Control Plan configuration based on agency and public input
- Prepare an Intergovernmental Agreement (IGA) between the local agencies (Boulder County, Town of Lyons, City of Longmont, Weld County, Town of Mead, Town of Firestone) and CDOT
- Specify the process for modifying the ACP in the IGA
- Adopt ACP through signing of the IGA
- Provide a summary to the Colorado Transportation Commission and obtain approval from CDOT Chief Engineer
- Continued coordination between CDOT and agencies to ensure proper implementation of the plan

Key Points to Remember about ACP Implementation

- The plan represents a long-range vision for the highway and surrounding roadways
- There are currently no planned projects or identified funding for improvements to SH 66 that would significantly change existing access
- Implementation will occur over time based on:
- Traffic and/or safety needs
- Available funding
- As part of the development and redevelopment process

C.5. SH 66 Coalition Presentation 2

SH 66 Planning and

 Environmental Linkages Study

Update to Access Control Plan
Presentation to SH 66 Coalition
June 28, 2019

Recap: Role of an Access Control Plan
...

- Optimizes the number and location of access points on the corridor
- Recommends where accesses may be consolidated, relocated, or restricted
- Identifies the type of allowed traffic movements and traffic control at each access point
- Identifies conditions for when access changes will occur
- In some instances an interim access condition may be identified
- Blends the corridor vision established as part of the PEL study with a legally binding document for access on the corridor

Recap: What an Access Control Plan Does NOT Do

- Determine the number of future lanes on the corridor
- Design the future roadway layout
- Identify funding for improvements
- Require immediate changes to properties
- "Take away access"
- The ACP is a long-term planning document that will be implemented over time, primarily as development and redevelopment occur

Recap: ACP Implementation

..

- The plan represents a long-range vision for the highway and surrounding roadways
- There are currently no planned projects or identified funding for improvements to SH 66 that would significantly change existing access
- Implementation will occur over time based on:
- Traffic and/or safety needs
- Available funding
- As part of the development and redevelopment process

ACP Schedule Update

- Hold additional agency meetings with planners/engineering staff
- Develop and circulate draft IGA text and Appendices
- ACP Open House
- Present Draft ACP to Public
- Thursday July 25 4:30-7:00pm
- Longmont Senior Center
- Refine ACP based on agency and public's input
- Present final ACP at joint Open House with SH 66 PEL in the fall
- Tentatively mid-September
- Circulate IGA, Appendices, final Access Table, and final Access maps for signatures
- Fall 2019 (Tentatively beginning in September)

Draft Access Control Plan

Existing and Proposed Access Summary				
Segment	Existing Accesses		Proposed Accesses with ACP Fully Implemented	
	Total Public and Private Accesses	Average Access Spacing (per mile)	Total Public and Private Accesses	Average Access Spacing (per mile)
Lyons to WCR 19	375	19	122	6

- Some closures dependent on:
- Future road or shared path construction
- Future cross-access agreement
- Future development

CDOT Draft Access Control Plan

CO ${ }^{\text {CDOT }}$ Draft Access Control Plan

Appendix D. Proposed Access
 Maps

Rivers/ Streams	Milepost	
Parks/ Open Space		Full Movement (Signalized)
Parcel Boundary/ Row Boundary	$3 / 4$ Movement	
Municipal Boundary	\triangle	Right-in, Right-out only
Floodplain	\triangle	Right-out only

X Access to be closed

Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain

Right-out only
contiguous property ownership or access to adjacent property via shared agreement ـ Obtain Access via Alternate Road \longleftrightarrow Existing shared ownership/ Cross Access
\rightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulde Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road roposed Future Connection

Legend Rivers/ Streams Parcel Boundary/ ROW Boundary Municipal Boundary
Floodplain

Full Movement (Signalized) 3/ 4 Movement

Right-out only

Emergency Access Only \times Access closure contingent on Grade Separated Grade Separ
at Railroad
\times Access to be closed
contiguous property ownership
or access to adj acent property via shared agreement

$$
\begin{aligned}
& \text { via shared agreement } \\
& \text { Obtain Access via Alternate Roa }
\end{aligned}
$$

\longleftrightarrow Existing shared ownership/ Cross Access
\rightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulde Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

SH 66 ACP - Recommended Access Control Plan

Milepost Municipal Boundary
Floodplain
contiguous property ownership or access to adjacent property via shared agreement
Obtain Access via Alternate Road
Existing shared ownership/ Cross Access
Grade Separated
Grade Separated
X Access to be closed \longleftrightarrow Existing shared ownership/ Cross Access
\longrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road oposed Future Connection

SH 66 ACP - Recommended Access Control Plan

Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain

Full Movement (Signalized) 3/ 4 Movement
Right-in, Right-out only
Right-out only

$$
\begin{aligned}
& \text { via shared agreement } \\
& \text { Obtain Access via Alternate Roa }
\end{aligned}
$$

Existing shared ownership/ Cross Access
\rightarrow Proposed cross access for shared access
Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road roposed Future Connection

$\xrightarrow{\text { Legend Rivers/ Streams }}$ Parcel Boundary/ ROW Boundary Municipal Boundary
Floodplain
\triangle Right-out only
ariguous property ownership or access to adjacent property via shared agreement

- Obtain Access via Alternate Road \longleftrightarrow Existing shared ownership/ Cross Access
\rightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

SH 66 ACP - Recommended Access Control Plan

Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain

SH 66 ACP - Recommended Access Control Plan

Parks/ Open Space
Parcel Boundary/ ROW Boundary Municipal Boundary
Floodplain

Milepost
Full Movement (Signalized) 3/ 4 Movement Right-in, Right-out only Right-out only

Emergency Access Only \mathbf{X} Access closure contingent on Grade Separated Grade Separated at Railroad X Access to be closed
or access to adj acent property via shared agreement Obtain Access via Alternate Road
$\rightarrow \quad$ Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder
Proposed Future 10' Bike and Pedestrian Path Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection Proposed Future Connection

SH 66 ACP - Recommended Access Control Plan

Legend
Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain
fll Movement (Signalized) 3/ 4 Movement
Right-in, Right-

Emergency Access Only \times Access closure contingent on contiguous property ownership
Grade Separated at Railroad X Access to be closed \longleftarrow Obtain Access via Alternate Road
\rightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

Legend
Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain

Emergency Access Only \mathbf{X} Access closure contingent on
Grade Separated Grade Separ
X Access to be closed
contiguous property ownership or access to adj acent property via shared agreement - Obtain Access via Alternate Road Existing shared ownership/ Cross Access
\longleftrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future frontage Road oposed Future Connection

Legend Rivers/ Streams
Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain

Right-out only
contiguous property ownership or access to adjacent property via shared agreement
ـ Obtain Access via Alternate Road
\longleftrightarrow Existing shared ownership/ Cross Access
\longrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road roposed Future Connection

SH 66 ACP - Recommended Access Control Plan

(

Parks/ Open Space Municipal Boundary
Floodplain

Right-out only
\longrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

Right-out only
contiguous property ownership r access to adjacent property via shared agreement

- Obtain Access via Alternate Road \longleftrightarrow Existing shared ownership/ Cross Access
\rightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

SH 66 ACP - Recommended Access Control Plan

Legend
Parks/ Open Space
Parcel Boundary/ ROW Boundary Municipal Boundary
Floodplain

Right-out only
contiguous property ownership or access to adjacent property via shared agreement Obtain Access via Alternate Road Existing shared ownership/ Cross Access

SH 66 ACP - Recommended Access Control Plan

Legend Rivers/ Streams
Parks/ Open Space
Parcel Boundary/ ROW Boundary
Municipal Boundary
Floodplain

Milepost Full Movement (Signalized) 3/4 Movement Right-in, Right-out only Right-out only

Emergency Access Only \times Access closure contingent on ontiguous property ownership Grade Separated Grade Separ
at Railroad
X Access to be closed

Right-out only

Emergency Access Only \times Access closure contingent on Grade Separated contiguous property ownership Grade Separated
Grade Separated Grade Separ
at Railroad X Access to be closed \longleftarrow Obtain Access via Alternate Road $=$ Existing shared ownership/ Cross Access
\longrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder
Proposed Future 10' Bike and Pedestrian Path Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

$\xrightarrow{\text { Legend }}$ Parks/ Open Space Municipal Boundary Floodplain
ortiguous property ownership or access to adjacent property via shared agreement via shared agreement
Obtain Access via Alternate Road $==$ Existing shared ownership/ Cross Access

- Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

Legend Rivers/ Streams Parks/ Open Space Parcel Boundary/ ROW Boundary Municipal Boundary
Floodplain

Milepost Full Movement (Signalized) 3/4 Movement
\triangle
\triangle
Right-out only

SH 66 ACP - Recommended Access Control Plan
\longleftrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path re Frontage Road Proposed Future Connection

m Rivers/ Streams Parks/ Open Space Parcel Boundary/ ROW Boundary Municipal Boundary
Floodplain 3/4 Movement
Right-in, Right-out only
Right-out only
\longleftrightarrow Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Proposed Future Connection

SH 66 ACP - Recommended Access Control Plan

Appendix E. SH 66 Access Table

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
21.056*	7	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 10. If cross access can be obtained, access will ultimately be closed.
21.064*	6	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the west or east to obtain access to Access 2 (Stone Canyon Dr) or Access 16 (Nolan Dr). If cross access can be obtained, access will ultimately be closed.
21.093*	10	South	Private Drive	Full Movement (Unsignalized)	Right-In, Right-Out	Access will be restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project or if operational and/or safety issues are identified through the completion of a traffic study. Access 10 will provide shared highway access to adjacent properties.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
21.148*	14	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be closed and property access will be obtained from Access 17 in the interim, or ultimately from Access 395.
21.160*	13	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 16 (Nolan Drive).
21.164*	15	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be closed and property access will be obtained from Access 17 in the interim, or ultimately from Access 395.
21.170*	16	North	Nolan Dr	Full Movement (Unsignalized)	Right-In, Right-Out	Access will be restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
21.180*	17	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. If cross-access can be obtained with property to the east, access will ultimately be closed and property access will be obtained from Access 395.
21.190*	395	South	Private Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access on the property line to consolidate the existing accesses. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.
21.210*	18	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. If cross-access can be obtained with property to the west, access will be closed and property access will be obtained from Access 395.
21.230*	19	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be closed and property access will be obtained from Access 18 in the interim, or ultimately from Access 395.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
21.700*	30	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr).
28.693	31	South	US 36	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
28.700	32	North	Highland Dr	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
28.728	33	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr).
28.758	34	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be closed or restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
29.026	43	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via a new property access, Access 390, located across from Access 44.
29.051	390	North	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access to the property to consolidate the existing accesses. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 44.
29.056	44	South	Private Drive	Full Movement (Unsignalized)	Right-In, Right-Out	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
29.102	45	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via a new property access, Access 390, located across from Access 44.
29.196	46	South	51st St	Full Movement (Unsignalized)	Access to be closed	Access to properties south of SH 66 has been relocated to Access 49. This access will be formally closed and access will be obtained from existing Access 44 or Access 49.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 11 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
29.196	47	North	$\begin{aligned} & \text { E Highland } \\ & \text { Drive } \end{aligned}$	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
29.344	48	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 47.
29.376	49	South	Private Drive	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
29.380	50	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, with the cessation of operations under the current land use, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 58 (53rd Street).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 12 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
29.449	51	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 58 (53rd Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
29.465	52	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 58 (53rd Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
29.466	53	South	51st St	Full Movement (Unsignalized)	Access to be closed	Access to properties south of SH 66 has been relocated to Access 49. This access will be formally closed and access will be obtained from existing Access 49.
29.486	54	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 58 (53rd Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 13 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 14 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 16 of 99

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
29.964	65	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property access can be obtained via Access 67 (Forest Service Road). Access will ultimately be closed and property access will be obtained from Access 67 or the newly constructed Access 389 when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
30.034	66	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property access can be obtained via Access 67 (Forest Service Road). Access will ultimately be closed and property access will be obtained from Access 67 or the newly constructed Access 389 when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
30.071	67	North	Forest Service Rd	Full Movement (Unsignalized)	Access to be closed	Access may be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed if Access 389 is constructed and access can be obtained via the Access Road with Advisory Shoulders on the north side of SH 66 .

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 17 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
30.092	68	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 70 . If cross access can be obtained, access will ultimately be closed.
30.111	69	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 70 . If cross access can be obtained, access will ultimately be closed.
30.145	389	North	Future Drive	N/A	3/4 Movement ${ }^{5}$	Access will be a newly constructed $3 / 4$ movement access to the property aligned with Access 70 on the south side of SH 66. The ultimate access design will be based on the results of a traffic study to ensure the access does not create operational and/or safety issues.
30.146	70	South	Private Drive	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 19 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 20 of 99

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
30.698	78	North	61st St	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if a property adjacent to 61st St redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
30.736	79	South	County of Boulder	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 81 (63rd Street).
30.819	80	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 78 (61st Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
30.841	81	South	63rd St	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 21 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
30.944	82	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
30.965	83	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
30.988	84	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 22 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
31.010	85	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.042	86	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.070	87	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
31.085	88	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.113	89	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.175	90	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 24 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
31.248	94	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.267	95	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.290	96	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.330	97	South	66th St	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 26 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 27 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
31.434	102	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 97 ($66^{\text {th }}$ Street) and Access 105 (McCall Drive).
31.435	103	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.570	104	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
31.581	105	South	McCall Dr	Full Movement (Unsignalized)	Right-Out only	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 28 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 29 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 32 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
32.302	122	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 129 (75th Street).
32.317	123	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 129 (75th Street).
32.331	124	South	Private Drive	Right-In, RightOut	Right-In, Right-Out	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (right-in, right-out).
32.332	125	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 129 (75th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
32.345	126	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 129 (75th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.
32.415	127	South	Private Drive	Right-In, RightOut	Access to be closed	Access will be closed if the property redevelops or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 128 (75th Street).
32.452	128	South	75th St	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
32.454	129	North	75th St	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
32.484	130	North	Private Drive	Emergency Access Only	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 129 (75th Street).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
32.543	131	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 132 or Access 129 (75th Street).
32.562	132	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the north or west to obtain access to Access 129 (75th Street). If cross access can be obtained, access will ultimately be closed.
32.705	133	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 145 when the Access Road with Advisory Shoulders is constructed on the south side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
32.739	134	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 145 when the Access Road with Advisory Shoulders is constructed on the south side of SH 66.
32.752	135	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 145 when the Access Road with Advisory Shoulders is constructed on the south side of SH 66.
32.773	136	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained from Access 145 when the Access Road with Advisory Shoulders is constructed on the south side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 36 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 37 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change		
32.879	141	South	Private Drive	Full Movement (Unsignalized)	Access to be closed			Access will be restricted to less than full movement or closed if a raised
:---								
median is added to SH 66 as part of a roadway improvement project, if the								
property redevelops, or if operational and/or safety issues are identified								
through the completion of a traffic study.								
Access will ultimately be closed and property access will be obtained from								
Access 145 when the Access Road with Advisory Shoulders is constructed								
on the south side of SH 66.								

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US } 36 \text {) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
33.394	152	South	County of Boulder	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 155.
33.428	153	North	Private Drive	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
33.469	154	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the west to obtain access to Access 153. If cross access can be obtained, access will ultimately be closed.
33.531	155	South	County of Boulder	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 41 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
33.683	156	North	County of Boulder	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 161 (87th Street).
33.684	157	South	County of Boulder	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 155 or Access 162 (Airport Rd).
33.860	158	South	County of Boulder	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 155 or Access 162 (Airport Rd).
33.887	159	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 162 (Airport Rd).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
34.559	173	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.
34.595	174	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.
34.609	175	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US } 36 \text {) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
34.653	176	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.
34.695	177	North	Jotipa Dr	Full Movement (Unsignalized)	Right-In, Right-Out	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
34.696	178	South	Lake Park Dr	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
34.738	179	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
34.772	180	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.
34.818	181	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will ultimately be closed and property access will be obtained via Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the frontage road is constructed between Anhawa Street and Access 181 on the north side of SH 66.
34.933	182	North	Hover St	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
34.933	183	South	Hover St	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 48 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$		
35.217	184	North	Private Drive	Full Movement (Unsignalized)	Access to be closed			Access will be restricted to less than full movement or closed if a raised
:---								
median is added to SH 66 as part of a roadway improvement project, if the								
property redevelops, or if operational and/or safety issues are identified								
through the completion of a traffic study.								
Property should seek to obtain cross access with adjacent property to the								
east to obtain access to Access 186 . If cross access can be obtained, access								
will ultimately be closed.								

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US } 36 \text {) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
36.397	202	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted or closed if the property redevelops or if operational and/or safety issues are identified through the completion of a traffic study. Upon property redevelopment, access to the property will be obtained via Park Ridge Ave/US 287.
36.444	203	North	US 287	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
36.445	204	South	US 287	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
36.540	205	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the west to obtain access to US 287. If cross access can be obtained, access will ultimately be closed.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
36.598	206	North	Private Drive	Right-In, RightOut	Access to be closed	Access may be closed if operational and/or safety issues are identified through the completion of a traffic study, if property redevelops, or if major reconstruction of Access 203/204 (US 287) requires access closure to obtain an acceptable geometric design. Access to the property will be obtained from Access 208 (Erfert Street) and via US 287/Park Ridge Ave.
36.612	207	South	Collyer St	Access Closed	Access to be closed	Access has been closed; to remain closed.
36.694	208	North	Erfert St	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
36.767	209	North	Private Drive	Right-In, RightOut	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, if operational and/or safety issues are identified through the completion of a traffic study, or if the grade-separation over the BNSF Railroad requires access closure. Access to the property will be obtained from Access 208 (Erfert Street).
36.842	210	South	Meadow St	Emergency Access Only	Emergency Access Only	Access to remain emergency access only.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
37.074	217	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, if operational and/or safety issues are identified through the completion of a traffic study, or if the grade-separation over the BNSF Railroad requires access closure. Access to the property will be obtained from Peppler Dr and local roadways.
37.223	218	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, if operational and/or safety issues are identified through the completion of a traffic study, or if the grade-separation over the BNSF Railroad requires access closure. Property access will be via Access 222 (115th Street).
37.301	219	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 223 (Alpine Street) and local roadways.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
38.332	233	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 234 (Sundance Drive). If cross access can be obtained, access will ultimately be closed.
38.440	234	South	Sundance Dr	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
38.443	235	North	Rock Ln	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
38.559	236	North	Linda Vista Dr	3/4 Movement	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 235 (Rock Lane).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
38.738	240	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 244 (County Line Road). If cross access can be obtained, access will ultimately be closed.
38.767	241	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 235 (Rock Lane) or Access 243 (County Line Road).
38.772	242	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.
38.946	243	North	County Line Rd	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
38.949	244	South	County Line Rd	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 64 of 99

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
39.099	245	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 243 (County Line Road).
39.263	246	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 379. If cross access can be obtained, access will ultimately be closed.
39.343	247	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 246 or from Access 379 if cross access can be obtained.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
39.473	251	South	Nesting Crane Ln	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if redevelopment occurs, or if operational and/or safety issues are identified through the completion of a traffic study.
39.475	379	North	Future Drive	N/A	3/4 Movement ${ }^{5}$	Access will be a newly constructed $3 / 4$ movement access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 251.
39.563	252	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 379 or Access 258 (Weld County Rd 3).
39.625	253	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with properties to the east to obtain access to Access 259 (Weld County Rd 3), or to obtain access to a future roadway connection at the southern edge of the property ($1 / 2$ mile south of SH 66). If cross access can be obtained, access will ultimately be closed.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
39.684	254	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 253 or from Access 259 (Weld County Rd 3) if cross-access can be obtained.
39.721	255	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent properties to the east and/or south to obtain access to Access 259 (Weld County Rd 3). If cross access can be obtained, access will ultimately be closed.
39.756	256	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 379 or Access 258 (Weld County Rd 3).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
40.067	261	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east for a shared access on the property line (Access 391). If cross access can be obtained, access will ultimately be closed.
40.077	262	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 258 (Weld County Rd 3) and Access 373.
40.126	391	South	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access on the property line to consolidate Access 261 and Access 263.
40.141	263	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the west for a shared access on the property line (Access 391). If cross access can be obtained, access will ultimately be closed.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
40.198	264	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 265 or from Access 386 if cross access can be obtained.
40.236	265	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if redevelopment occurs, or if operational and/or safety issues are identified through the completion of a traffic study. Properties should seek to obtain cross access with adjacent property to the south/east to obtain access to Access 386 via a new future roadway. If cross access can be obtained, access will ultimately be closed.
40.276	266	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 258 (Weld County Rd 3) and Access 373.
40.366	267	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 386.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 71 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
40.447	373	North	Future Drive	N/A	3/4 Movement ${ }^{5}$	Access will be a newly constructed $3 / 4$ movement access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 386.
40.447	386	South	Future Drive	N/A	3/4 Movement ${ }^{5}$	Access will be a newly constructed $3 / 4$ movement access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 373.
40.459	268	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 373 and Access 278 (Weld County Rd 5).
40.540	269	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 386 and Access 277 (Weld County Rd 5).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US } 36 \text {) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
40.540	270	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 373 and Access 278 (Weld County Rd 5).
40.561	271	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 373 and Access 278 (Weld County Rd 5).
40.745	272	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 386 and Access 277 (Weld County Rd 5).
40.810	273	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 373 and Access 278 (Weld County Rd 5).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 73 of 99

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
40.905	274	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 373 and Access 278 (Weld County Rd 5).
40.912	275	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 386 and Access 277 (Weld County Rd 5).
40.928	276	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 278 (Weld County Rd 5).
40.947	277	South	Weld County Rd 5	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 74 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 75 of 99

Milepost (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
41.455	374	North	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed access to the property. Under interim conditions, the access may be signalized if warrants are met. If Accesses 380 and 381 are grade-separated, Access 374 will be restricted to right-in, right-out. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 284.
41.457	284	South	Weld County Rd 5.5	Full Movement (Unsignalized)	Right-In, Right-Out	Under interim conditions, the access may be signalized if warrants are met. If Accesses 380 and 381 are grade-separated, Access 374 will be restricted to right-in, right-out. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 374.
41.515	285	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 374 and Access 376.
41.686	286	South	Stage Coach Dr	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if redevelopment occurs, or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
42.858	298	North	I-25	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
42.978	299	South	I-25	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
42.979	300	North	I-25	Full Movement (Signalized)	Full Movement ${ }^{6}$ (Signalized)	The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).
43.215	301	North	Mead St	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if redevelopment occurs, or if operational and/or safety issues are identified through the completion of a traffic study.
43.215	302	South	Mead St	Full Movement (Unsignalized)	3/4 Movement ${ }^{5}$	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if redevelopment occurs, or if operational and/or safety issues are identified through the completion of a traffic study.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US } 36 \text {) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
43.349	303	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if redevelopment occurs, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via a future roadway connection to Access 302 (Mead Street) or Access 305 (Weld County Rd 9.5).
43.448	304	North	Weld County Rd 9.5	Full Movement (Signalized)	Grade Separated	Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.
43.449	305	South	Weld County Rd 9.5	Full Movement (Signalized)	Grade Separated	Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.
43.531	306	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 304 (Weld County Rd 9.5) or Access 382.
43.661	307	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 304 (Weld County Rd 9.5) or Access 382.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
43.687	382	North	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.
43.734	308	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 305 (Weld County Rd 9.5) or Access 311 (Weld County Rd 11).
43.738	396	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 310 (Weld County Rd 11) or Access 382.
43.794	309	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 305 (Weld County Rd 9) or Access 311 (Weld County Rd 11).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
43.951	310	North	Weld County Rd 11	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
43.952	311	South	Weld County Rd 11	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
44.069	312	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 310 (Weld County Rd 11) or Access 383.
44.191	383	North	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 384.
44.193	384	South	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 383.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US } 36 \text {) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
44.233	313	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 384 or Access 319 (Future Weld County Rd 11.5).
44.270	314	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 384 or Access 319 (Future Weld County Rd 11.5).
44.284	315	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 384 or Access 319 (Future Weld County Rd 11.5).
44.285	316	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 383 or Access 318 (Future Weld County Rd 11.5).

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 85 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
44.825	321	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 322 (Weld County Rd 13).
44.944	322	North	Weld County Rd 13	Full Movement (Signalized)	Grade Separated	Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.
44.945	323	South	Weld County Rd 13	Full Movement (Signalized)	Grade Separated	Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.
44.973	324	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 322 (Weld County Rd 13).
45.121	325	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property can be obtained via local roadways.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Page 87 of 99

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \hline \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
45.427	330	South	Private Drive	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
45.430	378	North	Future Drive	N/A	Full Movement ${ }^{6}$ (May be Signalized)	Access will be a newly constructed full movement access. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will be located across SH 66 from Access 330.
45.469	331	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 330.
45.518	332	North	N Service Rd	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 378.
45.528	333	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 330.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO } 66 \text { / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
46.949	351	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained from Access 345 (Weld County Rd 17 N) or Access 358.
47.093	387	South	Future path crossing	N/A	Grade Separated	Access will be a grade separated multi-modal path.
47.116	388	North	Future path crossing	N/A	Grade Separated	Access will be a grade separated multi-modal path.
47.128	352	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 358.
47.157	353	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the east to obtain access to Access 358 . If cross access can be obtained, access will ultimately be closed.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{\text {4 }}$

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change		
47.483	359	North	Private Drive	Full Movement (Unsignalized)	Access to be closed			Access will be restricted to less than full movement if a raised median is
:---								
added to SH 66 as part of a roadway improvement project, if the property								
redevelops, or if operational and/or safety issues are identified through								
the completion of a traffic study.								
Property should seek to obtain cross access with adjacent property to the								
west to obtain access to Access 358. If cross access can be obtained,								
access will ultimately be closed.								

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
47.590	362	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 356 or Access 370 (Weld County Rd 19).
47.593	363	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 364 or from Access 369 if cross-access can be obtained.
47.606	364	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Property should seek to obtain cross access with adjacent property to the west to obtain access to Access 358 . If cross access can be obtained, access will ultimately be closed.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

$\begin{gathered} \text { Milepost }^{3} \\ \text { (CO 66 / } \\ \text { *US 36) } \\ \hline \end{gathered}$	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
47.663	365	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 364 or from Access 369 if cross-access can be obtained.
47.663	394	South	Future Drive	N/A	Right-In, Right-Out	Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.
47.714	366	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 364 or from Access 369 if cross-access can be obtained.
47.734	367	North	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 364 or from Access 369 if cross-access can be obtained.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Milepost ${ }^{\mathbf{3}}$ (CO 66 / *US 36)	Access Number	Side of Highway	Access Description	Existing Conditions	Ultimate Access Control Plan Configuration	Conditions for Change ${ }^{4}$
47.741	368	South	Private Drive	Full Movement (Unsignalized)	Access to be closed	Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access to the property will be obtained via Access 356 or Access 370 (Weld County Rd 19).
47.899	369	North	Weld County Rd 19	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.
47.900	370	South	Weld County Rd 19	Full Movement (Unsignalized)	Full Movement ${ }^{6}$ (May be Signalized)	The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues. Access may be signalized if warrants are met.

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.
2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.
3. All access locations $+/-50$ feet (0.01 mile) unless otherwise noted.
4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.
5. A $3 / 4$ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
6. Full movement access with potential to become/remain signalized.

Appendix F. 2040 Synchro Analysis

F.1. 2040 AM No Action

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	性	7	\%	个4	7	7	\hat{F}		\%	$\hat{\beta}$	
Traffic Volume (veh/h)	15	740	65	195	460	15	65	15	235	40	35	40
Future Volume (veh/h)	15	740	65	195	460	15	65	15	235	40	35	40
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1826	1870	1870	1826	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	16	804	71	212	500	16	71	16	255	43	38	43
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	5	2	2	5	2	2	2	2	2	2	2
Cap, veh/h	396	924	422	505	1927	880	340	17	268	171	142	161
Arrive On Green	0.27	0.27	0.27	0.18	0.56	0.56	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	885	3469	1585	1781	3469	1585	1317	94	1505	1108	801	906
Grp Volume(v), veh/h	16	804	71	212	500	16	71	0	271	43	0	81
Grp Sat Flow(s),veh/h/n	885	1735	1585	1781	1735	1585	1317	0	1599	1108	0	1707
Q Serve(g_s), s	0.6	10.0	1.5	3.1	3.4	0.2	2.2	0.0	7.5	0.5	0.0	1.8
Cycle Q Clear(g_c), s	0.6	10.0	1.5	3.1	3.4	0.2	4.1	0.0	7.5	8.0	0.0	1.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.94	1.00		0.53
Lane Grp Cap(c), veh/h	396	924	422	505	1927	880	340	0	284	171	0	304
V/C Ratio(X)	0.04	0.87	0.17	0.42	0.26	0.02	0.21	0.00	0.95	0.25	0.00	0.27
Avail Cap(c_a), veh/h	396	925	423	505	1928	881	340	0	284	171	0	304
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(1)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	12.3	15.8	12.7	8.7	5.2	4.5	17.7	0.0	18.3	22.4	0.0	16.0
Incr Delay (d2), s/veh	0.1	9.2	0.3	0.6	0.1	0.0	0.4	0.0	40.8	1.1	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1	4.0	0.4	0.7	0.5	0.0	0.6	0.0	5.7	0.5	0.0	0.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.4	25.0	12.9	9.3	5.3	4.5	18.1	0.0	59.1	23.5	0.0	16.6
LnGrp LOS	B	C	B	A	A	A	B	A	E	C	A	B
Approach Vol, veh/h		891			728			342			124	
Approach Delay, s/veh		23.8			6.4			50.6			19.0	
Approach LOS		C			A			D			B	

Timer - Assigned Phs	1	2	4	6	8
Phs Duration (G+Y+Rc), s	13.0	18.0	14.0	31.0	14.0
Change Period (Y+Rc), s	5.0	6.0	6.0	6.0	6.0
Max Green Setting (Gmax), s	8.0	12.0	8.0	25.0	8.0
Max Q Clear Time (g_c+11), s	5.1	12.0	10.0	5.4	9.5
Green Ext Time (p_c), s	0.2	0.0	0.0	4.0	0.0

Intersection Summary

HCM 6th Ctrl Delay 21.8

HCM 6th LOS
C
Notes
User approved pedestrian interval to be less than phase max green.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	7	\%	\uparrow	F		\$			¢	
Traffic Volume (veh/h)	10	380	145	270	765	5	85	10	40	5	195	75
Future Volume (veh/h)	10	380	145	270	765	5	85	10	40	5	195	75
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1737	1856	1900	1870	1826	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	11	413	158	293	832	5	92	11	0	5	212	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	11	3	0	2	5	0	0	0	0	0	0	0
Cap, veh/h	245	799	693	569	975	859	287	28		67	299	
Arrive On Green	0.02	0.43	0.43	0.12	0.53	0.53	0.16	0.16	0.00	0.16	0.16	0.00
Sat Flow, veh/h	1654	1856	1610	1781	1826	1610	1055	176	0	16	1878	0
Grp Volume(v), veh/h	11	413	158	293	832	5	103	0	0	217	0	0
Grp Sat Flow(s),veh/h/ln	1654	1856	1610	1781	1826	1610	1231	0	0	1895	0	0
Q Serve(g_s), s	0.2	9.4	3.6	4.7	22.4	0.1	0.0	0.0	0.0	0.6	0.0	0.0
Cycle Q Clear(g_c), s	0.2	9.4	3.6	4.7	22.4	0.1	4.4	0.0	0.0	6.2	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	0.89		0.00	0.02		0.00
Lane Grp Cap (c), veh/h	245	799	693	569	975	859	315	0		366	0	
V/C Ratio(X)	0.04	0.52	0.23	0.51	0.85	0.01	0.33	0.00		0.59	0.00	
Avail Cap(c_a), veh/h	415	1717	1490	766	1893	1669	700	0		953	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	11.1	12.0	10.3	7.5	11.5	6.3	22.1	0.0	0.0	22.9	0.0	0.0
Incr Delay (d2), s/veh	0.1	0.5	0.2	0.7	2.3	0.0	0.6	0.0	0.0	1.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1	2.9	1.0	1.1	6.2	0.0	1.2	0.0	0.0	2.6	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	11.2	12.5	10.5	8.3	13.7	6.3	22.7	0.0	0.0	24.4	0.0	0.0

LnGrp LOS	B	B	B	A	B	A	C	A	C	A
Approach Vol, veh/h	582		1130		103	A	217	A		
Approach Delay, slveh	11.9		12.3		22.7		24.4			
Approach LOS	B		B		C					

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	11.6	31.7	14.1	5.6	37.6	14.1
Change Period (Y+Rc), s	4.5	7.0	5.0	4.5	7.0	5.0
Max Green Setting (Gmax), s	13.4	53.1	27.0	7.0	59.5	27.0
Max Q Clear Time (g_c+11), s	6.7	11.4	8.2	2.2	24.4	6.4
Green Ext Time (p_c), s	0.5	2.9	1.0	0.0	6.2	0.5

Intersection Summary

HCM 6th Ctrl Delay	14.0
HCM 6th LOS	B

Notes

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection													
Int Delay, s/veh	6.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{1}$	4	7	\%	4	7		4			\&		
Traffic Vol, veh/h	5	415	5	5	975	25	20	5	30	50	5	25	
Future Vol, veh/h	5	415	5	5	975	25	20	5	30	50	5	25	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	Stop	-	-	Stop	
Storage Length	475	-	475	325	-	325	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	0	4	0	0	4	0	0	0	4	0	0	0	
Mvmt Flow	5	451	5	5	1060	27	22	5	33	54	5	27	

Major/Minor \quad a	Major1		Major2		Minor2	
Conflicting Flow All	1103	0	-	0	1692	1095
Stage 1	-	-	-	-	1095	-
Stage 2	-	-	-	-	597	-
Critical Hdwy	4.1	-	-	-	6.65	6.2
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	-	-	5.65	-
Follow-up Hdwy	2.2	-	-	-	3.725	3.3
Pot Cap-1 Maneuver	640	-	-	-	90	262
Stage 1	-	-	-	-	290	-
Stage 2	-	-	-	-	508	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	640	-	-	-	89	262
Mov Cap-2 Maneuver	-	-	-	-	89	-
Stage 1	-	-	-	-	288	-
Stage 2	-	-	-	-	508	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		47	
HCM LOS					E	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		640	-	-	-	107
HCM Lane V/C Ratio		0.008	-	-	-	0.203
HCM Control Delay (s)		10.7	-	-	-	47
HCM Lane LOS		B	-	-	-	E
HCM 95th \%tile Q(veh)		0	-	-	-	0.7

Intersection												
Int Delay, s/veh	3.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			*			\$			4	
Traffic Vol, veh/h	5	555	5	30	1000	25	10	5	15	20	10	5
Future Vol, veh/h	5	555	5	30	1000	25	10	5	15	20	10	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	603	5	33	1087	27	11	5	16	22	11	5

	4	\rightarrow	7	ψ		4		4	p	(\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4	7	5	4	${ }^{\prime}$	\%	4	7	\%	\uparrow	
Traffic Volume (vph)	5	335	250	1350	595	50	410	90	695	20	280	50
Future Volume (vph)	5	335	250	1350	595	50	410	90	695	20	280	50
Ideal Flow (vphpl)	1900	1900	1900	1800	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.4	6.4	6.5	6.4	6.4	5.7	5.7	5.7	5.8	5.7	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1827	1599	3252	1792	1615	1752	1863	1553	1805	1851	
Flt Permitted	0.42	1.00	1.00	0.95	1.00	1.00	0.12	1.00	1.00	0.69	1.00	
Satd. Flow (perm)	796	1827	1599	3252	1792	1615	228	1863	1553	1318	1851	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	364	272	1467	647	54	446	98	755	22	304	54
RTOR Reduction (vph)	0	0	198	0	0	26	0	0	489	0	4	0
Lane Group Flow (vph)	5	364	74	1467	647	28	446	98	266	22	354	0
Heavy Vehicles (\%)	0\%	4\%	1\%	2\%	6\%	0\%	3\%	2\%	4\%	0\%	0\%	2\%
Turn Type	pm+pt	NA	Perm	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4			8	2		2	6		
Actuated Green, G (s)	34.7	33.9	33.9	49.5	82.5	82.5	55.6	47.4	47.4	29.0	26.6	
Effective Green, g (s)	34.7	33.9	33.9	49.5	82.5	82.5	55.6	47.4	47.4	29.0	26.6	
Actuated g/C Ratio	0.22	0.22	0.22	0.31	0.52	0.52	0.35	0.30	0.30	0.18	0.17	
Clearance Time (s)	6.6	6.4	6.4	6.5	6.4	6.4	5.7	5.7	5.7	5.8	5.7	
Vehicle Extension (s)	2.0	4.0	4.0	3.0	4.0	4.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	180	392	343	1021	938	845	305	560	467	249	312	
v/s Ratio Prot	0.00	c0.20		c0.45	0.36		c0.22	0.05		0.00	0.19	
v/s Ratio Perm	0.01		0.05			0.02	c0.30		0.17	0.01		
v/c Ratio	0.03	0.93	0.22	1.44	0.69	0.03	1.46	0.17	0.57	0.09	1.13	
Uniform Delay, d1	48.1	60.7	50.9	54.0	28.0	18.2	49.4	40.7	46.5	53.1	65.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.0	28.2	0.4	202.2	2.3	0.0	225.3	0.1	1.6	0.2	92.3	
Delay (s)	48.1	88.9	51.3	256.3	30.3	18.2	274.6	40.8	48.1	53.3	157.8	
Level of Service	D	F	D	F	C	B	F	D	D	D	F	
Approach Delay (s)		72.6			182.9			125.3			151.7	
Approach LOS		E			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			147.8		HCM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity ratio			1.35									
Actuated Cycle Length (s)			157.6		Sum of los	time (s)			24.5			
Intersection Capacity Utilization			118.9\%		CU Level	f Service			H			

Analysis Period (min) 15
c Critical Lane Group

Major/Minor	Major1	Major2				Minor1			Minor2			
Conflicting Flow All	2168	0	0	1141	0	0	3361	3358	1136	3410	3361	2166
Stage 1		-	-		-	-	1136	1136		2220	2220	
Stage 2	-	-	-	-	-	-	2225	2222		1190	1141	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-		5.52		6.12	5.52	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218	-		2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	246	-		612	-		~	8	246	~ 4	8	59
Stage 1	-	-	-	-	-		246	277		58	81	-
Stage 2	-	-	-	-	-	-	57	80		229	275	-

Platoon blocked, \%		-	-	-	-					
Mov Cap-1 Maneuver	246	-	-	612	-	-	\sim	8	8	246

Mov Cap-2 Maneuver	-	-	-	-	-	-	\sim	8	-	~ 2	8	-
Stage 1	-	-	-	-	-	-	246	277	-	58	77	-
Stage 2	-	-	-	-	-	-	46	76	-	133	275	-

	EB	WB	NB	SB
Approach	0.1	214.5	$\$ 2233$	
HCM Control Delay, s	0	F	F	

Intersection						
Int Delay, s/veh	1534.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	\mathbf{r}		A	F	F
Traffic Vol, veh/h	1080	60	200	1945	70	170
Future Vol, veh/h	1080	60	200	1945	70	170
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	300	-	275	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	56	63	91	63	80
Heavy Vehicles, \%	3	0	1	3	0	1
Mvmt Flow	1227	107	317	2137	111	213

Major/Minor	Major1	Major2					Minor1	Minor2				
Conflicting Flow All	2272	0	0	1337	0	0	4028	4006	1288	3995	4017	2234
Stage 1	-	-	-	-	-	-	1332	1332	-	2636	2636	-
Stage 2	-	-	-	-	-	-	2696	2674	-	1359	1381	-
Critical Hdwy	4.12	-	-	4.12	-		7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	224	-	-	516	-	-	~ 1	~ 3	200	~ 2	~ 3	~ 54
Stage 1	-	-	-	-	-	-	190	223	-	32	49	-
Stage 2	-	-	-	-	-	-	30	47	-	183	211	-

Mov Cap-2 Maneuver	-	-	-	-	-	-	-	~ 2	-	-	~ 2	-
Stage 1	-	-	-	-	-	-	171	201	-	29	30	-
Stage 2	-	-	-	-	-	-	-	29	-	38	190	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.4	1.3		-

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	-	200	224	-	-	516	-	-
HCM Lane V/C Ratio	-0.761	0.097	-	-	0.39	-	-	-1.308
HCM Control Delay (s)	-64.4	22.8	-	-	16.4	-	-	$-\$ 351$
HCM Lane LOS	-	F	C	-	-	C	-	-
HCM 95th \%tile Q(veh)	-	5.1	0.3	-	-	1.8	-	-

Notes

~: Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined *: All major volume in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\％	¢ \uparrow	7	7\％	性	F	\％	个4	7	\％	个4	F
Trafic Volume（veh／h）	580	535	235	325	800	135	335	400	220	185	900	1140
Future Volume（veh／h）	580	535	235	325	800	135	335	400	220	185	900	1140
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1595	1657	1643	1569	1643	1643	1657	1630	1670	1670	1697	1683
Adj Flow Rate，veh／h	630	582	0	353	870	0	364	435	0	201	978	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	4	5	4	5	5	4	6	3	3	1	2
Cap，veh／h	562	875		505	816		280	916		371	821	
Arrive On Green	0.19	0.28	0.00	0.17	0.26	0.00	0.15	0.30	0.00	0.11	0.25	0.00
Sat Flow，veh／h	2946	3148	1393	2900	3122	1393	1578	3097	1415	1590	3224	1427
Grp Volume（v），veh／h	630	582	0	353	870	0	364	435	0	201	978	0
Grp Sat Flow（s），veh／h／ln	1473	1574	1393	1450	1561	1393	1578	1548	1415	1590	1612	1427
Q Serve（g＿s），s	28.6	24.6	0.0	17.2	39.2	0.0	22.1	17.3	0.0	13.9	38.2	0.0
Cycle Q Clear（g＿c），s	28.6	24.6	0.0	17.2	39.2	0.0	22.1	17.3	0.0	13.9	38.2	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	562	875		505	816		280	916		371	821	
V／C Ratio（X）	1.12	0.67		0.70	1.07		1.30	0.48		0.54	1.19	
Avail Cap（c＿a），veh／h	562	875		505	816		280	916		405	821	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	60.7	48.0	0.0	58.3	55.4	0.0	47.0	43.3	0.0	35.6	55.9	0.0
Incr Delay（d2），s／veh	75.9	4.0	0.0	3.6	50.7	0.0	157.8	0.4	0.0	0.5	98.1	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	16.2	9.8	0.0	6.4	20.5	0.0	19.4	6.6	0.0	5.3	26.3	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	136.6	51.9	0.0	61.9	106.1	0.0	204.9	43.7	0.0	36.1	154.0	0.0

| LnGrp LOS | F | D | E | F | F | D | D | F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Approach Vol，veh／h | 1212 | A | 1223 | A | 799 | A | 1179 | A |
| Approach Delay，s／veh | 96.0 | | 93.3 | | 117.1 | | 133.9 | |
| Approach LOS | F | | F | | F | | F | |

Timer－Assigned Phs	1	2	3	4	5	6	7	8	
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	21.8	50.2	33.0	48.5	28.0	44.0	35.5	46.0	
Change Period（ $Y+R \mathrm{R}$ ），s	5.9	＊ 5.8	＊ 6.8	＊ 6.8	5.9	＊5．8	＊ 6.8	＊ 6.8	
Max Green Setting（Gmax），s	19.2	＊41	＊23	＊ 42	22.1	＊ 38	＊ 25	＊ 39	
Max Q Clear Time（g＿c＋11），s	15.9	19.3	19.2	26.6	24.1	40.2	30.6	41.2	
Green Ext Time（p＿c），s	0.1	2.5	0.2	1.9	0.0	0.0	0.0	0.0	

Intersection Summary

HCM 6th Ctrl Delay	109.2
HCM 6th LOS	F

Notes

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［NBR，EBR，WBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Intersection													
Int Delay, s/veh	78.1												

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	${ }^{4}$	$\hat{\beta}$		*	\uparrow	F	${ }_{1}$	\uparrow	7
Trafic Volume (vph)	85	520	500	720	760	20	405	80	590	55	275	175
Future Volume (vph)	85	520	500	720	760	20	405	80	590	55	275	175
Ideal Flow (vphpl)	1900	1900	1900	1800	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	7.0	7.0	4.5	7.0		5.0	5.0	4.0	5.0	5.0	4.0
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1845	1583	1660	1769		1504	1863	1583	1671	1863	1615
Flt Permitted	0.17	1.00	1.00	0.14	1.00		0.44	1.00	1.00	0.70	1.00	1.00
Satd. Flow (perm)	312	1845	1583	246	1769		690	1863	1583	1232	1863	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	92	565	543	783	826	22	440	87	641	60	299	190
RTOR Reduction (vph)	0	0	157	0	1	0	0	0	0	0	0	0
Lane Group Flow (vph)	92	565	386	783	847	0	440	87	641	60	299	190
Heavy Vehicles (\%)	2\%	3\%	2\%	3\%	6\%	43\%	20\%	2\%	2\%	8\%	2\%	0\%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Free	Perm	NA	Free
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6			8		Free	4		Free
Actuated Green, G (s)	29.5	23.9	23.9	43.9	33.8		25.0	25.0	80.9	25.0	25.0	80.9
Effective Green, g (s)	29.5	23.9	23.9	43.9	33.8		25.0	25.0	80.9	25.0	25.0	80.9
Actuated g/C Ratio	0.36	0.30	0.30	0.54	0.42		0.31	0.31	1.00	0.31	0.31	1.00
Clearance Time (s)	4.5	7.0	7.0	4.5	7.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	2.5	5.0	5.0	2.5	5.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	214	545	467	404	739		213	575	1583	380	575	1615
v/s Ratio Prot	0.03	0.31		c0.37	0.48			0.05			0.16	
v/s Ratio Perm	0.13		0.24	c0.68			c0.64		0.40	0.05		0.12
v/c Ratio	0.43	1.04	0.83	1.94	1.15		2.07	0.15	0.40	0.16	0.52	0.12
Uniform Delay, d1	19.8	28.5	26.6	22.6	23.6		28.0	20.3	0.0	20.3	23.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	48.4	12.7	431.2	81.1		495.4	0.1	0.8	0.2	0.9	0.1
Delay (s)	20.8	76.9	39.2	453.8	104.7		523.4	20.4	0.8	20.5	23.9	0.1
Level of Service	C	E	D	F	F		F	C	A	C	C	A
Approach Delay (s)		55.5			272.3			199.1			15.3	
Approach LOS		E			F			F			B	

Intersection Summary			
HCM 2000 Control Delay	165.3	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	2.07		16.5
Actuated Cycle Length (s)	80.9	Sum of lost time (s)	H

Analysis Period (min) 15
c Critical Lane Group

Intersection						

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\hat{F}		${ }^{1}$	\hat{F}			4			4	
Traffic Vol, veh/h	65	980	45	30	1300	65	70	100	30	150	100	135
Future Vol, veh/h	65	980	45	30	1300	65	70	100	30	150	100	135
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	430	-	-	350	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	6	3	0	0	5	14	0	0	60	17	0	3
Mvmt Flow	71	1065	49	33	1413	71	76	109	33	163	109	147

Major/Minor	Major1		Major2			Minor1			Minor2				
Conflicting Flow All	1484	0	0	1114	0	0	2875	2782	1090	2818	2771	1449	
Stage 1		-	-	-	-	- -	1232	1232		1515	1515		
Stage 2	-	-	-	-	-	- -	1643	1550	-	1303	1256		
Critical Hdwy	4.16	-	-	4.1	-	- -	7.1	6.5	6.8	7.27	6.5	6.23	
Critical Hdwy Stg 1	-	-	-	-	-	- -	6.1	5.5	-	6.27	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	- -	6.1	5.5	-	6.27	5.5	-	
Follow-up Hdwy	2.254	-	-	2.2	-	- -	3.5	4	3.84	3.653	4	3.327	
Pot Cap-1 Maneuver	441	-	-	634	-	- -	~11	~19	202	~10	~ 20	160	
Stage 1	-	-	-	-	-	- -	219	252		~ 138	184	-	
Stage 2	-	-	-	-	-	- -	127	177	-	184	245	-	
Platoon blocked, \%		-	-		-	- -							
Mov Cap-1 Maneuver	441	-	-	634	-	- -	-	~15	202	-	~ 16	160	
Mov Cap-2 Maneuver	-	-	-	-	-	- -	-	~ 15	-	-	~ 16	-	
Stage 1	-	-	-	-		- -	184	211		~ 116	174	-	
Stage 2	-	-	-	-	-	- -	~ 4	168	-	~63	206	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.9			0.2									
HCM LOS							-			-			
Minor Lane/Major Mvm			EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		-	441	-		634	-	-					
HCM Lane V/C Ratio		-	0.16	-		- 0.051	-	-	-				
HCM Control Delay (s)		-	14.7	-	-	11	-	-	-				
HCM Lane LOS		-	B	-	-	B	-	-	-				
HCM 95th \%tile Q(veh)		-	0.6	-	-	0.2	-	-	-				
Notes													
\sim : Volume exceeds cap	pacity		ay exc	eeds 3		+: Comp	putation	Not De	fined	*: All	major	volume	in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	\%	$\hat{\beta}$			¢			\uparrow	$\overline{7}$
Traffic Volume (vph)	85	960	115	270	990	200	255	190	480	160	315	150
Future Volume (vph)	85	960	115	270	990	200	255	190	480	160	315	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.0	7.0	5.0	7.0			5.0			5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.97			0.93			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.98	1.00
Satd. Flow (prot)	1719	1845	1615	1805	1734			1662			1868	1599
Flt Permitted	0.07	1.00	1.00	0.07	1.00			0.43			0.53	1.00
Satd. Flow (perm)	134	1845	1615	133	1734			725			998	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	92	1043	125	293	1076	217	277	207	522	174	342	163
RTOR Reduction (vph)	0	0	33	0	5	0	0	26	0	0	0	36
Lane Group Flow (vph)	92	1043	92	293	1288	0	0	980	0	0	516	127
Heavy Vehicles (\%)	5\%	3\%	0\%	0\%	6\%	11\%	6\%	3\%	5\%	0\%	0\%	1\%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	,		1	6			8			4	
Permitted Phases	2		2	6			8			4		4
Actuated Green, G (s)	62.0	54.0	54.0	68.0	57.0			68.0			68.0	68.0
Effective Green, g (s)	62.0	54.0	54.0	68.0	57.0			68.0			68.0	68.0
Actuated g/C Ratio	0.41	0.36	0.36	0.45	0.38			0.45			0.45	0.45
Clearance Time (s)	5.0	7.0	7.0	5.0	7.0			5.0			5.0	5.0
Vehicle Extension (s)	3.0	5.0	5.0	3.0	5.0			3.0			3.0	3.0
Lane Grp Cap (vph)	139	664	581	182	658			328			452	724
v/s Ratio Prot	0.04	0.57		c0.12	c0.74							
v/s Ratio Perm	0.24		0.06	0.61				c1.35			0.52	0.08
v/c Ratio	0.66	1.57	0.16	1.61	1.96			2.99			1.14	0.18
Uniform Delay, d1	36.1	48.0	32.6	44.6	46.5			41.0			41.0	24.4
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	11.2	264.1	0.3	298.5	436.4			903.1			87.2	0.1
Delay (s)	47.3	312.1	32.9	343.0	482.9			944.1			128.2	24.5
Level of Service	D	F	C	F	F			F			F	C
Approach Delay (s)		265.1			457.1			944.1			103.3	
Approach LOS		F			F			F			F	

Intersection Summary			
HCM 2000 Control Delay	458.8	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	2.49		17.0
Actuated Cycle Length (s)	150.0	Sum of lost time (s)	H
Intersection Capacity Utilization	168.2%	ICU Level of Service	

Analysis Period (min) 15
c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	\%	$\hat{\beta}$		\%	$\hat{\beta}$			\$	
Traffic Volume (veh/h)	300	480	420	400	835	90	450	300	115	50	210	245
Future Volume (veh/h)	300	480	420	400	835	90	450	300	115	50	210	245
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1633	1781	1870	1781	1796	1796	1633	1826	1826	1841	1841	1841
Adj Flow Rate, veh/h	326	522	457	435	908	98	489	326	125	54	228	266
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	18	8	2	8	7	7	18	5	5	4	4	4
Cap, veh/h	223	562	500	321	564	61	371	522	200	57	149	165
Arrive On Green	0.11	0.32	0.32	0.15	0.35	0.35	0.16	0.42	0.42	0.22	0.22	0.22
Sat Flow, veh/h	1555	1781	1585	1697	1593	172	1555	1257	482	123	691	767
Grp Volume(v), veh/h	326	522	457	435	0	1006	489	0	451	548	0	0
Grp Sat Flow(s),veh/h/n	1555	1781	1585	1697	0	1765	1555	0	1739	1581	0	0
Q Serve(g_s), s	14.0	36.9	36.1	19.0	0.0	46.0	21.0	0.0	26.6	22.4	0.0	0.0
Cycle Q Clear(g_c), s	14.0	36.9	36.1	19.0	0.0	46.0	21.0	0.0	26.6	28.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.10	1.00		0.28	0.10		0.49
Lane Grp Cap(c), veh/h	223	562	500	321	0	625	371	0	722	371	0	0
V/C Ratio(X)	1.46	0.93	0.91	1.36	0.00	1.61	1.32	0.00	0.62	1.48	0.00	0.00
Avail Cap(c_a), veh/h	223	562	500	321	0	625	371	0	722	371	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	37.6	43.1	42.8	37.8	0.0	42.0	35.0	0.0	30.0	52.0	0.0	0.0
Incr Delay (d2), s/veh	231.1	22.3	21.7	179.5	0.0	282.1	161.3	0.0	2.4	228.9	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ $(50 \%$),veh/In	18.7	18.8	16.3	21.9	0.0	67.6	25.3	0.0	10.9	35.4	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	268.8	65.4	64.5	217.4	0.0	324.1	196.2	0.0	32.4	280.8	0.0	0.0
LnGrp LOS	F	E	E	F	A	F	F	A	C	F	A	A
Approach Vol, veh/h		1305			1441			940			548	
Approach Delay, s/veh		115.9			291.9			117.6			280.8	
Approach LOS		F			F			F			F	

Timer - Assigned Phs	1	2	3	4	5	6	8
Phs Duration (G+Y+Rc), s	24.0	47.0	26.0	33.0	19.0	52.0	59.0
Change Period (Y+Rc), s	5.0	6.0	5.0	5.0	5.0	6.0	5.0
Max Green Setting (Gmax), s	19.0	41.0	21.0	28.0	14.0	46.0	54.0
Max Q Clear Time (g_c+11), s	21.0	38.9	23.0	30.0	16.0	48.0	28.6
Green Ext Time (p_c), s	0.0	1.3	0.0	0.0	0.0	0.0	5.1

Intersection Summary

HCM 6th Ctrl Delay 197.5

HCM 6th LOS
F

Intersection												
Int Delay, s/veh 3953	53.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\uparrow			4	
Traffic Vol, veh/h	75	485	85	150	1090	20	135	10	105	125	10	100
Future Vol, veh/h	75	485	85	150	1090	20	135	10	105	125	10	100
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	0	11	25	0	8	0	0	0	0	0	0	0
Mvmt Flow	82	527	92	163	1185	22	147	11	114	136	11	109

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	a	$\mathbf{4}$	$\mathbf{4}$	\mathbf{F}	r	
Traffic Vol, veh/h	50	660	605	20	20	160
Future Vol, veh/h	50	660	605	20	20	160
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	525	-	-	550	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	0	10	11	46	13	0
Mvmt Flow	54	717	658	22	22	174

Intersection						
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow		
Traffic Vol, veh/h	655	25	5	550	75	5
Future Vol, veh/h	655	25	5	550	75	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Ven in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	10	0	0	14	0	0
Mvmt Flow	712	27	5	598	82	5

F.2. 2040 PM No Action

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\％	个个	7	\％	个4	F	\％	\hat{F}		\％	$\hat{\beta}$	
Traffic Volume（veh／h）	30	990	15	110	885	40	15	10	95	30	10	30
Future Volume（veh／h）	30	990	15	110	885	40	15	10	95	30	10	30
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1826	1870	1870	1826	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	33	1076	16	120	962	43	16	11	103	33	11	33
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	5	2	2	5	2	2	2	2	2	2	2
Cap，veh／h	314	938	429	483	1954	893	358	26	242	293	68	205
Arrive On Green	0.27	0.27	0.27	0.18	0.56	0.56	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow，veh／h	561	3469	1585	1781	3469	1585	1362	155	1454	1279	412	1236
Grp Volume（v），veh／h	33	1076	16	120	962	43	16	0	114	33	0	44
Grp Sat Flow（s），veh／h／n	561	1735	1585	1781	1735	1585	1362	0	1609	1279	0	1648
Q Serve（g＿s），s	2.0	12.0	0.3	1.6	7.4	0.5	0.5	0.0	2.8	1.1	0.0	1.0
Cycle Q Clear（g＿c），s	2.0	12.0	0.3	1.6	7.4	0.5	1.5	0.0	2.8	3.9	0.0	1.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.90	1.00		0.75
Lane Grp Cap（c），veh／h	314	938	429	483	1954	893	358	0	267	293	0	274
V／C Ratio（X）	0.11	1.15	0.04	0.25	0.49	0.05	0.04	0.00	0.43	0.11	0.00	0.16
Avail Cap（c＿a），veh／h	314	938	429	483	1954	893	377	0	290	311	0	297
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（1）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	12.5	16.2	11.9	8.3	5.9	4.3	16.5	0.0	16.6	18.3	0.0	15.8
Incr Delay（d2），s／veh	0.2	78.7	0.1	0.3	0.3	0.0	0.1	0.0	1.5	0.2	0.0	0.4
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.2	13.6	0.1	0.3	1.1	0.1	0.1	0.0	1.0	0.3	0.0	0.4
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	12.8	94.9	12.0	8.5	6.1	4.4	16.5	0.0	18.1	18.6	0.0	16.2
LnGrp LOS	B	F	B	A	A	A	B	A	B	B	A	B
Approach Vol，veh／h		1125			1125			130			77	
Approach Delay，s／veh		91.3			6.3			17.9			17.2	
Approach LOS		F			A			B			B	

Timer－Assigned Phs	1	2	4	6	8
Phs Duration（G＋Y＋Rc），s	13.0	18.0	13.4	31.0	13.4
Change Period（Y＋Rc），s	5.0	6.0	6.0	6.0	6.0
Max Green Setting（Gmax），s	8.0	12.0	8.0	25.0	8.0
Max Q Clear Time（g＿c＋11），s	3.6	14.0	5.9	9.4	4.8
Green Ext Time（p＿c），s	0.1	0.0	0.1	7.4	0.2

Intersection Summary

HCM 6th Ctrl Delay	46.2
HCM 6th LOS	D

Notes
User approved pedestrian interval to be less than phase max green．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个4	F	${ }_{1}$	中 ${ }^{\text {d }}$		${ }_{1}$	\uparrow	F'		\$	
Trafic Volume (vph)	25	340	360	60	490	30	490	35	365	40	50	60
Future Volume (vph)	25	340	360	60	490	30	490	35	365	40	50	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0		6.0	
Lane Utill. Factor	1.00	0.95	1.00	1.00	0.95		0.95	0.95	1.00		1.00	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85		0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	0.96	1.00		0.99	
Satd. Flow (prot)	1624	3185	1425	1593	3104		1442	1468	1358		1596	
Flt Permitted	0.34	1.00	1.00	0.52	1.00		0.95	0.96	1.00		0.99	
Satd. Flow (perm)	589	3185	1425	874	3104		1442	1468	1358		1596	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	27	370	391	65	533	33	533	38	397	43	54	65
RTOR Reduction (vph)	0	0	281	0	5	0	0	0	224	0	27	0
Lane Group Flow (vph)	27	370	110	65	561	0	282	289	173	0	135	0
Heavy Vehicles (\%)	0\%	2\%	2\%	2\%	4\%	0\%	7\%	0\%	7\%	0\%	0\%	0\%
Turn Type	Perm	NA	Perm	Perm	NA		Split	NA	Perm	Split	NA	
Protected Phases		2			6		4	4		8	8	
Permitted Phases	2		2	6					4			
Actuated Green, G (s)	20.6	20.6	20.6	20.6	20.6		22.6	22.6	22.6		12.1	
Effective Green, g (s)	20.6	20.6	20.6	20.6	20.6		22.6	22.6	22.6		12.1	
Actuated g/C Ratio	0.28	0.28	0.28	0.28	0.28		0.31	0.31	0.31		0.17	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0		6.0	
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0		4.0	
Lane Grp Cap (vph)	165	895	400	245	872		444	452	418		263	
v/s Ratio Prot		0.12			c0.18		0.20	c0.20			c0.08	
v/s Ratio Perm	0.05		0.08	0.07					0.13			
v/c Ratio	0.16	0.41	0.27	0.27	0.64		0.64	0.64	0.41		0.51	
Uniform Delay, d1	19.9	21.4	20.5	20.5	23.1		21.8	21.8	20.1		27.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00	
Incremental Delay, d2	0.6	0.4	0.5	0.8	1.8		3.3	3.3	0.9		2.3	
Delay (s)	20.5	21.9	21.0	21.3	25.0		25.1	25.2	21.0		30.2	
Level of Service	C	C	C	C	C		C	C	C		C	
Approach Delay (s)		21.4			24.6			23.5			30.2	
Approach LOS		C			C			C			C	

Intersection Summary			
HCM 2000 Control Delay	23.5	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.61		18.0
Actuated Cycle Length (s)	73.3	Sum of lost time (s)	B

Analysis Period (min)
15
c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F'	${ }^{7}$	\uparrow	7		¢			\$	
Traffic Volume (veh/h)	80	960	95	55	425	10	135	175	285	5	15	15
Future Volume (veh/h)	80	960	95	55	425	10	135	175	285	5	15	15
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1737	1856	1900	1870	1826	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	87	1043	103	60	462	11	147	190	0	5	16	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	11	3	0	2	5	0	0	0	0	0	0	0
Cap, veh/h	505	1009	876	175	980	864	213	224		108	319	
Arrive On Green	0.06	0.54	0.54	0.06	0.54	0.54	0.23	0.23	0.00	0.23	0.23	0.00
Sat Flow, veh/h	1654	1856	1610	1781	1826	1610	694	971	0	272	1382	0
Grp Volume(v), veh/h	87	1043	103	60	462	11	337	0	0	21	0	0
Grp Sat Flow(s),veh/h/ln	1654	1856	1610	1781	1826	1610	1665	0	0	1654	0	0
Q Serve(g_s), s	2.2	53.5	3.1	1.4	15.4	0.3	18.3	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	2.2	53.5	3.1	1.4	15.4	0.3	19.2	0.0	0.0	0.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	0.44		0.00	0.24		0.00
Lane Grp Cap(c), veh/h	505	1009	876	175	980	864	437	0		427	0	
V/C Ratio(X)	0.17	1.03	0.12	0.34	0.47	0.01	0.77	0.00		0.05	0.00	
Avail Cap(c_a), veh/h	517	1009	876	200	991	874	610	0		602	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	9.6	22.4	10.9	22.6	14.1	10.6	36.4	0.0	0.0	29.4	0.0	0.0
Incr Delay (d2), s/veh	0.2	37.2	0.1	1.1	0.4	0.0	4.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.7	29.6	1.0	0.7	5.6	0.1	8.1	0.0	0.0	0.4	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	9.8	59.7	11.0	23.7	14.5	10.6	40.4	0.0	0.0	29.5	0.0	0.0
LnGrp LOS	A	F	B	C	B	B	D	A		C	A	
Approach Vol, veh/h		1233			533			337	A		21	A
Approach Delay, s/veh		52.1			15.4			40.4			29.5	
Approach LOS		D			B			D			C	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s	10.1	60.5	27.7	10.8	59.8	27.7
Change Period (Y+Rc), s	4.5	7.0	5.0	4.5	7.0	5.0
Max Green Setting (Gmax), s	7.0	53.5	33.0	7.1	53.4	33.0
Max Q Clear Time (g_c+11), s	3.4	55.5	2.8	4.2	17.4	21.2
Green Ext Time (p_c), s	0.0	0.0	0.1	0.0	2.7	1.5

Intersection Summary

HCM 6th Ctrl Delay	40.8
HCM 6th LOS	D

Notes
Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	4	\mathbf{T}		r	
Traffic Vol, veh/h	5	1195	615	30	15	5
Future Vol, veh/h	5	1195	615	30	15	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	200	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	0	3	4	25	25	0
Mvmt Flow	5	1299	668	33	16	5

Intersection													
Int Delay, s/veh	15.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			¢			\$			\$		
Traffic Vol, veh/h	5	1200	5	25	635	25	5	10	30	30	10	5	
Future Vol, veh/h	5	1200	5	25	635	25	5	10	30	30	10	5	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-		None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	5	1304	5	27	690	27	5	11	33	33	11	5	

Major/Minor \quad N	Major1		Major2			Minor1			Minor2				
Conflicting Flow All	717	0	0	1309	0	0	2083	2088	1307	2097	2077	704	
Stage 1	-	-	-	-	-	-	1317	1317		758	758	-	
Stage 2	-	-	-	-	-	-	766	771	-	1339	1319	-	
Critical Hdwy	4.12	-	-	4.12	-		7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-		2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	884	-	-	529	-	-	39	53	195	38	54	437	
Stage 1	-	-	-	-	-	-	194	227		399	415	-	
Stage 2	-	-	-	-	-	-	395	410	-	188	227	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	884	-	-	529	-	-	29	47	195	~ 24	48	437	
Mov Cap-2 Maneuver	-	-	-	-	-	-	29	47	-	~ 24	48	-	
Stage 1	-	-	-	-	-	-	190	222	-	391	380	-	
Stage 2	-	-	-	-	-	-	347	375	-	146	222	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.4			97.5			\$ 566.4			
HCM LOS							F			F			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		83	884	-	-	529	-	-	31				
HCM Lane V/C Ratio		0.589	0.006	-	-	0.051	-	-	1.578				
HCM Control Delay (s)		97.5	9.1	0	-	12.2	0		566.4				
HCM Lane LOS		F	A	A	-	B	A	-	F				
HCM 95th \%tile Q(veh)		2.7	0	-	-	0.2	-	-	5.5				
Notes													
\sim : Volume exceeds cap	pacity	\$: De	lay ex	ceeds		+: Com	mputation	Not D	efined	*: All	major	volume	in platoon

Analysis Period (min) 15
c Critical Lane Group

Intersection						
Int Delay, s/veh	22.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	\mathbf{r}		A	l	F
Traffic Vol, veh/h	2355	80	155	1350	35	205
Future Vol, veh/h	2355	80	155	1350	35	205
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	300	-	275	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	56	63	91	63	80
Heavy Vehicles, \%	3	0	1	3	0	1
Mvmt Flow	2676	143	246	1484	56	256

Major/Minor	Major1	Major2				Minor1			Minor2			
Conflicting Flow All	1608	0	0	2761	0	0	4444	4435	2707	4411	4435	1554
Stage 1	-	-	-	-	-	-	2751	2751	-	1630	1630	-
Stage 2	-	-	-	-	-	-	1693	1684	-	2781	2805	-
Critical Hdwy	4.12	-	-	4.12	-		7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	406	-	-	143	-	-	~ 1	~ 1	~ 27	~ 1	~ 1	139
Stage 1	-	-	-	-	-	-	27	42	-	128	160	-
Stage 2	-	-	-	-	-	-	118	150	-	26	40	-

Platoon blocked, \%

Mov Cap-1 Maneuver	406	-	-	143	-	-	-	~ 1	~ 27	-	~ 1	139
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	~ 1	-	-	~ 1	-
Stage 1	-	-	-	-	-	-	26	40	-	121	117	-
Stage 2	-	-	-	-	-	-	45	110	-	-	38	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	0.9		

HCM LOS

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	-27	406	-	-143	-	-	-139	
HCM Lane V/C Ratio	-7.045	0.054	-	-0.266	-	-	-0.43	
HCM Control Delay (s)	$-\$ 3006$	14.4	-	-	39.1	-	-	-
HCM Lane LOS	-	F	B	-	-	E	-	-
HCM 95th \%tile Q(veh)	-23.4	0.2	-	-	1	-	-	-

Notes

~: Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined *: All major volume in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F＊	个4	F	7＊	性	F	\％	性	F	\％	个 \uparrow	F
Trafic Volume（veh／h）	1265	1015	400	370	500	260	415	1100	380	185	750	600
Future Volume（veh／h）	1265	1015	400	370	500	260	415	1100	380	185	750	600
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1595	1657	1643	1569	1643	1643	1657	1630	1670	1670	1697	1683
Adj Flow Rate，veh／h	1375	1103	0	402	543	0	451	1196	0	201	815	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	4	5	4	5	5	4	6	3	3	1	2
Cap，veh／h	987	1110		424	511		302	933		145	649	
Arrive On Green	0.33	0.35	0.00	0.15	0.16	0.00	0.16	0.30	0.00	0.06	0.20	0.00
Sat Flow，veh／h	2946	3148	1393	2900	3122	1393	1578	3097	1415	1590	3224	1427
Grp Volume（v），veh／h	1375	1103	0	402	543	0	451	1196	0	201	815	0
Grp Sat Flow（s），veh／h／ln	1473	1574	1393	1450	1561	1393	1578	1548	1415	1590	1612	1427
Q Serve（g＿s），s	53.6	55.9	0.0	22.0	26.2	0.0	26.1	48.2	0.0	10.1	32.2	0.0
Cycle Q Clear（g＿c），s	53.6	55.9	0.0	22.0	26.2	0.0	26.1	48.2	0.0	10.1	32.2	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	987	1110		424	511		302	933		145	649	
V／C Ratio（X）	1.39	0.99		0.95	1.06		1.49	1.28		1.38	1.26	
Avail Cap（c＿a），veh／h	987	1110		424	511		302	933		145	649	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	53.2	51.6	0.0	67.7	66.9	0.0	50.2	55.9	0.0	54.3	63.9	0.0
Incr Delay（d2），s／veh	183.1	25.6	0.0	30.4	57.3	0.0	238.0	135.1	0.0	208.9	127.6	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	44.1	25.0	0.0	9.7	14.2	0.0	29.0	35.9	0.0	9.9	24.5	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	236.3	77.3	0.0	98.1	124.2	0.0	288.2	191.0	0.0	263.2	191.5	0.0
LnGrp LOS	F	E		F	F		F	F		F	F	
Approach Vol，veh／h		2478	A		945	A		1647	A		1016	A
Approach Delay，s／veh		165.5			113.1			217.6			205.7	
Approach LOS		F			F			F			F	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration $(G+Y+R c), s$	16.0	54.0	30.3	63.2	32.0	38.0	60.5	33.0
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ， s	5.9	${ }^{*} 5.8$	${ }^{*} 6.8$	${ }^{*} 6.8$	5.9	${ }^{*} 5.8$	${ }^{*} 6.8$	${ }^{*} 6.8$
Max Green Setting（Gmax），s	10.1	${ }^{*} 48$	${ }^{*} 20$	${ }^{*} 56$	26.1	${ }^{*} 32$	${ }^{*} 50$	${ }^{*} 26$
Max Q Clear Time（g＿c＋11），s	12.1	50.2	24.0	57.9	28.1	34.2	55.6	28.2
Green Ext Time（p＿c），s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	178.2
HCM 6th LOS	F

Notes

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［NBR，EBR，WBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Intersection												
Int Delay, s/veh 435	435.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4	7	*	4	F'		${ }_{4} 1$	7		\uparrow	7
Traffic Vol, veh/h	25	1565	55	90	1145	60	5	5	45	40	5	20
Future Vol, veh/h	25	1565	55	90	1145	60	5	5	45	40	5	20
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	325	-	275	675	-	400	150	-	0	-	-	50
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	0	3	17	9	5	0	0	0	0	0	0	0
Mvmt Flow	27	1701	60	98	1245	65	5	5	49	43	5	22

Major/Minor	Major1			Major2			Minor1	Minor2					
Conflicting Flow All	1310	0	0	1761	0		03242	3261	1701	3253	3256	1245	
Stage 1	-	-	-	-	-		1755	1755		1441	1441	-	
Stage 2	-	-	-		-		1487	1506	-	1812	1815	-	
Critical Hdwy	4.1	-	-	4.19	-		7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-		6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-		6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.281	-		3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	535	-	-	337	-		6	9	115	~6	9	214	
Stage 1	-	-	-	-	-		110	140	-	166	200	-	
Stage 2	-	-	-	-	-		157	186	-	102	131	-	
Platoon blocked, \%		-	-		-		-						
Mov Cap-1 Maneuver	535	-	-	337	-		~ 1	6	115	~ 1	6	214	
Mov Cap-2 Maneuver	r	-	-	-	-		~ 1	6	-	~1	6	-	
Stage 1	-	-	-	-	-		105	133	-	158	142	-	
Stage 2	-	-	-	-	-		96	132	-	53	124	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	s 0.2			1.4			\$979.2			9645.3			
HCM LOS							F			F			
Minor Lane/Major Mvm		NBLn1 NBLn2		EBL	EBT	EBR	R WBL	WBT	WBR SBLn1 SBLn2				
Capacity (veh/h)		2	115	535	-		- 337	-	-	1	214		
HCM Lane V/C Ratio		5.435	0.425	0.051	-		- 0.29	-		48.913	0.102		
HCM Control Delay (s)		5126.1	57.7	12.1	-		20	-		28366	23.7		
HCM Lane LOS		F	F	B	-		- C	-	-	F	C		
HCM 95th \%tile Q(veh)		2.6	1.8	0.2	-		1.2	-	-	8.2	0.3		
Notes													
\sim Volume exceeds cap	apacity	\$: De	day exc	ceeds 3		+: Com	mputation	Not D	fined	*: All	major v	volume in	in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	7	\%	$\hat{\beta}$		*	\uparrow	F	*	\uparrow	7
Traffic Volume (vph)	205	950	480	560	850	35	440	260	795	30	120	80
Future Volume (vph)	205	950	480	560	850	35	440	260	795	30	120	80
Ideal Flow (vphpl)	1900	1900	1900	1800	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	7.0	7.0	4.5	7.0		5.0	5.0	4.0	5.0	5.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1845	1583	1660	1758		1504	1863	1583	1671	1863	1615
Flt Permitted	0.12	1.00	1.00	0.11	1.00		0.67	1.00	1.00	0.39	1.00	1.00
Satd. Flow (perm)	233	1845	1583	192	1758		1067	1863	1583	685	1863	1615
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	223	1033	522	609	924	38	478	283	864	33	130	87
RTOR Reduction (vph)	0	0	232	0	2	0	0	0	0	0	0	0
Lane Group Flow (vph)	223	1033	290	609	960	0	478	283	864	33	130	87
Heavy Vehicles (\%)	2\%	3\%	2\%	3\%	6\%	43\%	20\%	2\%	2\%	8\%	2\%	0\%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Free	Perm	NA	Free
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6			8		Free	4		Free
Actuated Green, G (s)	39.0	32.0	32.0	49.0	37.5		19.0	19.0	80.0	19.0	19.0	80.0
Effective Green, g (s)	39.0	32.0	32.0	49.0	37.5		19.0	19.0	80.0	19.0	19.0	80.0
Actuated g/C Ratio	0.49	0.40	0.40	0.61	0.47		0.24	0.24	1.00	0.24	0.24	1.00
Clearance Time (s)	4.5	7.0	7.0	4.5	7.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)	2.5	5.0	5.0	2.5	5.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	248	738	633	346	824		253	442	1583	162	442	1615
v/s Ratio Prot	0.08	0.56		c0.27	0.55			0.15			0.07	
v/s Ratio Perm	0.36		0.18	c0.80			c0.45		0.55	0.05		0.05
v/c Ratio	0.90	1.40	0.46	1.76	1.17		1.89	0.64	0.55	0.20	0.29	0.05
Uniform Delay, d1	17.6	24.0	17.6	23.8	21.2		30.5	27.4	0.0	24.4	25.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	31.4	188.0	1.1	353.7	87.6		414.8	3.2	1.4	0.6	0.4	0.1
Delay (s)	49.0	212.0	18.7	377.5	108.8		445.3	30.6	1.4	25.1	25.4	0.1
Level of Service	D	F	B	F	F		F	C	A	C	C	A
Approach Delay (s)		134.8			213.0			137.0			16.5	
Approach LOS		F			F			F			B	

Intersection Summary			
HCM 2000 Control Delay	153.4	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.87	Sum of lost time (s)	16.5
Actuated Cycle Length (s)	80.0	H	
Intersection Capacity Utilization	127.5%	ICU Level of Service	

Analysis Period (min)
c Critical Lane Group

Major/Minor	Major1		Major2			Minor1			Minor2				
Conflicting Flow All	1527	0	0	1723		0	3670	3651	1712	3619	3616	1481	
Stage 1	-	-	-	-		- -	2114	2114		1491	1491	-	
Stage 2	-	-	-	-		- -	1556	1537		2128	2125		
Critical Hdwy	4.1	-		4.1		- -	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-		- -	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-		- -	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2		- -	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	442	-	-	372		- -	~3	~5	113	~3	~ 5	156	
Stage 1	-	-	-	-		- -	67	92		~ 156	189	-	
Stage 2	-	-	-	-		- -	143	179	-	~66	91	-	
Platoon blocked, \%		-	-			- -							
Mov Cap-1 Maneuver	442	-	-	372		- -	-	0	113	-	0	156	
Mov Cap-2 Maneuver	-	-	-	-		- -	-	0	-	-	0	-	
Stage 1	-	-	-	-		- -	67	0		~156	171	-	
Stage 2	-	-	-	-		- -	25	162	-	-	0	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	2.1			0.1									
HCM LOS							-			-			
Minor Lane/Major Mvmt			EBL	EBT	EBR	2 WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		-	442	-		372	-	-					
HCM Lane V/C Ratio		-	0.455	-		- 0.015	-	-	-				
HCM Control Delay (s)		-	19.8	0		14.8	0	-	-				
HCM Lane LOS		-	C	A		B	A	-	-				
HCM 95th \%tile Q(veh)		-	2.3	-		- 0	-	-	-				
Notes													
\sim Volume exceeds cap	pacity		lay exc	eeds 3	Os	+: Comp	mutation	Not De	fined	*: All	major	volume in	in platoon

Major/Minor \quad M	Major1		Major2			Minor1			Minor2				
Conflicting Flow All	1570	0	0	1690	0	0	3687	3665	1639	3674	3627	1481	
Stage 1	-	-	-	-	-	-	2009	2009	-	1567	1567	-	
Stage 2	-	-	-	-	-	-	1678	1656	-	2107	2060		
Critical Hdwy	4.16	-	-	4.1	-	-	7.1	6.5	6.8	7.27	6.5	6.23	
Critical Hdwy Stg 1		-	-	-	-	-	6.1	5.5	-	6.27	5.5		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.27	5.5	-	
Follow-up Hdwy	2.254	-	-	2.2	-	-	3.5	4	3.84	3.653	4	3.327	
Pot Cap-1 Maneuver	409	-	-	383	-	-	~3	~ 5	90	~ 2	~ 5	153	
Stage 1	-	-	-	-	-	-	78	~ 105		128	173	-	
Stage 2	-	-	-	-	-	-	121	~ 157	-	~61	~ 99	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	409	-	-	383	-	-	-	~ 2	90	-	~ 2	153	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	~ 2	-	-	~ 2	-	
Stage 1	-	-	-	-	-	-	~ 43	~ 58	-	~ 70	154	-	
Stage 2	-	-	-	-	-	-	~ 5	~ 139	-	-	~ 54	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	2.1			0.4									
HCM LOS							-			-			
Minor Lane/Major Mvmt			EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		-	409	-	-	383	-	-	-				
HCM Lane V/C Ratio		-	0.452	-		0.114	-	-	-				
HCM Control Delay (s)		-	20.9	-	-	15.6	-	-	-				
HCM Lane LOS		-	C	-	-	C	-	-	-				
HCM 95th \%tile Q(veh)		-	2.3	-	-	0.4	-	-	-				
Notes													
\sim : Volume exceeds cap	apaity	De	ay exc	eeds 3		+: Comp	mutation	Not D	fined	*: All	major v	volume in	in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	\%	$\hat{\beta}$			${ }_{\$}$			\uparrow	F
Traffic Volume (vph)	180	1135	245	400	1310	165	80	470	325	200	300	95
Future Volume (vph)	180	1135	245	400	1310	165	80	470	325	200	300	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	7.0	7.0	5.0	7.0			5.0			5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			1.00			0.98	1.00
Satd. Flow (prot)	1719	1845	1615	1805	1753			1727			1863	1599
Flt Permitted	0.07	1.00	1.00	0.06	1.00			0.48			0.32	1.00
Satd. Flow (perm)	127	1845	1615	123	1753			830			603	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	196	1234	266	435	1424	179	87	511	353	217	326	103
RTOR Reduction (vph)	0	0	57	0	3	0	0	14	0	0	0	60
Lane Group Flow (vph)	196	1234	209	435	1600	0	0	937	0	0	543	43
Heavy Vehicles (\%)	5\%	3\%	0\%	0\%	6\%	11\%	6\%	3\%	5\%	0\%	0\%	1\%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6			8			4		4
Actuated Green, G (s)	65.0	57.0	57.0	76.0	63.0			62.0			62.0	62.0
Effective Green, g (s)	65.0	57.0	57.0	76.0	63.0			62.0			62.0	62.0
Actuated g/C Ratio	0.43	0.38	0.38	0.51	0.42			0.41			0.41	0.41
Clearance Time (s)	5.0	7.0	7.0	5.0	7.0			5.0			5.0	5.0
Vehicle Extension (s)	3.0	5.0	5.0	3.0	5.0			3.0			3.0	3.0
Lane Grp Cap (vph)	139	701	613	219	736			343			249	660
v/s Ratio Prot	0.07	0.67		c0.19	c0.91							
v / s Ratio Perm	0.53		0.13	0.82				c1.13			0.90	0.03
v/c Ratio	1.41	1.76	0.34	1.99	2.17			2.73			2.18	0.07
Uniform Delay, d1	39.4	46.5	33.1	48.8	43.5			44.0			44.0	26.5
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	1.00
Incremental Delay, d2	221.6	348.0	0.7	459.8	532.8			787.4			544.4	0.0
Delay (s)	261.0	394.5	33.8	508.6	576.3			831.4			588.4	26.6
Level of Service	F	F	C	F	F			F			F	C
Approach Delay (s)		322.5			561.9			831.4			498.8	
Approach LOS		F			F			F			F	

Intersection Summary			
HCM 2000 Control Delay	526.1	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	2.46	Sum of lost time (s)	17.0
Actuated Cycle Length (s)	150.0	H	
Intersection Capacity Utilization	183.1%	ICU Level of Service	

Analysis Period (min)
c Critical Lane Group

Intersection												
Int Delay, s/veh 1621.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	/	44	「	${ }^{1}$	1\%		\%	\uparrow			\leqslant	
Traffic Vol, veh/h	225	1465	110	20	1430	20	125	0	60	75	5	375
Future Vol, veh/h	225	1465	110	20	1430	20	125	0	60	75	5	375
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	275	-	0	225	-	-	0	-	-	-	-	-
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	10	7	3	8	2	7	2	3	2	2	2
Mvmt Flow	245	1592	120	22	1554	22	136	0	65	82	5	408

Major/Minor \quad N	Major1		Major2			Minor1			Minor2				
Conflicting Flow All	1576	0	0	1712	0	0	2906	3702	796	2895	3811	788	
Stage 1	-	-		-	-	-	2082	2082	-	1609	1609		
Stage 2	-	-	-	-	-	-	824	1620		1286	2202	-	
Critical Hdwy	4.14	-	-	4.16	-	-	7.64	6.54	6.96	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.64	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.64	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.23	-	-	3.57	4.02	3.33	3.52	4.02	3.32	
Pot Cap-1 Maneuver	414	-	-	362	-	-	~ 6	5	328	~7	~ 4	~334	
Stage 1	-	-	-	-	-	-	~ 51	94	-	109	162	-	
Stage 2	-	-	-	-	-	-	323	160	-	174	81	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	414	-	-	362	-	-	-	2	328	~ 3		~334	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	2	-	~ 3	~ 2	-	
Stage 1	-	-	-	-	-	-	~21	38	-	~ 44	152	-	
Stage 2	-	-	-	-	-	-	-	150	-	~ 57	33	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	3.2			0.2						13918			
HCM LOS							-			F			
Minor Lane/Major Mvmt		n1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		-	328	414	-	-	362		-	16			
HCM Lane V/C Ratio		-	0.199	0.591	-	-	0.06	-		30.91			
HCM Control Delay (s)		-	18.7	25.5	-	-	15.6	-		3918.3			
HCM Lane LOS		-	C	D	-	-	C	-	-	F			
HCM 95th \%tile Q(veh)		-	0.7	3.7	-	-	0.2	-	-	62.8			
Notes													
\sim : Volume exceeds cap	pacity	S:	lay ex	ceeds 30	Os	+: Comp	putation	Not D	fined	*: All	major v	volume in	in platoon

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	\%	$\hat{\beta}$		\%	$\hat{\beta}$			\$	
Traffic Volume (veh/h)	290	910	400	130	580	45	455	290	475	100	355	435
Future Volume (veh/h)	290	910	400	130	580	45	455	290	475	100	355	435
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1633	1781	1870	1781	1796	1796	1633	1826	1826	1841	1841	1841
Adj Flow Rate, veh/h	315	989	435	141	630	49	495	315	516	109	386	473
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	18	8	2	8	7	7	18	5	5	4	4	4
Cap, veh/h	185	484	430	148	400	31	289	347	568	45	90	102
Arrive On Green	0.09	0.27	0.27	0.06	0.24	0.24	0.09	0.56	0.56	0.43	0.43	0.43
Sat Flow, veh/h	1555	1781	1585	1697	1645	128	1555	623	1020	39	211	238
Grp Volume(v), veh/h	315	989	435	141	0	679	495	0	831	968	0	0
Grp Sat Flow(s),veh/h/n	1555	1781	1585	1697	0	1773	1555	0	1642	488	0	0
Q Serve(g_s), s	12.0	38.0	38.0	8.0	0.0	34.0	13.0	0.0	63.5	14.5	0.0	0.0
Cycle Q Clear(g_c), s	12.0	38.0	38.0	8.0	0.0	34.0	13.0	0.0	63.5	60.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.07	1.00		0.62	0.11		0.49
Lane Grp Cap(c), veh/h	185	484	430	148	0	431	289	0	915	238	0	0
V/C Ratio(X)	1.70	2.05	1.01	0.95	0.00	1.58	1.71	0.00	0.91	4.07	0.00	0.00
Avail Cap(c_a), veh/h	185	484	430	148	0	431	289	0	915	238	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	40.4	51.0	51.0	43.9	0.0	53.0	25.8	0.0	27.8	50.6	0.0	0.0
Incr Delay (d2), s/veh	339.3	477.6	46.2	59.2	0.0	270.5	334.4	0.0	13.3	1393.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	22.0	80.3	19.9	6.0	0.0	46.8	31.8	0.0	25.6	100.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	379.7	528.6	97.2	103.1	0.0	323.5	360.2	0.0	41.1	1443.9	0.0	0.0
LnGrp LOS	F	F	F	F	A	F	F	A	D	F	A	A
Approach Vol, veh/h		1739			820			1326			968	
Approach Delay, s/veh		393.7			285.6			160.2			1443.9	
Approach LOS		F			F			F			F	

Timer - Assigned Phs	1	2	3	4	5	6	8
Phs Duration (G+Y+Rc), s	13.0	44.0	18.0	65.0	17.0	40.0	83.0
Change Period (Y+Rc), s	5.0	6.0	5.0	5.0	5.0	6.0	5.0
Max Green Setting (Gmax), s	8.0	38.0	13.0	60.0	12.0	34.0	78.0
Max Q Clear Time (g_c+11), s	10.0	40.0	15.0	62.0	14.0	36.0	65.5
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0	0.0	0.0	7.3

Intersection Summary

HCM 6th Ctrl Delay	521.1
HCM 6th LOS	F

Major/Minor \quad N	Major1		Major2			Minor1			Minor2				
Conflicting Flow All	718	0	0	1495	0	0	2668	2665	1403	2724	2716	677	
Stage 1	-	-	-	-	-	-	1643	1643	-	981	981	-	
Stage 2	-	-	-	-	-	-	1025	1022	-	1743	1735	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5		6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5		6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	892	-	-	455	-	-	~15	23	~ 173	~ 14	21	456	
Stage 1	-	-	-	-	-	-	127	159	-	303	330	-	
Stage 2	-	-	-	-	-	-	286	316	-	111	143	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	892	-	-	455	-	-	-	~ 1	~ 173	-	~ 1	456	
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	~ 1	-	-	~ 1	-	
Stage 1	-	-	-	-	-	-	~12	~ 16	-	~30	144	-	
Stage 2	-	-	-	-	-	-	~93	138	-	0	~ 14	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.7			2.9									
HCM LOS							-			-			
Minor Lane/Major Mvmt			EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		-	892	-	-	455	-	-	-				
HCM Lane V/C Ratio		-	0.134	-	-	0.334	-	-	-				
HCM Control Delay (s)		-	9.7	0	-	16.8	0	-	-				
HCM Lane LOS		-	A	A	-	C	A	-	-				
HCM 95th \%tile Q(veh)		-	0.5	-	-	1.5	-	-	-				
Notes													
\sim : Volume exceeds cap	pacity	De	ay exc	ceds 30		+: Com	putation	Not D	fined	*: All	major	lume in	in platoon

Intersection						
Int Delay, s/veh	3.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	$\mathbf{4}$	$\mathbf{4}$	\mathbf{F}	\mathbf{r}	
Traffic Vol, veh/h	190	900	745	15	15	55
Future Vol, veh/h	190	900	745	15	15	55
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	525	-	-	550	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	0	10	11	46	13	0
Mvmt Flow	207	978	810	16	16	60

Intersection						
Int						
Int Delay, s/veh	3.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	M	
Traffic Vol, veh/h	825	90	5	700	60	5
Future Vol, veh/h	825	90	5	700	60	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	10	0	0	14	0	0
Mvmt Flow	897	98	5	761	65	5

Major/Minor N	Major1		Major2					Minor1	Minor2					
Conflicting Flow All	695	0	0	881	0		0	1722	1702	821	1804	1757	690	
Stage 1		- -	-	-	-		-	865	865	-	832	832	-	
Stage 2		- -	-	-	-		-	857	837		972	925	-	
Critical Hdwy	4.1	1	-	4.14	-		-	7.37	6.56	6.23	7.1	6.73	6.2	
Critical Hdwy Stg 1		- -	-		-		-	6.37	5.56		6.1	5.73	-	
Critical Hdwy Stg 2		-	-	-	-		-	6.37	5.56		6.1	5.73	-	
Follow-up Hdwy	2.2	2	-	2.236	-		-	3.743	4.054	3.327	3.5	4.207	3.3	
Pot Cap-1 Maneuver	910	0	-	759	-		-	~61	90	373	62	75	449	
Stage 1		- -	-	-	-		-	316	365	-	366	356	-	
Stage 2		- -	-	-	-		-	319	376	-	306	321	-	
Platoon blocked, \%		-	-		-		-							
Mov Cap-1 Maneuver	910	0	-	759	-		-	~33	80	373	11	66	449	
Mov Cap-2 Maneuver		-	-	-	-		-	~33	80	-	11	66	-	
Stage 1		- -	-	-	-		-	308	356	-	357	323	-	
Stage 2		- -	-	-	-		-	254	341	-	187	313	-	
Approach	EB			WB				NB			SB			
HCM Control Delay, s	0.2			0.9				1053.5			269.8			
HCM LOS								F			F			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL		WBT	WBR	SBLn1				
Capacity (veh/h)		71	910	-	-	759		-	-	48				
HCM Lane V/C Ratio		3.062	0.024	-	-	0.093		-	-	1.019				
HCM Control Delay (s)		\$ 1053.5	9.1	-	-	10.2		-		269.8				
HCM Lane LOS		F	A	-	-		B	-	-	F				
HCM 95th \%tile Q(veh)		22	0.1	-	-	0.3	. 3	-	-	4.3				
Notes														
\sim : Volume exceeds cap	apacity	\$: Dea	lay exc	eeds 3		+: Com	mp	putation	Not D	efined	*: All	major	lume in	in platoon

F.3. 2040 AM with Recommended PEL Laneage and ACP Implemented

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }_{1}$	个4	F'	\%	性	7	${ }_{1}$	$\hat{*}$		${ }_{1}$	$\hat{\beta}$	
Traffic Volume (veh/h)	15	740	65	195	460	15	65	15	235	40	35	40
Future Volume (veh/h)	15	740	65	195	460	15	65	15	235	40	35	40
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1826	1870	1870	1826	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	16	804	71	212	500	16	71	16	255	43	38	43
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	5	2	2	5	2	2	2	2	2	2	2
Cap, veh/h	342	1019	466	458	1999	913	331	17	273	161	145	165
Arrive On Green	0.29	0.29	0.29	0.16	0.58	0.58	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	885	3469	1585	1781	3469	1585	1317	94	1505	1108	801	906
Grp Volume(v), veh/h	16	804	71	212	500	16	71	0	271	43	0	81
Grp Sat Flow(s),veh/h/n	885	1735	1585	1781	1735	1585	1317	0	1599	1108	0	1707
Q Serve(g_s), s	0.7	10.6	1.6	0.2	3.5	0.2	2.4	0.0	8.3	0.7	0.0	2.0
Cycle Q Clear(g_c), s	4.2	10.6	1.6	0.2	3.5	0.2	4.4	0.0	8.3	9.0	0.0	2.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.94	1.00		0.53
Lane Grp Cap (c), veh/h	342	1019	466	458	1999	913	331	0	290	161	0	310
V/C Ratio(X)	0.05	0.79	0.15	0.46	0.25	0.02	0.21	0.00	0.93	0.27	0.00	0.26
Avail Cap(c_a), veh/h	368	1120	512	458	2030	927	331	0	290	161	0	310
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	15.3	16.1	12.9	17.3	5.2	4.5	19.3	0.0	20.0	24.6	0.0	17.4
Incr Delay (d2), s/veh	0.1	3.9	0.2	0.7	0.1	0.0	0.5	0.0	35.8	1.2	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.1	3.5	0.4	1.7	0.6	0.0	0.7	0.0	5.7	0.5	0.0	0.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	15.3	19.9	13.2	18.0	5.3	4.5	19.8	0.0	55.8	25.9	0.0	18.1
LnGrp LOS	B	B	B	B	A	A	B	A	E	C	A	B
Approach Vol, veh/h		891			728			342			124	
Approach Delay, s/veh		19.3			9.0			48.3			20.8	
Approach LOS		B			A			D			C	

Timer - Assigned Phs	1	2	4	6	8
Phs Duration (G+Y+Rc), s	14.0	20.6	15.0	34.6	15.0
Change Period (Y+Rc), s	6.0	$* 6$	6.0	6.0	6.0
Max Green Setting (Gmax), s	8.0	$* 16$	9.0	29.0	9.0
Max Q Clear Time (g_c+11), s	2.2	12.6	11.0	5.5	10.3
Green Ext Time (p_c), s	0.3	2.0	0.0	4.2	0.0

Intersection Summary

HCM 6th Ctrl Delay	20.6
HCM 6th LOS	C

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.
SH 662040 Fully Implemented PEL with ACP

$\stackrel{\rightarrow}{*} \leftarrow 4 \downarrow$

HCM 6th Signalized Intersection Summary
4: 66th St \& SH 66

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations \%	4	7	\%	4	7	${ }^{*}$	\uparrow		${ }^{*}$	\uparrow	
Traffic Volume (veh/h) 30	510	20	25	890	10	15	5	15	20	5	15
Future Volume (veh/h) 30	510	20	25	890	10	15	5	15	20	5	15
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h 33	554	22	27	967	11	16	5	16	22	5	16
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \% 2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h 191	1032	875	451	1024	868	415	94	300	415	94	300
Arrive On Green 0.03	0.55	0.55	0.03	0.55	0.55	0.24	0.24	0.24	0.24	0.24	0.24
Sat Flow, veh/h 1781	1870	1585	1781	1870	1585	1391	392	1253	1391	392	1253
Grp Volume(v), veh/h 33	554	22	27	967	11	16	0	21	22	0	21
Grp Sat Flow(s),veh/h/ln1781	1870	1585	1781	1870	1585	1391	0	1645	1391	0	1645
Q Serve(g_s), s 0.6	14.2	0.5	0.5	36.4	0.2	0.7	0.0	0.7	0.9	0.0	0.7
Cycle Q Clear(g_c), s 0.6	14.2	0.5	0.5	36.4	0.2	1.4	0.0	0.7	1.7	0.0	0.7
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.76	1.00		0.76
Lane Grp Cap(c), veh/h 191	1032	875	451	1024	868	415	0	394	415	0	394
V/C Ratio(X) 0.17	0.54	0.03	0.06	0.94	0.01	0.04	0.00	0.05	0.05	0.00	0.05
Avail Cap(c_a), veh/h 251	1083	918	519	1083	918	415	0	394	415	0	394
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) $\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 16.1	10.7	7.6	8.2	15.9	7.7	22.5	0.0	22.0	22.6	0.0	22.0
Incr Delay (d2), s/veh 0.4	0.5	0.0	0.1	15.4	0.0	0.2	0.0	0.3	0.2	0.0	0.3
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 2	4.3	0.1	0.1	15.2	0.1	0.2	0.0	0.3	0.3	0.0	0.3
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 16.5	11.2	7.7	8.2	31.3	7.7	22.7	0.0	22.3	22.9	0.0	22.3
LnGrp LOS B	B	A	A	C	A	C	A	C	C	A	C
Approach Vol, veh/h	609			1005			37			43	
Approach Delay, s/veh	11.3			30.4			22.5			22.6	
Approach LOS	B			C			C			C	

Timer - Assigned Phs	1	2	4	5	6
Phs Duration (G+Y+Rc), s6.7	46.0	22.5	7.0	45.6	22.5
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax5,.8	43.5	18.0	5.0	43.5	18.0
Max Q Clear Time (g_c+\|12,5s	16.2	3.7	2.6	38.4	3.4
Green Ext Time (p_c), s 0.0	3.2	0.1	0.0	2.7	0.1

Intersection Summary

HCM 6th Ctrl Delay	23.2
HCM 6th LOS	C

User approved pedestrian interval to be less than phase max green.

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	538	0	-	267
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	1026	-	0	731
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1026	-	-	731
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL WBT	
Capacity (veh/h)		731	-	-	1026	W
HCM Lane V/C Ratio		0.119	-		0.026	-
HCM Control Delay (s)		10.6	-	-	8.6	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0.4	-	-	0.1	-

Major/Minor \quad a	Major1		Major2		Minor2	
Conflicting Flow All	1168	0	-	0	-	584
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.1	-	-	-	-	6.9
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.2	-	-	-	-	3.3
Pot Cap-1 Maneuver	605	-	-	-	0	460
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	605	-	-	-	-	460
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		13.1	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		605	-	-	-	460
HCM Lane V/C Ratio		0.018	-	-	-	0.035
HCM Control Delay (s)		11.1	-	-	-	13.1
HCM Lane LOS		B	-	-	-	B
HCM 95th \%tile Q(veh)		0.1	-	-	-	0.1

Movement	EBL	EBT	EBR2	WBT	WBR	NBL	NBT	NBR2	SBL2	SBT	SBR	NWL2
Lane Configurations	5	44	7	44	F	5	4	「	${ }^{*}$	4	7	77
Traffic Volume (vph)	10	335	250	595	50	420	40	695	55	280	50	1350
Future Volume (vph)	10	335	250	595	50	420	40	695	55	280	50	1350
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.7	5.7	4.0	5.7	5.7	4.5	6.4	4.0	4.5	6.4	6.4	4.5
Lane Util. Factor	0.97	0.95	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00	0.97
Frt	1.00	1.00	0.85	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00
Flt Protected	0.95	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95
Satd. Flow (prot)	3502	3471	1599	3406	1615	3400	1863	1583	1805	1900	1583	3433
Flt Permitted	0.95	1.00	1.00	1.00	1.00	0.44	1.00	1.00	0.65	1.00	1.00	0.95
Satd. Flow (perm)	3502	3471	1599	3406	1615	1573	1863	1583	1240	1900	1583	3433
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	364	272	647	54	457	43	755	60	304	54	1467
RTOR Reduction (vph)	0	0	0	0	33	0	0	0	0	0	41	0
Lane Group Flow (vph)	11	364	272	647	21	457	43	755	60	304	13	1467
Heavy Vehicles (\%)	0\%	4\%	1\%	6\%	0\%	3\%	2\%	2\%	0\%	0\%	2\%	2\%
Turn Type	Prot	NA	Free	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Perm	Prot
Protected Phases	5	2		6		3	8		7	4		126
Permitted Phases			Free		6	8		Free	4		4	
Actuated Green, G (s)	1.2	15.5	77.7	30.6	30.6	21.7	16.2	77.7	25.5	18.1	18.1	37.5
Effective Green, g (s)	1.2	15.5	77.7	30.6	30.6	21.7	16.2	77.7	25.5	18.1	18.1	37.5
Actuated g/C Ratio	0.02	0.20	1.00	0.39	0.39	0.28	0.21	1.00	0.33	0.23	0.23	0.48
Clearance Time (s)	5.7	5.7		5.7	5.7	4.5	6.4		4.5	6.4	6.4	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	4.0		3.0	4.0	4.0	
Lane Grp Cap (vph)	54	692	1599	1341	636	568	388	1583	460	442	368	1656
v/s Ratio Prot	0.00	0.10		0.19		0.06	0.02		0.01	0.16		c0.43
v/s Ratio Perm			0.17		0.01	c0.17		c0.48	0.03		0.01	
v/c Ratio	0.20	0.53	0.17	0.48	0.03	0.80	0.11	0.48	0.13	0.69	0.03	0.89
Uniform Delay, d1	37.8	27.8	0.0	17.6	14.5	25.1	24.9	0.0	18.2	27.2	23.0	18.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.65
Incremental Delay, d2	1.9	0.7	0.2	0.3	0.0	8.1	0.2	1.0	0.1	4.8	0.1	4.9
Delay (s)	39.6	28.5	0.2	17.9	14.5	33.2	25.1	1.0	18.3	32.0	23.1	16.7
Level of Service	D	C	A	B	B	C	C	A	B	C	C	B
Approach Delay (s)		16.8		17.6			13.6			28.9		
Approach LOS		B		B			B			C		

Intersection Summary

HCM 2000 Control Delay	17.1	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.94		22.3
Actuated Cycle Length (s)	77.7	Sum of lost time (s)	F
Intersection Capacity Utilization	98.8%	ICU Level of Service	

Analysis Period (min)
15
C Critical Lane Group

	\rightarrow	2	\cdots		》	ρ	
Movement	EBT	EBR	WBL	WBT	NEL	NER	
Lane Configurations	4个		$7{ }^{7}$	¢ \uparrow		F	
Traffic Volume (vph)	355	0	1350	645	0	695	
Future Volume (vph)	355	0	1350	645	0	695	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.7		4.5	4.0		4.0	
Lane Utill. Factor	0.95		0.97	0.95		1.00	
Frt	1.00		1.00	1.00		0.86	
Flt Protected	1.00		0.95	1.00		1.00	
Satd. Flow (prot)	3539		3433	3539		1611	
Flt Permitted	1.00		0.95	1.00		1.00	
Satd. Flow (perm)	3539		3433	3539		1611	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	386	0	1467	701	0	755	
RTOR Reduction (vph)	0	0	0	0	0	0	
Lane Group Flow (vph)	386	0	1467	701	0	755	
Turn Type	NA		Prot	NA		Free	
Protected Phases	2		134	Free			
Permitted Phases						Free	
Actuated Green, G (s)	15.5		52.0	77.7		77.7	
Effective Green, g (s)	15.5		45.6	77.7		77.7	
Actuated g/C Ratio	0.20		0.59	1.00		1.00	
Clearance Time (s)	5.7						
Vehicle Extension (s)	3.0						
Lane Grp Cap (vph)	705		2014	3539		1611	
v/s Ratio Prot	0.11		c0.43	0.20			
v/s Ratio Perm						c0.47	
v/c Ratio	0.55		0.73	0.20		0.47	
Uniform Delay, d1	27.9		11.6	0.0		0.0	
Progression Factor	1.53		1.00	1.00		1.00	
Incremental Delay, d2	0.7		1.3	0.1		0.9	
Delay (s)	43.4		12.9	0.1		0.9	
Level of Service	D		B	A		A	
Approach Delay (s)	43.4			8.8	0.9		
Approach LOS	D			A	A		
Intersection Summary							
HCM 2000 Control Delay			11.0		HCM 2000	Level of Service	B
HCM 2000 Volume to Capacity ratio			0.78				
Actuated Cycle Length (s)			77.7		Sum of lost	time (s)	22.3
Intersection Capacity Utilization			56.4\%	ICU Level of Service			B
Analysis Period (min)			15				

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个4	F	7\%	性	F	\%	\uparrow	F	${ }_{1}$	\uparrow	F
Traffic Volume (veh/h)	5	1080	60	200	1945	10	95	10	170	10	10	10
Future Volume (veh/h)	5	1080	60	200	1945	10	95	10	170	10	10	10
Initial Q (Qb), veh	0	0	0		0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1856	1900	1885	1856	1870	1900	1870	1885	1870	1870	1870
Adj Flow Rate, veh/h	5	1174	65	217	2114	11	103	11	0	11	11	11
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	3	0	1	3	2	0	2	1	2	2	2
Cap, veh/h	127	2207	1008	699	2385	1072	178	181		107	107	91
Arrive On Green	0.01	0.63	0.63	0.06	0.68	0.68	0.05	0.10	0.00	0.01	0.06	0.06
Sat Flow, veh/h	1781	3526	1610	3483	3526	1585	1810	1870	1598	1781	1870	1585
Grp Volume(v), veh/h	5	1174	65	217	2114	11	103	11	0	11	11	11
Grp Sat Flow(s),veh/h/ln	1781	1763	1610	1742	1763	1585	1810	1870	1598	1781	1870	1585
Q Serve(g_s), s	0.0	16.3	0.8	2.0	42.2	0.1	0.8	0.5	0.0	0.5	0.5	0.6
Cycle Q Clear (g_c), s	0.0	16.3	0.8	2.0	42.2	0.1	0.8	0.5	0.0	0.5	0.5	0.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap (c), veh/h	127	2207	1008	699	2385	1072	178	181		107	107	91
V/C Ratio(X)	0.04	0.53	0.06	0.31	0.89	0.01	0.58	0.06		0.10	0.10	0.12
Avail Cap(c_a), veh/h	217	2507	1145	784	2592	1165	187	387		185	387	328
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	30.4	9.1	2.2	8.3	11.4	1.9	39.1	35.7	0.0	41.3	38.9	38.9
Incr Delay (d2), s/veh	0.1	0.2	0.0	0.3	3.9	0.0	4.0	0.1	0.0	0.4	0.4	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1	4.5	0.3	0.5	11.4	0.0	2.2	0.2	0.0	0.2	0.2	0.2

Unsig. Movement Delay, s/veh

LnGrp Delay(d),s/veh	30.5	9.3	2.2	8.5	15.3	1.9	43.2	35.9	0.0	41.7	39.3	39.5
LnGrp LOS	C	A	A	A	B	A	D	D		D	D	D
Approach Vol, veh/h		1244			2342			114	A	33		
Approach Delay, s/veh		9.0			14.6			42.4				
Approach LOS		A			B			D		40.2		
D												

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	5.7	12.9	9.5	59.0	9.1	9.5	5.1	63.4
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	5.0	18.0	7.1	61.9	5.0	18.0	5.0	64.0
Max Q Clear Time (g_c +11), s	2.5	2.5	4.0	18.3	2.8	2.6	2.0	44.2
Green Ext Time (p_c), s	0.0	0.0	0.2	9.6	0.0	0.0	0.0	14.7

Intersection Summary

HCM 6th Ctrl Delay	13.8
HCM 6th LOS	B

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

US287/SH66 DLT

Nodes

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\％	雨个	44	「	\％	F＇
Traffic Volume（veh／h）	20	920	1250	35	15	10
Future Volume（veh／h）	20	920	1250	35	15	10
Initial Q（Qb），veh	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00			1.00	1.00	． 00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	22	1000	1359	38	16	11
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	2	2	2	2	2
Cap，veh／h	342	4030	2500	1115	261	232
Arrive On Green	0.02	0.26	0.70	0.70	0.15	0.15
Sat Flow，veh／h	1781	5274	3647	1585	1781	1585
Grp Volume（v），veh／h	22	1000	1359	38	16	11
Grp Sat Flow（s），veh／h		1702	1777	1585	1781	1585
Q Serve（g＿s），s	0.0	21.7	25.7	1.0	1.1	0.8
Cycle Q Clear（g＿	0.0	21.7	25.7	1.0	1.1	0.8
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap（c）	342	4030	2500	1115	261	232
V／C Ratio（X）	0.06	0.25	0.54	0.03	0.06	0.05
Avail Cap（c＿a），veh／	342	4030	2500	1115	261	232
HCM Platoon Ratio	0.33	0.33	1.00	1.00	1.00	1.00
Upstream Filter（I）	0.97	0.97	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	15.0	18.9	10.0	6.3	51.5	51.4
Incr Delay（d2），s／veh	0.1	0.1	0.9	0.1	0.5	0.4
Initial Q Delay（d3），s／veh		0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh	／lm0． 3	9.8	6	3	0.5	0.8
Unsig．Movement Delay，s／veh						
LnGrp Delay（d），s／veh	15.1	19.1	10.8	6.4	51.9	51.7
LnGrp LOS	B	B	B	A	D	D
Approach Vol，veh／h		1022	1397		27	
Approach Delay，s／veh		19.0	10.7		51.8	
Approach LOS		B	B		D	

Timer－Assigned Phs	4	6	7	8
Phs Duration（G＋Y＋Rc），s	115.0	25.0	12.0	103.0
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	110.5	20.5	7.5	98.5
Max Q Clear Time（g＿c＋11），s	23.7	3.1	2.0	27.7
Green Ext Time（p＿c），s	7.4	0.0	0.0	12.6
Intersection Summary				
HCM 6th Ctrl Delay	14.6			
HCM 6th LOS	B			

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	7	\%	44	7	${ }^{*}$	4	7	${ }_{1}$	4	7
Traffic Volume (veh/h) 5	1045	55	55	1255	25	75	20	55	5	20	15
Future Volume (veh/h) 5	1045	55	55	1255	25	75	20	55	5	20	15
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1870	1752	1796	1856	1781	1870	1796	1870	1856	1870	1870	1870
Adj Flow Rate, veh/h 5	1136	60	60	1364	27	82	22	60	5	22	16
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \% 2	10	7	3	8	2	7	2	3	2	2	2
Cap, veh/h 206	1590	727	367	1821	853	329	239	201	329	239	202
Arrive On Green 0.01	0.48	0.48	0.07	0.54	0.54	0.13	0.13	0.13	0.13	0.13	0.13
Sat Flow, veh/h 1781	3328	1522	1767	3385	1585	1315	1870	1572	1316	1870	1585
Grp Volume(v), veh/h 5	1136	60	60	1364	27	82	22	60	5	22	16
Grp Sat Flow(s),veh/h/ln1781	1664	1522	1767	1692	1585	1315	1870	1572	1316	1870	1585
Q Serve(g_s), s 0.1	11.1	0.9	0.0	12.8	0.3	2.4	0.4	1.4	0.1	0.4	0.4
Cycle Q Clear(g_c), s 0.1	11.1	0.9	0.0	12.8	0.3	2.8	0.4	1.4	0.6	0.4	0.4
Prop In Lane $\quad 1.00$		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 206	1590	727	367	1821	853	329	239	201	329	239	202
V/C Ratio(X) 0.02	0.71	0.08	0.16	0.75	0.03	0.25	0.09	0.30	0.02	0.09	0.08
Avail Cap(c_a), veh/h 410	2303	1053	463	2342	1097	736	817	687	736	817	693
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 9.7	8.5	5.8	14.2	7.4	4.5	17.1	15.9	16.3	16.1	15.9	15.8
Incr Delay (d2), s/veh 0.0	0.6	0.0	0.2	1.0	0.0	0.4	0.2	0.8	0.0	0.2	0.2
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 0	1.9	0.1	0.4	1.7	0.0	0.7	0.2	0.5	0.0	0.2	0.1
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 9.8	9.1	5.9	14.4	8.4	4.5	17.5	16.0	17.1	16.1	16.0	16.0
LnGrp LOS A	A	A	B	A	A	B	B	B	B	B	B
Approach Vol, veh/h	1201			1451			164			43	
Approach Delay, s/veh	9.0			8.6			17.2			16.0	
Approach LOS	A			A			B			B	
Timer - Assigned Phs 1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s7.3	24.2		9.8	4.8	26.7		9.8				
Change Period (Y+Rc), s 4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax5., 8	28.5		18.0	5.0	28.5		18.0				
Max Q Clear Time (g_c+1ı2,@	13.1		2.6	2.1	14.8		4.8				
Green Ext Time (p_c), s 0.0	6.5		0.1	0.0	7.3		0.4				
Intersection Summary											
HCM 6th Ctrl Delay		9.3									
HCM 6th LOS		A									

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
SH 662040 Fully Implemented PEL with ACP

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				个4	
F						
Traffic Vol, veh/h	1160	10	0	1500	0	10
Future Vol, veh/h	1160	10	0	1500	0	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1261	11	0	1630	0	11

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	-	-	-	636
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	421
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	421
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0	13.8

HCM LOS B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	421	-	-	-
HCM Lane V/C Ratio	0.026	-	-	-
HCM Control Delay (s)	13.8	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	0.1	-	-	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性	7	\%	性	7	\%	\uparrow	7	\%	\uparrow	7
Traffic Volume (veh/h)	140	1020	5	10	1410	85	20	10	5	65	25	70
Future Volume (veh/h)	140	1020	5	10	1410	85	20	10	5	65	25	70
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	152	1109	5	11	1533	92	22	11	5	71	27	76
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	287	2092	933	335	1892	844	248	139	118	301	195	165
Arrive On Green	0.07	0.59	0.59	0.01	0.53	0.53	0.03	0.07	0.07	0.05	0.10	0.10
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	1870	1585	1781	1870	1585
Grp Volume(v), veh/h	152	1109	5	11	1533	92	22	11	5	71	27	76
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1870	1585	1781	1870	1585
Q Serve(g_s), s	2.4	12.5	0.1	0.2	23.8	1.9	0.8	0.4	0.2	2.4	0.9	3.0
Cycle Q Clear (g_c), s	2.4	12.5	0.1	0.2	23.8	1.9	0.8	0.4	0.2	2.4	0.9	3.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap (c), veh/h	287	2092	933	335	1892	844	248	139	118	301	195	165
V/C Ratio(X)	0.53	0.53	0.01	0.03	0.81	0.11	0.09	0.08	0.04	0.24	0.14	0.46
Avail Cap(c_a), veh/h	308	2331	1040	443	2305	1028	336	502	425	337	502	425
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	13.3	8.3	5.7	7.5	12.9	7.8	27.5	28.9	28.8	26.5	27.3	28.3
Incr Delay (d2), s/veh	1.5	0.2	0.0	0.0	1.9	0.1	0.2	0.2	0.1	0.4	0.3	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.0	3.0	0.0	0.1	6.8	0.5	0.3	0.2	0.1	1.0	0.4	1

Unsig. Movement Delay, s/veh

LnGrp Delay(d),s/veh	14.8	8.5	5.7	7.6	14.8	7.8	27.7	29.1	29.0	26.9	27.6	30.3
LnGrp LOS	B	A	A	A	B	A	C	C	C	C	C	C
Approach Vol, veh/h		1266			1636			38		174		
Approach Delay, s/veh		9.2			14.4			28.3		28.5		
Approach LOS		A			B			C		C		

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	5.4	44.0	6.2	11.5	9.2	40.2	8.2	9.5
Change Period $(\mathrm{Y}+\mathrm{Rc})$, s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	5.0	44.0	5.0	18.0	5.5	43.5	5.0	18.0
Max Q Clear Time (g_c+11), s	2.2	14.5	2.8	5.0	4.4	25.8	4.4	2.4
Green Ext Time (p_c), s	0.0	7.9	0.0	0.2	0.0	9.9	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	13.2
HCM 6th LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个ヶヶ	F	7	44					\％	\uparrow	F
Traffic Volume（veh／h）	0	995	605	535	1105	0	0	0	0	215	10	355
Future Volume（veh／h）	0	995	605	535	1105	0	0	0	0	215	10	355
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0				0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adj Sat Flow，veh／h／ln	0	1856	1856	1688	1796	0				1737	1411	1856
Adj Flow Rate，veh／h	0	1082	0	582	1201	0				242	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				0.92	0.92	0.92
Percent Heavy Veh，\％	0	3	3	8	7	0				11	33	3
Cap，veh／h	0	1925		1009	2641	0				319	0	
Arrive On Green	0.00	0.76	0.00	0.65	1.00	0.00				0.10	0.00	0.00
Sat Flow，veh／h	0	5233	1572	3118	3503	0				3309	0	1572
Grp Volume（v），veh／h	0	1082	0	582	1201	0				242	0	0
Grp Sat Flow（s），veh／h／ln	0	1689	1572	1559	1706	0				1654	0	1572
Q Serve（g＿s），s	0.0	8.9	0.0	10.5	0.0	0.0				7.1	0.0	0.0
Cycle Q Clear（g＿c），s	0.0	8.9	0.0	10.5	0.0	0.0				7.1	0.0	0.0
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap（c），veh／h	0	1925		1009	2641	0				319	0	
V／C Ratio（X）	0.00	0.56		0.58	0.45	0.00				0.76	0.00	
Avail Cap（c＿a），veh／h	0	1925		1009	2641	0				596	0	
HCM Platoon Ratio	1.00	2.00	2.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter（l）	0.00	0.75	0.00	0.53	0.53	0.00				1.00	0.00	0.00
Uniform Delay（d），s／veh	0.0	8.5	0.0	13.8	0.0	0.0				44.1	0.0	0.0
Incr Delay（d2），s／veh	0.0	0.9	0.0	0.4	0.3	0.0				3.7	0.0	0.0
Initial Q Delay（d3），s／veh		0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lm0．		2.2	0.0	2.5	0.1	0.0				3.0	0.0	0.0
Unsig．Movement Delay，s／veh												
$\begin{aligned} & \text { LnGrp Delay(d),s/veh } \\ & \text { LnGrp LOS } \end{aligned}$	0.0	9.4	0.0	14.2	0.3	0.0				47.8	0.0	0.0
	A	A		B	A	A				D	A	
Approach Vol，veh／h		1082	A		1783						242	A
Approach Delay，s／veh		9.4			4.8						47.8	
Approach LOS		A			A						D	

Timer－Assigned Phs	1	2	4	6
Phs Duration（G＋Y＋Rc），39．4	45.0	15.6	84.4	
Change Period（Y＋Rc），s 7．0	7.0	6.0	7.0	
Max Green Setting（Gma\＆4，\＆	38.0	18.0	69.0	
Max Q Clear Time（g＿c＋M12，5s	10.9	9.1	2.0	
Green Ext Time（p＿c），s	1.6	7.3	0.5	10.1

Intersection Summary
HCM 6th Ctrl Delay 9.8

HCM 6th LOS A

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［EBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	坐			个个个	「	${ }_{1}$	\uparrow	F＇				
Traffic Volume（veh／h） 205	1005	0	0	1325	305	815	5	520	0	0	0	
Future Volume（veh／h） 205	1005	0	0	1325	305	815	5	520	0	0	0	
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0	0	0				
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		1.00	1.00		1.00				
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No			No			No					
Adj Sat Flow，veh／h／ln 1758	1826	0	0	1781	1693	1716	1900	1737				
Adj Flow Rate，veh／h 223	1092	0	0	1440	0	890	0	0				
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92				
Percent Heavy Veh，\％ 3	5	0	0	8	14	6	0	11				
Cap，veh／h 439	1961	0	0	1751		996	0					
Arrive On Green 0.27	1.00	0.00	0.00	0.36	0.00	0.30	0.00	0.00				
Sat Flow，veh／h 3248	3561	0	0	5024	1434	3268	0	1472				
Grp Volume（v），veh／h 223	1092	0	0	1440	0	890	0	0				
Grp Sat Flow（s），veh／h／ln1624	1735	0	0	1621	1434	1634	0	1472				
Q Serve（g＿s），s 5.8	0.0	0.0	0.0	26.9	0.0	26.0	0.0	0.0				
Cycle Q Clear（g＿c），s 5.8	0.0	0.0	0.0	26.9	0.0	26.0	0.0	0.0				
Prop In Lane $\quad 1.00$		0.00	0.00		1.00	1.00		1.00				
Lane Grp Cap（c），veh／h 439	1961	0	0	1751		996	0					
V／C Ratio（X） 0.51	0.56	0.00	0.00	0.82		0.89	0.00					
Avail Cap（c＿a），veh／h 439	1961	0	0	1751		1209	0					
HCM Platoon Ratio 2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter（l） 0.85	0.85	0.00	0.00	1.00	0.00	1.00	0.00	0.00				
Uniform Delay（d），s／veh 33.7	0.0	0.0	0.0	29.1	0.0	33.2	0.0	0.0				
Incr Delay（d2），s／veh 0.8	1.0	0.0	0.0	4.5	0.0	7.7	0.0	0.0				
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
\％ile BackOfQ（50\％），veh／Ir2． 0	0.3	0.0	0.0	10.1	0.0	10.7	0.0	0.0				
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh 34.5	1.0	0.0	0.0	33.6	0.0	40.9	0.0	0.0				
LnGrp LOS C	A	A	A	C		D	A					
Approach Vol，veh／h	1315			1440	A		890	A				
Approach Delay，s／veh	6.7			33.6			40.9					
Approach LOS	A			C			D					
Timer－Assigned Phs	2			5	6		8					
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	63.5			20.5	43.0		36.5					
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	7.0			7.0	＊ 7		6.0					
Max Green Setting（Gmax），s	50.0			9.0	＊ 36		37.0					
Max Q Clear Time（g＿c＋11），s	2.0			7.8	28.9		28.0					
Green Ext Time（p＿c），s	8.4			0.1	4.6		2.5					
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS		25.7										
		C										

Notes

User approved volume balancing among the lanes for turning movement．
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［NBR，WBR］is excluded from calculations of the approach delay and intersection delay．

Major/Minor	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	1625	0	0	1392	0	0	-	-	696	-	-	813	
Stage 1	-	-		-		- -	-		-	-	-	-	
Stage 2	-	-	-	-	-	- -	-	-		-	-		
Critical Hdwy	5.34	-	-	5.36	-	- -	-		7.16	-	-	7.14	
Critical Hdwy Stg 1	-	-	-	-	-	- -	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-		- -	-	-	-	-	-	-	
Follow-up Hdwy	3.12	-	-	3.13	-	- -	-	-	3.93	-	-	3.92	
Pot Cap-1 Maneuver	~193	-	-	250	-	- -	0	0	328	0	0	276	
Stage 1	-	-	-	-	-	- -	0	0	-	0	0	-	
Stage 2	-	-	-	-	-	- -	0	0	-	0	0	-	
Platoon blocked, \%		-	-		-	- -							
Mov Cap-1 Maneuver	~ 193	-		250	-	- -	-	-	328	-	-	276	
Mov Cap-2 Maneuver	-	-	-	-	-	- -	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	- -	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	- -	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	39.6			0.6			23.5			76.9			
HCM LOS							C			F			
Minor Lane/Major Mvm		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		328	~ 193	-		250	-	-	276				
HCM Lane V/C Ratio		0.414	1.38	-		- 0.174	-	-	0.925				
HCM Control Delay (s)		23.5	246.5	-	-	22.4	-	-	76.9				
HCM Lane LOS		C	F	-	-	C	-	-	F				
HCM 95th \%tile Q(veh)		2	15.6	-	-	0.6	-	-	8.6				
Notes													
\sim : Volume exceeds capacity		\$: Delay exceeds 300s				+: Computation Not Defined				*: All major volume in platoon			

	4	\rightarrow		\dagger			4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\%		7					个4	F	\%	个4	
Trafic Volume (vph)	395	0	420	0	0	0	0	660	115	30	610	0
Future Volume (vph)	395	0	420	0	0	0	0	660	115	30	610	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5		4.5					4.5	4.5	4.5	4.5	
Lane Util. Factor	0.97		1.00					0.95	1.00	1.00	0.95	
Frt	1.00		0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433		1583					3539	1583	1770	3539	
Flt Permitted	0.95		1.00					1.00	1.00	0.17	1.00	
Satd. Flow (perm)	3433		1583					3539	1583	312	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	429	0	457	0	0	0	0	717	125	33	663	0
RTOR Reduction (vph)	0	0	77	0	0	0	0	0	90	0	0	0
Lane Group Flow (vph)	429	0	380	0	0	0	0	717	35	33	663	0
Turn Type	Perm		Perm					NA	Perm	pm+pt	NA	
Protected Phases								8		7	4	
Permitted Phases	2		2						8	4		
Actuated Green, G (s)	35.1		35.1					19.4	19.4	25.9	25.9	
Effective Green, $\mathrm{g}(\mathrm{s})$	35.1		35.1					19.4	19.4	25.9	25.9	
Actuated g/C Ratio	0.50		0.50					0.28	0.28	0.37	0.37	
Clearance Time (s)	4.5		4.5					4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0		3.0					3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	1721		793					980	438	157	1309	
v/s Ratio Prot								c0.20		0.01	c0.19	
v/s Ratio Perm	0.12		c0.24						0.02	0.07		
v/c Ratio	0.25		0.48					0.73	0.08	0.21	0.51	
Uniform Delay, d1	9.9		11.4					22.9	18.7	15.5	17.1	
Progression Factor	1.00		1.00					1.00	1.00	0.36	0.59	
Incremental Delay, d2	0.3		2.1					2.8	0.1	0.6	0.3	
Delay (s)	10.3		13.5					25.8	18.8	6.2	10.3	
Level of Service	B		B					C	B	A	B	
Approach Delay (s)		12.0			0.0			24.7			10.1	
Approach LOS		B			A			C			B	
Intersection Summary												
HCM 2000 Control Delay			15.9		CM 2000	Level of S	ervice		B			
HCM 2000 Volume to Capacity ratioActuated Cycle Length (s)			0.58									
			70.0		Sum of los	time (s)			13.5			
Intersection Capacity Utilization			91.4\%	ICU Level of Service					F			
Analysis Period (min)			15									

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	F＇	${ }^{4}$	个个	F	\％	\uparrow	F	\％	\uparrow	F
Traffic Volume（veh／h）	75	485	85	150	1090	20	135	10	105	125	10	100
Future Volume（veh／h）	75	485	85	150	1090	20	135	10	105	125	10	100
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1900	1737	1530	1900	1781	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate，veh／h	82	527	92	163	1185	22	147	11	114	136	11	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	11	25	0	8	0	0	0	0	0	0	0
Cap，veh／h	206	981	385	310	1136	541	624	530	449	585	530	
Arrive On Green	0.06	0.30	0.30	0.03	0.11	0.11	0.07	0.28	0.28	0.07	0.28	0.00
Sat Flow，veh／h	1810	3300	1296	1810	3385	1610	1810	1900	1610	1810	1900	1610
Grp Volume（v），veh／h	82	527	92	163	1185	22	147	11	114	136	11	0
Grp Sat Flow（s），veh／h／n1	1810	1650	1296	1810	1692	1610	1810	1900	1610	1810	1900	1610
Q Serve（g＿s），s	0.0	9.3	3.8	4.9	23.5	0.6	4.0	0.3	3.8	3.7	0.3	0.0
Cycle Q Clear（g＿c），s	0.0	9.3	3.8	4.9	23.5	0.6	4.0	0.3	3.8	3.7	0.3	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	206	981	385	310	1136	541	624	530	449	585	530	
V／C Ratio（X）	0.40	0.54	0.24	0.53	1.04	0.04	0.24	0.02	0.25	0.23	0.02	
Avail Cap（c＿a），veh／h	232	981	385	388	1136	541	624	530	449	585	530	
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	0.72	0.72	0.72	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	31.1	20.6	18.6	21.4	31.1	10.3	16.1	18.3	19.6	16.0	18.3	0.0
Incr Delay（d2），s／veh	1.2	0.6	0.3	1.0	34.7	0.0	0.2	0.1	1.4	0.2	0.1	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／	／lm 1.2	3.1	1.1	1.9	15.7	0.3	1.6	0.1	1.5	1.5	0.1	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	32.4	21.2	18.9	22.4	65.8	10.3	16.3	18.4	21.0	16.2	18.4	0.0
LnGrp LOS	C	C	B	C	F	B	B	B	C	B	B	
Approach Vol，veh／h		701			1370			272			147	A
Approach Delay，s／veh		22.2			59.8			18.3			16.3	
Approach LOS		C			E			B			B	

Timer－Assigned Phs	2	3	4	5	6	7	8
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），$\$ 1.2$	25.3	9.5	24.0	8.5	28.0	9.5	24.0
Change Period（ $Y+R \mathrm{Cc}$ ，s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），${ }^{\text {B }}$	18.8	5.0	18.5	5.0	23.5	5.0	18.5
Max Q Clear Time（g＿c +1 19， Sb_{5}	11.3	6.0	2.3	2.0	25.5	5.7	5.8
Green Ext Time（p＿c），s 0.1	2.0	0.0	0.0	0.0	0.0	0.0	．

Intersection Summary

HCM 6th Ctrl Delay	42.1
HCM 6th LOS	D

Notes

Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations \%	44	7	\%	革	7	\% 7	\uparrow		${ }^{*}$	\uparrow	
Traffic Volume (veh/h) 50	510	155	125	960	55	280	5	255	20	5	20
Future Volume (veh/h) 50	510	155	125	960	55	280	5	255	20	5	20
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h 54	554	168	136	1043	60	304	5	277	22	5	22
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \% 2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h 186	1132	505	404	1307	583	1109	9	474	316	78	342
Arrive On Green 0.09	0.64	0.64	0.03	0.12	0.12	0.07	0.30	0.30	0.02	0.26	0.26
Sat Flow, veh/h 1781	3554	1585	1781	3554	1585	3456	28	1561	1781	302	1329
Grp Volume(v), veh/h 54	554	168	136	1043	60	304	0	282	22	0	27
Grp Sat Flow(s),veh/h/ln1781	1777	1585	1781	1777	1585	1728	0	1589	1781	0	1631
Q Serve(g_s), s $\quad 1.5$	5.8	2.4	0.0	20.0	2.4	4.5	0.0	10.5	0.6	0.0	0.9
Cycle Q Clear(g_c), s 1.5	5.8	2.4	0.0	20.0	2.4	4.5	0.0	10.5	0.6	0.0	0.9
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.98	1.00		0.81
Lane Grp Cap(c), veh/h 186	1132	505	404	1307	583	1109	0	483	316	0	419
V/C Ratio(X) 0.29	0.49	0.33	0.34	0.80	0.10	0.27	0.00	0.58	0.07	0.00	0.06
Avail Cap(c_a), veh/h 230	1132	505	404	1307	583	1109	0	483	399	0	419
HCM Platoon Ratio 2.00	2.00	2.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 0.94	0.94	0.94	0.83	0.83	0.83	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 19.5	9.7	4.6	24.6	28.2	20.5	16.8	0.0	20.6	18.7	0.0	19.6
Incr Delay (d2), s/veh 0.8	1.4	1.7	0.4	4.3	0.3	0.1	0.0	5.1	0.1	0.0	0.3
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 6	1.7	1.2	1.9	9.9	0.9	1.7	0.0	4.3	0.3	0.0	0.4
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 20.3	11.1	6.3	25.0	32.5	20.8	16.9	0.0	25.7	18.7	0.0	19.9
LnGrp LOS C	B	A	C	C	C	B	A	C	B	A	B
Approach Vol, veh/h	776			1239			586			49	
Approach Delay, s/veh	10.7			31.1			21.1			19.4	
Approach LOS	B			C			C			B	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), $\$ 1.2$	26.8	9.5	22.5	7.8	30.2	6.2	25.8	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmax象.z	22.3	5.0	18.0	5.0	24.0	5.0	18.0	
Max Q Clear Time (g_c+142,@s	7.8	6.5	2.9	3.5	22.0	2.6	12.5	
Green Ext Time (p_c), s	0.1	3.2	0.0	0.1	0.0	1.2	0.0	0.8

Intersection Summary
HCM 6th Ctrl Delay 22.7

HCM 6th LOS

| | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

Unsig. Movement Delay, s/veh

LnGrp Delay(d),s/veh	24.2	12.8	12.1	22.0	25.2	10.7	16.0	16.7	17.4	17.7	22.7	24.4
LnGrp LOS	C	B	B	C	C	B	B	B	B	B	C	C
Approach Vol, veh/h	853			831			516		706			
Approach Delay, s/veh	13.3			24.1		16.5		23.1				
Approach LOS		B			C			B		C		

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s8.7	26.0	12.9	22.5	9.6	25.0	7.6	27.8	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmax5.,5	20.0	8.5	18.0	5.0	20.5	5.0	21.5	
Max Q Clear Time (g_c $\mathbf{I} 14$, ,	9.3	8.5	11.0	2.0	14.1	3.4	5.1	
Green Ext Time (p_c), s	0.0	3.1	0.0	2.0	0.0	2.3	0.0	1.2

Intersection Summary
HCM 6th Ctrl Delay 19.3
HCM 6th LOS B

$\rightarrow \rightarrow \leftarrow \downarrow \downarrow$

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{*}$	个4	个4	${ }^{7}$	\%	F
Traffic Volume (veh/h)	50	660	605	20	20	160
Future Volume (veh/h)	50	660	605	20	20	160
Initial $Q(Q b)$, veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	0.90	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	1900	1752	1737	1218	1707	1900
Adj Flow Rate, veh/h	54	717	658	22	22	174
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	10	11	46	13	0
Cap, veh/h	469	1800	1124	316	289	286
Arrive On Green	0.06	0.54	0.34	0.34	0.18	0.18
Sat Flow, veh/h	1810	3416	3387	929	1626	1610
Grp Volume(v), veh/h	54	717	658	22	22	174
Grp Sat Flow(s),veh/h/ln 1810		1664	1650	929	1626	1610
Q Serve(g_s), s	0.5	4.0	5.3	0.5	0.4	3.2
Cycle Q Clear (g_c), s	0.5	4.0	5.3	0.5	0.4	3.2
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h 4	469	1800	1124	316	289	286
V/C Ratio(X) 0	0.12	0.40	0.59	0.07	0.08	0.61
Avail Cap(c_a), veh/h 6	673	3591	2528	712	1093	1083
HCM Platoon Ratio 1	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 5	5.6	4.3	8.7	7.1	11.0	12.1
Incr Delay (d2), s/veh	0.1	0.1	0.5	0.1	0.1	2.1
Initial Q Delay(d3),s/veh 0.0		0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ (50%),veh/InD. 1		0.1	0.8	0.0	0.1	3.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	5.8	4.4	9.2	7.2	11.1	14.2
LnGrp LOS	A	A	A	A	B	B
Approach Vol, veh/h		771	680		196	
Approach Delay, s/veh		4.5	9.1		13.9	
Approach LOS		A	A		B	
Timer - Assigned Phs		2		4	5	6
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s		21.8		10.2	6.4	15.4
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5	4.5	4.5
Max Green Setting (Gmax), s		34.5		21.5	5.5	24.5
Max Q Clear Time (g_c+11), s		6.0		5.2	2.5	7.3
Green Ext Time (p_c), s		4.5		0.5	0.0	3.6

Intersection Summary

HCM 6th Ctrl Delay	7.5
HCM 6th LOS	A

Notes
User approved pedestrian interval to be less than phase max green.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	7	${ }_{1}$	44	7	${ }^{*}$	\uparrow		\%	\uparrow	
Traffic Volume (veh/h) 10	610	40	60	500	5	45	30	90	5	30	10
Future Volume (veh/h) 10	610	40	60	500	5	45	30	90	5	30	10
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1900	1752	1500	1841	1722	1900	1500	1811	1811	1900	1559	1559
Adj Flow Rate, veh/h 11	663	43	65	543	5	49	33	98	5	33	11
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \% 0	10	27	4	12	0	27	6	6	0	23	23
Cap, veh/h 414	1057	404	397	1202	591	357	68	201	310	138	46
Arrive On Green 0.01	0.32	0.32	0.06	0.37	0.37	0.05	0.17	0.17	0.01	0.12	0.12
Sat Flow, veh/h 1810	3328	1271	1753	3272	1610	1428	402	1194	1810	1119	373
Grp Volume(v), veh/h 11	663	43	65	543	5	49	0	131	5	0	44
Grp Sat Flow(s),veh/h/ln1810	1664	1271	1753	1636	1610	1428	0	1596	1810	0	1492
Q Serve(g_s), s 0.2	6.9	1.0	1.0	5.1	0.1	1.2	0.0	3.0	0.1	0.0	1.1
Cycle Q Clear(g_c), s 0.2	6.9	1.0	1.0	5.1	0.1	1.2	0.0	3.0	0.1	0.0	1.1
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.75	1.00		0.25
Lane Grp Cap(c), veh/h 414	1057	404	397	1202	591	357	0	269	310	0	184
V/C Ratio(X) 0.03	0.63	0.11	0.16	0.45	0.01	0.14	0.00	0.49	0.02	0.00	0.24
Avail Cap(c_a), veh/h 633	2498	954	566	2537	1248	476	0	766	543	0	716
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) $\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 9.2	11.8	9.8	8.7	9.8	8.2	14.3	0.0	15.3	15.4	0.0	16.1
Incr Delay (d2), s/veh 0.0	0.6	0.1	0.2	0.3	0.0	0.2	0.0	1.4	0.0	0.0	0.7
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50%),veh/Im0.0	1.6	0.2	0.2	1.1	0.0	0.3	0.0	0.9	0.0	0.0	0.3
Unsig. Movement Delay, s/veh											
LnGrp Delay(d), s/veh 9.3	12.4	9.9	8.9	10.0	8.2	14.5	0.0	16.7	15.5	0.0	16.8
LnGrp LOS A	B	A	A	B	A	B	A	B	B	A	B
Approach Vol, veh/h	717			613			180			49	
Approach Delay, s/veh	12.2			9.9			16.1			16.6	
Approach LOS	B			A			B			B	
Timer - Assigned Phs 1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s7.1	17.4	6.6	9.5	5.1	19.4	4.8	11.3				
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax $¢ .5$	30.5	5.5	19.5	5.5	31.5	5.5	19.5				
Max Q Clear Time (g_c+113,@	8.9	3.2	3.1	2.2	7.1	2.1	5.0				
Green Ext Time (p_c), s 0.0	4.0	0.0	0.1	0.0	3.2	0.0	0.5				
Intersection Summary											
HCM 6th Ctrl Delay 11.9											
HCM 6th LOS		B									

F.4. 2040 PM with Recommended PEL Laneage and ACP Implemented

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{*}$	个4	F	\％	个4	「	\％	\hat{F}		${ }_{1}$	\hat{p}	
Traffic Volume（veh／h）	30	990	15	110	885	40	15	10	95	30	10	30
Future Volume（veh／h）	30	990	15	110	885	40	15	10	95	30	10	30
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1826	1870	1870	1826	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	33	1076	16	120	962	43	16	11	103	33	11	33
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	5	2	2	5	2	2	2	2	2	2	2
Cap，veh／h	267	1313	600	428	2210	1010	293	22	205	230	58	175
Arrive On Green	0.38	0.38	0.38	0.15	0.64	0.64	0.14	0.14	0.14	0.14	0.14	0.14
Sat Flow，veh／h	561	3469	1585	1781	3469	1585	1362	155	1454	1279	412	1236
Grp Volume（v），veh／h	33	1076	16	120	962	43	16	0	114	33	0	44
Grp Sat Flow（s），veh／h／n	561	1735	1585	1781	1735	1585	1362	0	1609	1279	0	1648
Q Serve（g＿s），s	2.6	15.1	0.3	0.0	7.5	0.5	0.6	0.0	3.5	1.3	0.0	1.3
Cycle Q Clear（g＿c），s	10.1	15.1	0.3	0.0	7.5	0.5	1.8	0.0	3.5	4.9	0.0	1.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.90	1.00		0.75
Lane Grp Cap（c），veh／h	267	1313	600	428	2210	1010	293	0	227	230	0	233
V／C Ratio（X）	0.12	0.82	0.03	0.28	0.44	0.04	0.05	0.00	0.50	0.14	0.00	0.19
Avail Cap（c＿a），veh／h	283	1410	644	428	2244	1025	302	0	238	238	0	244
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	16.6	15.2	10.6	19.2	4.9	3.7	21.3	0.0	21.5	23.7	0.0	20.5
Incr Delay（d2），s／veh	0.3	4.0	0.0	0.4	0.2	0.0	0.1	0.0	2.4	0.4	0.0	0.6
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	0.3	4.9	0.1	1.1	1.0	0.1	0.2	0.0	1.4	0.4	0.0	0.5
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	16.9	19.2	10.6	19.6	5.1	3.7	21.4	0.0	23.9	24.1	0.0	21.1
LnGrp LOS	B	B	B	B	A	A	C	A	C	C	A	C
Approach Vol，veh／h		1125			1125			130			77	
Approach Delay，s／veh		19.0			6.6			23.6			22.4	
Approach LOS		B			A			C			C	

Timer - Assigned Phs	1	2	4	6	8
Phs Duration（G＋Y＋Rc），s	14.0	26.5	13.6	40.5	13.6
Change Period（Y＋Rc），s	6.0	$* 6$	6.0	6.0	6.0
Max Green Setting（Gmax），s	8.0	$* 22$	8.0	35.0	8.0
Max Q Clear Time（g＿c＋11），s	2.0	17.1	6.9	9.5	5.5
Green Ext Time（p＿c），s	0.1	3.3	0.0	9.3	0.2

Intersection Summary
HCM 6th Ctrl Delay 13.7
HCM 6th LOS
B

Notes

User approved pedestrian interval to be less than phase max green．
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 \uparrow	F	${ }^{7}$	个4	7	${ }^{7}$	\uparrow	F	${ }^{*}$	\hat{F}	
Traffic Volume (veh/h)	25	340	360	60	490	30	490	35	365	40	50	60
Future Volume (veh/h)	25	340	360	60	490	30	490	35	365	40	50	60
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	. 00	. 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 1	1710	1683	1683	1683	1657	1710	1617	1710	1617	1710	1710	1710
Adj Flow Rate, veh/h	27	370	0	65	533	33	560	0	0	43	54	65
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	2	2	2	4	0	7	0	7	0	0	0
Cap, veh/h	178	642		217	630	290	666	0		212	92	111
Arrive On Green	0.03	0.20	0.00	0.06	0.20	0.20	0.22	0.00	0.00	0.13	0.13	0.13
Sat Flow, veh/h	1629	3198	1427	1603	3148	1449	3079	0	1370	1629	707	850
Grp Volume(v), veh/h	27	370	0	65	533	33	560	0	0	43	0	119
Grp Sat Flow(s),veh/h/nn	1629	1599	1427	1603	1574	1449	1540	0	1370	1629	0	1557
Q Serve(g_s), s	0.0	5.9	0.0	2.0	9.2	1.1	9.9	0.0	0.0	1.3	0.0	4.1
Cycle Q Clear (g_c), s	0.0	5.9	0.0	2.0	9.2	1.1	9.9	0.0	0.0	1.3	0.0	4.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.55
Lane Grp Cap(c), veh/h	178	642		217	630	290	666	0		212	0	202
V/C Ratio(X)	0.15	0.58		0.30	0.85	0.11	0.84	0.00		0.20	0.00	0.59
Avail Cap(c_a), veh/h	272	648		268	638	294	706	0		230	0	220
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.7	20.5	0.0	21.3	21.8	18.6	21.3	0.0	0.0	22.1	0.0	23.2
Incr Delay (d2), s/veh	0.4	1.5	0.0	0.8	10.5	0.2	9.1	0.0	0.0	0.7	0.0	4.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50%), veh/I	Ilm 0	1.9	0.0	0.7	3.7	0.3	3.8	0.0	0.0	0.5	0.0	1.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	27.0	22.0	0.0	22.1	32.3	18.8	30.4	0.0	0.0	22.7	0.0	27.8
LnGrp LOS	C	C		C	C	B	C	A		C	A	C
Approach Vol, veh/h		397	A		631			560	A		162	
Approach Delay, s/veh		22.4			30.6			30.4			26.4	
Approach LOS		C			C			C			C	

Timer - Assigned Phs	1	2	4	5	6	8
Phs Duration (G+Y+Rc), s7.7	17.4	18.3	7.7	17.4	13.4	
Change Period (Y+Rc), s 4.5	6.0	6.0	6.0	$* 6$	6.0	
Max Green Setting (Gmax5.,	11.5	13.0	5.0	$* 12$	8.0	
Max Q Clear Time (g_c $\mathbf{1 4} 14$, ,s	7.9	11.9	2.0	11.2	6.1	
Green Ext Time (p_c), s	0.0	0.9	0.4	0.0	0.1	0.2

Intersection Summary

HCM 6th Ctrl Delay 28.3

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

$\stackrel{\rightarrow}{*} \leftarrow 4 \downarrow$

Movement	EBL	EB	WB	WB	SB	SBR
Lane Configurations	\%	个4	个 \uparrow	F	${ }_{1}$	F
Traffic Volume (veh/h)	30	715	570	10	50	20
Future Volume (veh/h)	30	715	570	10	50	20
Initial $Q(Q b)$, veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	187	1870	870
Adj Flow Rate, veh/h	33	777	620	11	54	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2
Cap, veh/h	321	1132	1132	505	809	720
rive On Green	0.32	0.32	0.3	0.3	0.45	. 45
Sat Flow, veh/h	796	3647	3647	1585	1781	1585
Grp Volume(v), veh/h	33	777	620	11	54	22
Grp Sat Flow(s),veh/h/n	796	1777	1777	1585	1781	1585
Q Serve(g_s), s	1.4	7.6	5.7	0.2	0.7	0.3
Cycle Q Clear(g_c), s	7.1	7.6	5.7	0.2	0.7	0.3
Prop In Lane	1.00			1.00	1.00	1.00
Lane Grp Cap(c), veh/h	321	1132	1132	505	809	720
V/C Ratio(X)	0.10	0.69	0.55	0.02	0.07	0.03
Avail Cap(c_a), veh/h	429	1614	1614	720	809	720
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.0	1.00	. 00
Uniform Delay (d), s/veh	14.1	11.8	11.1	9.3	6.1	6.0
Incr Delay (d2), s/veh	0.1	0.7	0.4	0.0	0.2	0.1
Initial Q Delay(d3),s/veh		0.0	0	0	. 0	0.0
\%ile BackOfQ(50\%),veh/	/lmp. 2	1.8	1.4	0.0	0.2	
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	14.2	12.5	11.6	9.3	6.2	6.1
LnGrp LOS	B	B	B	A	A	A
Approach Vol, veh/h		810	631		76	
Approach Delay, s/veh		12.6	11.5		6.2	
Approach LOS		B	B		A	

Timer - Assigned Phs	2	4	6
Phs Duration (G+Y+Rc), s	17.1	22.5	17.1
Change Period (Y+Rc), s	4.5	4.5	4.5
Max Green Setting (Gmax), s	18.0	18.0	18.0
Max Q Clear Time (g_c+11), s	9.6	2.7	7.7
Green Ext Time (p_c), s	3.1	0.1	2.6

Intersection Summary	
HCM 6th Ctrl Delay	11.8
HCM 6th LOS	B

HCM 6th Signalized Intersection Summary
4: 66th St \& SH 66

Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow	F'	\%	\uparrow	F	\%	$\hat{\beta}$		${ }^{4}$	$\hat{\beta}$	
Traffic Volume (veh/h)	30	900	20	25	540	10	15	5	15	20	0	15
Future Volume (veh/h)	30	900	20	25	540	10	15	5	15	20	0	15
Initial $Q(Q b)$, veh	0	0	0	0	-	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 18	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	33	978	22	27	587	11	16	5	16	22	0	16
Peak Hour Factor 0	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	451	1067	904	198	1058	897	401	90	287	397	0	364
Arrive On Green 0	0.03	0.57	0.57	0.03	0.57	0.57	0.23	0.23	0.23	0.23	0.00	0.23
Sat Flow, veh/h 17	1781	1870	1585	1781	1870	1585	1397	392	1253	1391	0	1585
Grp Volume(v), veh/h	33	978	22	27	587	11	16	0	21	22	0	16
Grp Sat Flow(s),veh/h/ln17	1781	1870	1585	1781	1870	1585	1397	0	1645	1391	0	1585
Q Serve(g_s), s	0.6	37.0	0.5	0.5	15.6	0.2	0.7	0.0	0.8	1.0	0.0	0.6
Cycle Q Clear(g_c), s	0.6	37.0	0.5	0.5	15.6	0.2	1.3	0.0	0.8	1.8	0.0	0.6
Prop In Lane $\quad 1$	1.00		1.00	1.00		1.00	1.00		0.76	1.00		1.00
Lane Grp Cap(c), veh/h	451	1067	904	198	1058	897	401	0	377	397	0	364
V/C Ratio(X) 0.07	0.07	0.92	0.02	0.14	0.55	0.01	0.04	0.00	0.06	0.06	0.00	0.04
Avail Cap(c_a), veh/h	507	1275	1081	261	1275	1081	401	0	377	397	0	364
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l) 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.1	15.2	7.3	15.5	10.8	7.4	24.1	0.0	23.6	24.3	0.0	23.5
Incr Delay (d2), s/veh	0.1	9.4	0.0	0.3	0.5	0.0	0.2	0.0	0.3	0.3	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/Ir	Im0. 2	13.8	0.1	0.2	4.8	0.1	0.2	0.0	0.3	0.3	0.0	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	8.1	24.6	7.4	15.8	11.2	7.5	24.2	0.0	23.9	24.6	0.0	23.8
LnGrp LOS	A	C	A	B	B	A	C	A	C	C	A	C
Approach Vol, veh/h		1033			625			37			38	
Approach Delay, s/veh		23.7			11.4			24.0			24.2	
Approach LOS		C			B			C			C	

			4	5	6	8
Timer - Assigned Phs	1	2	22.5	7.1	48.9	22.5
Phs Duration $(G+Y+R c)$, s6.7	49.2	4.5	4.5	4.5	4.5	
Change Period (Y+Rc), s 4.5	4.5	18.0	5.0	53.5	18.0	
Max Green Setting (Gmax5.,	53.5	3.8	2.6	17.6	3.3	
Max Q Clear Time (g_c $+1212,5$	39.0	0.1	0.0	3.5	0.1	

Intersection Summary

HCM 6th Ctrl Delay	19.3
HCM 6th LOS	B

Notes

User approved pedestrian interval to be less than phase max green.

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个4	\mathbf{r}	1	个4		\mathbf{F}
Traffic Vol, veh/h	1175	20	60	565	0	30
Future Vol, veh/h	1175	20	60	565	0	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	250	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1277	22	65	614	0	33

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	1299	0	-	639
\quad Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	529	-	0	419
\quad Stage 1	-	-	-	-	0	-
\quad Stage 2	-	-	-	-	0	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	529	-	-	419
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Major/Minor \quad a	Major1		Major2		Minor2	
Conflicting Flow All	740	0	-	0	-	370
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.1	-	-	-	-	6.9
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.2	-	-	-	-	3.3
Pot Cap-1 Maneuver	876	-	-	-	0	633
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	876	-	-	-	-	633
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.8	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		876	-	-	-	633
HCM Lane V/C Ratio		0.012	-	-	-	0.017
HCM Control Delay (s)		9.2	-	-	-	10.8
HCM Lane LOS		A	-	-	-	B
HCM 95th \%tile Q(veh)		0	-	-	-	0.1

Movement	EBL	EBT	EBR2	WBT	WBR	NBL	NBT	NBR2	SBL2	SBT	SBR	NWL2
Lane Configurations	5	44	7	44	7	7%	4	7	${ }^{*}$	4	7	57
Traffic Volume (vph)	40	775	445	350	35	330	250	1585	75	130	10	920
Future Volume (vph)	40	775	445	350	35	330	250	1585	75	130	10	920
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.7	5.7	5.7	5.7	5.7	4.5	6.4	4.0	4.5	6.4	6.4	4.5
Lane Util. Factor	0.97	0.95	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00	0.97
Frt	1.00	1.00	0.85	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00
Flt Protected	0.95	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95
Satd. Flow (prot)	3502	3471	1599	3406	1615	3400	1863	1583	1805	1900	1583	3433
Flt Permitted	0.95	1.00	1.00	1.00	1.00	0.61	1.00	1.00	0.47	1.00	1.00	0.95
Satd. Flow (perm)	3502	3471	1599	3406	1615	2167	1863	1583	895	1900	1583	3433
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	842	484	380	38	359	272	1723	82	141	11	1000
RTOR Reduction (vph)	0	0	280	0	22	0	0	0	0	0	9	0
Lane Group Flow (vph)	43	842	204	380	16	359	272	1723	82	141	2	1000
Heavy Vehicles (\%)	0\%	4\%	1\%	6\%	0\%	3\%	2\%	2\%	0\%	0\%	2\%	2\%
Turn Type	Prot	NA	Perm	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Perm	Prot
Protected Phases	5	2		6		3	8		7	4		126
Permitted Phases			2		6	8		Free	4		4	
Actuated Green, G (s)	4.3	31.1	31.1	34.1	34.1	24.1	18.4	83.1	20.7	16.7	16.7	44.1
Effective Green, g (s)	4.3	31.1	31.1	34.1	34.1	24.1	18.4	83.1	20.7	16.7	16.7	44.1
Actuated g/C Ratio	0.05	0.37	0.37	0.41	0.41	0.29	0.22	1.00	0.25	0.20	0.20	0.53
Clearance Time (s)	5.7	5.7	5.7	5.7	5.7	4.5	6.4		4.5	6.4	6.4	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	4.0		3.0	4.0	4.0	
Lane Grp Cap (vph)	181	1299	598	1397	662	713	412	1583	266	381	318	1821
v/s Ratio Prot	0.01	0.24		0.11		0.03	0.15		0.01	0.07		0.29
v/s Ratio Perm			0.13		0.01	0.11		c1.09	0.06		0.00	
v/c Ratio	0.24	0.65	0.34	0.27	0.02	0.50	0.66	1.09	0.31	0.37	0.01	0.55
Uniform Delay, d1	37.8	21.5	18.6	16.3	14.6	23.7	29.5	41.5	24.6	28.7	26.6	12.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99
Incremental Delay, d2	0.7	1.1	0.3	0.1	0.0	0.6	4.3	50.8	0.7	0.8	0.0	0.3
Delay (s)	38.5	22.6	19.0	16.4	14.6	24.3	33.8	92.3	25.3	29.5	26.6	13.1
Level of Service	D	C	B	B	B	C	C	F	C	C	C	B
Approach Delay (s)		21.8		16.2			75.2			27.9		
Approach LOS		C		B			E			C		

Intersection Summary			D
HCM 2000 Control Delay	43.4	HCM 2000 Level of Service	
HCM 2000 Volume to Capacity ratio	1.49		22.3
Actuated Cycle Length (s)	83.1	Sum of lost time (s)	E
Intersection Capacity Utilization	86.7%	ICU Level of Service	

Analysis Period (min)
15
C Critical Lane Group

c Critical Lane Group

Intersection													
Int Delay, s/veh	0.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢ \uparrow	F		性	F			7			F	
Traffic Vol, veh/h	0	2390	115	0	1385	5	0	0	50	0	0		
Future Vol, veh/h	0	2390	115	0	1385	5	0	0	50	0	0	5	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	0	-	-	250	-	-	0	-	-	0	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	2598	125	0	1505	5	0	0	54	0	0	5	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个4	7	97	个4	F'	\%	\uparrow	7	\%	\uparrow	7
Traffic Volume (veh/h)	5	2355	80	255	1350	15	55	15	205	25	20	10
Future Volume (veh/h)	5	2355	80	255	1350	15	55	15	205	25	20	10
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1856	1900	1885	1856	1870	1900	1870	1885	1870	1870	1870
Adj Flow Rate, veh/h	5	2560	87	277	1467	16	60	16	0	27	22	11
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	2	3	0	1	3	2	0	2	,		2	2
Cap, veh/h	650	2613	1193	301	1696	763	157	100		139	65	55
Arrive On Green	0.32	0.74	0.74	0.06	0.48	0.48	0.04	0.05	0.00	0.02	0.03	0.03
Sat Flow, veh/h	1781	3526	1610	3483	3526	1585	1810	1870	1598	1781	1870	1585
Grp Volume(v), veh/h	5	2560	87	277	1467	16	60	16	0	27	22	11
Grp Sat Flow(s),veh/h/n	1781	1763	1610	1742	1763	1585	1810	1870	1598	1781	1870	1585
Q Serve(g_s), s	0.0	98.8	2.1	7.2	53.2	0.6	4.6	1.2	0.0	2.1	1.7	0.6
Cycle Q Clear(g_c), s	0.0	98.8	2.1	7.2	53.2	0.6	4.6	1.2	0.0	2.1	1.7	0.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	650	2613	1193	301	1696	763	157	100		139	65	55
V/C Ratio(X)	0.01	0.98	0.07	0.92	0.86	0.02	0.38	0.16		0.19	0.34	0.20
Avail Cap(c_a), veh/h	650	2621	1197	301	2702	1215	163	152		160	134	113
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.0	17.6	5.1	38.1	33.2	13.6	63.4	65.1	0.0	64.9	67.8	24.8
Incr Delay (d2), s/veh	0.0	13.2	0.0	32.0	1.9	0.0	1.5	0.7	0.0	0.7	3.0	1.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ (50\%),veh/ln	0.1	34.5	0.6	4.2	21.4	0.3	2.2	0.6	0.0	1.0	0.8	0.4
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	25.0	30.8	5.1	70.1	35.0	13.7	64.9	65.8	0.0	65.5	70.9	26.6
LnGrp LOS	C	C	A	E	D	B	E	E		E	E	C
Approach Vol, veh/h		2652			1760			76	A		60	
Approach Delay, s/veh		29.9			40.4			65.1			60.3	
Approach LOS		C			D			E			E	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration $(G+Y+R c), s$	7.8	12.2	12.8	111.1	10.5	9.5	50.2	73.7
Change Period $(\mathrm{Y}+\mathrm{Rc})$, s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	5.0	11.7	8.3	107.0	6.4	10.3	5.0	110.3
Max Q Clear Time (g_c+11), s	4.1	3.2	9.2	100.8	6.6	3.7	2.0	55.2
Green Ext Time (p_c), s	0.0	0.0	0.0	5.9	0.0	0.0	0.0	14.0

Intersection Summary

HCM 6th Ctrl Delay	34.9
HCM 6th LOS	C

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	0.9	$\$ 348.3$	19.5
HCM LOS			F	C

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1	
Capacity (veh/h)	138	392	-	-138	-	-334		
HCM Lane V/C Ratio	1.575	0.055	-	-0.276	-	-0.26		
HCM Control Delay (s)	$\$ 348.3$	14.7	-	-40.7	-	-19.5		
HCM Lane LOS	F	B	-	-	E	-	-	C
HCM 95th \%tile Q(veh)	15.3	0.2	-	-	1.1	-	-	1

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

US287/SH66 DLT

Nodes

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性	F	\%	性	F	\%	\hat{F}		7	\uparrow	
Traffic Volume (veh/h)	25	1565	55	90	1145	60	5	5	45	40	5	20
Future Volume (veh/h)	25	1565	55	90	1145	60	5	5	45	40	5	20
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 1	1900	1856	1648	1767	1826	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	27	1701	60	98	1245	65	5	5	49	43	5	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0	3	17	9	5	0	0	0	0	0	0	0
Cap, veh/h	478	2018	799	211	1590	738	201	9	88	217	29	126
Arrive On Green	0.18	0.57	0.57	0.06	0.46	0.46	0.01	0.06	0.06	0.04	0.09	0.09
Sat Flow, veh/h 181	1810	3526	1397	1682	3469	1610	1810	151	1482	1810	307	1350
Grp Volume(v), veh/h	27	1701	60	98	1245	65	5	0	54	43	0	27
Grp Sat Flow(s),veh/h/ln1	1810	1763	1397	1682	1735	1610	1810	0	1633	1810	0	1657
Q Serve(g_s), s	0.0	27.0	1.3	2.4	20.6	1.0	0.2	0.0	2.2	1.5	0.0	1.0
Cycle Q Clear(g_c), s	0.0	27.0	1.3	2.4	20.6	1.0	0.2	0.0	2.2	1.5	0.0	1.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.91	1.00		0.81
Lane Grp Cap(c), veh/h	478	2018	799	211	1590	738	201	0	97	217	0	155
V/C Ratio(X)	0.06	0.84	0.08	0.47	0.78	0.09	0.02	0.00	0.56	0.20	0.00	0.17
Avail Cap(c_a), veh/h	478	2288	906	230	2251	1045	323	0	434	277	0	440
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	17.6	12.0	6.5	16.4	15.5	4.8	29.7	0.0	31.0	28.2	0.0	28.3
Incr Delay (d2), s/veh	0.0	2.8	0.0	1.6	1.2	0.1	0.0	0.0	5.0	0.4	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/I	/Imp 3	7.4	0.3	0.8	6.3	0.5	0.1	0.0	0.9	0.6	0.0	0.4
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	17.7	14.7	6.5	18.0	16.7	4.8	29.7	0.0	36.0	28.6	0.0	28.9
LnGrp LOS	B	B	A	B	B	A	C	A	D	C	A	C
Approach Vol, veh/h		1788			1408			59			70	
Approach Delay, s/veh		14.5			16.3			35.5			28.7	
Approach LOS		B			B			D			C	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s8.7	43.3	4.9	10.8	16.4	35.6	7.3	8.5	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmax5.,	44.0	5.0	18.0	5.0	44.0	5.0	18.0	
Max Q Clear Time (g_c $\mathbf{I} 14$, ,6	29.0	2.2	3.0	2.0	22.6	3.5	4.2	
Green Ext Time (p_c), s	0.0	9.8	0.0	0.1	0.0	8.5	0.0	0.1

Intersection Summary
HCM 6th Ctrl Delay 15.9
HCM 6th LOS B

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			个4		\mathbf{r}
Traffic Vol, veh/h	1765	10	0	1445	0	5
Future Vol, veh/h	1765	10	0	1445	0	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1918	11	0	1571	0	5

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	F	\%	个4	F'	1	\uparrow	F	${ }_{1}$	\uparrow	F
Traffic Volume (veh/h)	185	1565	20	5	1320	85	10	15	10	150	5	115
Future Volume (veh/h)	185	1565	20	5	1320	85	10	15	10	150	5	115
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1856	1900	1900	1826	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	201	1701	22	5	1435	92	11	16	11	163	5	125
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \%	0		0	0	5	0	0	0	0	0	0	0
Cap, veh/h	302	2040	932	172	1762	818	226	141	119	334	255	216
Arrive On Green	0.08	0.58	0.58	0.01	0.51	0.51	0.01	0.07	0.07	0.07	0.13	0.13
Sat Flow, veh/h	1810	3526	1610	1810	3469	1610	1810	1900	1610	1810	1900	1610
Grp Volume(v), veh/h	201	1701	22	5	1435	92	11	16	11	163	5	125
Grp Sat Flow(s),veh/h/ln	1810	1763	1610	1810	1735	1610	1810	1900	1610	1810	1900	1610
Q Serve(g_s), s	3.2	26.5	0.4	0.1	23.4	2.0	0.4	0.5	0.4	5.0	0.2	4.9
Cycle Q Clear(g_c), s	3.2	26.5	0.4	0.1	23.4	2.0	0.4	0.5	0.4	5.0	0.2	4.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	302	2040	932	172	1762	818	226	141	119	334	255	216
V/C Ratio(X)	0.67	0.83	0.02	0.03	0.81	0.11	0.05	0.11	0.09	0.49	0.02	0.58
Avail Cap(c_a), veh/h	353	2298	1050	294	2154	1000	336	507	429	334	507	429
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	13.9	11.6	6.1	11.5	13.9	8.7	28.2	29.2	29.1	25.7	25.4	27.4
Incr Delay (d2), s/veh	3.8	2.5	0.0	0.1	2.1	0.1	0.1	0.4	0.3	1.1	0.0	2.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.5	7.1	0.1	0.0	6.9	0.6	0.2	0.2	0.2	2.2	0.1	1.9

Unsig. Movement Delay, s/veh

LnGrp Delay(d),s/veh	17.6	14.1	6.1	11.6	16.0	8.7	28.3	29.5	29.5	26.8	25.4	29.8
LnGrp LOS	B	B	A	B	B	A	C	C	C	C	C	C
Approach Vol, veh $/ h$		1924			1532			38		293		
Approach Delay, sveh		14.4			15.6			29.2		28.1		
Approach LOS	B			B			C		C			

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	4.9	43.5	5.4	13.6	9.7	38.8	9.5	9.5
Change Period $(\mathrm{Y}+\mathrm{Rc})$, s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	5.0	44.0	5.0	18.0	7.1	41.9	5.0	18.0
Max Q Clear Time (g_c+11), s	2.1	28.5	2.4	6.9	5.2	25.4	7.0	2.5
Green Ext Time (p_c), s	0.0	9.9	0.0	0.2	0.1	8.8	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay 16.1

HCM 6th LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个ヶヶ	F	7	44					${ }_{1}$	\uparrow	F
Traffic Volume（veh／h）	0	1250	490	565	1625	0	0	0	0	220	10	330
Future Volume（veh／h）	0	1250	490	565	1625	0	0	0	0	220	10	330
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0				0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00				1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00
Work Zone On Approach		No			No						No	
Adj Sat Flow，veh／h／ln	0	1856	1856	1688	1796	0				1737	1411	1856
Adj Flow Rate，veh／h	0	1359	0	614	1766	0				247	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				0.92	0.92	0.92
Percent Heavy Veh，\％	0	3	3	8	7	0				11	33	3
Cap，veh／h	0	1520		1079	2503	0				344	0	
Arrive On Green	0.00	0.30	0.00	0.69	1.00	0.00				0.10	0.00	0.00
Sat Flow，veh／h	0	5233	1572	3118	3503	0				3309	0	1572
Grp Volume（v），veh／h	0	1359	0	614	1766	0				247	0	0
Grp Sat Flow（s），veh／h／ln	0	1689	1572	1559	1706	0				1654	0	1572
Q Serve（g＿s），s	0.0	20.5	0.0	8.0	0.0	0.0				5.8	0.0	0.0
Cycle Q Clear（g＿c），s	0.0	20.5	0.0	8.0	0.0	0.0				5.8	0.0	0.0
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00
Lane Grp Cap（c），veh／h	0	1520		1079	2503	0				344	0	
V／C Ratio（X）	0.00	0.89		0.57	0.71	0.00				0.72	0.00	
Avail Cap（c＿a），veh／h	0	1520		1079	2503	0				744	0	
HCM Platoon Ratio	1.00	1.00	1.00	2.00	2.00	1.00				1.00	1.00	1.00
Upstream Filter（l）	0.00	0.73	0.00	0.38	0.38	0.00				1.00	0.00	0.00
Uniform Delay（d），s／veh	0.0	26.8	0.0	9.3	0.0	0.0				34.7	0.0	0.0
Incr Delay（d2），s／veh	0.0	6.4	0.0	0.3	0.7	0.0				2.8	0.0	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／	／ 11 m 0	8.1	0.0	1.7	0.2	0.0				2.3	0.0	0.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	0.0	33.2	0.0	9.6	0.7	0.0				37.5	0.0	0.0
LnGrp LOS	A	C		A	A	A				D	A	
Approach Vol，veh／h		1359	A		2380						247	A
Approach Delay，s／veh		33.2			2.9						37.5	
Approach LOS		C			A						D	

Timer－Assigned Phs 1	2	4	6
Phs Duration（ $G+Y+R \mathrm{c}$ ）， 34.7	31.0	14.3	65.7
Change Period（Y＋Rc），s 7.0	7.0	6.0	7.0
Max Green Setting（Gmax\％， 8	24.0	18.0	49.0
Max Q Clear Time（g＿c＋1MO，¢	22.5	7.8	2.0
Green Ext Time（p＿c），s 1.5	1.1	0.6	19.0

Intersection Summary

HCM 6th Ctrl Delay	15.4
HCM 6th LOS	B

Notes

User approved volume balancing among the lanes for turning movement．
Unsignalized Delay for［EBR，SBR］is excluded from calculations of the approach delay and intersection delay．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	坐			个个个	F＇	${ }_{1}$	\uparrow	F＇				
Traffic Volume（veh／h） 275	1195	0	0	1700	310	490	0	685	0	0	0	
Future Volume（veh／h） 275	1195	0	0	1700	310	490	0	685	0	0	0	
Initial $Q(Q b)$ ，veh 0	0	0	0	0	0	0	0	0				
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		1.00	1.00		1.00				
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No			No			No					
Adj Sat Flow，veh／h／n 1758	1826	0	0	1781	1693	1716	1900	1737				
Adj Flow Rate，veh／h 299	1299	0	0	1848	0	533	0	0				
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92				
Percent Heavy Veh，\％ 3	5	0	0	8	14	6	0	11				
Cap，veh／h 434	2242	0	0	2067		625	0					
Arrive On Green 0.27	1.00	0.00	0.00	0.43	0.00	0.19	0.00	0.00				
Sat Flow，veh／h 3248	3561	0	0	5024	1434	3268	0	1472				
Grp Volume（v），veh／h 299	1299	0	0	1848	0	533	0	0				
Grp Sat Flow（s），veh／h／ln1624	1735	0	0	1621	1434	1634	0	1472				
Q Serve（g＿s），s 6.6	0.0	0.0	0.0	28.2	0.0	12.6	0.0	0.0				
Cycle Q Clear（g＿c），s 6.6	0.0	0.0	0.0	28.2	0.0	12.6	0.0	0.0				
Prop In Lane $\quad 1.00$		0.00	0.00		1.00	1.00		1.00				
Lane Grp Cap（c），veh／h 434	2242	0	0	2067		625	0					
V／C Ratio（X） 0.69	0.58	0.00	0.00	0.89		0.85	0.00					
Avail Cap（c＿a），veh／h 434	2242	0	0	2067		735	0					
HCM Platoon Ratio 2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter（I） 0.64	0.64	0.00	0.00	1.00	0.00	1.00	0.00	0.00				
Uniform Delay（d），s／veh 27.8	0.0	0.0	0.0	21.3	0.0	31.3	0.0	0.0				
Incr Delay（d2），s／veh 2.9	0.7	0.0	0.0	6.5	0.0	8.4	0.0	0.0				
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
\％ile BackOfQ（50\％），veh／Ir2． 3	0.2	0.0	0.0	9.9	0.0	5.3	0.0	0.0				
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh 30.8	0.7	0.0	0.0	27.8	0.0	39.6	0.0	0.0				
LnGrp LOS C	A	A	A	C		D	A					
Approach Vol，veh／h	1598			1848	A		533	A				
Approach Delay，s／veh	6.3			27.8			39.6					
Approach LOS	A			C			D					
Timer－Assigned Phs	2			5	6		8					
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	58.7			17.7	41.0		21.3					
Change Period（ $\mathrm{Y}+\mathrm{Rc} \mathrm{c}$ ）， s	7.0			7.0	＊ 7		6.0					
Max Green Setting（Gmax），s	49.0			10.0	＊ 34		18.0					
Max Q Clear Time（g＿c＋1），s	2.0			8.6	30.2		14.6					
Green Ext Time（p＿c），s	11.1			0.1	3.1		0.7					
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS		20.8										
		C										

Notes

User approved volume balancing among the lanes for turning movement．
＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［NBR，WBR］is excluded from calculations of the approach delay and intersection delay．

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	7	${ }_{1}$	44	7	${ }^{*}$	4	7	${ }^{1}$	4	7
Traffic Volume (veh/h) 110	1205	170	140	585	75	105	15	170	80	15	65
Future Volume (veh/h) 110	1205	170	140	585	75	105	15	170	80	15	65
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1900	1737	1530	1900	1781	1900	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h 120	1310	185	152	636	82	114	16	185	87	16	0
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \% 0	11	25	0	8	0	0	0	0	0	0	0
Cap, veh/h 298	1375	540	202	1397	665	528	465	394	469	447	
Arrive On Green 0.06	0.42	0.42	0.02	0.14	0.14	0.06	0.24	0.24	0.05	0.24	0.00
Sat Flow, veh/h 1810	3300	1296	1810	3385	1610	1810	1900	1610	1810	1900	1610
Grp Volume(v), veh/h 120	1310	185	152	636	82	114	16	185	87	16	0
Grp Sat Flow(s),veh/h/ln1810	1650	1296	1810	1692	1610	1810	1900	1610	1810	1900	1610
Q Serve(g_s), s 3.5	30.7	5.4	2.6	13.8	3.6	3.8	0.5	6.1	2.9	0.5	0.0
Cycle Q Clear(g_c), s 3.5	30.7	5.4	2.6	13.8	3.6	3.8	0.5	6.1	2.9	0.5	0.0
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 298	1375	540	202	1397	665	528	465	394	469	447	
V/C Ratio(X) 0.40	0.95	0.34	0.75	0.46	0.12	0.22	0.03	0.47	0.19	0.04	
Avail Cap(c_a), veh/h 338	1382	543	206	1397	665	528	465	394	486	447	
HCM Platoon Ratio 1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	1.00	0.96	0.96	0.96	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 18.1	22.6	7.8	37.3	26.3	21.8	21.0	23.0	15.3	21.2	23.6	0.0
Incr Delay (d2), s/veh 0.9	14.4	0.4	13.7	0.2	0.1	0.2	0.1	4.0	0.2	0.1	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/li1 3	12.5	2.1	3.5	5.9	1.3	1.6	0.2	3.2	1.2	0.2	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 18.9	37.0	8.2	51.0	26.5	21.9	21.2	23.2	19.3	21.4	23.7	0.0
LnGrp LOS B	D	A	D	C	C	C	C	B	C	C	
Approach Vol, veh/h	1615			870			315			103	A
Approach Delay, s/veh	32.4			30.3			20.2			21.8	
Approach LOS	C			C			C			C	

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($G+Y+$ Rc), s9.3	37.8	9.5	23.3	9.6	37.5	8.8	24.1
Change Period ($Y+R \mathrm{Cc}$, s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax F , $^{\text {G }}$	33.5	5.0	18.5	6.9	31.6	5.0	18.5
Max Q Clear Time (g_c +14 , E_{6}	32.7	5.8	2.5	5.5	15.8	4.9	8.1
Green Ext Time (p_c), s 0.0	0.6	0.0	0.0	0.0	3.5	0.0	. 5

Intersection Summary
HCM 6th Ctrl Delay 30.1

HCM 6th LOS C
Notes
Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	7	${ }^{*}$	44	7	\% 17	\uparrow		${ }^{1}$	\uparrow	
Traffic Volume (veh/h) 30	1050	375	280	540	30	210	10	185	60	10	50
Future Volume (veh/h) 30	1050	375	280	540	30	210	10	185	60	10	50
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h 33	1141	408	304	587	33	228	11	201	65	11	54
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, \% 2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h 241	1253	559	352	1618	722	894	19	341	325	62	304
Arrive On Green 0.06	0.71	0.71	0.04	0.15	0.15	0.06	0.22	0.22	0.06	0.22	0.22
Sat Flow, veh/h 1781	3554	1585	1781	3554	1585	3456	83	1515	1781	275	1352
Grp Volume(v), veh/h 33	1141	408	304	587	33	228	0	212	65	0	65
Grp Sat Flow(s),veh/h/ln1781	1777	1585	1781	1777	1585	1728	0	1598	1781	0	1627
Q Serve(g_s), s 1.0	21.2	12.5	8.5	11.9	1.0	0.0	0.0	9.5	0.0	0.0	2.6
Cycle Q Clear(g_c), s 1.0	21.2	12.5	8.5	11.9	1.0	0.0	0.0	9.5	0.0	0.0	2.6
Prop In Lane 1.00		1.00	1.00		1.00	1.00		0.95	1.00		0.83
Lane Grp Cap(c), veh/h 241	1253	559	352	1618	722	894	0	359	325	0	366
V/C Ratio(X) 0.14	0.91	0.73	0.86	0.36	0.05	0.25	0.00	0.59	0.20	0.00	0.18
Avail Cap(c_a), veh/h 294	1253	559	352	1618	722	896	0	359	326	0	366
HCM Platoon Ratio 2.00	2.00	2.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 0.60	0.60	0.60	0.88	0.88	0.88	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh 19.4	10.8	9.5	35.4	23.6	8.8	24.4	0.0	27.7	29.3	0.0	25.0
Incr Delay (d2), s/veh 0.2	7.4	5.0	17.4	0.6	0.1	0.1	0.0	6.9	0.3	0.0	1.1
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 4	4.4	3.2	7.4	5.1	0.5	1.7	0.0	4.2	1.1	0.0	1.1
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 19.5	18.2	14.5	52.8	24.1	8.9	24.5	0.0	34.6	29.6	0.0	26.1
LnGrp LOS B	B	B	D	C	A	C	A	C	C	A	C
Approach Vol, veh/h	1582			924			440			130	
Approach Delay, s/veh	17.3			33.0			29.4			27.8	
Approach LOS	B			C			C			C	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), $\$ 5.3$	32.7	9.5	22.5	7.1	40.9	9.5	22.5	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmax0.).	28.2	5.0	18.0	5.0	34.0	5.0	18.0	
Max Q Clear Time (g_c+110,5	23.2	2.0	4.6	3.0	13.9	2.0	11.5	
Green Ext Time (p_c), s	0.0	3.4	0.2	0.2	0.0	3.4	0.0	0.6

Intersection Summary
HCM 6th Ctrl Delay 24.2

HCM 6th LOS

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations \％	个4	F	${ }^{*}$	个4	F＇	${ }_{1}$	个 \uparrow	F	${ }_{1}$	个个	7
Traffic Volume（veh／h） 130	950	215	90	685	25	140	325	120	20	210	25
Future Volume（veh／h） 130	950	215	90	685	25	140	325	120	20	210	25
Initial $Q(Q b)$ ，veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h 141	1033	234	98	745	27	152	353	130	22	228	27
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％ 2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h 252	1174	524	315	1270	567	254	509	227	178	351	156
Arrive On Green 0.16	0.66	0.66	0.11	0.36	0.36	0.07	0.14	0.14	0.02	0.10	0.10
Sat Flow，veh／h 1781	3554	1585	1781	3554	1585	1781	3554	1585	1781	3554	1585
Grp Volume（v），veh／h 141	1033	234	98	745	27	152	353	130	22	228	27
Grp Sat Flow（s），veh／h／ln 1781	1777	1585	1781	1777	1585	1781	1777	1585	1781	1777	1585
Q Serve（g＿s），s 4.8	18.8	2.7	0.0	13.6	0.9	5.5	7.6	3.3	0.9	4.9	1.2
Cycle Q Clear（g＿c），s 4.8	18.8	2.7	0.0	13.6	0.9	5.5	7.6	3.3	0.9	4.9	1.2
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h 252	1174	524	315	1270	567	254	509	227	178	351	156
V／C Ratio（X） 0.56	0.88	0.45	0.31	0.59	0.05	0.60	0.69	0.57	0.12	0.65	0.17
Avail Cap（c＿a），veh／h 325	1466	654	315	1270	567	254	822	367	246	800	357
HCM Platoon Ratio 2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 0.36	0.36	0.36	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh 21.0	12.3	2.3	30.9	20.9	16.8	30.2	32.6	9.5	31.3	34.7	33.1
Incr Delay（d2），s／veh 0.7	2.1	0.2	0.6	2.0	0.2	3.8	1.7	2.3	0.3	2.0	0.5
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lm1． 6	3.7	1.5	1.6	5.2	0.3	2.8	3.3	2.3	0.4	2.1	0.5
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 21.7	14.4	2.5	31.4	22.9	17.0	34.0	34.3	11.8	31.6	36.8	33.6
LnGrp LOS C	B	A	C	C	B	C	C	B	C	D	C
Approach Vol，veh／h	1408			870			635			277	
Approach Delay，s／veh	13.1			23.7			29.6			36.0	
Approach LOS	B			C			C			D	

Timer－Assigned Phs	2	3	4	5	6	7	8
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），$\$ 3.2$	30.9	10.0	12.4	11.1	33.1	6.4	16.0
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax）．${ }^{5}$	33.0	5.5	18.0	9.9	28.6	5.0	18.5
Max Q Clear Time（g＿c＋124，©s	20.8	7.5	6.9	6.8	15.6	2.9	9.6
Green Ext Time（p＿c），s 0.1	5.6	0.0	1.0	0.1	3.7	0.0	1.8

Intersection Summary
HCM 6th Ctrl Delay 21.3

HCM 6th LOS C

$\stackrel{\rightarrow}{\boldsymbol{*}}+4 \downarrow$

Movement E	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }_{4}$	个个	个个	F＇	\％	F＇
Traffic Volume（veh／h） 1	190	900	745	15	15	55
Future Volume（veh／h） 1	190	900	745	15	15	55
Initial $\mathrm{Q}(\mathrm{Qb})$ ，veh	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00	1.00			1.00	1.00	1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	0.90	1.00	1.00
Work Zone On Approach		No	No		No	
Adj Sat Flow，veh／h／ln 190	1900	1752	1737	1218	1707	1900
Adj Flow Rate，veh／h 207	207	978	810	16	16	60
Peak Hour Factor 0.0	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	0	10	11	46	13	0
Cap，veh／h 5	533	2084	1280	360	217	215
Arrive On Green 0.12	0.12	0.63	0.39	0.39	0.13	0.13
Sat Flow，veh／h 18	1810	3416	3387	929	1626	1610
Grp Volume（v），veh／h 207	207	978	810	16	16	60
Grp Sat Flow（s），veh／h／ln18	1810	1664	1650	929	1626	1610
Q Serve（g＿s），s	2.1	5.8	7.5	0.4	0.3	1.3
Cycle Q Clear（g＿c），s	2.1	5.8	7.5	0.4	0.3	1.3
Prop In Lane 1.00	1.00			1.00	1.00	1.00
Lane Grp Cap（c），veh／h 5	533	2084	1280	360	217	215
V／C Ratio（X） 0.3	0.39	0.47	0.63	0.04	0.07	0.28
Avail Cap（c＿a），veh／h 924	924	4400	2865	807	934	925
HCM Platoon Ratio 1.0	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l） 1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	5.8	3.7	9.3	7.1	14.2	14.6
Incr Delay（d2），s／veh	0.5	0.2	0.5	0.1	0.1	0.7
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／ln	In0． 2	0.0	1.4	0.0	0.1	0.0
Unsig．Movement Delay，s／veh						
LnGrp Delay（d），s／veh	6.3	3.9	9.8	7.2	14.3	15.3
LnGrp LOS	A	A	A	A	B	B
Approach Vol，veh／h		1185	826		76	
Approach Delay，s／veh		4.3	9.8		15.1	
Approach LOS		A	A		B	
Timer－Assigned Phs		2		4	5	6
Phs Duration（ $G+Y+R \mathrm{c}$ ）， s		27.9		9.5	8.9	19.0
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s		4.5		4.5	4.5	4.5
Max Green Setting（Gmax），s		49.5		21.5	12.5	32.5
Max Q Clear Time（g＿c＋11），s		7.8		3.3	4.1	9.5
Green Ext Time（p＿c），s		7.1		0.2	0.3	5.1

Intersection Summary

HCM 6th Ctrl Delay	6.9
HCM 6th LOS	A

Notes

User approved pedestrian interval to be less than phase max green．

| | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

Unsig. Movement Delay, s/veh

LnGrp Delay(d),s/veh	8.8	12.6	9.6	8.9	10.4	8.0	16.8	0.0	19.5	18.0	0.0	19.6
LnGrp LOS	A	B	A	A	B	A	B	A	B	B	A	B
Approach Vol, veh/h	903			766			218			49		
Approach Delay, s/veh	12.3			10.3			18.7			19.4		
Approach LOS		B			B			B		B		

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s 7.5	21.5	7.3	9.5	5.7	23.2	4.8	12.0
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax ${ }_{\text {¢ }}$. 5	39.5	7.5	18.5	5.5	40.5	5.5	20.5
Max Q Clear Time (g_c $+1313,1$ b	11.4	3.8	3.2	2.3	9.2	2.1	5.9
Green Ext Time (p_c), s 0.0	5.6	0.0	0.1	0.0	4.4	0.0	0.6

Intersection Summary

HCM 6th Ctrl Delay	12.4
HCM 6th LOS	B

[^0]: Region 4 Regional Transportation Director
 Date

[^1]: Colorado Department of Transportation
 10601 W. 10th Street
 Greeley, CO 80634

