

# **Appendices**



## Appendix A. US 36 / SH 66 Inter-Governmental Agreement

#### INTERGOVERNMENTAL AGREEMENT AMONG THE TOWN OF LYONS, THE CITY OF LONGMONT, THE TOWN OF MEAD, THE TOWN OF FIRESTONE, THE COUNTY OF BOULDER, THE COUNTY OF WELD, AND THE STATE OF COLORADO DEPARTMENT OF TRANSPORTATION

**THIS AGREEMENT** (hereinafter referred to as the "Agreement") is entered into effective as of the date defined below by and among the Cities/Towns of Lyons, Longmont, Mead, and Firestone and the Counties of Boulder and Weld (hereinafter referred to collectively as the "Cities and Counties"), and the State of Colorado, Department of Transportation (hereinafter referred to as the "Department"), said parties being referred to collectively herein as the "Agencies."

#### **RECITALS:**

**WHEREAS**, The Agencies are authorized by the provisions of Article XIV, Section 18(2)(a), Colorado Constitution, and Sections 29-1-201, et. seq., C.R.S., to enter into contracts with each other for the performance of functions that they are authorized by law to perform on their own; and

**WHEREAS**, Each Agency is authorized by Section 43-2-147(1)(a), C.R.S., to regulate access to public highways within its jurisdiction; and

WHEREAS, The coordinated regulation of vehicular access to public highways is necessary to maintain the efficient and smooth flow of traffic without compromising pedestrian and alternative modes of transportation circulation, to reduce the potential for traffic accidents, to protect the functional level and optimize the traffic capacity, to provide an efficient spacing of traffic signals, and to protect the public health, safety and welfare; and

WHEREAS, The Agencies desire to provide for the coordinated regulation of vehicular access for the section of United States Highway 36 between McConnell Drive (M.P 21.00) and Highland Drive (M.P. 21.764), and the section of Colorado State Highway 66 between Highland Drive (M.P. 28.693) and Weld County Road 19 (M.P. 47.912) (hereinafter referred to as the "Segment"), which is within the jurisdiction of the Agencies; and

WHEREAS, The Agencies desire to collaborate to assure all transportation modes including pedestrian, bicycle, vehicle, and mass transit are given sufficient consideration and adequate funding support with each transportation improvement project that affects access within the identified project limits; and

**WHEREAS**, The Agencies are authorized pursuant to Section 2.12 of the 2002 State Highway Access Code, 2 C.C.R. 601-1 (the "Access Code") to achieve such objective by written agreement among themselves adopting and implementing a comprehensive and mutually acceptable highway access control plan for the Segment for the purposes recited above; and

**WHEREAS**, The development of this Access Control Plan adheres to the requirements of the Access Code, Section 2.12.

**NOW THEREFORE**, for and in consideration of the mutual promises and undertakings herein contained, the Agencies agree as follows:

- 1. The Access Control Plan dated March 2020 for the Segment (hereinafter referred to as the "Access Control Plan") is attached hereto as Exhibit A and incorporated herein.
- 2. The Agencies shall regulate access to the Segment in compliance with the Access Control Plan, the Highway Access Law, section 43-2-147, C.R.S., (the "Access Law") and the applicable sections of the Access Code. Vehicular access to the Segment shall be permitted when such access is in compliance with the Access Control Plan, the Access Law and the applicable sections of the Access Code.
- 3. Accesses that were in existence in compliance with the Access Law prior to the effective date of this Agreement may continue in existence until such time as a change in the access is required by the Access Control Plan or in the course of highway reconstruction. When closure, modification, or relocation of access is necessary or required, the Agency(ies) having jurisdiction shall utilize appropriate legal process to affect such action.
- 4. Actions taken by any Agency with regard to transportation planning and traffic operations within the areas described in the Access Control Plan shall be in conformity with this Agreement. Per Section 2.12 (3) of the Access Code, design waivers may be approved if agreed upon by the Agencies having jurisdiction.
- 5. Parcels of real property created after the effective date of this Agreement that adjoin the Segment shall not be provided with direct access to the Segment unless the location, use and design thereof conform to the provisions of this Agreement.
- 6. This Agreement supersedes and controls all prior written, oral agreements, and representations of the Agencies and constitutes the whole agreement between them with respect to regulating vehicular access to the Segment. No additional or different oral representation, promise or agreement shall be binding on either Agency. This agreement may be amended or terminated only in writing executed by the Agencies with express authorization from their respective governing bodies or legally designated officials. Upon thirty-day notice, any party to this Agreement may withdraw from the Agreement in writing, without consent of the other party. To the extent the Access Control Plan, attached as Exhibit A to this Agreement, is modified by a change, closure, relocation, consolidation or addition of an access, the Agencies may amend the attached Exhibit A so long as the amendment to the Access Control Plan is executed in writing and amended in accord with the Access Law and Access Code. The Access Control Plan Amendment Process has been included in Exhibit B. This Agreement is based upon and is intended to be consistent with the Access Law and the Access Code as now or hereafter constituted. An amendment to either the Access Law or the Access Code that becomes effective after the effective date of this Agreement and that conflicts irreconcilably with an express provision of this Agreement may be grounds for revision of this Agreement.
- 7. This Agreement does not create any current financial obligation for any Agency. Any future financial obligation of any Agency shall be subject to the execution of an appropriate encumbrance document, where required. Agencies involved in or affected by any particular or site-specific undertaking provided for herein will cooperate with each other to agree upon a fair and equitable allocation of the costs associated therewith, however, notwithstanding any provision of this Agreement, no Agency shall be required to expend its public funds for such undertaking without the express prior approval of its governing body, director, and if required, state controller. All financial obligations of the

Agencies hereunder shall be contingent upon sufficient funds therefore being appropriated, budgeted, and otherwise made available as provided by law.

- 8. Should any one or more sections or provisions of this Agreement be judicially determined to be invalid or unenforceable, such judgment shall not affect, impair or invalidate the remaining provisions of this Agreement, the intention being that the various provisions hereof are severable.
- 9. By signing this Agreement, the Agencies acknowledge and represent to one another that all procedures necessary to validly contract and execute this Agreement have been performed, and that the persons signing for each Agency have been duly authorized by such Agency to do so.
- 10. No portion of this Agreement shall be deemed to constitute a waiver, express or implied, of any of the immunities, rights, benefits, protections or other provisions of the Colorado Governmental Immunity Act, C.R.S. Section 24-10-101, et. seq. Nor shall any portion of this Agreement be deemed to have created a duty of care that did not previously exist with respect to any person not a party to this Agreement.
- 11. It is expressly understood and agreed that the enforcement of the terms and conditions of this Agreement, and all rights of action relating to such enforcement, shall be strictly reserved to the undersigned parties and nothing in this Agreement shall give or allow any claim or right of action whatsoever by any other person not included in this Agreement. It is the express intention of the undersigned parties that any entity other than the undersigned parties receiving services or benefits under this Agreement shall be an incidental beneficiary only.
- 12. This Agreement may be executed in counterparts, each of which shall be deemed an original and all of which together shall constitute one original Agreement. Facsimile signature shall be as effective as an original signature.
- 13. Effective Date. The Effective Date of this Agreement shall be the date of the last party to sign.

IN WITNESS WHEREOF, the Agencies have executed this Agreement effective as of the day and year last above written.

| Town of Lyons, Colorado    |      | ATTEST:    |  |
|----------------------------|------|------------|--|
| Mayor, Town of Lyons       |      | Town Clerk |  |
| APPROVED AS TO FORM:       |      |            |  |
| Town Attorney              | Date |            |  |
| City of Longmont, Colorado |      | ATTEST:    |  |
| Mayor, City of Longmont    |      | City Clerk |  |
| APPROVED AS TO FORM:       |      |            |  |
| City Attorney              | Date |            |  |
| Town of Mead, Colorado     |      | ATTEST:    |  |
| Mayor, Town of Mead        |      | Town Clerk |  |
| APPROVED AS TO FORM:       |      |            |  |
| Town Attorney              | Date |            |  |

| Town of Firestone, Colorado                       |      | ATTEST:                                   |      |
|---------------------------------------------------|------|-------------------------------------------|------|
| Mayor, Town of Firestone                          |      | City Clerk                                |      |
| APPROVED AS TO FORM:                              |      |                                           |      |
| Town Attorney                                     | Date |                                           |      |
| County of Boulder, Colorado                       |      | ATTEST:                                   |      |
| Commissioner, County of Boulder                   |      | County Clerk                              | Date |
| APPROVED AS TO FORM:                              |      |                                           |      |
| County Attorney                                   | Date |                                           |      |
| County of Weld, Colorado                          |      | ATTEST:                                   |      |
| Commissioner, County of Weld                      |      | County Clerk                              | Date |
| APPROVED AS TO FORM:                              |      |                                           |      |
| County Attorney                                   | Date |                                           |      |
| State of Colorado<br>Department of Transportation |      | CONCUR:                                   |      |
| Region 4 Regional Transportation<br>Director      | Date | Statewide Access Program<br>Administrator | Date |

### "EXHIBIT – A" UNITED STATES HIGHWAY 36 AND COLORADO STATE HIGHWAY 66 (US 36 MP 21.00-MP 21.764 AND CO 66 MP 28.693-MP 47.912) ACCESS CONTROL PLAN March 2020

### Town of Lyons, City of Longmont, Town of Mead, Town of Firestone, Boulder County, Weld County, and the State of Colorado Department of Transportation

### I. PURPOSE

The purpose of this Access Control Plan (ACP) is to provide the Agencies with a comprehensive roadway access control plan for the pertinent segment of United States Highway 36 between McConnell Drive (M.P 21.00) and Highland Drive (M.P. 21.764), as well as the section of Colorado State Highway 66 between Highland Drive (M.P. 28.693) and Weld County Road 19 (M.P. 47.912).

### II. AUTHORITY

The development of this Access Control Plan was completed pursuant to the requirements of the Access Code, Section 2.12, and adopted by the attached Agreement.

### III. **RESPONSIBILITIES**

It is the responsibility of each of the Agencies to this Agreement to ensure that vehicular access to the Segment shall only be in conformance with this Agreement. The cost of access improvements, closures and modifications shall be determined pursuant to section 43-2-147(6) C.R.S., the Agreement, and this Access Control Plan. All access construction shall be consistent with the design criteria and specifications of the Access Code.

### IV. EXISTING AND FUTURE ACCESS

- A. The attached table provides a listing of each existing and future access point in the Segment. For each access point the following information is provided: location, description of the current access status, the future configuration (Access Plan), and the condition(s) for change. All access points along United States Highway 36 and Colorado State Highway 66 are defined by the approximate Department reference point (in hundredths of a mile) based on CDOT Highway Segment Description Mileposts. All access points are located at the approximate centerline of the access (+/- 50 feet) unless otherwise noted in the Access Control Plan and associated tables. Exhibits graphically illustrating the Access Plan are attached for reference. In case of discrepancy, the Access Control Plan Table takes precedence.
- B. All highway design and construction will be based on the assumption that the Segment will have a sufficient cross section to accommodate all travel lanes and sufficient right-of-way to accommodate longitudinal installation of utilities.

### V. ACCESS MODIFICATION

Any proposed access modification including but not limited to an addition must be in compliance with this Agreement and the current Access Code design standards unless the Agency or Agencies having jurisdiction approves a design waiver under the waiver subsection of the Code.

Any access described in this section, which requires changes or closure as part of this Agreement or if significant public safety concerns develop, including but not limited to, when traffic operations have deteriorated, a documented accident history pattern has occurred, or when consistent complaints are received, may be closed, relocated, or consolidated, or turning movements may be restricted, or the access may be brought into conformance with this Access Control Plan, when a formal written request

### Exhibit A United States Highway 36 and Colorado State Highway 66 Access Control Plan

documenting reasons for the change is presented by the Agency(ies) having jurisdiction, with Department concurrence, or in the opinion of the Department, with the appropriate jurisdictional agency's concurrence, any of the following conditions occur:

- a. The access is determined to be detrimental to the public's health, safety and welfare;
- b. the access has developed an accident history that in the opinion of the Agency(ies) having jurisdiction or the Department is correctable by restricting the access;
- c. the access restrictions are necessitated by a change in road or traffic conditions;
- d. there is an approved (by the Agency(ies) having jurisdiction) change in the use of the property that would result in a change in the type of access operation as defined by the Access Code;
- e. a highway reconstruction project provides the opportunity to make highway and access improvements in support of this Access Control Plan; or
- f. the existing development does not allow for the proposed street and road network.

Access construction shall be consistent with the design and specifications of the current State Highway Access Code.

### "EXHIBIT - B" UNITED STATES HIGHWAY 36 AND COLORADO STATE HIGHWAY 66 (US 36 MP 21.00-MP 21.764 AND CO 66 MP 28.693-MP 47.912) ACCESS CONTROL PLAN AMENDMENT PROCESS

- 1. A request for an amendment of the Access Control Plan must be initiated by one of the Agencies. The initiating Agency will be responsible for the costs associated with completing and documenting the Amendment.
- 2. Amendment requests must be submitted to and agreed upon by the affected jurisdictions: Department staff, City staff and/or County staff of the Intergovernmental Agreement, depending on the property location. The property or properties that are directly affected by the proposed amendment must be located within a jurisdiction's boundaries or within the boundaries of a legally recognized planning area, such as a Growth Management Area, for the jurisdiction to be considered an affected jurisdiction.
- 3. An amendment request shall include hard copy and electronic files of the following:
  - a) Description of changes to the Access Control Plan requested
  - b) Justification for the Amendment
  - c) Traffic Impact Study or analysis, depending upon the magnitude of the change requested. Any affected jurisdiction of the Intergovernmental Agreement can request this supporting documentation.
  - d) Amended Access Control Plan Table
  - e) Amended Access Control Plan Exhibit(s)/Map(s)
- 4. The Agencies shall review the submittal concurrently for completeness and for consistency with the access objectives, principles, and strategies described in the *Colorado State Highway 66 Access Control Plan* (March 2020) executive summary and Appendix for this corridor and with the design criteria and permit process of the State Highway Access Code.
- 5. Prior to approval of an amendment, all property owners directly affected by the amendment must be notified in writing and be given thirty (30) calendar days to state any objections. If an objection is lodged, approval of the amendment must be referred to the Agencies respective governing bodies. Depending on the magnitude of the change requested, a public meeting may be required. Any affected jurisdiction of the Intergovernmental Agreement can request a public meeting. The Agency initiating the amendment request shall be responsible for all public notification and public process, unless otherwise agreed to by the Agencies.
- 6. Amendments must be approved in writing by the following authorized designated officials: Regional Transportation Director for the Department, the City Manager and/or County Manager. At the authorized designated official's discretion, approval may be referred to their respective governing bodies: Chief Engineer for the Department and local elected officials for the City and County.
- 7. A written amendment must include the following:
  - a) Declarations page defining the parties, effective date, and details of the amendment. Refer to sample amendment attached to this Exhibit as Exhibit C.

Exhibit B United States Highway 36 and Colorado State Highway 66 Access Control Plan Amendment Process

- b) Signatures page for authorized designated officials. Refer to Exhibit C.
- c) Amended Access Control Plan table and exhibits. Table and exhibits should be replaced in their entirety.

A signed amendment must be attached to the original Intergovernmental Agreement.

8. If a minimum of 66% (aka, five) of the affected jurisdictions of the Intergovernmental Agreement do not come to agreement on a proposed amendment, the content of the original Access Control Plan remains intact.

### "EXHIBIT – C" SAMPLE AMENDMENT TO INTERGOVERNMENTAL AGREEMENT AMONG THE TOWN OF LYONS, THE CITY OF LONGMONT, THE TOWN OF MEAD, THE TOWN OF FIRESTONE, THE COUNTY OF BOULDER, THE COUNTY OF WELD, AND THE STATE OF COLORADO DEPARTMENT OF TRANSPORTATION DATED\_\_\_\_\_

#### WHEREAS:

The Town of Lyons, the City of Longmont, the Town of Mead, the Town of Firestone, the County of Boulder, and the County of Weld (hereinafter referred to collectively as the "Cities and Counties") and the State of Colorado, Department of Transportation (hereinafter referred to as the "Department"), said parties being referred to collectively herein as the "Agencies", entered into an Agreement on \_\_\_\_\_\_

, 2020 to adopt an Access Control Plan dated March, 2020 for the section of United States Highway 36 between McConnell Drive (M.P 21.00) and Highland Drive (M.P. 21.764), and the section of Colorado State Highway 66 between Highland Drive (M.P. 28.693) and Weld County Road 19 (M.P. 47.912) (hereinafter referred to as the "Segment").

The Agencies desire to amend this Agreement in accordance with the attached table for the Segment.

NOW, THEREFORE, the Agencies do hereby agree:

The Agreement and the terms and conditions therein shall remain unchanged other than those sections and exhibits listed below:

The attached table and exhibits for United States Highway 36 and Colorado State Highway 66 in Exhibit A shall be replaced with the table attached to this Amendment.

**IN WITNESS WHEREOF,** the parties hereto have executed this Amendment as of the day and year written above:

Town of Lyons, Colorado

Town Administrator

Date

City of Longmont, Colorado

City Manager

Date

Town of Mead, Colorado

## Town of Firestone, Colorado

| Town Manager                | Date                  |
|-----------------------------|-----------------------|
| County of Boulder, Colorado | 0                     |
| County Manager              | Date                  |
| County of Weld, Colorado    |                       |
| County Manager              | Date                  |
| State of Colorado, Departme | ent of Transportation |
|                             |                       |

Region 4 Regional Transportation Director

Date



## Appendix B. Existing Access Maps

















| DUANE J & HEYD<br>SANDRA L ANDREW R FIRTH JOHN<br>IV & BRENDA RYAN M &<br>GONDER WAYNE &<br>CELESTE<br>VAUGHN WODODYLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |
| JONATHAN<br>& SARAH D DOMENICK JR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 위 DICKE<br>당 JR TF<br>망                                                                                                                                                                                                                                                                                                                                                                                        |
| HEEDER RICHARD<br>A JR & SUSAN<br>DELL ORSO<br>J & IRENE M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOSTER<br>MARY<br>ANN<br>MCKULKA CHRISTOPHER<br>MICHAEL & KAREN<br>FU ZABETH<br>FU ZABETH<br>FU ZABETH<br>FU ZABETH<br>FU ZABETH<br>FU ZABETH<br>FU ZABETH<br>FU ZABETH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DICKENS DICKENS<br>JACK W JR JACK W JI<br>TRUST ET AL TRUST ET J                                                                                                                                                                                                                                                                                                                                               |
| PONESSE<br>BARBARA A COREVLJ K CHERYLJ K CHERYLJ K A CONCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S<br>TIES DICKENS DICKENS<br>JACK W JR JACK W JF<br>TRUST ET AL TRUST ET A                                                                                                                                                                                                                                                                                                                                     |
| BERGGREN CO PUBLIC SERVICE<br>RENETTE CO OF COLORADO<br>- XCEL<br>SANFORD RIBBING REZAC HERMAN MONTE CIELO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DICKENS<br>JACK W JF<br>DICKENS<br>JACK W JR<br>TRUST ET AL                                                                                                                                                                                                                                                                                                                                                    |
| BUTLER EVERETT GERALD ASSOCIATION JACK W JR   BUTLER EVERETT GERALD J& BRENDA TRUST ET AL   CHRISTOPHER A D LIVING TRUST 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JACK W JI<br>TRUST ET J                                                                                                                                                                                                                                                                                                                                                                                        |
| 176 177 179 180 181 MP 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 186                                                                                                                                                                                                                                                                                                                                                                                                            |
| GRANGER<br>ROBERT   COOK DAVID M<br>SCHREIBER ERIC<br>GALLARDO VASQUEZ   SUBSET   COOK DAVID M<br>SCHREIBER ERIC<br>CARSEN   SCHREIBER ERIC<br>CARSEN   KOLT D   DEINES<br>SAMISOR   MARK N & IMBRIANI JOSEPH<br>KORI F   GALLARDO VASQUEZ   PAR<br>SANTIAGO & RAMONA   MART H<br>SUNSETIDE NARCISO RAMON   SANTIAGO & RAMONA   MART H<br>SUNSETIDE NARCISO RAMON   MART H<br>SUNSETIDE NARCISO RAMON   MARTH<br>SUNSETIDE NARCISO RAMON   MARCISO RAMON   MARTH<br>SUNSETIDE NARCISO RAMON   MARTH<br>SUNSETIDE NARCISO RAMON   MARTH<br>SUNSETIDE NARCISO RAMON   MARCISO RAMON   MARTH<br>SUNSETIDE NARCISO RAMON   MARCISO RAMON   MARTH<br>SUNSETIDE NARCISO RAMON   MARCISO RAMON   MARSES JO<br>ANDERSON RICK COCHRAN   MARISE   VAN NESS<br>SULVIA J   SANES SULVEL   VAN NESS<br>SULVIA J   SANES SULVIA J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANN VILLAGRANA MARIO<br>IS HARRIS RYAN & K<br>EW L ELISABETH BRI<br>ES BERG<br>A BELILE GROOM JAY L<br>ANIEL TRUST MOCK KEVIN<br>& MICHELLE<br>MOCK KEVIN<br>& MICHELLE<br>SMITH<br>E ANGANNETTE RI<br>AHRENS M & DUSTIN<br>C<br>DAVID F JONES WENDY<br>C<br>BUNNELL<br>BEAULIEU<br>JOANNA GROS<br>SARAH F L& MARK R<br>M PETERSEN MARK M<br>B & PAULINE E<br>MEWHORTER-PETERSEN<br>JACOBSEN ZHANG JI LIANG LE |
| JOHN H JR   MANNING   RULOW   KLISH   HOLT SARAH   ORAL   M & J KATHLEEN SCHULTZ MARK   DANIEL A   WADE & HEATHER LYNN   2317JAV   PASCUALA E     NEIL J & NELL J & MANNING   RULOW   RUBERT W   STEVEN L   BILLOW   KLISH   HOLT SARAH   FORKER   BAKHAGE KRISTA RIOS JOSE ANGEL   BARKHAGE KRISTA RIOS JOSE ANGEL   DIANE L # WADE & HEATHER LYNN   BACEIMEIER   BARKHAGE KRISTA RIOS JOSE ANGEL   DIANE L # WADE & HEATHER LYNN   BACHMEI # WATELI J SOSON JOHN     ZACHARY   DERONDE   AKAREN M & LAURAB   & SEAN   BACHMEIER   MAPLEJJONOJ   WARREN RAY TOTH THOMAS G JR & STEVEN D MARK & SUANCESA   STRATMAN STEVE   ROWE BRADLEY D MARKSTONG RICHAI   LIEN ELLA M & SCAN VILL I SOSON JOHN WARREN RAY TOTH THOMAS G JR & SLAURE   STEVEN D JACKI I E   LAURE & SCANCINU WARREN RAY TOTH THOMAS G JR & SLAURE   STEVEN D JACKI I E   LANE ROBALEY D JACKI I E   L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MERNA & LI JUAN ZHANG<br>H JR SCHMIDT BARRY<br>SHER L & STEPHANIE<br>RDS CHARLES<br>& OKSON GLIVA MICHAEL<br>RRETT & SHARYL<br>ACEY D LIVING TRUST<br>IRES THERESA GARY W<br>EISEMAN HUFF DONALD F<br>ERIC & COHEN BOGNE<br>ANN NOBLE JOSEF B BARBAI<br>TRUST                                                                                                                                                  |
| STEWARD   JOHN HUR   MANNING   RULON   KLISH   HOLT SARAH   FORAKER   M& J KATHLEEN SCHULTZ MARK   DANIEL A   WADEL TWN   2JIFHAX   PASCUALA E     NEIL J &<br>DEBORAH S   HOH   KAREN M   & LAURA B   AMANDA   AMANDA   PASCUALA E     VENDAL   KLISH   HOLT SARAH   FORAKER   BRAKHAGE KRISTA RIOS JOSE ANGEL   FARCHILD MICHAEL LIVIN   2JIFHAX   PASCUALA E     DEBORAH S   HOH   & KAREN M   & LAURA B   AMANDA   BACKHAGE KRISTA RIOS JOSE ANGEL   FARCHILD MICHAEL LIVIN   2JIFHAX   PASCUALA E     ZACHARY   DERONDE   AMANDA   & LAURA B   AMANDA   MAYNE   BRAKHAGE KRISTA RIOS JOSE ANGEL   FARCHILD MICHAEL LIVIN   2JIFHAX   PASCUALA E     LEHMAN   SECONDE   ANITA A   MARDEJON/GI   WARR RY E   MARNYE   FARCHILD MICHAEL LIVIN   SARANG K   CARCHILD MICHAEL C   LIENIGARMSTRONG RICHA     LEHMAN E   KASSNER   J& DEBORAA   RIGOTTI T& REBECCAK   AHOLT   AAR REDECCA S   MATTHEW KESSEL   JONIA K   LIENIGARMSTRONG RICHA     LEHMAN E   KASSNER   LINDA J   A& MARY E   FS   S& LORIC VAN ALICIA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MERNA & LI JUAN ZHANG<br>I H JR SCHMIDT BARRY<br>SHER L & STEPHANIE<br>ROS CHARLES<br>& OKSON GLIVA MICHAEL<br>RRETT LIVING TRUST<br>ACEY D LIVING TRUST<br>IRES THERESA JOHNSON<br>& TIMOTHY P GARY W<br>EISEMAN HUFF DONALD F<br>ERIC & COHEN BOGNE<br>ANN NOBLE JOSEF B BARBAI<br>TRUST<br>COX TIM D<br>SMITH CHARLES LIEF ERVIN<br>ELER LLC & Z                                                            |
| STEWART JOHN HJR MANNING RULON KLISH HOLT SARAH FORAKE<br>NEILJ & MANNING RULON KLISH HOLT SARAH FORAKE<br>DEBORAH S KAREN MANDA MANDA<br>ZACHARY DERONDE<br>XAMED JANUEL & STEVEN L BILLOW MANDA MANDA<br>SEAN ALURA B MANDA<br>ANTAA MANDA<br>BACHMEIER SCHULZ MARK<br>MANDA SABGAL E COTLE<br>MANDA SABGAL E SAACGAL MANDA<br>SABGAL E SCARCES<br>MANDA SABGAL E SCARCES<br>MANDA SABGAL E SCARCES<br>MANTAA MANDA<br>BACHMEIER SCHULZ MARK<br>MANDA SABGAL E SCARCHARY<br>DERONDE<br>NAITAA MANDA<br>BACHMEIER MANDA<br>SABGAL E SCARCES<br>MANTA MANDA<br>BACHMEIER SCHULZ MARK<br>ASSAR<br>BACHMEIER SCHULZ MARK<br>MANDA SABGAL E SCARCES<br>MANTA MANDA<br>MANTAA MANDA<br>BACHMEIER SCHULZ MARK<br>MANDA SABGAL E SCARCES<br>MANTA MANDA<br>BACHMEIER SCHULZ MARK<br>MANDA SABGAL E SCARCES<br>MANTA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHMEIER SCHULZ MARK<br>MANTAA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHMEIER SCHULZ<br>MANTAA MANDA<br>BACHART<br>MANTAA MANTAA<br>BACHART<br>MANTAA MARTAA<br>BACHART<br>MANTAA MANTAA<br>BACHART<br>MANTAA MARTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA MARTAA<br>BACHART<br>MANTAA MANTAA<br>BACHART<br>MANTAA MARTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MANTAA<br>BACHART<br>MAN | MERNA & LI JOAN ZHANG<br>H JR SCHMIDT BARRY<br>SHER L & STEPHANIE<br>ROS CHARLES<br>& OKSON GLIVA MICHAEL<br>RRETT & SHARYL<br>ACEY D LIVING TRUST<br>RES THERESA JOHNSON<br>& TIMOTHY P HUFF DONALD F<br>EISEMAN HUFF DONALD F<br>ERIC & COHEN BOGNE<br>ANN NOBLE JOSEF B BARBA<br>TRUST<br>COX TIM D<br>SMITH CHARLES LIEF ERVII<br>ELER LLC & Z                                                             |
| STEWART JOHN HUR   MANNING RULON   KLISH HOLT SARAH FORAKER   MANNING RULON   KLISH HOLT SARAH FORAKER   MANNING RULON   MANNING RULON   REGERTHOMAS SAVNE     NELL &   AMARDA SANTAJ   MANNING RULON   KLISH HOLT SARAH FORAKER   BRAKHAGE KRISTA RIOS JOSE ANGEL   FAIRCHILD MICHAEL J   2133241   Was REGERTHOMAS SAVNE     DEBORAHY   SARREN M SLAURAB BAMANDA   BACIMALE   & SARNA   BRAKHAGE KRISTA RIOS JOSE ANGEL   FAIRCHILD MICHAEL J   2133241   Was REGERTHOMAS SAVNE     ZACHARY   SARREN M SLAURAB BAMANDA   BACIMBEIER   MANNING   BRAKHAGE KRISTA RIOS JOSE ANGEL   FAIRCHILD MICHAEL J   2133241   Was SARSON JOHN     TAAMY   BROERT W STEVEN D   BLORMEIER   MARTHA   MARTHALEN SCHULZ MARK SA   STRATMAN STEVE   REGERTHOMAS SAVNE     LEHMAN   KASSNER   VOLF CHRISTIAN   HOSHKO LANCE WARK SA   MARTHALEN SCHULZ MARK SA   STRATMAN STEVE ROWE BRADLEY D   LIEN ALJ MARK SA     LEMAN K SAS VIC   MARK SA   FERNAL KARK MARK SA   MULCHAR MARK SA   STRATMAN STEVE ROWE BRADLEY D   LINA KARK SA   SARDAY   KARKARK KARK KARK KARK KARKAR KARKAR KARK KARKAR KARKARKAR KARKAR KARKAR KARKAR KARKAR KARKAR KARKAR KARKAR KARKAR KAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MERNA & LI JOAN ZHANG<br>IH JR SCHMIDT BARRY<br>SHER L& STEPHANIE<br>RCDS CHARLES<br>& OKSON GLIVA MICHAEL<br>RRETT LIVING TRUST<br>ACEY D LIVING TRUST<br>IRES THERESA JOHNSON<br>& TIMOTHY P HUFF DONALD F<br>ERIC & COHEN BOGNE<br>ANN NOBLE JOSEF B BARBA<br>TRUST<br>COX TIM D<br>SMITH CHARLES LIEF ERVIN<br>ELER LLC & Z                                                                                |

Full Movement (Unsignalized)



### SH66 ACP - Existing Access Configuration Map Sheet 9

\*Note: Map Sheets may overlap







- Parcel Boundary/ROW Boundary
- Municipal Boundary
- Full Movement (Signalized)
  - Full Movement (Unsignalized)
- Emergency Access Only
- At-Grade Rail Crossing

600 Feet

300

0

















## Map Sheet 17

\*Note: Map Sheets may overlap

600 Feet









SH66 ACP - Existing Access Configuration Map Sheet 19 \*Note: Map Sheets may overlap








SH66 ACP - Existing Access Configuration Map Sheet 21 \*Note: Map Sheets may overlap

600 Feet



SH 66 Planning and Environmental Linkages Study







### Appendix C. Public Involvement Material

### C.1. Open House 1 Postcard Notification



## SH 66 Planning and Environmental Linkages Study

Tuesday, April 16, 2019 | 4:30 to 7:30 p.m.\* Weld County Southwest Services Complex 4209 County Road 24 ½ Longmont, CO 80504 Thursday, April 18, 2019 | 4:30 to 7:30 p.m.\* Longs Peak Middle School 1500 14th Avenue Longmont, CO 80501 Please visit us to learn about the study, provide feedback on transportation alternatives and learn about CDOT's risk and resiliency assessment. We will also introduce the Access Control Plan (ACP), which will make recommendations for future changes to the location and design of driveways and intersections.

CDOT also will be accepting public feedback through an online questionnaire and webmap. For information and to learn more about the project, visit: https://www.codot.gov/library/studies/co-66-pel Requests for communication assistance or reasonable accommodations for special needs can be made by contacting the project prior to the meeting at 720-200-8978.

The Colorado Department of Transportation (CDOT) is hosting two public meetings for the SH 66 Planning & Environmental Linkages (PEL) study and ACP from Lyons to Weld County Road 19. These meetings are a continuation of the study that began in 2017. You received this notice because your address is within % mile of the project corridor. However, we want input from the greater community, so **please invite neighbors and community members**.

\*Both meetings will provide the same content.

Next Steps: Late Spring 2019 - Share & present draft ACP for public input Summer 2019 - Share final PEL & ACP to public

Presorted STD U.S. Postage PalD Permit #4033 Denver, CO



SH 66 Planning and Environmental Linkages Study

Colorado Department of Transportation 1420 2nd Street Greeley, CO 80631



### C.2. Open House 2 Postcard Notification and Boards



SH 66 Planning and Environmental Linkages Study

Colorado Department of Transportation 10601 W. 10th Street Greeley, CO 80634

### SH 66 Access Control Plan to an Open House for the **YOU'RE INVITED**

Thursday, July 25, 2019 | Anytime from 4:30 to 7:00 p.m Longmont Senior Center, Room D & E 910 Longs Peak Ave Longmont, C0 80501

special needs can be made by contacting the project prior to the Open House at 770-200-8978 Requests for communication assistance or reasonable accommodations for 720-200-8978.

Presorted STD U.S. Postage Permit #4033 Derwer, CO

### Welcome to the **SH 66 Access Control Plan Open House** July 25, 2019

### Thank you for attending!

Purpose of tonight's meeting: • Present the Access Control Plan's purpose, goals, and study process

Present the draft Access Control Plan

 Gather your comments regarding the proposed recommendations



**COLORADO** Department of Transportation



1



### What Is an Access Control Plan?

- Any intersection or driveway along a roadway is called an access point
  - At access points there is a potential for conflicts between all modes of transportation (vehicle, pedestrian, and bicycle) compromising the overall safety for travelers
  - Vehicles turning into and out of access points can cause other vehicles to slow down, resulting in delay, congestion, or crashes
- An Access Control Plan:
  - Determines what access points will be allowed
  - Establishes where accesses will be located
  - Determines what kind of traffic movements will be allowed at each access
  - Identifies alternative access routes and circulation as necessary
  - Ensures each abutting property has access directly to SH 66 or to local roadways
  - Is a long-range vision for the corridor
  - Will not determine the future number of lanes or design features of SH 66
- Implementation of the SH 66 Access Control Plan will occur in phases or incrementally over time based on:
  - Safety needs
  - The development and redevelopment process
  - Available funding
  - Traffic needs

There are no planned projects or identified funding that would change existing access





### What are the goals of this Access Control Plan?

- Identify improvements to the local transportation network that promote safety for all modes of transportation
- Blend the corridor vision from the PEL with the requirements of the CDOT State Highway Access Code
- Assist future development and redevelopment along SH 66 by identifying the locations and type of access
- To provide efficient movement for all modes of transportation along SH 66

### Why does SH 66 need an Access Control Plan?

SH 66 has 373 existing access points (driveways and intersections) within the study area limits from Lyons (McConnell Dr) to WCR 19, which is an average of nearly 19 accesses per mile

Controlling the number of access points on SH 66:

- Reduces conflict points where a crash may occur on the highway. This is applicable not only for vehicles, but also for pedestrians and bicycles having to cross multiple driveways on the corridor
- Creates fewer locations for vehicles to brake or turn onto or off the highway resulting in more efficient travel for through traffic
- Makes the corridor more visually appealing to drivers and visitors by reducing the number of driveways





# **Existing Conditions**

\_|

## **Study Limits**



## **Existing Access Summary**

| )                                      |     |     |         |      |      |       |         |          |
|----------------------------------------|-----|-----|---------|------|------|-------|---------|----------|
|                                        |     | INU | mber of | Acc  | esse | S     | Sammant | Δητακε   |
|                                        |     | Puk | olic    | Priv | rate |       | Length  | Density  |
| SH 66 Roadway Segment                  | FM  | ΡM  | Other   | FM   | ΡM   | Total | (miles) | (#/mile) |
| McConnell Dr to 87th St                | 33  | 0   | 0       | 112  | 12   | 160   | 5.8     | 28       |
| 87th St to County Line Road            | 23  | 2   | 2       | 51   | 5    | 83    | 4.8     | 17       |
| County Line Road to Weld County Rd 7   | 1   | 0   | 2       | 34   | 0    | 47    | 2.8     | 17       |
| Weld County Rd 7 to Weld County Rd 11  | 14  | -   | 0       | 7    | 0    | 22    | 1.8     | 12       |
| Weld County Rd 11 to Weld County Rd 19 | 23  | 0   | 0       | 38   | 0    | 61    | 3.9     | 15       |
| Totals                                 | 104 | m   | 4       | 242  | 20   | 373   | 19.2    | 18       |
|                                        |     |     |         |      |      |       |         |          |

NOTE: Public accesses are named roads or right of ways maintained by CDOT, County, or Town/City Private accesses include business and residential driveways. FM = full movement PM = partial movement Other = railroad crossing 15-255 07.25.2019

|



### **Current & Future Traffic Volumes**

| SH 66 Roadway Segment                  | Existing<br>Average Daily<br>Traffic<br>Volumes | 2040 Projected<br>Average Daily<br>Traffic<br>Volumes | Increase |
|----------------------------------------|-------------------------------------------------|-------------------------------------------------------|----------|
| McConnell Dr to 87th St                | 14,000                                          | 16,000                                                | 14%      |
| 87th St to County Line Road            | 27,000                                          | 38,950                                                | 44%      |
| County Line Road to Weld County Rd 7   | 23,350                                          | 30,000                                                | 28%      |
| Weld County Rd 7 to Weld County Rd 11  | 23,600                                          | 33,200                                                | 41%      |
| Weld County Rd 11 to Weld County Rd 19 | 11,900                                          | 15,000                                                | 26%      |

Without an access control plan visitors, residents, property owners, and businesses along the SH 66 corridor could experience:

- Greater number of crashes involving vehicles, pedestrians, or bicyclists
- Increased traffic congestion, resulting in higher levels of pollution and more delays
- A loss of visual appeal along the roadway, which may result in a loss of visitor stops and economic impacts for business owners





Before

### SH 66 Access Control Plan

After





### Methods of Access Control

### **Access Relocation**

- Access to local properties through secondary roads
- Reduce the number of access locations where vehicles may enter or exit the highway
- Reduce the number of conflict points

### Access Conversion with Median Treatment

- Restrict some or all turning movements
- Reduce the number of conflictsbetween left turning vehicles and through vehicles on the highway





### **Access Realignment**

- Align opposite approaches
- Create a more traditional intersection design





### **Access Consolidation**

- Consolidate adjacent access points into one location
- The number of conflict points are reduced





### **Parallel Access Route**

- Provide access to properties via a new access road (such as a frontage road)
- Reduces the number of access points along the highway





### Types of Accesses

### **Right-in, Right-out**

- Only right turns are allowed
- Traffic median prevents left turns and straight movements - these movements must be completed at another intersection



### 3/4 Movement

- Right-in, right-out, and left-in are allowed
- Traffic median prevents left-out and straight movements - these movements must be completed at another intersection



### Full Movement/Roundabout

- All movements in all directions are allowed
- May include the need for a traffic signal





### **Grade-Separated**

- All movements in all directions are allowed
- Some movements will occur at-grade and may require a traffic signal
- May require the need to close nearby access





SH 66 Access Control Plan

### **Access Control Plan Process**



15-255 07.25.2019



### What are the Expected Benefits of the SH 66 Access Control Plan?

The following is a summary of the potential improvements and benefits when the Access Control Plan is implemented:

### **Improve Safety for All Modes of Transportation**

- The potential of high-speed rear-end, broadside, and sideswipe accidents between vehicles is reduced
- Future locations where pedestrian and bicyclists can cross the highway at a traffic signal are identified
- Opportunities to build sidewalks/paths are included

### **Improve Traffic Flow**

\_\_\_\_

Greater spacing of accesses reduces congestion caused by vehicles turning onto and off of SH 66

### **Reduce Traffic Conflicts**

Restricting the types of access allowed results in fewer conflict points between modes of transportation

### **Provide Adequate Access to Adjacent Land Uses**

- All properties have access to SH 66 or local roads
- Better use of the secondary street system or shared access locations

The recommended Access Control Plan meets the established goals for the project by improving traffic flow, reducing the number of conflicts, improving safety for all modes of transportation, and providing access to the adjacent land uses.



SH 66 Access Control Plan

# **Proposed Access Summary**

\_|

| c,                                      | e e    |                       |                         |                             |                                      |                                       |                                        |        |
|-----------------------------------------|--------|-----------------------|-------------------------|-----------------------------|--------------------------------------|---------------------------------------|----------------------------------------|--------|
| Access<br>Densit<br>(#/mile             |        |                       | 9                       | 9                           | 9                                    | 7                                     | 9                                      | 9      |
| Segment<br>Length<br>(miles)            |        |                       | 5.8                     | 4.8                         | 2.8                                  | 1.8                                   | 3.9                                    | 19.2   |
| rith                                    |        | Total                 | 36                      | 29                          | 18                                   | 13                                    | 23                                     | 119    |
| Number of Accesses w<br>ACP Implemented | rate   | PM                    | 19                      | c                           | 7                                    | -                                     | m                                      | 33     |
|                                         | Priv   | FM                    | -                       | 2                           | 0                                    | -                                     | 4                                      | ∞      |
|                                         | Public | Other                 | 0                       | 2                           | 2                                    | 0                                     | 2                                      | 9      |
|                                         |        | PM                    | 7                       | 13                          | c                                    | 4                                     | 2                                      | 29     |
|                                         |        | FM                    | 6                       | 6                           | 9                                    | 7                                     | 12                                     | 43     |
|                                         | Total  | Existing              | 160                     | 83                          | 47                                   | 22                                    | 61                                     | 373    |
|                                         |        | SH 66 Roadway Segment | McConnell Dr to 87th St | 87th St to County Line Road | County Line Road to Weld County Rd 7 | Weld County Rd 7 to Weld County Rd 11 | Weld County Rd 11 to Weld County Rd 19 | Totals |

NOTE: Public accesses are named roads or right of ways maintained by CDOT, County, or Town/City Private accesses include business and residential driveways. FM = full movement PM = partial movement Other = railroad crossing 15-255 07.25.2019

|\_\_

|\_\_\_\_















15-255 07.25.2019

- 4 Pedestrian
  - 8 Total



### C.3. Open House 3 Postcard Notification and Boards



### **Environmental Linkages Study** SH 66 Planning and

Wednesday, September 25, 2019 4:30 to 7:30 p.m.\* Weld County Southwest Service Complex 4209 County Road 24 ½ Longmont, CO 80504

Thursday, September 26, 2019 4:30 to 7:30 p.m.\* Longs Peak Middle School Longmont, CO 80501 1500 14th Avenue

- Attendees will be able to view and provide feedback on:
  The RECOMMENDED projects along the entire project corridor
  The potential environmental impacts associated with each
  - recommendation
    - List of future access changes

questionnaire. For more information and to learn about the project, visit: CDOT will also be accepting public feedback through an online https://www.codot.gov/library/studies/co-66-pel

Requests for communication assistance or reasonable accommodations for special needs can be made by calling 720-200-8978 prior to the meeting.

is hosting a final set of public meetings for the SH 66 Access Control Plan (ACP) from Lyons to Weld County Road 19. These meetings will be the final chance to The Colorado Department of Transportation (CDOT) Planning & Environmental Linkages (PEL) study and within  $\ensuremath{\mathcal{V}}$  mile of the project corridor. However, we want input from the greater community, so please review planning documents and provide feedback before the PEL and ACP are finalized in late 2019. You received this notice because your address is invite neighbors and community members.

\*Both meetings will provide the same content.

Presorted STD U.S. Postage PalD Permit #4033 Denver, CO



SH 66 Planning and Environmental Linkages Study

Colorado Department of Transportation 1420 2nd Street Greeley, CO 80631

### Welcome to the **SH 66**

Planning and Environmental Linkages Study and Access Control Plan

### **Public Meeting** SEPTEMBER 25 & 26, 2019

### Thank you for attending! We are pleased you are here to hear more about the SH 66 Corridor! We are eager to share with you

the future vision for the corridor!

How to get the most out of this meeting:

- View the displays and talk with our project team members to learn more and share your ideas
- Participate in the interactive activities
- Fill out a project comment card and drop it in the box



### **COLORADO**Department of Transportation





### What Is an Access Control Plan?

- Any intersection or driveway along a roadway is called an access point
  - At access points there is a potential for conflicts between all modes of transportation (vehicle, pedestrian, and bicycle) compromising the overall safety for travelers
  - Vehicles turning into and out of access points can cause other vehicles to slow down, resulting in delay, congestion, or crashes
- An Access Control Plan:
  - Determines what access points will be allowed
  - Establishes where accesses will be located
  - Determines what kind of traffic movements will be allowed at each access
  - Identifies alternative access routes and circulation as necessary
  - Ensures each abutting property has access directly to SH 66 or to local roadways
  - Is a long-range vision for the corridor
  - Will not determine the future number of lanes or design features of SH 66
- Implementation of the SH 66 Access Control Plan will occur in phases or incrementally over time based on:
  - Safety needs
  - The development and redevelopment process
  - Available funding
  - Traffic needs

There are no planned projects or identified funding that would change existing access





Before

### SH 66 Access Control Plan

After





### Methods of Access Control

### **Access Relocation**

- Access to local properties through secondary roads
- Reduce the number of access locations where vehicles may enter or exit the highway
- Reduce the number of conflict points

### Access Conversion with Median Treatment

- Restrict some or all turning movements
- Reduce the number of conflictsbetween left turning vehicles and through vehicles on the highway





### **Access Realignment**

- Align opposite approaches
- Create a more traditional intersection design





### **Access Consolidation**

- Consolidate adjacent access points into one location
- The number of conflict points are reduced





### **Parallel Access Route**

- Provide access to properties via a new access road (such as a frontage road)
- Reduces the number of access points along the highway





### Types of Accesses

### **Right-in, Right-out**

- Only right turns are allowed
- Traffic median prevents left turns and straight movements - these movements must be completed at another intersection



### 3/4 Movement

- Right-in, right-out, and left-in are allowed
- Traffic median prevents left-out and straight movements - these movements must be completed at another intersection



### **Full Movement/Roundabout**

- All movements in all directions are allowed
- May include the need for a traffic signal





### **Grade-Separated**

- All movements in all directions are allowed
- Some movements will occur at-grade and may require a traffic signal
- May require the need to close nearby access





SH 66 Access Control Plan

### **Access Control Plan Process**



15-255 07.25.2019



### What are the Expected Benefits of the SH 66 Access Control Plan?

The following is a summary of the potential improvements and benefits when the Access Control Plan is implemented:

### **Improve Safety for All Modes of Transportation**

- The potential of high-speed rear-end, broadside, and sideswipe accidents between vehicles is reduced
- Future locations where pedestrian and bicyclists can cross the highway at a traffic signal are identified
- Opportunities to build sidewalks/paths are included

### **Improve Traffic Flow**

\_\_\_\_

Greater spacing of accesses reduces congestion caused by vehicles turning onto and off of SH 66

### **Reduce Traffic Conflicts**

Restricting the types of access allowed results in fewer conflict points between modes of transportation

### **Provide Adequate Access to Adjacent Land Uses**

- All properties have access to SH 66 or local roads
- Better use of the secondary street system or shared access locations

The recommended Access Control Plan meets the established goals for the project by improving traffic flow, reducing the number of conflicts, improving safety for all modes of transportation, and providing access to the adjacent land uses.

















15-255 07.25.2019

- 4 Pedestrian
  - 8 Total

SH 66 Access Control Plan

## Existing & Proposed Access Summary

| Access<br>Density<br>(#/mile) |                     |                       | 6                       | 6                           | 9                         | 7               | 9                | 6      |
|-------------------------------|---------------------|-----------------------|-------------------------|-----------------------------|---------------------------|-----------------|------------------|--------|
| vith                          |                     | Total                 | 34                      | 30                          | 18                        | 13              | 23               | 118    |
| ses v                         | rate                | PM                    | 17                      | 4                           | 7                         | -               | 2                | 34     |
| cces                          | Pri                 | FM                    | -                       | 2                           | 0                         | -               | 4                | ∞      |
| Der of A                      |                     | Other                 | 0                       | 2                           | 2                         | 0               | 0                | 4      |
| Iumk                          |                     | PM                    | 7                       | 6                           | c                         | 2               | 0                | 21     |
| 4                             |                     | FM                    | 6                       | 13                          | 9                         | 6               | 14               | 51     |
|                               | Access              | (#/mile)              | 28                      | 17                          | 17                        | 12              | 15               | 18     |
| 20220                         |                     | Total                 | 160                     | 83                          | 47                        | 22              | 61               | 373    |
|                               | ting Acc<br>Private | PM                    | 15                      | 5                           | 0                         | 0               | 0                | 20     |
| tino                          |                     | FM                    | 112                     | 51                          | 34                        | 7               | 38               | 242    |
| r of Evi                      |                     | Other                 | 0                       | 2                           | 2                         | 0               | 0                | 4      |
| i e q u                       | Pub                 | PM                    | 0                       | 2                           | 0                         | -               | 0                | m      |
| Nin                           |                     | FM                    | 33                      | 23                          | 11                        | 14              | 23               | 104    |
|                               | Segment<br>Tonath   | (miles)               | 5.8                     | 4.8                         | 2.8                       | 1.8             | 3.9              | 19.2   |
|                               |                     | SH 66 Roadway Segment | McConnell Dr to 87th St | 87th St to County Line Road | County Line Road to WCR 7 | WCR 7 to WCR 11 | WCR 11 to WCR 19 | Totals |

NOTE: Public accesses are named roads or right of ways maintained by CDOT, County, or Town/City Private accesses include business and residential driveways.

Frivate accesses include ou FM = full movement PM = partial movement Other = railroad crossing




### C.4. SH 66 Coalition Presentation 1



# SH 66 Planning and Environmental Linkages Study







# Introduction to Access Control Presentation to SH 66 Coalition March 22, 2019



# What is an Access Control Plan?

• Blend of the agencies' vision for the corridor, the requirements of the State Highway Access Code, and the PEL recommendations

. . . . . . . . . . . . . . . .

- Determines how to provide property owners reasonable access to the highway
- Identifies improvements to the local transportation network to support vehicle movement and property access
- Determines where accesses will ultimately be located to better assist in the development/redevelopment process



# Why develop an Access Control Plan on SH 66?

 SH 66 has approximately 370 access points (driveways and intersections) from Lyons (McConnell Dr) to WCR 19

. . . . . . . . . . . . . . . . . .

- A reduction in the number of accesses improves safety for all modes of transportation, reduces driveway clutter, and improves traffic flow
- Provide CDOT and agencies with a document to assist future development with the site planning process and to streamline access permitting
- To support the functional classification recommendations being developed in the PEL
- The ACP will provide the corridor with a framework for future development that accommodates regional, intra-city, and inter-city travel needs



# What an Access Control Plan Does

- Optimizes the number and location of access points on the corridor
- Recommends where accesses may be consolidated, relocated, or restricted

. . . . . . . . . . . . . . . . . . .

- Identifies the type of allowed traffic movements and traffic control at each access point
- Identifies conditions for when access changes will occur
  - In some instances an interim access condition may be identified
- Ensures legal access to all properties
- Blends the corridor vision established as part of the PEL study with a legally binding document for access on the corridor



# What an Access Control Plan Does NOT Do

- Determine the number of future lanes on the corridor
- Design the future roadway layout
- Identify funding for improvements
- Require immediate changes to properties
- "Take away access"
- The ACP Recommendations is a long-term planning document that will be implemented over time, primarily as development and redevelopment occur



# Preliminary SH 66 ACP Schedule

| Task                                                 | 2019                        |          |       |       |     |      |      |        |           |         |          |          |
|------------------------------------------------------|-----------------------------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|
|                                                      | Completed as<br>part of PEL | February | March | April | Мау | June | July | August | September | October | November | December |
| Access Control Plan Kickoff Meeting                  |                             | X        |       |       |     |      |      |        |           |         |          |          |
| Data Collection                                      |                             |          |       |       |     |      |      |        |           |         |          |          |
| Traffic Operations Analysis                          |                             |          |       |       |     |      |      |        |           |         |          |          |
| Presentation to SH 66 Coalition                      |                             | 1        | X     |       |     |      |      |        |           |         |          |          |
| Initial Public Open House (jointly with PEL)         |                             |          |       | *     |     |      |      |        |           |         |          |          |
| Develop Draft Access Control Plan                    |                             |          |       |       |     |      |      |        |           |         |          | 1        |
| Outreach Meetings with Local Agencies                |                             |          |       |       |     |      |      |        |           |         |          |          |
| Submit Draft ACP for Agency Input and Review         |                             |          |       |       | 1   |      |      |        |           |         |          |          |
| Second Public Open House                             |                             |          |       |       |     | X    |      |        |           |         |          |          |
| Modify Plan based on Stakeholder input and Final PEL |                             |          |       |       |     |      |      | 1      |           |         |          |          |
| Final Public Open House (jointly with PEL)           |                             |          |       |       |     |      |      | 7      | -         |         |          |          |
| One-on-one Meetings                                  |                             |          |       |       |     |      |      |        | X         |         |          |          |
| Presentation to SH 66 Coalition                      |                             |          |       |       |     |      |      |        |           | *       |          |          |
| Final Acess Control Plan and Documentation           |                             | 1        |       |       | 1   |      |      |        |           |         |          |          |
| Submit Final ACP for Agency Review                   |                             |          |       |       |     |      |      |        |           |         | X        |          |
| IGA Adoption Process                                 |                             |          |       |       |     |      |      |        |           |         |          |          |



# Steps to Adopt/Implement an Access Control Plan

• Study, propose, and accept final Access Control Plan configuration based on agency and public input

. . . . . . . . . . . . . . . .

- Prepare an Intergovernmental Agreement (IGA) between the local agencies (Boulder County, Town of Lyons, City of Longmont, Weld County, Town of Mead, Town of Firestone) and CDOT
- Specify the process for modifying the ACP in the IGA
- Adopt ACP through signing of the IGA
- Provide a summary to the Colorado Transportation Commission and obtain approval from CDOT Chief Engineer
- Continued coordination between CDOT and agencies to ensure proper implementation of the plan



# Key Points to Remember about ACP Implementation

• The plan represents a long-range vision for the highway and surrounding roadways

. . . . . . . . . . . . . . . . .

- There are currently no planned projects or identified funding for improvements to SH 66 that would significantly change existing access
- Implementation will occur over time based on:
  - Traffic and/or safety needs
  - Available funding
  - As part of the development and redevelopment process



### C.5. SH 66 Coalition Presentation 2

## SH 66 Planning and Environmental Linkages Study



co





Update to Access Control Plan Presentation to SH 66 Coalition June 28, 2019

















## Appendix D. Proposed Access Maps



Obtain Access via Alternate Road

←→ Existing shared ownership/Cross Access

at Railroad

Access to be closed

X

 $\triangle$ 

Municipal Boundary

Floodplain

Right-in, Right-out only

Right-out only

- **Proposed Future Connection**
- $\cap$

SH 66 Planning and

**Environmental Linkages Study** 

🛾 Feet 🚳 🖗





- - Parcel Boundary/ROW Boundary 🔶 **Municipal Boundary** Floodplain
- 3/4 Movement  $\land$ Right-in, Right-out only  $\mathbf{A}$ Right-out only
- Grade Separated Grade Separated at Railroad X Access to be closed
- or access to adjacent property via shared agreement
- Obtain Access via Alternate Road ← Existing shared ownership/Cross Access
- Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road 0 **Proposed Future Connection**

300

600

🛾 Feet 🎰

SH 66 Planning and

**Environmental Linkages Study** 







← Existing shared ownership/Cross Access

Floodplain

Right-out only

X Access to be closed

**Proposed Future Connection** 



# Floodplain

- Right-out only
- X Access to be closed
- ← Existing shared ownership/Cross Access
- **Proposed Future Connection**



Parks/Open Space Parcel Boundary/ROW Boundary

Floodplain

- Full Movement (Signalized)
  3/4 Movement
  Right-in, Right-out only
  Right-out only
- Emergency Access Or Grade Separated Grade Separated at Railroad Access to be closed
- Access closure contingent on contiguous property ownership or access to adjacent property via shared agreement
   Obtain Access via Alternate Pro-
- Obtain Access via Alternate Road
  Existing shared ownership/Cross Access
- Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road 0 Proposed Future Connection

300

600

🛚 Feet 🖾📎

\*Note: Map Sheets may overlap

**Environmental Linkages Study** 

SH 66 Planning and



Parks/Open Space Parcel Boundary/ROW Boundary Municipal Boundary

Floodplain

- Full Movement (Signalized) 3/4 Movement  $\triangle$
- Right-in, Right-out only Right-out only
- Grade Separated Grade Separated at Railroad
- X Access to be closed
- contiguous property ownership or access to adjacent property via shared agreement
- Obtain Access via Alternate Road ← Existing shared ownership/Cross Access
- Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road Λ **Proposed Future Connection**

March 2020 \*Note: Map Sheets may overlap 300 600 SH 66 Planning and Feet 🆾 🖗

**Environmental Linkages Study** 



← Existing shared ownership/Cross Access

A Right-out only

Floodplain

X Access to be closed

- **Proposed Future Connection**



- Parcel Boundary/ROW Boundary 🔷
- Municipal Boundary
- Floodplain

- 3/4 Movement Right-in, Right-out only
- Right-out only

 $\triangle$ 

- Grade Separated Grade Separated at Railroad X Access to be closed
- or access to adjacent property via shared agreement
- Obtain Access via Alternate Road Existing shared ownership/Cross Access
- Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road **Proposed Future Connection**

300

600

\*Note: Map Sheets may overlap



- **Rivers/Streams** Parks/Open Space
  - Municipal Boundary

  - Floodplain
  - Parcel Boundary/ROW Boundary 🔶
- Milepost Full Movement (Signalized) 3/4 Movement
- Right-in, Right-out only Right-out only

 $\triangle$ 

- Grade Separated Grade Separated at Railroad X Access to be closed
- Access closure contingent on Emergency Access Only X contiguous property ownership or access to adjacent property via shared agreement
  - Obtain Access via Alternate Road ←→ Existing shared ownership/Cross Access
- Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road **Proposed Future Connection**

Map Sheet 12 March 2020 \*Note: Map Sheets may overlap Feet SH 66 Planning and Environmental Liebe 600

**Environmental Linkages Study** 

300



← Existing shared ownership/Cross Access

Floodplain

Right-out only

X Access to be closed

🛚 Feet 🖾 🖗 **Environmental Linkages Study** 



Obtain Access via Alternate Road

← Existing shared ownership/Cross Access

 $\land$ 

**Municipal Boundary** 

Floodplain

Right-in, Right-out only

X Access to be closed

Right-out only

- **Proposed Future Connection**
- 0

300 600 SH 66 Planning and 🛾 Feet 🆾 🖗 **Environmental Linkages Study** 





← Existing shared ownership/Cross Access

Floodplain



- X Access to be closed
- ← Existing shared ownership/Cross Access



Municipal Boundary

Floodplain

- Right-in, Right-out only Right-out only
- at Railroad X Access to be closed
- Obtain Access via Alternate Road ← Existing shared ownership/Cross Access
- **Proposed Future Connection**

Feet

**Environmental Linkages Study**


- Municipal Boundary Floodplain
- $\land$ Right-in, Right-out only Right-out only
- at Railroad X Access to be closed
- via shared agreement

- Obtain Access via Alternate Road ← Existing shared ownership/Cross Access

Proposed Future Frontage Road 0 Proposed Future Connection





# **Rivers/Streams**

- Parks/Open Space Parcel Boundary/ROW Boundary Municipal Boundary Floodplain
- Milepost  $\bigcirc$ Full Movement (Signalized) 3/4 Movement  $\land$ Right-in, Right-out only A Right-out only
- Emergency Access Only 🗙 Grade Separated Grade Separated at Railroad X Access to be closed

- Access closure contingent on contiguous property ownership or access to adjacent property via shared agreement
- Obtain Access via Alternate Road ← Existing shared ownership/Cross Access
- Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road 0 Proposed Future Connection

Map Sheet 21 March 2020 \*Note: Map Sheets may overlap Feet SH 66 Planning and Environmental Links 300 600 Environmental Linkages Study



Parcel Boundary/ROW Boundary 🔷  $\land$ Municipal Boundary 

Floodplain

- 3/4 Movement Right-in, Right-out only Right-out only
- Grade Separated at Railroad X Access to be closed
- or access to adjacent property via shared agreement
- Obtain Access via Alternate Road ← Existing shared ownership/Cross Access
- Proposed Future Frontage Road 0 Proposed Future Connection

Feet Environmental Linkages Study

300

600



- Legend River
- Rivers/Streams
   Parks/Open Space
   Parcel Boundary/ROW Boundary
   Municipal Boundary
   Floodplain
- Milepost
   Full Movement (Signalized)
   3/4 Movement
   Right-in, Right-out only
   Right-out only
- Emergency Access Only X
   Grade Separated
   Grade Separated
   at Railroad
   Access to be closed
- Access closure contingent on contiguous property ownership or access to adjacent property via shared agreement
  - Obtain Access via Alternate Road
     Existing shared ownership/Cross Access
- Proposed cross access for shared access Proposed Future 16' Access Road with Advisory Shoulder Proposed Future 10' Bike and Pedestrian Path Proposed Future Frontage Road 0

SH 66 ACP - Recommended Access Control Plan Map Sheet 23 March 2020 \*Note: Map Sheets may overlap 300 600 Feet Study

## Appendix E. SH 66 Access Table

| March | 2020 |
|-------|------|
|       |      |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.000*                                      | 1                | South              | McConnell<br>Dr       | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                 |
| 21.000*                                      | 2                | North              | Stone<br>Canyon Dr    | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                 |
| 21.020*                                      | 3                | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Stone Canyon Dr.            |
| 21.028*                                      | 4                | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 2 (Stone Canyon Dr). |
| 21.050*                                      | 5                | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 2 (Stone Canyon Dr). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.056*                                      | 7                | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 10. If cross access can be obtained, access<br>will ultimately be closed.                                                               |
| 21.064*                                      | 6                | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west or east to obtain access to Access 2 (Stone Canyon Dr) or Access 16<br>(Nolan Dr). If cross access can be obtained, access will ultimately be<br>closed. |
| 21.093*                                      | 10               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project or if operational<br>and/or safety issues are identified through the completion of a traffic<br>study. Access 10 will provide shared highway access to adjacent<br>properties.                                                                                                                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.104*                                      | 8                | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 16 (Nolan Dr).    |
| 21.127*                                      | 12               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 10.               |
| 21.129*                                      | 9                | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 16 (Nolan Dr).    |
| 21.143*                                      | 11               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 16 (Nolan Drive). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.148*                                      | 14               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be closed and property access will be obtained from Access 17<br>in the interim, or ultimately from Access 395. |
| 21.160*                                      | 13               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be obtained from Access 16 (Nolan Drive).                                                                       |
| 21.164*                                      | 15               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be closed and property access will be obtained from Access 17<br>in the interim, or ultimately from Access 395. |
| 21.170*                                      | 16               | North              | Nolan Dr              | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project or if operational<br>and/or safety issues are identified through the completion of a traffic<br>study.                                                                                                                                                                       |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.180*                                      | 17               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>If cross-access can be obtained with property to the east, access will<br>ultimately be closed and property access will be obtained from Access 395. |
| 21.190*                                      | 395              | South              | Private<br>Drive      | N/A                             | Right-In, Right-Out                              | Access will be a newly constructed right-in, right-out access on the property line to consolidate the existing accesses. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.                                                                                                                                                  |
| 21.210*                                      | 18               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>If cross-access can be obtained with property to the west, access will be<br>closed and property access will be obtained from Access 395.            |
| 21.230*                                      | 19               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will be closed and property access will be obtained from Access 18<br>in the interim, or ultimately from Access 395.                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.271*                                      | 20               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access is currently an open curb cut along the majority of the highway<br>frontage. Access will be formalized on the property and may be restricted<br>to less than full movement when a raised median is added to US 36 as part<br>of a roadway improvement project, if the property redevelops, or if<br>operational and/or safety issues are identified through the completion of a<br>traffic study. |
| 21.300*                                      | 21               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 22.                                                                                       |
| 21.318*                                      | 22               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                |
| 21.350*                                      | 23               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 24.                                                                                       |
| 21.384*                                      | 24               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.530*                                      | 25               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to US 36 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                    |
| 21.636*                                      | 26               | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study. Access will be obtained from<br>Access 32 (Highland Dr). |
| 21.653*                                      | 27               | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study. Access will be obtained from<br>Access 32 (Highland Dr). |
| 21.670*                                      | 28               | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised<br>median is added to US 36 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study. Access will be obtained from<br>Access 32 (Highland Dr). |
| 21.680*                                      | 29               | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr).             |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions        | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|-------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.700*                                      | 30               | North              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised median is added to US 36 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr). |
| 28.693                                       | 31               | South              | US 36                 | Full Movement<br>(Signalized) | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                  |
| 28.700                                       | 32               | North              | Highland Dr           | Full Movement<br>(Signalized) | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                  |
| 28.728                                       | 33               | North              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr). |
| 28.758                                       | 34               | North              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access will be closed or restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study. Access will be obtained from Access 32 (Highland Dr). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.814                                       | 35               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                       |
| 28.819                                       | 36               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 32 (Highland Dr). Access to the property<br>will be obtained via Access 39. |
| 28.842                                       | 37               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 40.                                                                                                                                   |
| 28.878                                       | 38               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 40.                                                                                                                                   |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.906                                       | 39               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                            |
| 28.908                                       | 40               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                            |
| 28.924                                       | 41               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west or the east to obtain access to Access 39 and/or 390. If cross access<br>can be obtained, access will ultimately be closed. |
| 28.950                                       | 42               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 44.                                                                                                                                                        |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.026                                       | 43               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via a new property access, Access<br>390, located across from Access 44. |
| 29.051                                       | 390              | North              | Future Drive          | N/A                             | Right-In, Right-Out                              | Access will be a newly constructed right-in, right-out access to the<br>property to consolidate the existing accesses. The ultimate access design<br>will be based on the results of a traffic study to ensure the intersection<br>does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 44.                                                             |
| 29.056                                       | 44               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                               |
| 29.102                                       | 45               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via a new property access, Access<br>390, located across from Access 44. |
| 29.196                                       | 46               | South              | 51st St               | Full Movement<br>(Unsignalized) | Access to be closed                              | Access to properties south of SH 66 has been relocated to Access 49. This access will be formally closed and access will be obtained from existing Access 44 or Access 49.                                                                                                                                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALCI | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.196                                       | 47               | North              | E Highland<br>Drive   | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                       |
| 29.344                                       | 48               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 47.                                                    |
| 29.376                                       | 49               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                         | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                        |
| 29.380                                       | 50               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, with<br>the cessation of operations under the current land use, or if operational<br>and/or safety issues are identified through the completion of a traffic<br>study.<br>Access to the property will be obtained from Access 58 (53rd Street). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.449                                       | 51               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 29.465                                       | 52               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |
| 29.466                                       | 53               | South              | 51st St               | Full Movement<br>(Unsignalized) | Access to be closed                              | Access to properties south of SH 66 has been relocated to Access 49. This access will be formally closed and access will be obtained from existing Access 49.                                                                                                                                                                                                                                                                                                                           |
| 29.486                                       | 54               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.517                                       | 55               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 29.559                                       | 56               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |
| 29.640                                       | 57               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 29.691                                       | 58               | North              | 53rd Street           | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.775                                       | 59               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |
| 29.800                                       | 60               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 29.827                                       | 61               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.858                                       | 62               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.             |
| 29.873                                       | 63               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 58 (53rd Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.             |
| 29.916                                       | 64               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 67 or the newly constructed Access 389 when the Access Road with<br>Advisory Shoulders is constructed on the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.964                                       | 65               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property access can be obtained via Access 67 (Forest Service Road).<br>Access will ultimately be closed and property access will be obtained from<br>Access 67 or the newly constructed Access 389 when the Access Road with<br>Advisory Shoulders is constructed on the north side of SH 66. |
| 30.034                                       | 66               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property access can be obtained via Access 67 (Forest Service Road).<br>Access will ultimately be closed and property access will be obtained from<br>Access 67 or the newly constructed Access 389 when the Access Road with<br>Advisory Shoulders is constructed on the north side of SH 66. |
| 30.071                                       | 67               | North              | Forest<br>Service Rd  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access may be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed if Access 389 is constructed and access can<br>be obtained via the Access Road with Advisory Shoulders on the north side<br>of SH 66.                                                                                                                                    |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.092                                       | 68               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 70. If cross access can be obtained, access<br>will ultimately be closed.           |
| 30.111                                       | 69               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 70. If cross access can be obtained, access<br>will ultimately be closed. |
| 30.145                                       | 389              | North              | Future Drive          | N/A                             | 3/4 Movement <sup>5</sup>                        | Access will be a newly constructed ¾ movement access to the property<br>aligned with Access 70 on the south side of SH 66. The ultimate access<br>design will be based on the results of a traffic study to ensure the access<br>does not create operational and/or safety issues.                                                                                                                                                                                            |
| 30.146                                       | 70               | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                     |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.289                                       | 71               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | <ul> <li>Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.</li> <li>Access will ultimately be closed and property access will be obtained from Access 67 or the newly constructed Access 389 when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.</li> </ul> |
| 30.320                                       | 72               | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 70. If cross access can be obtained, access<br>will ultimately be closed.                                  |
| 30.331                                       | 73               | North              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 67 or the newly constructed Access 389 when the Access Road with<br>Advisory Shoulders is constructed on the north side of SH 66.  |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.470                                       | 74               | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 70.                |
| 30.494                                       | 75               | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 70.                |
| 30.494                                       | 76               | North              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 78 (61st Street). |
| 30.642                                       | 77               | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 81 (63rd Street). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.698                                       | 78               | North              | 61st St               | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if a property<br>adjacent to 61st St redevelops, or if operational and/or safety issues are<br>identified through the completion of a traffic study.                                                                                                                                                                                             |
| 30.736                                       | 79               | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 81 (63rd Street).                                                                                                                            |
| 30.819                                       | 80               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 78 (61st Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 30.841                                       | 81               | South              | 63rd St               | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                               |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.944                                       | 82               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | <ul> <li>Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.</li> <li>Access will ultimately be closed and property access will be obtained from Access 98 (66th Street) when the Access Road with Advisory Shoulders is constructed on the north side of SH 66.</li> </ul> |
| 30.965                                       | 83               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.            |
| 30.988                                       | 84               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.            |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.010                                       | 85               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.042                                       | 86               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.070                                       | 87               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.085                                       | 88               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.113                                       | 89               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.175                                       | 90               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.193                                       | 91               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.195                                       | 92               | South              | McCall Dr             | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 97 (66 <sup>th</sup> Street).                                                                                                                 |
| 31.206                                       | 93               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.248                                       | 94               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |
| 31.267                                       | 95               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.           |
| 31.290                                       | 96               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.330                                       | 97               | South              | 66th St               | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALCI | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.330                                       | 98               | North              | 66th St               | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                              |
| 31.377                                       | 99               | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.377                                       | 100              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 97 (66th Street) or<br>Access 105 (McCall Dr).                                                                                                |
| 31.411                                       | 101              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.434                                       | 102              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 97 (66 <sup>th</sup> Street) and<br>Access 105 (McCall Drive).                                                                      |
| 31.435                                       | 103              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.570                                       | 104              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 31.581                                       | 105              | South              | McCall Dr             | Full Movement<br>(Unsignalized) | Right-Out only                                   | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                     |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.660                                       | 106              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access to the west to obtain access to<br>Access 105 (McCall Dr). If cross access can be obtained, access will<br>ultimately be closed.            |
| 31.703                                       | 107              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                            |
| 31.722                                       | 108              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 107. If cross access can be obtained,<br>access will ultimately be closed. |
| 31.739                                       | 109              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 108 or Access 107.                                                                                                         |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description        | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------|------------------|--------------------|------------------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.759                                       | 110              | North              | Private<br>Drive             | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 98 (66th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66.              |
| 31.771                                       | 111              | South              | Private<br>Drive             | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 112.                                                                                                                                             |
| 31.796                                       | 112              | South              | Private<br>Drive             | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                  |
| 31.821                                       | 113              | South              | City of<br>Longmont<br>Drive | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east or west to obtain access to Access 112 or Access 117. If cross access<br>can be obtained, access will ultimately be closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.890                                       | 114              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>66th St when the Access Road with Advisory Shoulders is constructed on<br>the north side of SH 66.       |
| 31.910                                       | 115              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain a shared access at Access 116. If cross access can be<br>obtained, access will ultimately be closed. |
| 31.954                                       | 116              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                     |
| 31.957                                       | 117              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                     |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.196                                       | 118              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 116.                                                                                                                                 |
| 32.212                                       | 119              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                      |
| 32.274                                       | 120              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 124. If cross access can be obtained, access<br>will ultimately be closed. |
| 32.296                                       | 121              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 124. If cross access can be obtained, access<br>will ultimately be closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.302                                       | 122              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 129 (75th Street).                                                                                                                            |
| 32.317                                       | 123              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 129 (75th Street).                                                                                                                            |
| 32.331                                       | 124              | South              | Private<br>Drive      | Right-In, Right-<br>Out         | Right-In, Right-Out                              | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (right-in, right-out).                                                                                                                                                                                                                                                                                  |
| 32.332                                       | 125              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 129 (75th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions        | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|-------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.345                                       | 126              | North              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 129 (75th Street) when the Access Road with Advisory Shoulders is<br>constructed on the north side of SH 66. |
| 32.415                                       | 127              | South              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access will be closed if the property redevelops or if operational and/or<br>safety issues are identified through the completion of a traffic study.<br>Access to the property will be obtained from Access 128 (75th Street).                                                                                                                                                                                                                                                 |
| 32.452                                       | 128              | South              | 75th St               | Full Movement<br>(Signalized) | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                   |
| 32.454                                       | 129              | North              | 75th St               | Full Movement<br>(Signalized) | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues. Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                   |
| 32.484                                       | 130              | North              | Private<br>Drive      | Emergency<br>Access Only      | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 129 (75th Street).                                                                                                                  |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.543                                       | 131              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 132 or Access 129<br>(75th Street).                                                                                                              |
| 32.562                                       | 132              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>north or west to obtain access to Access 129 (75th Street). If cross access<br>can be obtained, access will ultimately be closed. |
| 32.705                                       | 133              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66.                            |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.739                                       | 134              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | <ul> <li>Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.</li> <li>Access will ultimately be closed and property access will be obtained from Access 145 when the Access Road with Advisory Shoulders is constructed on the south side of SH 66.</li> </ul> |
| 32.752                                       | 135              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66.  |
| 32.773                                       | 136              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66.            |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.775                                       | 137              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 146 (Unnamed Road).                                                                                                   |
| 32.817                                       | 138              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 146 (Unnamed Road).                                                                                                   |
| 32.839                                       | 139              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 146 (Unnamed Road).                                                                                                   |
| 32.865                                       | 140              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.879                                       | 141              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66.  |
| 32.892                                       | 142              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | <ul> <li>Access will be restricted to less than full movement if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.</li> <li>Access will ultimately be closed and property access will be obtained from Access 145 when the Access Road with Advisory Shoulders is constructed on the south side of SH 66.</li> </ul> |
| 32.907                                       | 143              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 146 (Unnamed Road).                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.916                                       | 144              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66. |
| 32.950                                       | 145              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately provide highway access to the Access Road with<br>Advisory Shoulders on the south side of SH 66.                                                             |
| 32.958                                       | 146              | North              | Unnamed<br>Rd         | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                        |
| 33.017                                       | 147              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 146 (Unnamed Road).                                                                                                   |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description   | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-------------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33.017                                       | 148              | South              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained from<br>Access 145 when the Access Road with Advisory Shoulders is constructed<br>on the south side of SH 66. |
| 33.065                                       | 149              | South              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 148 or via the Access<br>Road with Advisory Shoulders.                                                                 |
| 33.092                                       | 150              | South              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 155.                                                                                                                   |
| 33.195                                       | 151              | North              | Table<br>Mountain<br>Rd | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                        |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33.394                                       | 152              | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 155.                                                                                                                                 |
| 33.428                                       | 153              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                      |
| 33.469                                       | 154              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 153. If cross access can be obtained,<br>access will ultimately be closed. |
| 33.531                                       | 155              | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                      |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33.683                                       | 156              | North              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 161 (87th Street).                |
| 33.684                                       | 157              | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 155 or Access 162<br>(Airport Rd). |
| 33.860                                       | 158              | South              | County of<br>Boulder  | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 155 or Access 162<br>(Airport Rd). |
| 33.887                                       | 159              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 162 (Airport Rd).                  |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March      | 2020 |
|------------|------|
| I VIUI CII | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33.888                                       | 160              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 161 (87 <sup>th</sup> Street). |
| 33.933                                       | 161              | North              | 87th St               | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                |
| 33.936                                       | 162              | South              | Airport Rd            | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                |
| 33.982                                       | 163              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 161 (87 <sup>th</sup> Street). |
| 34.122                                       | 164              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 161 (87 <sup>th</sup> Street). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34.204                                       | 165              | South              | North Shore<br>Dr     | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                 |
| 34.277                                       | 166              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 161 (87 <sup>th</sup> Street). |
| 34.384                                       | 167              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 169 (Anhawa Street).           |
| 34.421                                       | 168              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 169 (Anhawa Street).           |
| 34.439                                       | 169              | North              | Anhawa St             | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                 |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34.491                                       | 170              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |
| 34.492                                       | 171              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Lake Park Drive and the local<br>street network.                                                                                                                                                     |
| 34.532                                       | 172              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34.559                                       | 173              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |
| 34.595                                       | 174              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |
| 34.609                                       | 175              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34.653                                       | 176              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |
| 34.695                                       | 177              | North              | Jotipa Dr             | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                                                                |
| 34.696                                       | 178              | South              | Lake Park Dr          | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                                                                |
| 34.738                                       | 179              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34.772                                       | 180              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |
| 34.818                                       | 181              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access will ultimately be closed and property access will be obtained via<br>Access 169 (Anhawa Street) or Access 177 (Jotipa Drive) when the<br>frontage road is constructed between Anhawa Street and Access 181 on<br>the north side of SH 66. |
| 34.933                                       | 182              | North              | Hover St              | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                                                                          |
| 34.933                                       | 183              | South              | Hover St              | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                                                                          |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35.217                                       | 184              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 186. If cross access can be obtained, access<br>will ultimately be closed. |
| 35.264                                       | 185              | South              | Spencer St            | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access may remain ¾ movement unless safety issues arise or major<br>reconstruction of Access 182/183 (Hover Street) requires limiting turn<br>movements to obtain an acceptable geometric design. |
| 35.265                                       | 186              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Access may remain ¾ movement unless safety issues arise or major<br>reconstruction of Access 182/183 (Hover Street) requires limiting turn<br>movements to obtain an acceptable geometric design. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35.458                                       | 187              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 188 in the interim and<br>upon redevelopment property access will be obtained from Access 191 via<br>a future planned City of Longmont roadway. |
| 35.493                                       | 188              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Upon redevelopment property access will be obtained from Access 191 via<br>a future planned City of Longmont roadway.                                                                              |
| 35.604                                       | 189              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 188 in the interim and<br>upon redevelopment property access will be obtained from Access 191 via<br>a future planned City of Longmont roadway. |
| 35.689                                       | 190              | South              | Francis St            | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALCI | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35.689                                       | 191              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                                                                                                   |
| 35.784                                       | 192              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>If cross access can be obtained, access will ultimately be closed. Upon<br>redevelopment property access will be obtained from Access 191 or<br>Access 195 via future planned City of Longmont roadways.                                                                              |
| 35.814                                       | 193              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>If cross access can be obtained, access will ultimately be closed. Access to<br>the property will be obtained via Access 192 in the interim and upon<br>redevelopment property access will be obtained from Access 191 or<br>Access 195 via future planned City of Longmont roadways. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35.941                                       | 194              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>If cross access can be obtained, access will ultimately be closed. Access to<br>the property will be obtained via Access 192 in the interim and upon<br>redevelopment property access will be obtained from Access 191 or<br>Access 195 via future planned City of Longmont roadways. |
| 36.021                                       | 195              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                                                                                                    |
| 36.024                                       | 196              | South              | Gay St                | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                                                                                                                                    |
| 36.168                                       | 197              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 195. If cross access can be obtained,<br>access will ultimately be closed.                                                                                               |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36.233                                       | 198              | North              | Hillcrest Dr          | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                      |
| 36.233                                       | 199              | South              | Pratt St              | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                                                                                                      |
| 36.298                                       | 392              | North              | Future Drive          | N/A                             | Emergency Access<br>Only                         | Access will be a newly constructed emergency access only to the property.<br>The ultimate access design will be based on the results of a traffic study to<br>ensure the intersection does not create operational and/or safety issues.                                                                                                                                                                                                                        |
| 36.332                                       | 200              | South              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access may remain right-in, right-out unless operational and/or safety<br>issues are identified through the completion of a traffic study or if major<br>reconstruction of Access 203/204 (US 287) requires access closure to<br>obtain an acceptable geometric design.<br>Property should seek to obtain cross access with adjacent property to the<br>south to obtain access to US 287. If cross access can be obtained, access<br>may ultimately be closed. |
| 36.378                                       | 201              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted or closed if the property redevelops or if<br>operational and/or safety issues are identified through the completion of a<br>traffic study.<br>Upon property redevelopment, access to the property will be obtained via<br>Park Ridge Ave/US 287.                                                                                                                                                                                    |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36.397                                       | 202              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted or closed if the property redevelops or if<br>operational and/or safety issues are identified through the completion of a<br>traffic study.<br>Upon property redevelopment, access to the property will be obtained via<br>Park Ridge Ave/US 287.                                                                                                                                                                                                |
| 36.444                                       | 203              | North              | US 287                | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                            |
| 36.445                                       | 204              | South              | US 287                | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                            |
| 36.540                                       | 205              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to US 287. If cross access can be obtained, access<br>will ultimately be closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions        | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------|------------------|--------------------|-----------------------|-------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36.598                                       | 206              | North              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access may be closed if operational and/or safety issues are identified<br>through the completion of a traffic study, if property redevelops, or if<br>major reconstruction of Access 203/204 (US 287) requires access closure<br>to obtain an acceptable geometric design.<br>Access to the property will be obtained from Access 208 (Erfert Street) and<br>via US 287/Park Ridge Ave.                                                   |
| 36.612                                       | 207              | South              | Collyer St            | Access Closed                 | Access to be closed                              | Access has been closed; to remain closed.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36.694                                       | 208              | North              | Erfert St             | Full Movement<br>(Signalized) | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                            |
| 36.767                                       | 209              | North              | Private<br>Drive      | Right-In, Right-<br>Out       | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Access to the property will be obtained from Access 208 (Erfert Street). |
| 36.842                                       | 210              | South              | Meadow St             | Emergency<br>Access Only      | Emergency Access<br>Only                         | Access to remain emergency access only.                                                                                                                                                                                                                                                                                                                                                                                                    |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36.865                                       | 211              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 208 (Erfert Street). If cross access can be<br>obtained, access will ultimately be closed. |
| 36.929                                       | 212              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Property access will be via Access 211 or via Access 208 (Erfert Street) if<br>cross access can be obtained.                                                                                            |
| 36.943                                       | 371              | North              | BNSF<br>Railway Co    | At-grade rail<br>crossing       | Grade Separated at<br>Railroad                   | Access at the BNSF Railroad crossing will be grade separated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 36.945                                       | 372              | South              | BNSF<br>Railway Co    | At-grade rail<br>crossing       | Grade Separated at<br>Railroad                   | Access at the BNSF Railroad crossing will be grade separated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 36.975                                       | 213              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Property access will be via Access 222 (115th Street).                                                                                                                                                  |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36.991                                       | 214              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Property access will be via Access 222 (115th Street).                         |
| 37.028                                       | 215              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Access to the property will be obtained from Peppler Dr and local<br>roadways. |
| 37.053                                       | 216              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Access to the property will be obtained from Peppler Dr and local<br>roadways. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37.074                                       | 217              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Access to the property will be obtained from Peppler Dr and local<br>roadways. |
| 37.223                                       | 218              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if the grade-separation over<br>the BNSF Railroad requires access closure.<br>Property access will be via Access 222 (115th Street).                         |
| 37.301                                       | 219              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 223 (Alpine Street)<br>and local roadways.                                                            |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37.331                                       | 220              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 223 (Alpine Street). If cross access can be<br>obtained, access will ultimately be closed. |
| 37.339                                       | 221              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property access will be via Access 222 (115th Street).                                                                                                                                        |
| 37.444                                       | 222              | North              | 115th St              | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                           |
| 37.445                                       | 223              | South              | Alpine St             | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                           |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37.475                                       | 224              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 222 (115th Street).  |
| 37.520                                       | 225              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 223 (Alpine Street). |
| 37.548                                       | 226              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Flagstaff Dr.               |
| 37.687                                       | 227              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Flagstaff Dr.               |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALUL | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37.791                                       | 228              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 222 (115th Street) or<br>Access 229. |
| 37.947                                       | 229              | North              | Private<br>Drive      | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                 |
| 37.947                                       | 230              | South              | Pace St               | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                 |
| 38.049                                       | 231              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 229 or Access 232.                   |
| 38.210                                       | 232              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                                       |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Warch 2020 | M | arcł | า 20 | )20 |
|------------|---|------|------|-----|
|------------|---|------|------|-----|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38.332                                       | 233              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 234 (Sundance Drive). If cross access can<br>be obtained, access will ultimately be closed. |
| 38.440                                       | 234              | South              | Sundance<br>Dr        | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                      |
| 38.443                                       | 235              | North              | Rock Ln               | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                      |
| 38.559                                       | 236              | North              | Linda Vista<br>Dr     | 3/4 Movement                    | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 235 (Rock Lane).                                                                                                                                     |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | M | arcł | า 20 | )20 |
|------------|---|------|------|-----|
|------------|---|------|------|-----|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38.674                                       | 237              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west or east to obtain alternate access. If cross access can be obtained,<br>access will ultimately be closed. |
| 38.690                                       | 238              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 237 or alternate local<br>streets.                                                                                            |
| 38.720                                       | 239              | North              | Rock Ln               | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 235 (Rock Lane).                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38.738                                       | 240              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 244 (County Line Road). If cross access can<br>be obtained, access will ultimately be closed. |
| 38.767                                       | 241              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 235 (Rock Lane) or<br>Access 243 (County Line Road).                                                                                                   |
| 38.772                                       | 242              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised median is added to SH 66 as part of a roadway improvement project, if the property redevelops, or if operational and/or safety issues are identified through the completion of a traffic study.                                                                                                                                                                                                                        |
| 38.946                                       | 243              | North              | County Line<br>Rd     | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                                   |
| 38.949                                       | 244              | South              | County Line<br>Rd     | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                                   |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.
| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.099                                       | 245              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 243 (County Line<br>Road).                                                                                                |
| 39.263                                       | 246              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 379. If cross access can be obtained, access<br>will ultimately be closed. |
| 39.343                                       | 247              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 246 or from Access<br>379 if cross access can be obtained.                                                                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

March 2020

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.372                                       | 248              | South              | Elmore Rd             | Full Movement<br>(Unsignalized) | Emergency Access<br>Only                         | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if<br>redevelopment occurs, or if operational and/or safety issues are identified<br>through the completion of a traffic study. The access will be converted to<br>emergency access only if alternate access can be provided via a connection<br>to Nesting Crane Lane or a future roadway connection ½ mile south of SH<br>66 at the southern edge of Elmore Road.<br>Access to the property will be obtained from Nesting Crane Lane or via a<br>future roadway connection to the south. |
| 39.399                                       | 249              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 379. If cross access can be obtained, access<br>will ultimately be closed.                                                                                                                                                              |
| 39.420                                       | 250              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 248 in the interim or<br>ultimately from Access 251 (Nesting Crane Lane).                                                                                                                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.473                                       | 251              | South              | Nesting<br>Crane Ln   | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if<br>redevelopment occurs, or if operational and/or safety issues are identified<br>through the completion of a traffic study.                                                                                                                                                                                                                                                                                                                                  |
| 39.475                                       | 379              | North              | Future Drive          | N/A                             | 3/4 Movement <sup>5</sup>                        | Access will be a newly constructed ¾ movement access to the property.<br>The ultimate access design will be based on the results of a traffic study to<br>ensure the intersection does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 251.                                                                                                                                                                                                                                                                                                             |
| 39.563                                       | 252              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 379 or Access 258<br>(Weld County Rd 3).                                                                                                                                                                                                                     |
| 39.625                                       | 253              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with properties to the east to<br>obtain access to Access 259 (Weld County Rd 3), or to obtain access to a<br>future roadway connection at the southern edge of the property (½ mile<br>south of SH 66). If cross access can be obtained, access will ultimately be<br>closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.684                                       | 254              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 253 or from Access<br>259 (Weld County Rd 3) if cross-access can be obtained.                                                                               |
| 39.721                                       | 255              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent properties to<br>the east and/or south to obtain access to Access 259 (Weld County Rd 3).<br>If cross access can be obtained, access will ultimately be closed. |
| 39.756                                       | 256              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 379 or Access 258<br>(Weld County Rd 3).                                                                                                                    |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.758                                       | 257              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent properties to<br>the east and/or south to obtain access to Access 259 (Weld County Rd 3).<br>If cross access can be obtained, access will ultimately be closed. |
| 39.940                                       | 258              | North              | Weld<br>County Rd 3   | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                             |
| 39.941                                       | 259              | South              | Weld<br>County Rd 3   | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                             |
| 40.036                                       | 260              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 259 (Weld County Rd 3). If cross access can<br>be obtained, access will ultimately be closed.                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.067                                       | 261              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east for a shared access on the property line (Access 391). If cross access<br>can be obtained, access will ultimately be closed. |
| 40.077                                       | 262              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 258 (Weld County Rd<br>3) and Access 373.                                                                                                        |
| 40.126                                       | 391              | South              | Future Drive          | N/A                             | Right-In, Right-Out                              | Access will be a newly constructed right-in, right-out access on the property line to consolidate Access 261 and Access 263.                                                                                                                                                                                                                                                                                                                                                                |
| 40.141                                       | 263              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west for a shared access on the property line (Access 391). If cross access<br>can be obtained, access will ultimately be closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.198                                       | 264              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 265 or from Access 386<br>if cross access can be obtained.                                                                                               |
| 40.236                                       | 265              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if<br>redevelopment occurs, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Properties should seek to obtain cross access with adjacent property to<br>the south/east to obtain access to Access 386 via a new future roadway. If<br>cross access can be obtained, access will ultimately be closed. |
| 40.276                                       | 266              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 258 (Weld County Rd<br>3) and Access 373.                                                                                                               |
| 40.366                                       | 267              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 386.                                                                                                                                                     |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.447                                       | 373              | North              | Future Drive          | N/A                             | 3/4 Movement <sup>5</sup>                        | Access will be a newly constructed ¾ movement access to the property.<br>The ultimate access design will be based on the results of a traffic study to<br>ensure the intersection does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 386.                                                                                         |
| 40.447                                       | 386              | South              | Future Drive          | N/A                             | 3/4 Movement <sup>5</sup>                        | Access will be a newly constructed ¾ movement access to the property.<br>The ultimate access design will be based on the results of a traffic study to<br>ensure the intersection does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 373.                                                                                         |
| 40.459                                       | 268              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 373 and Access 278<br>(Weld County Rd 5). |
| 40.540                                       | 269              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 386 and Access 277<br>(Weld County Rd 5). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.540                                       | 270              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 373 and Access 278<br>(Weld County Rd 5). |
| 40.561                                       | 271              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 373 and Access 278<br>(Weld County Rd 5). |
| 40.745                                       | 272              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 386 and Access 277<br>(Weld County Rd 5). |
| 40.810                                       | 273              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 373 and Access 278<br>(Weld County Rd 5). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarur | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.905                                       | 274              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 373 and Access 278<br>(Weld County Rd 5). |
| 40.912                                       | 275              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 386 and Access 277<br>(Weld County Rd 5). |
| 40.928                                       | 276              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 278 (Weld County Rd<br>5).               |
| 40.947                                       | 277              | South              | Weld<br>County Rd 5   | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                          |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

|--|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.950                                       | 278              | North              | Weld<br>County Rd 5   | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                           |
| 41.008                                       | 279              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 278 (Weld County Rd<br>5).                                                                |
| 41.255                                       | 280              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if grade-separation occurs<br>over the Great Western Railroad.<br>Access to the property will be obtained from Access 278 (Weld County Rd<br>5). |
| 41.290                                       | 281              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if grade-separation occurs<br>over the Great Western Railroad.<br>Access to the property will be obtained from Access 278 (Weld County Rd<br>5). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

March 2020

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41.317                                       | 282              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if grade-separation occurs<br>over the Great Western Railroad.<br>Access to the property will be obtained from Access 277 (Weld County Rd<br>5).                                                                                                                             |
| 41.337                                       | 283              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, if operational and/or safety issues are identified<br>through the completion of a traffic study, or if grade-separation occurs<br>over the Great Western Railroad.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 278 (Weld County Rd 5). If cross access can<br>be obtained, access will ultimately be closed. |
| 41.342                                       | 380              | North              | Railroad<br>Crossing  | At-grade rail<br>crossing       | Grade Separated at<br>Railroad                   | Access will be grade separated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 41.348                                       | 381              | South              | Railroad<br>Crossing  | At-grade rail<br>crossing       | Grade Separated at<br>Railroad                   | Access will be grade separated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

March 2020

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description    | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------|--------------------|--------------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41.455                                       | 374              | North              | Future Drive             | N/A                             | Right-In, Right-Out                              | Access will be a newly constructed access to the property. Under interim<br>conditions, the access may be signalized if warrants are met. If Accesses<br>380 and 381 are grade-separated, Access 374 will be restricted to right-in,<br>right-out. The ultimate access design will be based on the results of a<br>traffic study to ensure the intersection does not create operational and/or<br>safety issues.<br>Access will be located across SH 66 from Access 284. |
| 41.457                                       | 284              | South              | Weld<br>County Rd<br>5.5 | Full Movement<br>(Unsignalized) | Right-In, Right-Out                              | Under interim conditions, the access may be signalized if warrants are<br>met. If Accesses 380 and 381 are grade-separated, Access 374 will be<br>restricted to right-in, right-out. The ultimate access design will be based on<br>the results of a traffic study to ensure the intersection does not create<br>operational and/or safety issues.<br>Access will be located across SH 66 from Access 374.                                                               |
| 41.515                                       | 285              | North              | Private<br>Drive         | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 374 and Access 376.                                                                                                            |
| 41.686                                       | 286              | South              | Stage Coach<br>Dr        | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if<br>redevelopment occurs, or if operational and/or safety issues are identified<br>through the completion of a traffic study.                                                                                                                                                                                                   |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41.686                                       | 376              | North              | Future Drive          | N/A                             | 3/4 Movement <sup>5</sup>                        | Access will be a newly constructed ¾ movement access to the property.<br>The ultimate access design will be based on the results of a traffic study to<br>ensure the intersection does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 286.                                                                                                          |
| 41.768                                       | 287              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 286 (Stage Coach Dr)<br>and Access 289 (Weld County Rd 7). |
| 41.951                                       | 288              | North              | Weld<br>County Rd 7   | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                      |
| 41.952                                       | 289              | South              | Weld<br>County Rd 7   | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                      |
| 41.985                                       | 290              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 288 (Weld County Rd<br>7).                                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| warch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42.455                                       | 291              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 292 (Foster Ridge<br>Drive). |
| 42.521                                       | 292              | South              | Foster Ridge<br>Dr    | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                              |
| 42.521                                       | 377              | North              | Future Drive          | N/A                             | Full Movement <sup>6</sup><br>(May be Signalized) | Access will be a newly constructed full movement access to the property.<br>The ultimate access design will be based on the results of a traffic study to<br>ensure the intersection does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 292. Access may be<br>signalized if warrants are met.                         |
| 42.618                                       | 293              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 292 (Foster Ridge<br>Drive). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42.640                                       | 294              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 292 (Foster Ridge<br>Drive).                                                                                                        |
| 42.650                                       | 295              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 377. If cross access can be obtained,<br>access will ultimately be closed. |
| 42.731                                       | 296              | North              | Private<br>Drive      | Right-In, Right-<br>Out         | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 377. If cross access can be obtained,<br>access will ultimately be closed. |
| 42.855                                       | 297              | South              | I-25                  | Full Movement<br>(Signalized)   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.<br>Access will remain as-is (signalized full movement).                                                                                                                                                                                                                                                                |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| warch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                            |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|
|                                              |                  |                    |                       |                                 |                                                  | The ultimate access design will be based on the results of a traffic study to |
| 42.050                                       | 209              | North              | 1.25                  | Full Movement                   | Full Movement <sup>6</sup>                       | ensure the intersection does not create operational and/or safety issues.     |
| 42.858                                       | 298              | North              | 1-25                  | (Signalized)                    | (Signalized)                                     | Access will remain as-is (signalized full movement).                          |
|                                              |                  |                    |                       |                                 |                                                  | The ultimate access design will be based on the results of a traffic study to |
| 42.070                                       | 200              | с н                | 1.25                  | Full Movement                   | Full Movement <sup>6</sup>                       | ensure the intersection does not create operational and/or safety issues.     |
| 42.978                                       | 299              | South              | 1-25                  | (Signalized)                    | (Signalized)                                     | Access will remain as-is (signalized full movement).                          |
|                                              |                  | N1                 | 1.25                  | Full Movement                   | Full Movement <sup>6</sup><br>(Signalized)       | The ultimate access design will be based on the results of a traffic study to |
| 42.070                                       | 200              |                    |                       |                                 |                                                  | ensure the intersection does not create operational and/or safety issues.     |
| 42.979                                       | 300              | North              | 1-25                  | (Signalized)                    |                                                  | Access will remain as-is (signalized full movement).                          |
|                                              |                  |                    |                       |                                 |                                                  | Access will be restricted to less than full movement if a raised median is    |
|                                              |                  | North              | Mead St               | Full Movement<br>(Unsignalized) | 3/4 Movement <sup>5</sup>                        | added to SH 66 as part of a roadway improvement project, if                   |
| 43.215                                       | 301              |                    |                       |                                 |                                                  | redevelopment occurs, or if operational and/or safety issues are identified   |
|                                              |                  |                    |                       | , C ,                           |                                                  | through the completion of a traffic study.                                    |
|                                              |                  |                    |                       |                                 |                                                  | Access will be restricted to less than full movement if a raised median is    |
| 42.245                                       | 202              | South              | Mead St               | Full Movement                   | 2/4 Maximum $15$                                 | added to SH 66 as part of a roadway improvement project, if                   |
| 43.215                                       | 302              |                    |                       | (Unsignalized)                  | 5/4 Wovement                                     | redevelopment occurs, or if operational and/or safety issues are identified   |
|                                              |                  |                    |                       |                                 |                                                  | through the completion of a traffic study.                                    |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description    | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|--------------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43.349                                       | 303              | South              | Private<br>Drive         | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if<br>redevelopment occurs, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via a future roadway connection to<br>Access 302 (Mead Street) or Access 305 (Weld County Rd 9.5). |
| 43.448                                       | 304              | North              | Weld<br>County Rd<br>9.5 | Full Movement<br>(Signalized)   | Grade Separated                                  | Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.                                                                                                                                                                                                                                         |
| 43.449                                       | 305              | South              | Weld<br>County Rd<br>9.5 | Full Movement<br>(Signalized)   | Grade Separated                                  | Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.                                                                                                                                                                                                                                         |
| 43.531                                       | 306              | North              | Private<br>Drive         | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 304 (Weld County Rd<br>9.5) or Access 382.                                          |
| 43.661                                       | 307              | North              | Private<br>Drive         | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 304 (Weld County Rd<br>9.5) or Access 382.                                          |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March    | 2020 |
|----------|------|
| iviaitii | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43.687                                       | 382              | North              | Future Drive          | N/A                             | Right-In, Right-Out                              | Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.                                                                                                                                                                    |
| 43.734                                       | 308              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 305 (Weld County Rd<br>9.5) or Access 311 (Weld County Rd 11). |
| 43.738                                       | 396              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 310 (Weld County Rd<br>11) or Access 382.                      |
| 43.794                                       | 309              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 305 (Weld County Rd<br>9) or Access 311 (Weld County Rd 11).   |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALUI | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description   | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43.951                                       | 310              | North              | Weld<br>County Rd<br>11 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                           |
| 43.952                                       | 311              | South              | Weld<br>County Rd<br>11 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                           |
| 44.069                                       | 312              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 310 (Weld County Rd<br>11) or Access 383. |
| 44.191                                       | 383              | North              | Future Drive            | N/A                             | Right-In, Right-Out                               | Access will be a newly constructed right-in, right-out access to the<br>property. The ultimate access design will be based on the results of a<br>traffic study to ensure the intersection does not create operational and/or<br>safety issues.<br>Access will be located across SH 66 from Access 384.                                                                              |
| 44.193                                       | 384              | South              | Future Drive            | N/A                             | Right-In, Right-Out                               | Access will be a newly constructed right-in, right-out access to the<br>property. The ultimate access design will be based on the results of a<br>traffic study to ensure the intersection does not create operational and/or<br>safety issues.<br>Access will be located across SH 66 from Access 383.                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44.233                                       | 313              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 384 or Access 319<br>(Future Weld County Rd 11.5). |
| 44.270                                       | 314              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 384 or Access 319<br>(Future Weld County Rd 11.5). |
| 44.284                                       | 315              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 384 or Access 319<br>(Future Weld County Rd 11.5). |
| 44.285                                       | 316              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 383 or Access 318<br>(Future Weld County Rd 11.5). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALUL | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description            | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|----------------------------------|---------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44.305                                       | 317              | South              | Private<br>Drive                 | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 384 or Access 319<br>(Future Weld County Rd 11.5). |
| 44.444                                       | 318              | North              | Future Weld<br>County Rd<br>11.5 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                   |
| 44.444                                       | 319              | South              | Future Weld<br>County Rd<br>11.5 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                   |
| 44.700                                       | 320              | South              | Private<br>Drive                 | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 393 or Access 323 (Weld<br>County Rd 13).          |
| 44.711                                       | 393              | South              | Future Drive                     | N/A                             | Right-In, Right-Out                               | Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.                                                                                                                                                       |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description   | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|------------------|--------------------|-------------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44.825                                       | 321              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 322 (Weld County Rd<br>13). |
| 44.944                                       | 322              | North              | Weld<br>County Rd<br>13 | Full Movement<br>(Signalized)   | Grade Separated                                  | Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.                                                                                                                                                                                 |
| 44.945                                       | 323              | South              | Weld<br>County Rd<br>13 | Full Movement<br>(Signalized)   | Grade Separated                                  | Access may be grade separated in the future. The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.                                                                                                                                                                                 |
| 44.973                                       | 324              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 322 (Weld County Rd<br>13). |
| 45.121                                       | 325              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property can be obtained via local roadways.                      |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.177                                       | 326              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 323 (Weld County Rd<br>13) or Access 330. |
| 45.194                                       | 327              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 323 (Weld County Rd<br>13) or Access 330. |
| 45.328                                       | 328              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 323 (Weld County Rd<br>13) or Access 330. |
| 45.412                                       | 329              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 323 (Weld County Rd<br>13) or Access 330. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.427                                       | 330              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                     |
| 45.430                                       | 378              | North              | Future Drive          | N/A                             | Full Movement <sup>6</sup><br>(May be Signalized) | Access will be a newly constructed full movement access. The ultimate<br>access design will be based on the results of a traffic study to ensure the<br>intersection does not create operational and/or safety issues.<br>Access will be located across SH 66 from Access 330.                                                                 |
| 45.469                                       | 331              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 330. |
| 45.518                                       | 332              | North              | N Service Rd          | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 378. |
| 45.528                                       | 333              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 330. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description          | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|--------------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.693                                       | 334              | South              | Private<br>Drive               | Full Movement<br>(Unsignalized) | Right-In, Right-Out                               | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.                                                                                    |
| 45.774                                       | 335              | South              | J Bar B<br>Airport Rd          | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 334 or Access 337. |
| 45.921                                       | 336              | North              | Future Weld<br>County Rd<br>15 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                   |
| 45.923                                       | 337              | South              | Future Weld<br>County Rd<br>15 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                   |
| 45.954                                       | 338              | North              | Private<br>Drive               | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 336.              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.991                                       | 339              | South              | J Bar B Rd            | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 337.                                                                                                                                              |
| 46.164                                       | 340              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 336 or Access 345. If cross access can be<br>obtained, access will ultimately be closed. |
| 46.173                                       | 341              | South              | J Bar B Rd            | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 337.                                                                                                                                              |
| 46.206                                       | 342              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 336.                                                                                                                                              |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

<sup>4.</sup> The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

| March | 2020 |
|-------|------|
| watch | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description         | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|------------------|--------------------|-------------------------------|---------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46.295                                       | 343              | North              | Private<br>Drive              | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 336 or Access 345. If cross access can be<br>obtained, access will ultimately be closed. |
| 46.348                                       | 344              | South              | Private<br>Drive              | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 337.                                                                                                                                              |
| 46.447                                       | 345              | North              | Weld<br>County Rd<br>17 North | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                                                                                                                                   |
| 46.594                                       | 346              | North              | Private<br>Drive              | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 345 (Weld County Rd<br>17 N).                                                                                                                     |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description         | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|------------------|--------------------|-------------------------------|---------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46.595                                       | 347              | South              | Private<br>Drive              | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 337 or Access 350<br>(Weld County Rd 17 S). |
| 46.785                                       | 348              | South              | Private<br>Drive              | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 337 or Access 350<br>(Weld County Rd 17 S). |
| 46.871                                       | 349              | North              | Private<br>Drive              | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 345 (Weld County Rd<br>17 N) or Access 358. |
| 46.907                                       | 350              | South              | Weld<br>County Rd<br>17 South | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                             |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| IVIALUI | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description   | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|------------------|--------------------|-------------------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46.949                                       | 351              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained from Access 345 (Weld County Rd<br>17 N) or Access 358.                                                                                         |
| 47.093                                       | 387              | South              | Future path<br>crossing | N/A                             | Grade Separated                                  | Access will be a grade separated multi-modal path.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 47.116                                       | 388              | North              | Future path<br>crossing | N/A                             | Grade Separated                                  | Access will be a grade separated multi-modal path.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 47.128                                       | 352              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 358.                                                                                                                                 |
| 47.157                                       | 353              | North              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>east to obtain access to Access 358. If cross access can be obtained, access<br>will ultimately be closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| 10101012020 |
|-------------|
|-------------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47.373                                       | 354              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 356.                                      |
| 47.374                                       | 355              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 358.                                      |
| 47.416                                       | 356              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                          |
| 47.416                                       | 358              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                          |
| 47.432                                       | 357              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 356 or Access 370 (Weld<br>County Rd 19). |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47.483                                       | 359              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 358. If cross access can be obtained,<br>access will ultimately be closed. |
| 47.496                                       | 360              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 359 or from Access 358<br>if cross-access can be obtained.                                                                 |
| 47.565                                       | 361              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 359 or from Access 358<br>if cross-access can be obtained.                                                                 |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | Ma | rch | 2020 |
|------------|----|-----|------|
|------------|----|-----|------|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47.590                                       | 362              | South              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 356 or Access 370 (Weld<br>County Rd 19).                                                                                  |
| 47.593                                       | 363              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 364 or from Access 369<br>if cross-access can be obtained.                                                                 |
| 47.606                                       | 364              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement if a raised median is<br>added to SH 66 as part of a roadway improvement project, if the property<br>redevelops, or if operational and/or safety issues are identified through<br>the completion of a traffic study.<br>Property should seek to obtain cross access with adjacent property to the<br>west to obtain access to Access 358. If cross access can be obtained,<br>access will ultimately be closed. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| March   | 2020 |
|---------|------|
| iviarun | 2020 |

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|------------------|--------------------|-----------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47.663                                       | 365              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 364 or from Access 369<br>if cross-access can be obtained. |
| 47.663                                       | 394              | South              | Future Drive          | N/A                             | Right-In, Right-Out                              | Access will be a newly constructed right-in, right-out access to the property. The ultimate access design will be based on the results of a traffic study to ensure the intersection does not create operational and/or safety issues.                                                                                                                                                               |
| 47.714                                       | 366              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 364 or from Access 369<br>if cross-access can be obtained. |
| 47.734                                       | 367              | North              | Private<br>Drive      | Full Movement<br>(Unsignalized) | Access to be closed                              | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 364 or from Access 369<br>if cross-access can be obtained. |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.

| Warch 2020 | M | arcł | า 20 | )20 |
|------------|---|------|------|-----|
|------------|---|------|------|-----|

| Milepost <sup>3</sup><br>(CO 66 /<br>*US 36) | Access<br>Number | Side of<br>Highway | Access<br>Description   | Existing<br>Conditions          | Ultimate Access<br>Control Plan<br>Configuration  | Conditions for Change <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|------------------|--------------------|-------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47.741                                       | 368              | South              | Private<br>Drive        | Full Movement<br>(Unsignalized) | Access to be closed                               | Access will be restricted to less than full movement or closed if a raised<br>median is added to SH 66 as part of a roadway improvement project, if the<br>property redevelops, or if operational and/or safety issues are identified<br>through the completion of a traffic study.<br>Access to the property will be obtained via Access 356 or Access 370 (Weld<br>County Rd 19). |
| 47.899                                       | 369              | North              | Weld<br>County Rd<br>19 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                          |
| 47.900                                       | 370              | South              | Weld<br>County Rd<br>19 | Full Movement<br>(Unsignalized) | Full Movement <sup>6</sup><br>(May be Signalized) | The ultimate access design will be based on the results of a traffic study to ensure it does not create operational and/or safety issues.<br>Access may be signalized if warrants are met.                                                                                                                                                                                          |

1. The current State Highway Access Code shall govern any unresolved discrepancies regarding access decisions.

2. All access points are subject to consolidation upon the combining or subdividing of any lots under a single ownership or controlling interest.

3. All access locations +/- 50 feet (0.01 mile) unless otherwise noted.

4. The type, number, and storage length of lanes may be determined by a separate traffic study to be done at the time of the actual design and implementation of the access plan and to ensure that the design does not create operational and/or safety issues.

5. A ¾ movement configuration means that vehicles can turn right into the access, turn right out of the access, and turn left into the access.



# Appendix F. 2040 Synchro Analysis

# F.1. 2040 AM No Action
## HCM 6th Signalized Intersection Summary 1: McConnell Dr/Stone Canyon Dr & SH 66

10/07/2019

|                              | 4    | ×    | 2    | 5    | ×    | ť    | 3    | *    | 4    | 6    | ×    | *    |
|------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Movement                     | SEL  | SET  | SER  | NWL  | NWT  | NWR  | NEL  | NET  | NER  | SWL  | SWT  | SWR  |
| Lane Configurations          | 5    | **   | 1    | 5    | **   | 1    | 5    | £,   |      | 5    | 1,   |      |
| Traffic Volume (veh/h)       | 15   | 740  | 65   | 195  | 460  | 15   | 65   | 15   | 235  | 40   | 35   | 40   |
| Future Volume (veh/h)        | 15   | 740  | 65   | 195  | 460  | 15   | 65   | 15   | 235  | 40   | 35   | 40   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No   |      |      | No   |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1826 | 1870 | 1870 | 1826 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 16   | 804  | 71   | 212  | 500  | 16   | 71   | 16   | 255  | 43   | 38   | 43   |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %         | 2    | 5    | 2    | 2    | 5    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 396  | 924  | 422  | 505  | 1927 | 880  | 340  | 17   | 268  | 171  | 142  | 161  |
| Arrive On Green              | 0.27 | 0.27 | 0.27 | 0.18 | 0.56 | 0.56 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
| Sat Flow, veh/h              | 885  | 3469 | 1585 | 1781 | 3469 | 1585 | 1317 | 94   | 1505 | 1108 | 801  | 906  |
| Grp Volume(v), veh/h         | 16   | 804  | 71   | 212  | 500  | 16   | 71   | 0    | 271  | 43   | 0    | 81   |
| Grp Sat Flow(s).veh/h/ln     | 885  | 1735 | 1585 | 1781 | 1735 | 1585 | 1317 | 0    | 1599 | 1108 | 0    | 1707 |
| Q Serve(q s), s              | 0.6  | 10.0 | 1.5  | 3.1  | 3.4  | 0.2  | 2.2  | 0.0  | 7.5  | 0.5  | 0.0  | 1.8  |
| Cycle Q Clear(g_c), s        | 0.6  | 10.0 | 1.5  | 3.1  | 3.4  | 0.2  | 4.1  | 0.0  | 7.5  | 8.0  | 0.0  | 1.8  |
| Prop In Lane                 | 1.00 |      | 1.00 | 1.00 | •••  | 1.00 | 1.00 |      | 0.94 | 1.00 |      | 0.53 |
| Lane Grp Cap(c), veh/h       | 396  | 924  | 422  | 505  | 1927 | 880  | 340  | 0    | 284  | 171  | 0    | 304  |
| V/C Ratio(X)                 | 0.04 | 0.87 | 0.17 | 0.42 | 0.26 | 0.02 | 0.21 | 0.00 | 0.95 | 0.25 | 0.00 | 0.27 |
| Avail Cap(c a), veh/h        | 396  | 925  | 423  | 505  | 1928 | 881  | 340  | 0    | 284  | 171  | 0    | 304  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 12.3 | 15.8 | 12.7 | 8.7  | 5.2  | 4.5  | 17.7 | 0.0  | 18.3 | 22.4 | 0.0  | 16.0 |
| Incr Delay (d2), s/veh       | 0.1  | 9.2  | 0.3  | 0.6  | 0.1  | 0.0  | 0.4  | 0.0  | 40.8 | 1.1  | 0.0  | 0.7  |
| Initial Q Delav(d3).s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%).veh/ln     | 0.1  | 4.0  | 0.4  | 0.7  | 0.5  | 0.0  | 0.6  | 0.0  | 5.7  | 0.5  | 0.0  | 0.7  |
| Unsig. Movement Delay, s/veh |      |      |      | •    |      |      |      |      |      |      |      |      |
| LnGrp Delav(d).s/veh         | 12.4 | 25.0 | 12.9 | 9.3  | 5.3  | 4.5  | 18.1 | 0.0  | 59.1 | 23.5 | 0.0  | 16.6 |
| LnGrp LOS                    | В    | С    | В    | A    | A    | A    | В    | A    | E    | С    | A    | В    |
| Approach Vol. veh/h          |      | 891  |      |      | 728  |      |      | 342  |      |      | 124  |      |
| Approach Delay s/yeh         |      | 23.8 |      |      | 64   |      |      | 50.6 |      |      | 19.0 |      |
| Approach LOS                 |      | C    |      |      | A    |      |      | D    |      |      | B    |      |
|                              |      | 0    |      |      | 7.   |      |      |      |      |      |      |      |
| Timer - Assigned Phs         | 1    | 2    |      | 4    |      | 6    |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 13.0 | 18.0 |      | 14.0 |      | 31.0 |      | 14.0 |      |      |      |      |
| Change Period (Y+Rc), s      | 5.0  | 6.0  |      | 6.0  |      | 6.0  |      | 6.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 8.0  | 12.0 |      | 8.0  |      | 25.0 |      | 8.0  |      |      |      |      |
| Max Q Clear Time (g_c+l1), s | 5.1  | 12.0 |      | 10.0 |      | 5.4  |      | 9.5  |      |      |      |      |
| Green Ext Time (p_c), s      | 0.2  | 0.0  |      | 0.0  |      | 4.0  |      | 0.0  |      |      |      |      |
| Intersection Summary         |      |      |      |      |      |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 21.8 |      |      |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |      | С    |      |      |      |      |      |      |      |      |      |

#### Notes

User approved pedestrian interval to be less than phase max green.

## HCM Signalized Intersection Capacity Analysis 2: US 36 & SH 66

|                               | ٨          | -        | $\mathbf{r}$ | 4     | +          | •          | 1       | Ť    | 1    | 5     | Ļ     | ~    |
|-------------------------------|------------|----------|--------------|-------|------------|------------|---------|------|------|-------|-------|------|
| Movement                      | EBL        | EBT      | EBR          | WBL   | WBT        | WBR        | NBL     | NBT  | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations           | 5          | <b>^</b> | 1            | 5     | 11-        |            | 5       | र्स  | 1    |       | 4.    |      |
| Traffic Volume (vph)          | 25         | 480      | 520          | 370   | 510        | 35         | 135     | 40   | 35   | 25    | 25    | 25   |
| Future Volume (vph)           | 25         | 480      | 520          | 370   | 510        | 35         | 135     | 40   | 35   | 25    | 25    | 25   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900         | 1900  | 1900       | 1900       | 1900    | 1900 | 1900 | 1900  | 1900  | 1900 |
| Total Lost time (s)           | 6.0        | 6.0      | 6.0          | 6.0   | 6.0        |            | 6.0     | 6.0  | 6.0  |       | 6.0   |      |
| Lane Util. Factor             | 1.00       | 0.95     | 1.00         | 1.00  | 0.95       |            | 0.95    | 0.95 | 1.00 |       | 1.00  |      |
| Frt                           | 1.00       | 1.00     | 0.85         | 1.00  | 0.99       |            | 1.00    | 1.00 | 0.85 |       | 0.95  |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00         | 0.95  | 1.00       |            | 0.95    | 0.97 | 1.00 |       | 0.98  |      |
| Satd. Flow (prot)             | 1624       | 3185     | 1425         | 1593  | 3102       |            | 1442    | 1522 | 1358 |       | 1606  |      |
| Flt Permitted                 | 0.42       | 1.00     | 1.00         | 0.46  | 1.00       |            | 0.95    | 0.97 | 1.00 |       | 0.98  |      |
| Satd. Flow (perm)             | 722        | 3185     | 1425         | 769   | 3102       |            | 1442    | 1522 | 1358 |       | 1606  |      |
| Peak-hour factor, PHF         | 0.92       | 0.92     | 0.92         | 0.92  | 0.92       | 0.92       | 0.92    | 0.92 | 0.92 | 0.92  | 0.92  | 0.92 |
| Adj. Flow (vph)               | 27         | 522      | 565          | 402   | 554        | 38         | 147     | 43   | 38   | 27    | 27    | 27   |
| RTOR Reduction (vph)          | 0          | 0        | 221          | 0     | 6          | 0          | 0       | 0    | 34   | 0     | 20    | 0    |
| Lane Group Flow (vph)         | 27         | 522      | 344          | 402   | 586        | 0          | 94      | 96   | 4    | 0     | 61    | 0    |
| Heavy Vehicles (%)            | 0%         | 2%       | 2%           | 2%    | 4%         | 0%         | 7%      | 0%   | 7%   | 0%    | 0%    | 0%   |
| Turn Type                     | Perm       | NA       | Perm         | Perm  | NA         |            | Split   | NA   | Perm | Split | NA    |      |
| Protected Phases              |            | 2        |              |       | 6          |            | 4       | 4    |      | 8     | 8     |      |
| Permitted Phases              | 2          |          | 2            | 6     |            |            |         |      | 4    |       |       |      |
| Actuated Green, G (s)         | 50.0       | 50.0     | 50.0         | 50.0  | 50.0       |            | 8.2     | 8.2  | 8.2  |       | 6.0   |      |
| Effective Green, g (s)        | 50.0       | 50.0     | 50.0         | 50.0  | 50.0       |            | 8.2     | 8.2  | 8.2  |       | 6.0   |      |
| Actuated g/C Ratio            | 0.61       | 0.61     | 0.61         | 0.61  | 0.61       |            | 0.10    | 0.10 | 0.10 |       | 0.07  |      |
| Clearance Time (s)            | 6.0        | 6.0      | 6.0          | 6.0   | 6.0        |            | 6.0     | 6.0  | 6.0  |       | 6.0   |      |
| Vehicle Extension (s)         | 4.0        | 4.0      | 4.0          | 4.0   | 4.0        |            | 4.0     | 4.0  | 4.0  |       | 4.0   |      |
| Lane Grp Cap (vph)            | 439        | 1937     | 866          | 467   | 1886       |            | 143     | 151  | 135  |       | 117   |      |
| v/s Ratio Prot                |            | 0.16     |              |       | 0.19       |            | c0.07   | 0.06 |      |       | c0.04 |      |
| v/s Ratio Perm                | 0.04       |          | 0.24         | c0.52 |            |            |         |      | 0.00 |       |       |      |
| v/c Ratio                     | 0.06       | 0.27     | 0.40         | 0.86  | 0.31       |            | 0.66    | 0.64 | 0.03 |       | 0.52  |      |
| Uniform Delay, d1             | 6.6        | 7.5      | 8.3          | 13.2  | 7.8        |            | 35.6    | 35.6 | 33.4 |       | 36.7  |      |
| Progression Factor            | 1.00       | 1.00     | 1.00         | 1.00  | 1.00       |            | 1.00    | 1.00 | 1.00 |       | 1.00  |      |
| Incremental Delay, d2         | 0.1        | 0.1      | 0.4          | 15.4  | 0.1        |            | 11.5    | 9.5  | 0.1  |       | 5.1   |      |
| Delay (s)                     | 6.6        | 7.6      | 8.7          | 28.6  | 7.9        |            | 47.1    | 45.0 | 33.5 |       | 41.8  |      |
| Level of Service              | А          | А        | А            | С     | А          |            | D       | D    | С    |       | D     |      |
| Approach Delay (s)            |            | 8.2      |              |       | 16.3       |            |         | 44.0 |      |       | 41.8  |      |
| Approach LOS                  |            | A        |              |       | В          |            |         | D    |      |       | D     |      |
| Intersection Summary          |            |          |              |       |            |            |         |      |      |       |       |      |
| HCM 2000 Control Delay        |            |          | 16.0         | H     | CM 2000    | Level of S | Service |      | В    |       |       |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.80         |       |            |            |         |      |      |       |       |      |
| Actuated Cycle Length (s)     |            |          | 82.2         | Si    | um of lost | time (s)   |         |      | 18.0 |       |       |      |
| Intersection Capacity Utiliza | tion       |          | 80.2%        | IC    | U Level o  | of Service |         |      | D    |       |       |      |
| Analysis Period (min)         |            |          | 15           |       |            |            |         |      |      |       |       |      |
| c Critical Lane Group         |            |          |              |       |            |            |         |      |      |       |       |      |

# HCM 6th Signalized Intersection Summary 4: N 75th St & SH 66

|                              | ٠    | -+   | 7    | •    | +        | *    | 1    | Ť    | 1    | 5    | ţ    | ~    |
|------------------------------|------|------|------|------|----------|------|------|------|------|------|------|------|
| Movement                     | EBL  | EBT  | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | 1    |      | 1    | 1    | <b>†</b> | 1    |      | 4    |      |      | 4    |      |
| Traffic Volume (veh/h)       | 10   | 380  | 145  | 270  | 765      | 5    | 85   | 10   | 40   | 5    | 195  | 75   |
| Future Volume (veh/h)        | 10   | 380  | 145  | 270  | 765      | 5    | 85   | 10   | 40   | 5    | 195  | 75   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No   |      |      | No       |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1737 | 1856 | 1900 | 1870 | 1826     | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Adj Flow Rate, veh/h         | 11   | 413  | 158  | 293  | 832      | 5    | 92   | 11   | 0    | 5    | 212  | 0    |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %         | 11   | 3    | 0    | 2    | 5        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Cap, veh/h                   | 245  | 799  | 693  | 569  | 975      | 859  | 287  | 28   |      | 67   | 299  |      |
| Arrive On Green              | 0.02 | 0.43 | 0.43 | 0.12 | 0.53     | 0.53 | 0.16 | 0.16 | 0.00 | 0.16 | 0.16 | 0.00 |
| Sat Flow, veh/h              | 1654 | 1856 | 1610 | 1781 | 1826     | 1610 | 1055 | 176  | 0    | 16   | 1878 | 0    |
| Grp Volume(v), veh/h         | 11   | 413  | 158  | 293  | 832      | 5    | 103  | 0    | 0    | 217  | 0    | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1654 | 1856 | 1610 | 1781 | 1826     | 1610 | 1231 | 0    | 0    | 1895 | 0    | 0    |
| Q Serve(g_s), s              | 0.2  | 9.4  | 3.6  | 4.7  | 22.4     | 0.1  | 0.0  | 0.0  | 0.0  | 0.6  | 0.0  | 0.0  |
| Cycle Q Clear(g_c), s        | 0.2  | 9.4  | 3.6  | 4.7  | 22.4     | 0.1  | 4.4  | 0.0  | 0.0  | 6.2  | 0.0  | 0.0  |
| Prop In Lane                 | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 0.89 |      | 0.00 | 0.02 |      | 0.00 |
| Lane Grp Cap(c), veh/h       | 245  | 799  | 693  | 569  | 975      | 859  | 315  | 0    |      | 366  | 0    |      |
| V/C Ratio(X)                 | 0.04 | 0.52 | 0.23 | 0.51 | 0.85     | 0.01 | 0.33 | 0.00 |      | 0.59 | 0.00 |      |
| Avail Cap(c_a), veh/h        | 415  | 1717 | 1490 | 766  | 1893     | 1669 | 700  | 0    |      | 953  | 0    |      |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| Uniform Delay (d), s/veh     | 11.1 | 12.0 | 10.3 | 7.5  | 11.5     | 6.3  | 22.1 | 0.0  | 0.0  | 22.9 | 0.0  | 0.0  |
| Incr Delay (d2), s/veh       | 0.1  | 0.5  | 0.2  | 0.7  | 2.3      | 0.0  | 0.6  | 0.0  | 0.0  | 1.5  | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 0.1  | 2.9  | 1.0  | 1.1  | 6.2      | 0.0  | 1.2  | 0.0  | 0.0  | 2.6  | 0.0  | 0.0  |
| Unsig. Movement Delay, s/veh |      |      |      |      |          |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 11.2 | 12.5 | 10.5 | 8.3  | 13.7     | 6.3  | 22.7 | 0.0  | 0.0  | 24.4 | 0.0  | 0.0  |
| LnGrp LOS                    | В    | В    | В    | А    | В        | А    | С    | А    |      | С    | А    |      |
| Approach Vol, veh/h          |      | 582  |      |      | 1130     |      |      | 103  | А    |      | 217  | A    |
| Approach Delay, s/veh        |      | 11.9 |      |      | 12.3     |      |      | 22.7 |      |      | 24.4 |      |
| Approach LOS                 |      | В    |      |      | В        |      |      | С    |      |      | С    |      |
| Timer - Assigned Phs         | 1    | 2    |      | 4    | 5        | 6    |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 11.6 | 31.7 |      | 14.1 | 5.6      | 37.6 |      | 14.1 |      |      |      |      |
| Change Period (Y+Rc), s      | 4.5  | 7.0  |      | 5.0  | 4.5      | 7.0  |      | 5.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 13.4 | 53.1 |      | 27.0 | 7.0      | 59.5 |      | 27.0 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 6.7  | 11.4 |      | 8.2  | 2.2      | 24.4 |      | 6.4  |      |      |      |      |
| Green Ext Time (p_c), s      | 0.5  | 2.9  |      | 1.0  | 0.0      | 6.2  |      | 0.5  |      |      |      |      |
| Intersection Summary         |      |      |      |      |          |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 14.0 |      |          |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |      | В    |      |          |      |      |      |      |      |      |      |

#### Notes

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1    | 1    | 1    | 1    | 1    | 1    |      | \$   |      |      | \$   |      |
| Traffic Vol, veh/h     | 5    | 415  | 5    | 5    | 975  | 25   | 20   | 5    | 30   | 50   | 5    | 25   |
| Future Vol, veh/h      | 5    | 415  | 5    | 5    | 975  | 25   | 20   | 5    | 30   | 50   | 5    | 25   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | Stop | -    | -    | Stop |
| Storage Length         | 475  | -    | 475  | 325  | -    | 325  | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0    | 4    | 0    | 0    | 4    | 0    | 0    | 0    | 4    | 0    | 0    | 0    |
| Mvmt Flow              | 5    | 451  | 5    | 5    | 1060 | 27   | 22   | 5    | 33   | 54   | 5    | 27   |

| Major/Minor          | Major1 |   | М | ajor2 |   | Ν | /linor1 |      | ľ     | Minor2 |      |      |  |
|----------------------|--------|---|---|-------|---|---|---------|------|-------|--------|------|------|--|
| Conflicting Flow All | 1087   | 0 | 0 | 456   | 0 | 0 | 1547    | 1558 | 451   | 1536   | 1536 | 1060 |  |
| Stage 1              | -      | - | - | -     | - | - | 461     | 461  | -     | 1070   | 1070 | -    |  |
| Stage 2              | -      | - | - | -     | - | - | 1086    | 1097 | -     | 466    | 466  | -    |  |
| Critical Hdwy        | 4.1    | - | - | 4.1   | - | - | 7.1     | 6.5  | 6.24  | 7.1    | 6.5  | 6.2  |  |
| Critical Hdwy Stg 1  | -      | - | - | -     | - | - | 6.1     | 5.5  | -     | 6.1    | 5.5  | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -     | - | - | 6.1     | 5.5  | -     | 6.1    | 5.5  | -    |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2   | - | - | 3.5     | 4    | 3.336 | 3.5    | 4    | 3.3  |  |
| Pot Cap-1 Maneuver   | 649    | - | - | 1115  | - | - | 94      | 114  | 604   | 96     | 117  | 275  |  |
| Stage 1              | -      | - | - | -     | - | - | 584     | 569  | -     | 270    | 300  | -    |  |
| Stage 2              | -      | - | - | -     | - | - | 264     | 291  | -     | 581    | 566  | -    |  |
| Platoon blocked, %   |        | - | - |       | - | - |         |      |       |        |      |      |  |
| Mov Cap-1 Maneuver   | 649    | - | - | 1115  | - | - | 81      | 113  | 604   | 87     | 116  | 275  |  |
| Mov Cap-2 Maneuver   | · _    | - | - | -     | - | - | 81      | 113  | -     | 87     | 116  | -    |  |
| Stage 1              | -      | - | - | -     | - | - | 579     | 564  | -     | 268    | 299  | -    |  |
| Stage 2              | -      | - | - | -     | - | - | 233     | 290  | -     | 540    | 561  | -    |  |
|                      |        |   |   |       |   |   |         |      |       |        |      |      |  |

| Approach             | EB  | WB | NB | SB    |  |
|----------------------|-----|----|----|-------|--|
| HCM Control Delay, s | 0.1 | 0  | 40 | 102.1 |  |
| HCM LOS              |     |    | Е  | F     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR \$ | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|-------|
| Capacity (veh/h)      | 161   | 649   | -   | -   | 1115  | -   | -      | 113   |
| HCM Lane V/C Ratio    | 0.371 | 0.008 | -   | -   | 0.005 | -   | -      | 0.77  |
| HCM Control Delay (s) | 40    | 10.6  | -   | -   | 8.2   | -   | -      | 102.1 |
| HCM Lane LOS          | E     | В     | -   | -   | Α     | -   | -      | F     |
| HCM 95th %tile Q(veh) | 1.6   | 0     | -   | -   | 0     | -   | -      | 4.3   |

| 1 | 0/ | 0 | 7/ | 2 | 0′ | 19 |
|---|----|---|----|---|----|----|
|---|----|---|----|---|----|----|

| Intersection           |          |      |      |      |      |      |
|------------------------|----------|------|------|------|------|------|
| Int Delay, s/veh       | 0.9      |      |      |      |      |      |
| ••                     |          |      |      |      |      |      |
| Movement               | EBT      | EBR  | WBL  | WBI  | NBL  | NBR  |
| Lane Configurations    | <b>↑</b> | 1    | 1    | +    | 5    | 1    |
| Traffic Vol, veh/h     | 490      | 5    | 25   | 980  | 25   | 55   |
| Future Vol, veh/h      | 490      | 5    | 25   | 980  | 25   | 55   |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free     | Free | Free | Free | Stop | Stop |
| RT Channelized         | -        | None | -    | None | -    | Stop |
| Storage Length         | -        | 0    | 575  | -    | 150  | 0    |
| Veh in Median Storage  | ,# 0     | -    | -    | 0    | 0    | -    |
| Grade, %               | 0        | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 92       | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles. %      | 2        | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow              | 533      | 5    | 27   | 1065 | 27   | 60   |
|                        |          | •    |      |      |      | ••   |

| Major/Minor          | Major1 | Major2  | Minor1  |       |  |
|----------------------|--------|---------|---------|-------|--|
| Conflicting Flow All | 0      | 0 538   | 0 1652  | 533   |  |
| Stage 1              | -      |         | - 533   | -     |  |
| Stage 2              | -      |         | - 1119  | -     |  |
| Critical Hdwy        | -      | - 4.12  | - 6.42  | 6.22  |  |
| Critical Hdwy Stg 1  | -      |         | - 5.42  | -     |  |
| Critical Hdwy Stg 2  | -      |         | - 5.42  | -     |  |
| Follow-up Hdwy       | -      | - 2.218 | - 3.518 | 3.318 |  |
| Pot Cap-1 Maneuver   | -      | - 1030  | - 108   | 547   |  |
| Stage 1              | -      |         | - 588   | -     |  |
| Stage 2              | -      |         | - 312   | -     |  |
| Platoon blocked, %   | -      | -       | -       |       |  |
| Mov Cap-1 Maneuver   | · -    | - 1030  | - 105   | 547   |  |
| Mov Cap-2 Maneuver   | · -    |         | - 215   | -     |  |
| Stage 1              | -      |         | - 573   | -     |  |
| Stage 2              | -      |         | - 312   | -     |  |
|                      |        |         |         |       |  |

| Approach             | EB | WB  | NB   |
|----------------------|----|-----|------|
| HCM Control Delay, s | 0  | 0.2 | 16.1 |
| HCM LOS              |    |     | С    |

| Minor Lane/Major Mvmt | NBLn1 I | NBLn2 | EBT | EBR | WBL   | WBT |
|-----------------------|---------|-------|-----|-----|-------|-----|
| Capacity (veh/h)      | 215     | 547   | -   | -   | 1030  | -   |
| HCM Lane V/C Ratio    | 0.126   | 0.109 | -   | -   | 0.026 | -   |
| HCM Control Delay (s) | 24.2    | 12.4  | -   | -   | 8.6   | -   |
| HCM Lane LOS          | С       | В     | -   | -   | А     | -   |
| HCM 95th %tile Q(veh) | 0.4     | 0.4   | -   | -   | 0.1   | -   |

| 10/07/2019 | 9 |
|------------|---|
|------------|---|

| Intersection           |      |          |      |      |      |      |
|------------------------|------|----------|------|------|------|------|
| Int Delay, s/veh       | 0.6  |          |      |      |      |      |
| Movement               | EBL  | EBT      | WBT  | WBR  | SBL  | SBR  |
| Lane Configurations    | ħ    | <b>^</b> | ţ,   |      | Y    |      |
| Traffic Vol, veh/h     | 5    | 540      | 1000 | 15   | 15   | 5    |
| Future Vol, veh/h      | 5    | 540      | 1000 | 15   | 15   | 5    |
| Conflicting Peds, #/hr | 0    | 0        | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free     | Free | Free | Stop | Stop |
| RT Channelized         | -    | None     | -    | None | -    | None |
| Storage Length         | 200  | -        | -    | -    | 0    | -    |
| Veh in Median Storage  | ,# - | 0        | 0    | -    | 0    | -    |
| Grade, %               | -    | 0        | 0    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92       | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0    | 3        | 4    | 25   | 25   | 0    |
| Mvmt Flow              | 5    | 587      | 1087 | 16   | 16   | 5    |
|                        |      |          |      |      |      |      |

| Major/Minor          | Major1 | Maj | or2 |   | Minor2 |      |  |
|----------------------|--------|-----|-----|---|--------|------|--|
| Conflicting Flow All | 1103   | 0   | -   | 0 | 1692   | 1095 |  |
| Stage 1              | -      | -   | -   | - | 1095   | -    |  |
| Stage 2              | -      | -   | -   | - | 597    | -    |  |
| Critical Hdwy        | 4.1    | -   | -   | - | 6.65   | 6.2  |  |
| Critical Hdwy Stg 1  | -      | -   | -   | - | 5.65   | -    |  |
| Critical Hdwy Stg 2  | -      | -   | -   | - | 5.65   | -    |  |
| Follow-up Hdwy       | 2.2    | -   | -   | - | 3.725  | 3.3  |  |
| Pot Cap-1 Maneuver   | 640    | -   | -   | - | 90     | 262  |  |
| Stage 1              | -      | -   | -   | - | 290    | -    |  |
| Stage 2              | -      | -   | -   | - | 508    | -    |  |
| Platoon blocked, %   |        | -   | -   | - |        |      |  |
| Mov Cap-1 Maneuver   | 640    | -   | -   | - | 89     | 262  |  |
| Mov Cap-2 Maneuver   | · -    | -   | -   | - | 89     | -    |  |
| Stage 1              | -      | -   | -   | - | 288    | -    |  |
| Stage 2              | -      | -   | -   | - | 508    | -    |  |
|                      |        |     |     |   |        |      |  |
| Approach             | EB     | ,   | WB  |   | SB     |      |  |

| Approach             | EB  | WB | SB |  |
|----------------------|-----|----|----|--|
| HCM Control Delay, s | 0.1 | 0  | 47 |  |
| HCM LOS              |     |    | E  |  |

| Minor Lane/Major Mvmt | EBL   | EBT | WBT | WBR SBLn1 |
|-----------------------|-------|-----|-----|-----------|
| Capacity (veh/h)      | 640   | -   | -   | - 107     |
| HCM Lane V/C Ratio    | 0.008 | -   | -   | - 0.203   |
| HCM Control Delay (s) | 10.7  | -   | -   | - 47      |
| HCM Lane LOS          | В     | -   | -   | - E       |
| HCM 95th %tile Q(veh) | 0     | -   | -   | - 0.7     |

#### Intersection

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations      |      | \$   |      |      | \$   |      |      | \$   |      |      | \$   |      |
| Traffic Vol, veh/h       | 5    | 555  | 5    | 30   | 1000 | 25   | 10   | 5    | 15   | 20   | 10   | 5    |
| Future Vol, veh/h        | 5    | 555  | 5    | 30   | 1000 | 25   | 10   | 5    | 15   | 20   | 10   | 5    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | 4 -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 5    | 603  | 5    | 33   | 1087 | 27   | 11   | 5    | 16   | 22   | 11   | 5    |

| Major/Minor          | Major1 |   | Major2  |   | Minor1  |       |       | Minor2 |       |       |  |
|----------------------|--------|---|---------|---|---------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 1114   | 0 | 0 608   | 0 | 0 1791  | 1796  | 606   | 1793   | 1785  | 1101  |  |
| Stage 1              | -      | - |         | - | - 616   | 616   | -     | 1167   | 1167  | -     |  |
| Stage 2              | -      | - |         | - | - 1175  | 1180  | -     | 626    | 618   | -     |  |
| Critical Hdwy        | 4.12   | - | - 4.12  | - | - 7.12  | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - 2.218 | - | - 3.518 | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 627    | - | - 970   | - | - 63    | 80    | 497   | 63     | 82    | 258   |  |
| Stage 1              | -      | - |         | - | - 478   | 482   | -     | 236    | 268   | -     |  |
| Stage 2              | -      | - |         | - | - 233   | 264   | -     | 472    | 481   | -     |  |
| Platoon blocked, %   |        | - | -       | - | -       |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 627    | - | - 970   | - | - 51    | 72    | 497   | 53     | 74    | 258   |  |
| Mov Cap-2 Maneuver   | · _    | - |         | - | - 51    | 72    | -     | 53     | 74    | -     |  |
| Stage 1              | -      | - |         | - | - 472   | 476   | -     | 233    | 244   | -     |  |
| Stage 2              | -      | - |         | - | - 198   | 240   | -     | 446    | 475   | -     |  |
|                      |        |   |         |   |         |       |       |        |       |       |  |

| Approach             | EB  | WB  | NB   | SB    |  |
|----------------------|-----|-----|------|-------|--|
| HCM Control Delay, s | 0.1 | 0.3 | 56.8 | 116.7 |  |
| HCM LOS              |     |     | F    | F     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|-----|-------|
| Capacity (veh/h)      | 101   | 627   | -   | -   | 970   | -   | -   | 66    |
| HCM Lane V/C Ratio    | 0.323 | 0.009 | -   | -   | 0.034 | -   | -   | 0.576 |
| HCM Control Delay (s) | 56.8  | 10.8  | 0   | -   | 8.8   | 0   | -   | 116.7 |
| HCM Lane LOS          | F     | В     | А   | -   | А     | А   | -   | F     |
| HCM 95th %tile Q(veh) | 1.2   | 0     | -   | -   | 0.1   | -   | -   | 2.4   |

## HCM Signalized Intersection Capacity Analysis 9: 95th St/Hover Rd & SH 66

| 10/07/201 | 9 |
|-----------|---|
|-----------|---|

|                               | ٨          | -     | $\mathbf{\hat{r}}$ | •     | +           | *          | 1       | Ť     | 1    | 1     | ŧ     | 1    |
|-------------------------------|------------|-------|--------------------|-------|-------------|------------|---------|-------|------|-------|-------|------|
| Movement                      | EBL        | EBT   | EBR                | WBL   | WBT         | WBR        | NBL     | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations           | 5          | •     | 1                  | 55    | •           | 1          | 5       | •     | 1    | 5     | ţ,    |      |
| Traffic Volume (vph)          | 5          | 335   | 250                | 1350  | 595         | 50         | 410     | 90    | 695  | 20    | 280   | 50   |
| Future Volume (vph)           | 5          | 335   | 250                | 1350  | 595         | 50         | 410     | 90    | 695  | 20    | 280   | 50   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900               | 1800  | 1900        | 1900       | 1900    | 1900  | 1900 | 1900  | 1900  | 1900 |
| Total Lost time (s)           | 6.6        | 6.4   | 6.4                | 6.5   | 6.4         | 6.4        | 5.7     | 5.7   | 5.7  | 5.8   | 5.7   |      |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00               | 0.97  | 1.00        | 1.00       | 1.00    | 1.00  | 1.00 | 1.00  | 1.00  |      |
| Frt                           | 1.00       | 1.00  | 0.85               | 1.00  | 1.00        | 0.85       | 1.00    | 1.00  | 0.85 | 1.00  | 0.98  |      |
| Flt Protected                 | 0.95       | 1.00  | 1.00               | 0.95  | 1.00        | 1.00       | 0.95    | 1.00  | 1.00 | 0.95  | 1.00  |      |
| Satd. Flow (prot)             | 1805       | 1827  | 1599               | 3252  | 1792        | 1615       | 1752    | 1863  | 1553 | 1805  | 1851  |      |
| Flt Permitted                 | 0.42       | 1.00  | 1.00               | 0.95  | 1.00        | 1.00       | 0.12    | 1.00  | 1.00 | 0.69  | 1.00  |      |
| Satd. Flow (perm)             | 796        | 1827  | 1599               | 3252  | 1792        | 1615       | 228     | 1863  | 1553 | 1318  | 1851  |      |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92               | 0.92  | 0.92        | 0.92       | 0.92    | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 |
| Adj. Flow (vph)               | 5          | 364   | 272                | 1467  | 647         | 54         | 446     | 98    | 755  | 22    | 304   | 54   |
| RTOR Reduction (vph)          | 0          | 0     | 198                | 0     | 0           | 26         | 0       | 0     | 489  | 0     | 4     | 0    |
| Lane Group Flow (vph)         | 5          | 364   | 74                 | 1467  | 647         | 28         | 446     | 98    | 266  | 22    | 354   | 0    |
| Heavy Vehicles (%)            | 0%         | 4%    | 1%                 | 2%    | 6%          | 0%         | 3%      | 2%    | 4%   | 0%    | 0%    | 2%   |
| Turn Type                     | pm+pt      | NA    | Perm               | Prot  | NA          | Perm       | pm+pt   | NA    | Perm | pm+pt | NA    |      |
| Protected Phases              | 7          | 4     |                    | 3     | 8           |            | 5       | 2     |      | 1     | 6     |      |
| Permitted Phases              | 4          |       | 4                  |       |             | 8          | 2       |       | 2    | 6     |       |      |
| Actuated Green, G (s)         | 34.7       | 33.9  | 33.9               | 49.5  | 82.5        | 82.5       | 55.6    | 47.4  | 47.4 | 29.0  | 26.6  |      |
| Effective Green, g (s)        | 34.7       | 33.9  | 33.9               | 49.5  | 82.5        | 82.5       | 55.6    | 47.4  | 47.4 | 29.0  | 26.6  |      |
| Actuated g/C Ratio            | 0.22       | 0.22  | 0.22               | 0.31  | 0.52        | 0.52       | 0.35    | 0.30  | 0.30 | 0.18  | 0.17  |      |
| Clearance Time (s)            | 6.6        | 6.4   | 6.4                | 6.5   | 6.4         | 6.4        | 5.7     | 5.7   | 5.7  | 5.8   | 5.7   |      |
| Vehicle Extension (s)         | 2.0        | 4.0   | 4.0                | 3.0   | 4.0         | 4.0        | 3.0     | 3.0   | 3.0  | 3.0   | 3.0   |      |
| Lane Grp Cap (vph)            | 180        | 392   | 343                | 1021  | 938         | 845        | 305     | 560   | 467  | 249   | 312   |      |
| v/s Ratio Prot                | 0.00       | c0.20 |                    | c0.45 | 0.36        |            | c0.22   | 0.05  |      | 0.00  | 0.19  |      |
| v/s Ratio Perm                | 0.01       |       | 0.05               |       |             | 0.02       | c0.30   |       | 0.17 | 0.01  |       |      |
| v/c Ratio                     | 0.03       | 0.93  | 0.22               | 1.44  | 0.69        | 0.03       | 1.46    | 0.17  | 0.57 | 0.09  | 1.13  |      |
| Uniform Delay, d1             | 48.1       | 60.7  | 50.9               | 54.0  | 28.0        | 18.2       | 49.4    | 40.7  | 46.5 | 53.1  | 65.5  |      |
| Progression Factor            | 1.00       | 1.00  | 1.00               | 1.00  | 1.00        | 1.00       | 1.00    | 1.00  | 1.00 | 1.00  | 1.00  |      |
| Incremental Delay, d2         | 0.0        | 28.2  | 0.4                | 202.2 | 2.3         | 0.0        | 225.3   | 0.1   | 1.6  | 0.2   | 92.3  |      |
| Delay (s)                     | 48.1       | 88.9  | 51.3               | 256.3 | 30.3        | 18.2       | 274.6   | 40.8  | 48.1 | 53.3  | 157.8 |      |
| Level of Service              | D          | F     | D                  | F     | С           | В          | F       | D     | D    | D     | F     |      |
| Approach Delay (s)            |            | 72.6  |                    |       | 182.9       |            |         | 125.3 |      |       | 151.7 |      |
| Approach LOS                  |            | E     |                    |       | F           |            |         | F     |      |       | F     |      |
| Intersection Summary          |            |       |                    |       |             |            |         |       |      |       |       |      |
| HCM 2000 Control Delay        |            |       | 147.8              | Η     | CM 2000     | Level of   | Service |       | F    |       |       |      |
| HCM 2000 Volume to Capa       | city ratio |       | 1.35               |       |             |            |         |       |      |       |       |      |
| Actuated Cycle Length (s)     |            |       | 157.6              | S     | um of losi  | t time (s) |         |       | 24.5 |       |       |      |
| Intersection Capacity Utiliza | tion       |       | 118.9%             | IC    | CU Level of | of Service | 9       |       | Н    |       |       |      |
| Analysis Period (min)         |            |       | 15                 |       |             |            |         |       |      |       |       |      |
| c Critical Lane Group         |            |       |                    |       |             |            |         |       |      |       |       |      |

| Into | rco | At I A | n   |
|------|-----|--------|-----|
| ппе  | 150 | CHU    |     |
|      |     | •      | ••• |

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT            | NBR  | SBL  | SBT            | SBR  |
|------------------------|------|------|------|------|------|------|------|----------------|------|------|----------------|------|
| Lane Configurations    | 1    | •    | 1    | 1    | 1÷   |      |      | - <del>4</del> | 1    |      | - <del>4</del> | 1    |
| Traffic Vol, veh/h     | 0    | 1045 | 5    | 25   | 1990 | 5    | 5    | 0              | 95   | 5    | 5              | 5    |
| Future Vol, veh/h      | 0    | 1045 | 5    | 25   | 1990 | 5    | 5    | 0              | 95   | 5    | 5              | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0              | 0    | 0    | 0              | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop           | Stop | Stop | Stop           | Stop |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -              | None | -    | -              | None |
| Storage Length         | 150  | -    | 0    | 150  | -    | -    | -    | -              | 125  | -    | -              | 75   |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0              | -    | -    | 0              | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0              | -    | -    | 0              | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92             | 92   | 92   | 92             | 92   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2              | 2    | 2    | 2              | 2    |
| Mvmt Flow              | 0    | 1136 | 5    | 27   | 2163 | 5    | 5    | 0              | 103  | 5    | 5              | 5    |

| Major/Minor          | Major1 |   | Major2  |   | Minor1  |       | l     | Minor2 |       |       |  |
|----------------------|--------|---|---------|---|---------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 2168   | 0 | 0 1141  | 0 | 0 3361  | 3358  | 1136  | 3410   | 3361  | 2166  |  |
| Stage 1              | -      | - |         | - | - 1136  | 1136  | -     | 2220   | 2220  | -     |  |
| Stage 2              | -      | - |         | - | - 2225  | 2222  | -     | 1190   | 1141  | -     |  |
| Critical Hdwy        | 4.12   | - | - 4.12  | - | - 7.12  | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - 2.218 | - | - 3.518 | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 246    | - | - 612   | - | - ~5    | 8     | 246   | ~ 4    | 8     | 59    |  |
| Stage 1              | -      | - |         | - | - 246   | 277   | -     | 58     | 81    | -     |  |
| Stage 2              | -      | - |         | - | - 57    | 80    | -     | 229    | 275   | -     |  |
| Platoon blocked, %   |        | - | -       | - | -       |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 246    | - | - 612   | - | - ~2    | 8     | 246   | ~ 2    | 8     | 59    |  |
| Mov Cap-2 Maneuver   | -      | - |         | - | - ~2    | 8     | -     | ~ 2    | 8     | -     |  |
| Stage 1              | -      | - |         | - | - 246   | 277   | -     | 58     | 77    | -     |  |
| Stage 2              | -      | - |         | - | - 46    | 76    | -     | 133    | 275   | -     |  |
|                      |        |   |         |   |         |       |       |        |       |       |  |

| Approach             | EB | WB  | NB    | SB      |  |
|----------------------|----|-----|-------|---------|--|
| HCM Control Delay, s | 0  | 0.1 | 214.5 | \$ 2233 |  |
| HCM LOS              |    |     | F     | F       |  |

| Minor Lane/Major Mvmt | NBLn1 N   | VBLn2 | EBL | EBT | EBR | WBL   | WBT | WBR SB             | Ln1  | SBLn2 |  |  |
|-----------------------|-----------|-------|-----|-----|-----|-------|-----|--------------------|------|-------|--|--|
| Capacity (veh/h)      | 2         | 246   | 246 | -   | -   | 612   | -   | -                  | 3    | 59    |  |  |
| HCM Lane V/C Ratio    | 2.717     | 0.42  | -   | -   | -   | 0.044 | -   | - 3.               | 623  | 0.092 |  |  |
| HCM Control Delay (s) | \$ 3724.5 | 29.8  | 0   | -   | -   | 11.2  | -   | \$ 33 <sup>-</sup> | 13.4 | 72.1  |  |  |
| HCM Lane LOS          | F         | D     | А   | -   | -   | В     | -   | -                  | F    | F     |  |  |
| HCM 95th %tile Q(veh) | 1.7       | 2     | 0   | -   | -   | 0.1   | -   | -                  | 2.6  | 0.3   |  |  |
| Notes                 |           |       |     |     |     |       |     |                    |      |       |  |  |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All

\*: All major volume in platoon

|   |    |                   |           | ٠ |        |   |
|---|----|-------------------|-----------|---|--------|---|
| n | rc | $\mathbf{\Delta}$ | <u>et</u> | Т | $\sim$ | n |
|   | 13 | ⊂                 | ω         |   | U      |   |

| Int Delay, s/veh       | 1534.7 |      |      |      |      |      |
|------------------------|--------|------|------|------|------|------|
| Movement               | EBT    | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    | 1      | 1    | 1    | 1    | 1    | 1    |
| Traffic Vol, veh/h     | 1080   | 60   | 200  | 1945 | 70   | 170  |
| Future Vol, veh/h      | 1080   | 60   | 200  | 1945 | 70   | 170  |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free   | Free | Free | Free | Stop | Stop |
| RT Channelized         | -      | None | -    | None | -    | None |
| Storage Length         | -      | 250  | 300  | -    | 275  | 0    |
| Veh in Median Storag   | e,# 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0      | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 88     | 56   | 63   | 91   | 63   | 80   |
| Heavy Vehicles, %      | 3      | 0    | 1    | 3    | 0    | 1    |
| Mvmt Flow              | 1227   | 107  | 317  | 2137 | 111  | 213  |

| Major/Minor          | Major1   | Ν       | lajor2 | ľ       | Minor1      |        |                      |                                |  |
|----------------------|----------|---------|--------|---------|-------------|--------|----------------------|--------------------------------|--|
| Conflicting Flow All | 0        | 0       | 1334   | 0       | 3998        | 1227   |                      |                                |  |
| Stage 1              | -        | -       | -      | -       | 1227        | -      |                      |                                |  |
| Stage 2              | -        | -       | -      | -       | 2771        | -      |                      |                                |  |
| Critical Hdwy        | -        | -       | 4.11   | -       | 6.4         | 6.21   |                      |                                |  |
| Critical Hdwy Stg 1  | -        | -       | -      | -       | 5.4         | -      |                      |                                |  |
| Critical Hdwy Stg 2  | -        | -       | -      | -       | 5.4         | -      |                      |                                |  |
| Follow-up Hdwy       | -        | - :     | 2.209  | -       | 3.5         | 3.309  |                      |                                |  |
| Pot Cap-1 Maneuver   | -        | -       | 520    | -       | ~ 3         | 219    |                      |                                |  |
| Stage 1              | -        | -       | -      | -       | 280         | -      |                      |                                |  |
| Stage 2              | -        | -       | -      | -       | ~ 47        | -      |                      |                                |  |
| Platoon blocked, %   | -        | -       |        | -       |             |        |                      |                                |  |
| Mov Cap-1 Maneuver   | -        | -       | 520    | -       | ~ 1         | 219    |                      |                                |  |
| Mov Cap-2 Maneuver   | -        | -       | -      | -       | ~ 1         | -      |                      |                                |  |
| Stage 1              | -        | -       | -      | -       | ~ 109       | -      |                      |                                |  |
| Stage 2              | -        | -       | -      | -       | ~ 47        | -      |                      |                                |  |
|                      |          |         |        |         |             |        |                      |                                |  |
| Annroach             | FR       |         | W/R    |         | NR          |        |                      |                                |  |
| HCM Control Delay    | 0        |         | 2.0    | ¢ 10    | 1/83 3      |        |                      |                                |  |
| HCM LOS              | 0        |         | 2.9    | φια     | 7403.3<br>E |        |                      |                                |  |
|                      |          |         |        |         | Г           |        |                      |                                |  |
|                      |          |         |        |         |             |        |                      |                                |  |
| Minor Lane/Major Mvr | nt NE    | BLn1 N  | IBLn2  | EBT     | EBR         | WBL    | WBT                  |                                |  |
| Capacity (veh/h)     |          | 1       | 219    | -       | -           | 520    | -                    |                                |  |
| HCM Lane V/C Ratio   | 111      | .111    | 0.97   | -       | -           | 0.611  | -                    |                                |  |
| HCM Control Delay (s | ) \$ 565 | 54.5    | 99.7   | -       | -           | 22.2   | -                    |                                |  |
| HCM Lane LOS         |          | F       | F      | -       | -           | С      | -                    |                                |  |
| HCM 95th %tile Q(veh | ו)       | 16.3    | 8.5    | -       | -           | 4.1    | -                    |                                |  |
| Notes                |          |         |        |         |             |        |                      |                                |  |
| ~: Volume exceeds ca | pacity   | \$: Del | ay exc | eeds 30 | )0s         | +: Com | outation Not Defined | *: All major volume in platoon |  |

| Intersection           |        |      |      |      |      |      |      |      |      |      |      |      |
|------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|
| Int Delay, s/veh       | 0.9    |      |      |      |      |      |      |      |      |      |      |      |
| Movement               | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations    | 1      | 1    | 1    | 1    | 1    | 1    |      | ŧ    | 1    |      | ŧ    | 1    |
| Traffic Vol, veh/h     | 20     | 1185 | 45   | 185  | 2055 | 35   | 25   | 5    | 140  | 25   | 10   | 65   |
| Future Vol, veh/h      | 20     | 1185 | 45   | 185  | 2055 | 35   | 25   | 5    | 140  | 25   | 10   | 65   |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free   | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -      | -    | None | -    | -    | None | -    | -    | Stop | -    | -    | None |
| Storage Length         | 300    | -    | 300  | 325  | -    | 0    | -    | -    | 125  | -    | -    | 0    |
| Veh in Median Storage  | e, # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -      | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92     | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 22     | 1288 | 49   | 201  | 2234 | 38   | 27   | 5    | 152  | 27   | 11   | 71   |
|                        |        |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   | Major2  |   | Minor1  |       | ľ     | Minor2 |       |       |  |
|----------------------|--------|---|---------|---|---------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 2272   | 0 | 0 1337  | 0 | 0 4028  | 4006  | 1288  | 3995   | 4017  | 2234  |  |
| Stage 1              | -      | - |         | - | - 1332  | 1332  | -     | 2636   | 2636  | -     |  |
| Stage 2              | -      | - |         | - | - 2696  | 2674  | -     | 1359   | 1381  | -     |  |
| Critical Hdwy        | 4.12   | - | - 4.12  | - | - 7.12  | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - 2.218 | - | - 3.518 | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 224    | - | - 516   | - | - ~1    | ~ 3   | 200   | ~ 2    | ~ 3   | ~ 54  |  |
| Stage 1              | -      | - |         | - | - 190   | 223   | -     | 32     | 49    | -     |  |
| Stage 2              | -      | - |         | - | - 30    | 47    | -     | 183    | 211   | -     |  |
| Platoon blocked, %   |        | - | -       | - | -       |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 224    | - | - 516   | - |         | ~ 2   | 200   | -      | ~ 2   | ~ 54  |  |
| Mov Cap-2 Maneuver   | -      | - |         | - |         | ~ 2   | -     | -      | ~ 2   | -     |  |
| Stage 1              | -      | - |         | - | - 171   | 201   | -     | 29     | 30    | -     |  |
| Stage 2              | -      | - |         | - |         | 29    | -     | 38     | 190   | -     |  |
|                      |        |   |         |   |         |       |       |        |       |       |  |
| Approach             | EB     |   | WB      |   | NB      |       |       | SB     |       |       |  |

HCM Control Delay, s 0.4 1.3 HCM LOS - -

| Minor Lane/Major Mymt | NBI n1 NBI n2 | FBI       | FBT | FBR | WBI       | WBT | WBR SF | BLn1 SBLn2 |
|-----------------------|---------------|-----------|-----|-----|-----------|-----|--------|------------|
| Canacity (veh/h)      | - 200         | 224       |     |     | 516       | -   | -      | - 54       |
| HCM Lane V/C Ratio    | - 0.761       | 0 097     | _   | _   | 0.39      | _   | -      | - 1308     |
| HCM Control Delay (s) | - 64.4        | 22.8      | _   | _   | 16.4      | _   | _      | - \$ 351   |
| HCM Lane LOS          | - F           | 22.0<br>C | -   |     | го.ч<br>С | _   | _      | - F        |
| HCM 95th %tile Q(veh) | - 51          | 0.3       | -   | -   | 18        | -   | -      | - 63       |
|                       | 0.1           | 0.0       |     |     |           |     |        | 0.0        |
| Notes                 |               |           |     |     |           |     |        |            |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All major

#### HCM 6th Signalized Intersection Summary 13: US 287 & SH 66

| 1 | 0/ | 0 | 7 | 12 | 0 | 1 | 9 |
|---|----|---|---|----|---|---|---|
|---|----|---|---|----|---|---|---|

|                              | ۶     | -+    | 7     | •     |       | •     | 1     | Ť     | 1    | 1    | ŧ        | ~    |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|----------|------|
| Movement                     | EBL   | EBT   | EBR   | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | 55    | **    | 1     | 55    | **    | 1     | 5     | **    | 1    | 5    | <b>^</b> | 7    |
| Traffic Volume (veh/h)       | 580   | 535   | 235   | 325   | 800   | 135   | 335   | 400   | 220  | 185  | 900      | 1140 |
| Future Volume (veh/h)        | 580   | 535   | 235   | 325   | 800   | 135   | 335   | 400   | 220  | 185  | 900      | 1140 |
| Initial Q (Qb), veh          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00  |       | 1.00  | 1.00  |       | 1.00  | 1.00  |       | 1.00 | 1.00 |          | 1.00 |
| Parking Bus, Adj             | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |       | No    |       |       | No    |       |       | No    |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1595  | 1657  | 1643  | 1569  | 1643  | 1643  | 1657  | 1630  | 1670 | 1670 | 1697     | 1683 |
| Adj Flow Rate, veh/h         | 630   | 582   | 0     | 353   | 870   | 0     | 364   | 435   | 0    | 201  | 978      | 0    |
| Peak Hour Factor             | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92 | 0.92 | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2     | 4     | 5     | 4     | 5     | 5     | 4     | 6     | 3    | 3    | 1        | 2    |
| Cap, veh/h                   | 562   | 875   |       | 505   | 816   |       | 280   | 916   |      | 371  | 821      |      |
| Arrive On Green              | 0.19  | 0.28  | 0.00  | 0.17  | 0.26  | 0.00  | 0.15  | 0.30  | 0.00 | 0.11 | 0.25     | 0.00 |
| Sat Flow, veh/h              | 2946  | 3148  | 1393  | 2900  | 3122  | 1393  | 1578  | 3097  | 1415 | 1590 | 3224     | 1427 |
| Grp Volume(v), veh/h         | 630   | 582   | 0     | 353   | 870   | 0     | 364   | 435   | 0    | 201  | 978      | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1473  | 1574  | 1393  | 1450  | 1561  | 1393  | 1578  | 1548  | 1415 | 1590 | 1612     | 1427 |
| Q Serve(g_s), s              | 28.6  | 24.6  | 0.0   | 17.2  | 39.2  | 0.0   | 22.1  | 17.3  | 0.0  | 13.9 | 38.2     | 0.0  |
| Cycle Q Clear(g_c), s        | 28.6  | 24.6  | 0.0   | 17.2  | 39.2  | 0.0   | 22.1  | 17.3  | 0.0  | 13.9 | 38.2     | 0.0  |
| Prop In Lane                 | 1.00  |       | 1.00  | 1.00  |       | 1.00  | 1.00  |       | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 562   | 875   |       | 505   | 816   |       | 280   | 916   |      | 371  | 821      |      |
| V/C Ratio(X)                 | 1.12  | 0.67  |       | 0.70  | 1.07  |       | 1.30  | 0.48  |      | 0.54 | 1.19     |      |
| Avail Cap(c_a), veh/h        | 562   | 875   |       | 505   | 816   |       | 280   | 916   |      | 405  | 821      |      |
| HCM Platoon Ratio            | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00  | 1.00  | 0.00  | 1.00  | 1.00  | 0.00  | 1.00  | 1.00  | 0.00 | 1.00 | 1.00     | 0.00 |
| Uniform Delay (d), s/veh     | 60.7  | 48.0  | 0.0   | 58.3  | 55.4  | 0.0   | 47.0  | 43.3  | 0.0  | 35.6 | 55.9     | 0.0  |
| Incr Delay (d2), s/veh       | 75.9  | 4.0   | 0.0   | 3.6   | 50.7  | 0.0   | 157.8 | 0.4   | 0.0  | 0.5  | 98.1     | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 16.2  | 9.8   | 0.0   | 6.4   | 20.5  | 0.0   | 19.4  | 6.6   | 0.0  | 5.3  | 26.3     | 0.0  |
| Unsig. Movement Delay, s/veh | I     |       |       |       |       |       |       |       |      |      |          |      |
| LnGrp Delay(d),s/veh         | 136.6 | 51.9  | 0.0   | 61.9  | 106.1 | 0.0   | 204.9 | 43.7  | 0.0  | 36.1 | 154.0    | 0.0  |
| LnGrp LOS                    | F     | D     |       | E     | F     |       | F     | D     |      | D    | F        |      |
| Approach Vol, veh/h          |       | 1212  | А     |       | 1223  | А     |       | 799   | А    |      | 1179     | A    |
| Approach Delay, s/veh        |       | 96.0  |       |       | 93.3  |       |       | 117.1 |      |      | 133.9    |      |
| Approach LOS                 |       | F     |       |       | F     |       |       | F     |      |      | F        |      |
| Timer - Assigned Phs         | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 21.8  | 50.2  | 33.0  | 48.5  | 28.0  | 44.0  | 35.5  | 46.0  |      |      |          |      |
| Change Period (Y+Rc), s      | 5.9   | * 5.8 | * 6.8 | * 6.8 | 5.9   | * 5.8 | * 6.8 | * 6.8 |      |      |          |      |
| Max Green Setting (Gmax), s  | 19.2  | * 41  | * 23  | * 42  | 22.1  | * 38  | * 25  | * 39  |      |      |          |      |
| Max Q Clear Time (g_c+I1), s | 15.9  | 19.3  | 19.2  | 26.6  | 24.1  | 40.2  | 30.6  | 41.2  |      |      |          |      |
| Green Ext Time (p_c), s      | 0.1   | 2.5   | 0.2   | 1.9   | 0.0   | 0.0   | 0.0   | 0.0   |      |      |          |      |
| Intersection Summary         |       |       |       |       |       |       |       |       |      |      |          |      |
| HCM 6th Ctrl Delay           |       |       | 109.2 |       |       |       |       |       |      |      |          |      |
| HCM 6th LOS                  |       |       | F     |       |       |       |       |       |      |      |          |      |

#### Notes

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

|                              | ▲    |      | -    | •     | 1    | ~    |     |       |  |  |
|------------------------------|------|------|------|-------|------|------|-----|-------|--|--|
| Movement                     | EBL  | EBT  | WBT  | WBR   | SBL  | SBR  |     |       |  |  |
| Lane Configurations          | 5    | **   | **   | 1     | 5    | 1    |     |       |  |  |
| Traffic Volume (veh/h)       | 20   | 920  | 1250 | 35    | 15   | 10   |     |       |  |  |
| Future Volume (veh/h)        | 20   | 920  | 1250 | 35    | 15   | 10   |     |       |  |  |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0     | 0    | 0    |     |       |  |  |
| Ped-Bike Adj(A_pbT)          | 1.00 |      |      | 1.00  | 1.00 | 1.00 |     |       |  |  |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 |     |       |  |  |
| Work Zone On Approach        |      | No   | No   |       | No   |      |     |       |  |  |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870 | 1870  | 1870 | 1870 |     |       |  |  |
| Adj Flow Rate, veh/h         | 22   | 1000 | 1359 | 38    | 16   | 11   |     |       |  |  |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92 | 0.92  | 0.92 | 0.92 |     |       |  |  |
| Percent Heavy Veh, %         | 2    | 2    | 2    | 2     | 2    | 2    |     |       |  |  |
| Cap, veh/h                   | 369  | 3215 | 3023 | 1348  | 32   | 29   |     |       |  |  |
| Arrive On Green              | 0.02 | 0.90 | 0.85 | 0.85  | 0.02 | 0.02 |     |       |  |  |
| Sat Flow, veh/h              | 1781 | 3647 | 3647 | 1585  | 1781 | 1585 |     |       |  |  |
| Grp Volume(v), veh/h         | 22   | 1000 | 1359 | 38    | 16   | 11   |     |       |  |  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777 | 1777 | 1585  | 1781 | 1585 |     |       |  |  |
| Q Serve(g_s), s              | 0.2  | 5.6  | 13.9 | 0.6   | 1.3  | 1.0  |     |       |  |  |
| Cycle Q Clear(g_c), s        | 0.2  | 5.6  | 13.9 | 0.6   | 1.3  | 1.0  |     |       |  |  |
| Prop In Lane                 | 1.00 |      |      | 1.00  | 1.00 | 1.00 |     |       |  |  |
| Lane Grp Cap(c), veh/h       | 369  | 3215 | 3023 | 1348  | 32   | 29   |     |       |  |  |
| V/C Ratio(X)                 | 0.06 | 0.31 | 0.45 | 0.03  | 0.50 | 0.39 |     |       |  |  |
| Avail Cap(c_a), veh/h        | 416  | 3215 | 3023 | 1348  | 306  | 273  |     |       |  |  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 |     |       |  |  |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 |     |       |  |  |
| Uniform Delay (d), s/veh     | 2.0  | 0.9  | 2.7  | 1.7   | 73.0 | 72.8 |     |       |  |  |
| Incr Delay (d2), s/veh       | 0.1  | 0.3  | 0.5  | 0.0   | 8.6  | 6.2  |     |       |  |  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  |     |       |  |  |
| %ile BackOfQ(50%),veh/In     | 0.0  | 0.1  | 2.7  | 0.1   | 0.7  | 1.0  |     |       |  |  |
| Unsig. Movement Delay, s/veh |      |      |      |       |      |      |     |       |  |  |
| LnGrp Delay(d),s/veh         | 2.1  | 1.2  | 3.2  | 1.8   | 81.6 | 79.0 |     |       |  |  |
| LnGrp LOS                    | A    | A    | A    | A     | F    | E    |     |       |  |  |
| Approach Vol, veh/h          |      | 1022 | 1397 |       | 27   |      |     |       |  |  |
| Approach Delay, s/veh        |      | 1.2  | 3.2  |       | 80.6 |      |     |       |  |  |
| Approach LOS                 |      | А    | А    |       | F    |      |     |       |  |  |
| Timer - Assigned Phs         |      |      |      | 4     |      | 6    | 7   | 8     |  |  |
| Phs Duration (G+Y+Rc), s     |      |      |      | 142.1 |      | 7.9  | 8.1 | 134.0 |  |  |
| Change Period (Y+Rc), s      |      |      |      | 6.4   |      | 5.2  | 5.7 | 6.4   |  |  |
| Max Green Setting (Gmax), s  |      |      |      | 112.6 |      | 25.8 | 6.3 | 100.6 |  |  |
| Max Q Clear Time (g_c+I1), s |      |      |      | 7.6   |      | 3.3  | 2.2 | 15.9  |  |  |
| Green Ext Time (p_c), s      |      |      |      | 4.3   |      | 0.0  | 0.0 | 6.8   |  |  |
| Intersection Summary         |      |      |      |       |      |      |     |       |  |  |
| HCM 6th Ctrl Delay           |      |      | 3.2  |       |      |      |     |       |  |  |
| HCM 6th LOS                  |      |      | А    |       |      |      |     |       |  |  |

| п |  |   |   |     |    |   |   |   |
|---|--|---|---|-----|----|---|---|---|
|   |  | ^ | 1 | 0   | ^  | 0 | 0 | ł |
|   |  | _ |   | × . | -  |   |   |   |
| L |  | v |   | J   | S. | v | v |   |
|   |  |   |   |     |    |   |   |   |

Int Delay, s/veh

| Lane Configurations $\eta$ $\tau$ $r$ $\eta$ $\tau$ $r$ $\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traffic Vol, veh/h 10 910 15 65 1230 25 20 5 65 55 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Future Vol, veh/h 10 910 15 65 1230 25 20 5 65 55 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sign Control Free Free Free Free Free Stop Stop Stop Stop Stop S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RT Channelized None No |
| Storage Length 325 - 275 675 - 400 150 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Veh in Median Storage, # - 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Grade, % - 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heavy Vehicles, % 0 3 17 9 5 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mvmt Flow 11 989 16 71 1337 27 22 5 71 60 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Major/Minor          | Major1 |   | Major2  |   | Ν | 1inor1 |      | Ν   | /linor2 |      |      |  |
|----------------------|--------|---|---------|---|---|--------|------|-----|---------|------|------|--|
| Conflicting Flow All | 1364   | 0 | 0 1005  | 0 | 0 | 2525   | 2517 | 989 | 2536    | 2506 | 1337 |  |
| Stage 1              | -      | - |         | - | - | 1011   | 1011 | -   | 1479    | 1479 | -    |  |
| Stage 2              | -      | - |         | - | - | 1514   | 1506 | -   | 1057    | 1027 | -    |  |
| Critical Hdwy        | 4.1    | - | - 4.19  | - | - | 7.1    | 6.5  | 6.2 | 7.1     | 6.5  | 6.2  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - | 6.1    | 5.5  | -   | 6.1     | 5.5  | -    |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - | 6.1    | 5.5  | -   | 6.1     | 5.5  | -    |  |
| Follow-up Hdwy       | 2.2    | - | - 2.281 | - | - | 3.5    | 4    | 3.3 | 3.5     | 4    | 3.3  |  |
| Pot Cap-1 Maneuver   | 510    | - | - 662   | - | - | ~ 19   | 28   | 302 | ~ 19    | 29   | 189  |  |
| Stage 1              | -      | - |         | - | - | 291    | 320  | -   | 158     | 191  | -    |  |
| Stage 2              | -      | - |         | - | - | 151    | 186  | -   | 275     | 314  | -    |  |
| Platoon blocked, %   |        | - | -       | - | - |        |      |     |         |      |      |  |
| Mov Cap-1 Maneuver   | 510    | - | - 662   | - | - | ~ 11   | 24   | 302 | ~ 11    | 25   | 189  |  |
| Mov Cap-2 Maneuver   | · _    | - |         | - | - | ~ 11   | 24   | -   | ~ 11    | 25   | -    |  |
| Stage 1              | -      | - |         | - | - | 285    | 313  | -   | 155     | 171  | -    |  |
| Stage 2              | -      | - |         | - | - | 104    | 166  | -   | 203     | 307  | -    |  |
|                      |        |   |         |   |   |        |      |     |         |      |      |  |

| Approach             | EB  | WB  | NB       | SB      |  |
|----------------------|-----|-----|----------|---------|--|
| HCM Control Delay, s | 0.1 | 0.5 | \$ 351.3 | \$ 1664 |  |
| HCM LOS              |     |     | F        | F       |  |

| Minor Lane/Major Mvmt | NBLn1     | NBLn2 | EBL   | EBT | EBR | WBL   | WBT | WBR SE | 3Ln1 | SBLn2 |
|-----------------------|-----------|-------|-------|-----|-----|-------|-----|--------|------|-------|
| Capacity (veh/h)      | 12        | 302   | 510   | -   | -   | 662   | -   | -      | 12   | 189   |
| HCM Lane V/C Ratio    | 2.264     | 0.234 | 0.021 | -   | -   | 0.107 | -   | - 5    | .435 | 0.201 |
| HCM Control Delay (s) | \$ 1211.3 | 20.5  | 12.2  | -   | -   | 11.1  | -   | \$-26  | 17.9 | 28.8  |
| HCM Lane LOS          | F         | С     | В     | -   | -   | В     | -   | -      | F    | D     |
| HCM 95th %tile Q(veh) | 4.3       | 0.9   | 0.1   | -   | -   | 0.4   | -   | -      | 9.3  | 0.7   |
| Notes                 |           |       |       |     |     |       |     |        |      |       |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: Al

\*: All major volume in platoon

## HCM Signalized Intersection Capacity Analysis 16: Pace St & SH 66

|                               | ٨          |          | 7      | 4     | +          | •          | 1       | Ť    | 1    | 1    | Ļ     | ~    |
|-------------------------------|------------|----------|--------|-------|------------|------------|---------|------|------|------|-------|------|
| Movement                      | EBL        | EBT      | EBR    | WBL   | WBT        | WBR        | NBL     | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           | 1          | <b>†</b> | 1      | 1     | <b>†</b>   |            | 1       | et.  |      |      | \$    |      |
| Traffic Volume (vph)          | 5          | 800      | 230    | 270   | 1075       | 5          | 245     | 5    | 305  | 5    | 5     | 5    |
| Future Volume (vph)           | 5          | 800      | 230    | 270   | 1075       | 5          | 245     | 5    | 305  | 5    | 5     | 5    |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900   | 1900  | 1900       | 1900       | 1900    | 1900 | 1900 | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 6.8        | 6.8      | 6.8    | 6.8   | 6.8        |            | 5.7     | 5.7  |      |      | 4.5   |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00 |      |      | 1.00  |      |
| Frt                           | 1.00       | 1.00     | 0.85   | 1.00  | 1.00       |            | 1.00    | 0.85 |      |      | 0.95  |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00 |      |      | 0.98  |      |
| Satd. Flow (prot)             | 1770       | 1845     | 1599   | 1752  | 1792       |            | 1770    | 1603 |      |      | 1750  |      |
| Flt Permitted                 | 0.06       | 1.00     | 1.00   | 0.06  | 1.00       |            | 0.95    | 1.00 |      |      | 0.89  |      |
| Satd. Flow (perm)             | 110        | 1845     | 1599   | 116   | 1792       |            | 1770    | 1603 |      |      | 1581  |      |
| Peak-hour factor, PHF         | 0.92       | 0.89     | 0.78   | 0.90  | 0.90       | 0.92       | 0.81    | 0.92 | 0.86 | 0.92 | 0.92  | 0.92 |
| Adj. Flow (vph)               | 5          | 899      | 295    | 300   | 1194       | 5          | 302     | 5    | 355  | 5    | 5     | 5    |
| RTOR Reduction (vph)          | 0          | 0        | 136    | 0     | 0          | 0          | 0       | 294  | 0    | 0    | 5     | 0    |
| Lane Group Flow (vph)         | 5          | 899      | 159    | 300   | 1199       | 0          | 302     | 66   | 0    | 0    | 10    | 0    |
| Heavy Vehicles (%)            | 2%         | 3%       | 1%     | 3%    | 6%         | 2%         | 2%      | 2%   | 1%   | 2%   | 2%    | 2%   |
| Turn Type                     | Perm       | NA       | Perm   | pm+pt | NA         |            | Split   | NA   |      | Perm | NA    |      |
| Protected Phases              |            | 4        |        | 3     | 8          |            | 2       | 2    |      |      | 6     |      |
| Permitted Phases              | 4          |          | 4      | 8     |            |            |         |      |      | 6    |       |      |
| Actuated Green, G (s)         | 67.8       | 67.8     | 67.8   | 91.9  | 91.9       |            | 23.3    | 23.3 |      |      | 3.0   |      |
| Effective Green, g (s)        | 67.8       | 67.8     | 67.8   | 91.9  | 91.9       |            | 23.3    | 23.3 |      |      | 3.0   |      |
| Actuated g/C Ratio            | 0.50       | 0.50     | 0.50   | 0.68  | 0.68       |            | 0.17    | 0.17 |      |      | 0.02  |      |
| Clearance Time (s)            | 6.8        | 6.8      | 6.8    | 6.8   | 6.8        |            | 5.7     | 5.7  |      |      | 4.5   |      |
| Vehicle Extension (s)         | 2.0        | 2.0      | 2.0    | 2.0   | 2.0        |            | 2.5     | 2.5  |      |      | 3.0   |      |
| Lane Grp Cap (vph)            | 55         | 925      | 801    | 288   | 1218       |            | 305     | 276  |      |      | 35    |      |
| v/s Ratio Prot                |            | 0.49     |        | 0.13  | c0.67      |            | c0.17   | 0.04 |      |      |       |      |
| v/s Ratio Perm                | 0.05       |          | 0.10   | c0.57 |            |            |         |      |      |      | c0.01 |      |
| v/c Ratio                     | 0.09       | 0.97     | 0.20   | 1.04  | 0.98       |            | 0.99    | 0.24 |      |      | 0.29  |      |
| Uniform Delay, d1             | 17.6       | 32.8     | 18.7   | 50.9  | 21.0       |            | 55.8    | 48.3 |      |      | 65.1  |      |
| Progression Factor            | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00 |      |      | 1.00  |      |
| Incremental Delay, d2         | 3.2        | 23.5     | 0.6    | 64.3  | 22.3       |            | 48.7    | 0.3  |      |      | 4.5   |      |
| Delay (s)                     | 20.8       | 56.3     | 19.2   | 115.2 | 43.3       |            | 104.5   | 48.6 |      |      | 69.6  |      |
| Level of Service              | С          | E        | В      | F     | D          |            | F       | D    |      |      | E     |      |
| Approach Delay (s)            |            | 47.0     |        |       | 57.7       |            |         | 74.1 |      |      | 69.6  |      |
| Approach LOS                  |            | D        |        |       | E          |            |         | Е    |      |      | E     |      |
| Intersection Summary          |            |          |        |       |            |            |         |      |      |      |       |      |
| HCM 2000 Control Delay        |            |          | 57.2   | H     | CM 2000    | Level of S | Service |      | E    |      |       |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.06   |       |            |            |         |      |      |      |       |      |
| Actuated Cycle Length (s)     |            |          | 135.2  | S     | um of lost | t time (s) |         |      | 23.8 |      |       |      |
| Intersection Capacity Utiliza | tion       |          | 109.9% | IC    | CU Level o | of Service |         |      | Н    |      |       |      |
| Analysis Period (min)         |            |          | 15     |       |            |            |         |      |      |      |       |      |
| c Critical Lane Group         |            |          |        |       |            |            |         |      |      |      |       |      |

## HCM Signalized Intersection Capacity Analysis 18: County Line Rd/CR 1 & SH 66

| 1 | 0/ | 0 | 7/ | 2 | 0 | 19 |  |
|---|----|---|----|---|---|----|--|
|---|----|---|----|---|---|----|--|

|                               | ٨          | -    | 7      | •     | +          | 4          | 1       | Ť     | ۲    | \$   | ţ    | ~    |
|-------------------------------|------------|------|--------|-------|------------|------------|---------|-------|------|------|------|------|
| Movement                      | EBL        | EBT  | EBR    | WBL   | WBT        | WBR        | NBL     | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations           | 5          | •    | 1      | 5     | 1.         |            | 5       | •     | 1    | 5    | •    | 1    |
| Traffic Volume (vph)          | 85         | 520  | 500    | 720   | 760        | 20         | 405     | 80    | 590  | 55   | 275  | 175  |
| Future Volume (vph)           | 85         | 520  | 500    | 720   | 760        | 20         | 405     | 80    | 590  | 55   | 275  | 175  |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900   | 1800  | 1900       | 1900       | 1900    | 1900  | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 4.5        | 7.0  | 7.0    | 4.5   | 7.0        |            | 5.0     | 5.0   | 4.0  | 5.0  | 5.0  | 4.0  |
| Lane Util. Factor             | 1.00       | 1.00 | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt                           | 1.00       | 1.00 | 0.85   | 1.00  | 1.00       |            | 1.00    | 1.00  | 0.85 | 1.00 | 1.00 | 0.85 |
| Flt Protected                 | 0.95       | 1.00 | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00  | 1.00 | 0.95 | 1.00 | 1.00 |
| Satd. Flow (prot)             | 1770       | 1845 | 1583   | 1660  | 1769       |            | 1504    | 1863  | 1583 | 1671 | 1863 | 1615 |
| Flt Permitted                 | 0.17       | 1.00 | 1.00   | 0.14  | 1.00       |            | 0.44    | 1.00  | 1.00 | 0.70 | 1.00 | 1.00 |
| Satd. Flow (perm)             | 312        | 1845 | 1583   | 246   | 1769       |            | 690     | 1863  | 1583 | 1232 | 1863 | 1615 |
| Peak-hour factor, PHF         | 0.92       | 0.92 | 0.92   | 0.92  | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)               | 92         | 565  | 543    | 783   | 826        | 22         | 440     | 87    | 641  | 60   | 299  | 190  |
| RTOR Reduction (vph)          | 0          | 0    | 157    | 0     | 1          | 0          | 0       | 0     | 0    | 0    | 0    | 0    |
| Lane Group Flow (vph)         | 92         | 565  | 386    | 783   | 847        | 0          | 440     | 87    | 641  | 60   | 299  | 190  |
| Heavy Vehicles (%)            | 2%         | 3%   | 2%     | 3%    | 6%         | 43%        | 20%     | 2%    | 2%   | 8%   | 2%   | 0%   |
| Turn Type                     | pm+pt      | NA   | Perm   | pm+pt | NA         |            | Perm    | NA    | Free | Perm | NA   | Free |
| Protected Phases              | 5          | 2    |        | 1     | 6          |            |         | 8     |      |      | 4    |      |
| Permitted Phases              | 2          |      | 2      | 6     |            |            | 8       |       | Free | 4    |      | Free |
| Actuated Green, G (s)         | 29.5       | 23.9 | 23.9   | 43.9  | 33.8       |            | 25.0    | 25.0  | 80.9 | 25.0 | 25.0 | 80.9 |
| Effective Green, g (s)        | 29.5       | 23.9 | 23.9   | 43.9  | 33.8       |            | 25.0    | 25.0  | 80.9 | 25.0 | 25.0 | 80.9 |
| Actuated g/C Ratio            | 0.36       | 0.30 | 0.30   | 0.54  | 0.42       |            | 0.31    | 0.31  | 1.00 | 0.31 | 0.31 | 1.00 |
| Clearance Time (s)            | 4.5        | 7.0  | 7.0    | 4.5   | 7.0        |            | 5.0     | 5.0   |      | 5.0  | 5.0  |      |
| Vehicle Extension (s)         | 2.5        | 5.0  | 5.0    | 2.5   | 5.0        |            | 3.0     | 3.0   |      | 3.0  | 3.0  |      |
| Lane Grp Cap (vph)            | 214        | 545  | 467    | 404   | 739        |            | 213     | 575   | 1583 | 380  | 575  | 1615 |
| v/s Ratio Prot                | 0.03       | 0.31 |        | c0.37 | 0.48       |            |         | 0.05  |      |      | 0.16 |      |
| v/s Ratio Perm                | 0.13       |      | 0.24   | c0.68 |            |            | c0.64   |       | 0.40 | 0.05 |      | 0.12 |
| v/c Ratio                     | 0.43       | 1.04 | 0.83   | 1.94  | 1.15       |            | 2.07    | 0.15  | 0.40 | 0.16 | 0.52 | 0.12 |
| Uniform Delay, d1             | 19.8       | 28.5 | 26.6   | 22.6  | 23.6       |            | 28.0    | 20.3  | 0.0  | 20.3 | 23.0 | 0.0  |
| Progression Factor            | 1.00       | 1.00 | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2         | 1.0        | 48.4 | 12.7   | 431.2 | 81.1       |            | 495.4   | 0.1   | 0.8  | 0.2  | 0.9  | 0.1  |
| Delay (s)                     | 20.8       | 76.9 | 39.2   | 453.8 | 104.7      |            | 523.4   | 20.4  | 0.8  | 20.5 | 23.9 | 0.1  |
| Level of Service              | С          | E    | D      | F     | F          |            | F       | С     | А    | С    | С    | A    |
| Approach Delay (s)            |            | 55.5 |        |       | 272.3      |            |         | 199.1 |      |      | 15.3 |      |
| Approach LOS                  |            | E    |        |       | F          |            |         | F     |      |      | В    |      |
| Intersection Summary          |            |      |        |       |            |            |         |       |      |      |      |      |
| HCM 2000 Control Delay        |            |      | 165.3  | Н     | CM 2000    | Level of S | Service |       | F    |      |      |      |
| HCM 2000 Volume to Capa       | city ratio |      | 2.07   |       |            |            |         |       |      |      |      |      |
| Actuated Cycle Length (s)     |            |      | 80.9   | S     | um of lost | t time (s) |         |       | 16.5 |      |      |      |
| Intersection Capacity Utiliza | ition      |      | 124.3% | IC    | CU Level o | of Service |         |       | Н    |      |      |      |
| Analysis Period (min)         |            |      | 15     |       |            |            |         |       |      |      |      |      |
| c Critical Lane Group         |            |      |        |       |            |            |         |       |      |      |      |      |

| 1.1                    |      |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Intersection           |      |      |      |      |      |      |
| Int Delay, s/veh       | 0.7  |      |      |      |      |      |
|                        |      |      |      |      |      |      |
| Movement               | EBT  | EBR  | WBL  | WBI  | NBL  | NBR  |
| Lane Configurations    | 1.   |      |      | 4    | Y    |      |
| Traffic Vol, veh/h     | 1160 | 5    | 5    | 1500 | 5    | 5    |
| Future Vol, veh/h      | 1160 | 5    | 5    | 1500 | 5    | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage  | e,#0 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles. %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow              | 1261 | 5    | 5    | 1630 | 5    | 5    |
|                        |      | •    | •    |      | •    | •    |

| Major/Minor          | Major1 | Major2  | Minor1  |       |  |
|----------------------|--------|---------|---------|-------|--|
| Conflicting Flow All | 0      | 0 1266  | 0 2904  | 1264  |  |
| Stage 1              | -      |         | - 1264  | -     |  |
| Stage 2              | -      |         | - 1640  | -     |  |
| Critical Hdwy        | -      | - 4.12  | - 6.42  | 6.22  |  |
| Critical Hdwy Stg 1  | -      |         | - 5.42  | -     |  |
| Critical Hdwy Stg 2  | -      |         | - 5.42  | -     |  |
| Follow-up Hdwy       | -      | - 2.218 | - 3.518 | 3.318 |  |
| Pot Cap-1 Maneuver   | -      | - 549   | - 17    | 207   |  |
| Stage 1              | -      |         | - 266   | -     |  |
| Stage 2              | -      |         | - 174   | -     |  |
| Platoon blocked, %   | -      | -       | -       |       |  |
| Mov Cap-1 Maneuve    | r -    | - 549   | - 15    | 207   |  |
| Mov Cap-2 Maneuve    | r -    |         | - 15    | -     |  |
| Stage 1              | -      |         | - 240   | -     |  |
| Stage 2              | -      |         | - 174   | -     |  |
|                      |        |         |         |       |  |

| Approach             | EB | WB | NB    |
|----------------------|----|----|-------|
| HCM Control Delay, s | 0  | 0  | 199.4 |
| HCM LOS              |    |    | F     |

| Minor Lane/Major Mvmt | NBLn1 | EBT | EBR | WBL  | WBT |  |
|-----------------------|-------|-----|-----|------|-----|--|
| Capacity (veh/h)      | 28    | -   | -   | 549  | -   |  |
| HCM Lane V/C Ratio    | 0.388 | -   | -   | 0.01 | -   |  |
| HCM Control Delay (s) | 199.4 | -   | -   | 11.6 | 0   |  |
| HCM Lane LOS          | F     | -   | -   | В    | А   |  |
| HCM 95th %tile Q(veh) | 1.2   | -   | -   | 0    | -   |  |

SBR

70

SBT **4** 25

SBL

65

| Intersection        |        |      |     |     |      |     |     |     |     |
|---------------------|--------|------|-----|-----|------|-----|-----|-----|-----|
| Int Delay, s/veh    | 2359.5 |      |     |     |      |     |     |     |     |
| Movement            | EBL    | EBT  | EBR | WBL | WBT  | WBR | NBL | NBT | NBR |
| Lane Configurations |        | \$   |     |     | \$   |     |     | \$  |     |
| Traffic Vol, veh/h  | 140    | 1020 | 5   | 10  | 1410 | 85  | 20  | 10  | 5   |
| Future Vol, veh/h   | 140    | 1020 | 5   | 10  | 1410 | 85  | 20  | 10  | 5   |

| Future Vol, veh/h      | 140  | 1020 | 5    | 10   | 1410 | 85   | 20   | 10   | 5    | 65   | 25   | 70   |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 0    | 3    | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 152  | 1109 | 5    | 11   | 1533 | 92   | 22   | 11   | 5    | 71   | 27   | 76   |  |

| Major/Minor          | Major1 |   | Ν | lajor2 |   | ľ | Minor1 |      | I    | Minor2 |      |      |  |
|----------------------|--------|---|---|--------|---|---|--------|------|------|--------|------|------|--|
| Conflicting Flow All | 1625   | 0 | 0 | 1114   | 0 | 0 | 3069   | 3063 | 1112 | 3025   | 3019 | 1579 |  |
| Stage 1              | -      | - | - | -      | - | - | 1416   | 1416 | -    | 1601   | 1601 | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 1653   | 1647 | -    | 1424   | 1418 | -    |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5  | 6.2  | 7.1    | 6.5  | 6.2  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5  | -    | 6.1    | 5.5  | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5  | -    | 6.1    | 5.5  | -    |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4    | 3.3  | 3.5    | 4    | 3.3  |  |
| Pot Cap-1 Maneuver   | 406    | - | - | 634    | - | - | ~ 8    | 13   | 256  | ~ 8    | ~ 13 | 136  |  |
| Stage 1              | -      | - | - | -      | - | - | 172    | 205  | -    | 135    | 167  | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 126    | 158  | -    | 170    | 205  | -    |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |      |      |        |      |      |  |
| Mov Cap-1 Maneuver   | 406    | - | - | 634    | - | - | 0      | 0    | 256  | ~ 1    | 0    | 136  |  |
| Mov Cap-2 Maneuver   |        | - | - | -      | - | - | 0      | 0    | -    | ~ 1    | 0    | -    |  |
| Stage 1              | -      | - | - | -      | - | - | ~ 3    | ~ 3  | -    | ~ 2    | 134  | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 35     | 126  | -    | -      | ~ 3  | -    |  |
|                      |        |   |   |        |   |   |        |      |      |        |      |      |  |

| Approach             | EB  | WB  | NB   | SB         |  |
|----------------------|-----|-----|------|------------|--|
| HCM Control Delay, s | 2.3 | 0.1 | 21.5 | \$ 42227.9 |  |
| HCM LOS              |     |     | С    | F          |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | BLn1  |  |  |  |  |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|-------|--|--|--|--|
| Capacity (veh/h)      | 256   | 406   | -   | -   | 634   | -   | -     | 2     |  |  |  |  |
| HCM Lane V/C Ratio    | 0.149 | 0.375 | -   | -   | 0.017 | -   | - 8   | 6.957 |  |  |  |  |
| HCM Control Delay (s) | 21.5  | 19.1  | 0   | -   | 10.8  | 0   | \$ 42 | 227.9 |  |  |  |  |
| HCM Lane LOS          | С     | С     | Α   | -   | В     | А   | -     | F     |  |  |  |  |
| HCM 95th %tile Q(veh) | 0.5   | 1.7   | -   | -   | 0.1   | -   | -     | 24.2  |  |  |  |  |
| Notos                 |       |       |     |     |       |     |       |       |  |  |  |  |
| 110165                |       |       |     | -   |       |     |       |       |  |  |  |  |

\$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon ~: Volume exceeds capacity

| In | orc  | act | nn |
|----|------|-----|----|
|    | CI S | CUL |    |
|    |      | 000 |    |

Int Delay, s/veh

| A CALLER CALLER AND AND AND AND AND AND AND AND AND              |
|------------------------------------------------------------------|
| Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT S           |
| Lane Configurations 🌴 🖡 🌴 🐥                                      |
| Traffic Vol, veh/h 65 980 45 30 1300 65 70 100 30 150 100        |
| Future Vol, veh/h 65 980 45 30 1300 65 70 100 30 150 100         |
| Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0                   |
| Sign Control Free Free Free Free Free Free Stop Stop Stop Stop S |
| RT Channelized None None None No                                 |
| Storage Length 430 350                                           |
| Veh in Median Storage, # - 0 0 0 0                               |
| Grade, % - 0 0 0 0                                               |
| Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92          |
| Heavy Vehicles, % 6 3 0 0 5 14 0 0 60 17 0                       |
| Mvmt Flow 71 1065 49 33 1413 71 76 109 33 163 109                |

| Major/Minor          | Major1 |   | Μ | ajor2 |   | N | Minor1 |      |      | Minor2 |      |       |  |
|----------------------|--------|---|---|-------|---|---|--------|------|------|--------|------|-------|--|
| Conflicting Flow All | 1484   | 0 | 0 | 1114  | 0 | 0 | 2875   | 2782 | 1090 | 2818   | 2771 | 1449  |  |
| Stage 1              | -      | - | - | -     | - | - | 1232   | 1232 | -    | 1515   | 1515 | -     |  |
| Stage 2              | -      | - | - | -     | - | - | 1643   | 1550 | -    | 1303   | 1256 | -     |  |
| Critical Hdwy        | 4.16   | - | - | 4.1   | - | - | 7.1    | 6.5  | 6.8  | 7.27   | 6.5  | 6.23  |  |
| Critical Hdwy Stg 1  | -      | - | - | -     | - | - | 6.1    | 5.5  | -    | 6.27   | 5.5  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -     | - | - | 6.1    | 5.5  | -    | 6.27   | 5.5  | -     |  |
| Follow-up Hdwy       | 2.254  | - | - | 2.2   | - | - | 3.5    | 4    | 3.84 | 3.653  | 4    | 3.327 |  |
| Pot Cap-1 Maneuver   | 441    | - | - | 634   | - | - | ~ 11   | ~ 19 | 202  | ~ 10   | ~ 20 | 160   |  |
| Stage 1              | -      | - | - | -     | - | - | 219    | 252  | -    | ~ 138  | 184  | -     |  |
| Stage 2              | -      | - | - | -     | - | - | 127    | 177  | -    | 184    | 245  | -     |  |
| Platoon blocked, %   |        | - | - |       | - | - |        |      |      |        |      |       |  |
| Mov Cap-1 Maneuver   | 441    | - | - | 634   | - | - | -      | ~ 15 | 202  | -      | ~ 16 | 160   |  |
| Mov Cap-2 Maneuver   | -      | - | - | -     | - | - | -      | ~ 15 | -    | -      | ~ 16 | -     |  |
| Stage 1              | -      | - | - | -     | - | - | 184    | 211  | -    | ~ 116  | 174  | -     |  |
| Stage 2              | -      | - | - | -     | - | - | ~ 4    | 168  | -    | ~ 63   | 206  | -     |  |
|                      |        |   |   |       |   |   |        |      |      |        |      |       |  |

| Approach             | EB  | WB  | NB | SB |  |
|----------------------|-----|-----|----|----|--|
| HCM Control Delay, s | 0.9 | 0.2 |    |    |  |
| HCM LOS              |     |     | -  | -  |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR SI | 3Ln1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|--------|------|--|
| Capacity (veh/h)      | -     | 441  | -   | -   | 634   | -   | -      | -    |  |
| HCM Lane V/C Ratio    | -     | 0.16 | -   | -   | 0.051 | -   | -      | -    |  |
| HCM Control Delay (s) | -     | 14.7 | -   | -   | 11    | -   | -      | -    |  |
| HCM Lane LOS          | -     | В    | -   | -   | В     | -   | -      | -    |  |
| HCM 95th %tile Q(veh) | -     | 0.6  | -   | -   | 0.2   | -   | -      | -    |  |
| Notes                 |       |      |     |     |       |     |        |      |  |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

\*: All major volume in platoon

## HCM Signalized Intersection Capacity Analysis 22: CR 7 & SH 66

|                               | ≯          | -     | $\mathbf{r}$ | 4     | +          | •          | 1       | Ť     | 1    | 1    | ŧ     | ~    |
|-------------------------------|------------|-------|--------------|-------|------------|------------|---------|-------|------|------|-------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR        | NBL     | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           | 5          | ↑     | 1            | 5     | 1.         |            |         | 4     |      |      | र्स   | 1    |
| Traffic Volume (vph)          | 85         | 960   | 115          | 270   | 990        | 200        | 255     | 190   | 480  | 160  | 315   | 150  |
| Future Volume (vph)           | 85         | 960   | 115          | 270   | 990        | 200        | 255     | 190   | 480  | 160  | 315   | 150  |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900  | 1900       | 1900       | 1900    | 1900  | 1900 | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 5.0        | 7.0   | 7.0          | 5.0   | 7.0        |            |         | 5.0   |      |      | 5.0   | 5.0  |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00  | 1.00 |
| Frt                           | 1.00       | 1.00  | 0.85         | 1.00  | 0.97       |            |         | 0.93  |      |      | 1.00  | 0.85 |
| Flt Protected                 | 0.95       | 1.00  | 1.00         | 0.95  | 1.00       |            |         | 0.99  |      |      | 0.98  | 1.00 |
| Satd. Flow (prot)             | 1719       | 1845  | 1615         | 1805  | 1734       |            |         | 1662  |      |      | 1868  | 1599 |
| Flt Permitted                 | 0.07       | 1.00  | 1.00         | 0.07  | 1.00       |            |         | 0.43  |      |      | 0.53  | 1.00 |
| Satd. Flow (perm)             | 134        | 1845  | 1615         | 133   | 1734       |            |         | 725   |      |      | 998   | 1599 |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92         | 0.92  | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92 | 0.92  | 0.92 |
| Adj. Flow (vph)               | 92         | 1043  | 125          | 293   | 1076       | 217        | 277     | 207   | 522  | 174  | 342   | 163  |
| RTOR Reduction (vph)          | 0          | 0     | 33           | 0     | 5          | 0          | 0       | 26    | 0    | 0    | 0     | 36   |
| Lane Group Flow (vph)         | 92         | 1043  | 92           | 293   | 1288       | 0          | 0       | 980   | 0    | 0    | 516   | 127  |
| Heavy Vehicles (%)            | 5%         | 3%    | 0%           | 0%    | 6%         | 11%        | 6%      | 3%    | 5%   | 0%   | 0%    | 1%   |
| Turn Type                     | pm+pt      | NA    | Perm         | pm+pt | NA         |            | Perm    | NA    |      | Perm | NA    | Perm |
| Protected Phases              | 5          | 2     |              | 1     | 6          |            |         | 8     |      |      | 4     |      |
| Permitted Phases              | 2          |       | 2            | 6     |            |            | 8       |       |      | 4    |       | 4    |
| Actuated Green, G (s)         | 62.0       | 54.0  | 54.0         | 68.0  | 57.0       |            |         | 68.0  |      |      | 68.0  | 68.0 |
| Effective Green, g (s)        | 62.0       | 54.0  | 54.0         | 68.0  | 57.0       |            |         | 68.0  |      |      | 68.0  | 68.0 |
| Actuated g/C Ratio            | 0.41       | 0.36  | 0.36         | 0.45  | 0.38       |            |         | 0.45  |      |      | 0.45  | 0.45 |
| Clearance Time (s)            | 5.0        | 7.0   | 7.0          | 5.0   | 7.0        |            |         | 5.0   |      |      | 5.0   | 5.0  |
| Vehicle Extension (s)         | 3.0        | 5.0   | 5.0          | 3.0   | 5.0        |            |         | 3.0   |      |      | 3.0   | 3.0  |
| Lane Grp Cap (vph)            | 139        | 664   | 581          | 182   | 658        |            |         | 328   |      |      | 452   | 724  |
| v/s Ratio Prot                | 0.04       | 0.57  |              | c0.12 | c0.74      |            |         |       |      |      |       |      |
| v/s Ratio Perm                | 0.24       |       | 0.06         | 0.61  |            |            |         | c1.35 |      |      | 0.52  | 0.08 |
| v/c Ratio                     | 0.66       | 1.57  | 0.16         | 1.61  | 1.96       |            |         | 2.99  |      |      | 1.14  | 0.18 |
| Uniform Delay, d1             | 36.1       | 48.0  | 32.6         | 44.6  | 46.5       |            |         | 41.0  |      |      | 41.0  | 24.4 |
| Progression Factor            | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00  | 1.00 |
| Incremental Delay, d2         | 11.2       | 264.1 | 0.3          | 298.5 | 436.4      |            |         | 903.1 |      |      | 87.2  | 0.1  |
| Delay (s)                     | 47.3       | 312.1 | 32.9         | 343.0 | 482.9      |            |         | 944.1 |      |      | 128.2 | 24.5 |
| Level of Service              | D          | F     | С            | F     | F          |            |         | F     |      |      | F     | С    |
| Approach Delay (s)            |            | 265.1 |              |       | 457.1      |            |         | 944.1 |      |      | 103.3 |      |
| Approach LOS                  |            | F     |              |       | F          |            |         | F     |      |      | F     |      |
| Intersection Summary          |            |       |              |       |            |            |         |       |      |      |       |      |
| HCM 2000 Control Delay        |            |       | 458.8        | Н     | CM 2000    | Level of S | Service |       | F    |      |       |      |
| HCM 2000 Volume to Capao      | city ratio |       | 2.49         |       |            |            |         |       |      |      |       |      |
| Actuated Cycle Length (s)     |            |       | 150.0        | S     | um of lost | t time (s) |         |       | 17.0 |      |       |      |
| Intersection Capacity Utiliza | tion       |       | 168.2%       | IC    | CU Level o | of Service |         |       | Н    |      |       |      |
| Analysis Period (min)         |            |       | 15           |       |            |            |         |       |      |      |       |      |
| c Critical Lane Group         |            |       |              |       |            |            |         |       |      |      |       |      |

## HCM Signalized Intersection Capacity Analysis 24: I-25 SB On Ramp/I-25 SB Off Ramp & SH 66

10/07/2019

|                                   | ٠     |      | 7     | •     | -           | *           | 1       | Ť    | 1    | 1    | Ŧ    | ~    |
|-----------------------------------|-------|------|-------|-------|-------------|-------------|---------|------|------|------|------|------|
| Movement                          | EBL   | EBT  | EBR   | WBL   | WBT         | WBR         | NBL     | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations               |       | ***  | 1     | 55    | <b>^</b>    |             |         |      |      | 5    | र्स  | 1    |
| Traffic Volume (vph)              | 0     | 995  | 605   | 535   | 1105        | 0           | 0       | 0    | 0    | 215  | 10   | 355  |
| Future Volume (vph)               | 0     | 995  | 605   | 535   | 1105        | 0           | 0       | 0    | 0    | 215  | 10   | 355  |
| Ideal Flow (vphpl)                | 1900  | 1900 | 1900  | 1800  | 1900        | 1900        | 1900    | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)               |       | 7.0  | 7.0   | 7.0   | 7.0         |             |         |      |      | 6.0  | 6.0  | 4.0  |
| Lane Util. Factor                 |       | 0.91 | 1.00  | 0.97  | 0.95        |             |         |      |      | 0.95 | 0.95 | 1.00 |
| Frt                               |       | 1.00 | 0.85  | 1.00  | 1.00        |             |         |      |      | 1.00 | 1.00 | 0.85 |
| Flt Protected                     |       | 1.00 | 1.00  | 0.95  | 1.00        |             |         |      |      | 0.95 | 0.96 | 1.00 |
| Satd. Flow (prot)                 |       | 5036 | 1568  | 3072  | 3374        |             |         |      |      | 1545 | 1528 | 1568 |
| Flt Permitted                     |       | 1.00 | 1.00  | 0.95  | 1.00        |             |         |      |      | 0.95 | 0.96 | 1.00 |
| Satd. Flow (perm)                 |       | 5036 | 1568  | 3072  | 3374        |             |         |      |      | 1545 | 1528 | 1568 |
| Peak-hour factor, PHF             | 0.92  | 0.92 | 0.92  | 0.92  | 0.92        | 0.92        | 0.92    | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)                   | 0     | 1082 | 658   | 582   | 1201        | 0           | 0       | 0    | 0    | 234  | 11   | 386  |
| RTOR Reduction (vph)              | 0     | 0    | 292   | 0     | 0           | 0           | 0       | 0    | 0    | 0    | 0    | 0    |
| Lane Group Flow (vph)             | 0     | 1082 | 366   | 582   | 1201        | 0           | 0       | 0    | 0    | 122  | 123  | 386  |
| Heavy Vehicles (%)                | 2%    | 3%   | 3%    | 8%    | 7%          | 2%          | 2%      | 2%   | 2%   | 11%  | 33%  | 3%   |
| Turn Type                         |       | NA   | Perm  | Prot  | NA          |             |         |      |      | Perm | NA   | Free |
| Protected Phases                  |       | 2    |       | 1     | 6           |             |         |      |      |      | 4    |      |
| Permitted Phases                  |       |      | 2     |       |             |             |         |      |      | 4    |      | Free |
| Actuated Green, G (s)             |       | 36.4 | 36.4  | 21.0  | 64.4        |             |         |      |      | 12.6 | 12.6 | 90.0 |
| Effective Green, g (s)            |       | 36.4 | 36.4  | 21.0  | 64.4        |             |         |      |      | 12.6 | 12.6 | 90.0 |
| Actuated g/C Ratio                |       | 0.40 | 0.40  | 0.23  | 0.72        |             |         |      |      | 0.14 | 0.14 | 1.00 |
| Clearance Time (s)                |       | 7.0  | 7.0   | 7.0   | 7.0         |             |         |      |      | 6.0  | 6.0  |      |
| Vehicle Extension (s)             |       | 3.0  | 3.0   | 3.0   | 3.0         |             |         |      |      | 3.0  | 3.0  |      |
| Lane Grp Cap (vph)                |       | 2036 | 634   | 716   | 2414        |             |         |      |      | 216  | 213  | 1568 |
| v/s Ratio Prot                    |       | 0.21 |       | c0.19 | 0.36        |             |         |      |      |      |      |      |
| v/s Ratio Perm                    |       |      | c0.23 |       |             |             |         |      |      | 0.08 | 0.08 | 0.25 |
| v/c Ratio                         |       | 0.53 | 0.58  | 0.81  | 0.50        |             |         |      |      | 0.56 | 0.58 | 0.25 |
| Uniform Delay, d1                 |       | 20.3 | 20.8  | 32.6  | 5.7         |             |         |      |      | 36.1 | 36.2 | 0.0  |
| Progression Factor                |       | 1.00 | 1.00  | 0.80  | 0.17        |             |         |      |      | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2             |       | 1.0  | 3.8   | 6.0   | 0.6         |             |         |      |      | 3.4  | 3.8  | 0.4  |
| Delay (s)                         |       | 21.3 | 24.6  | 32.3  | 1.6         |             |         |      |      | 39.5 | 40.0 | 0.4  |
| Level of Service                  |       | С    | С     | С     | А           |             |         |      |      | D    | D    | A    |
| Approach Delay (s)                |       | 22.6 |       |       | 11.6        |             |         | 0.0  |      |      | 15.7 |      |
| Approach LOS                      |       | С    |       |       | В           |             |         | А    |      |      | В    |      |
| Intersection Summary              |       |      |       |       |             |             |         |      |      |      |      |      |
| HCM 2000 Control Delay            |       |      | 16.8  | Н     | CM 2000     | Level of \$ | Service |      | В    |      |      |      |
| HCM 2000 Volume to Capacity       | ratio |      | 0.65  |       |             |             |         |      |      |      |      |      |
| Actuated Cycle Length (s)         |       |      | 90.0  | S     | um of lost  | t time (s)  |         |      | 20.0 |      |      |      |
| Intersection Capacity Utilization |       |      | 76.9% | IC    | CU Level of | of Service  |         |      | D    |      |      |      |
| Analysis Period (min)             |       |      | 15    |       |             |             |         |      |      |      |      |      |
| c Critical Lane Group             |       |      |       |       |             |             |         |      |      |      |      |      |

## HCM Signalized Intersection Capacity Analysis 25: I-25 NB Off Ramp/I-25 NB On Ramp & SH 66

10/07/2019

|                               | ٨          |       | $\mathbf{r}$ | -    | +         | *          | 1       | Ť    | 1    | 1    | ŧ    | ~    |
|-------------------------------|------------|-------|--------------|------|-----------|------------|---------|------|------|------|------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL  | WBT       | WBR        | NBL     | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations           | 55         | **    |              |      | ***       | 1          | 5       | ्स   | 1    |      |      |      |
| Traffic Volume (vph)          | 205        | 1005  | 0            | 0    | 1325      | 305        | 315     | 5    | 520  | 0    | 0    | 0    |
| Future Volume (vph)           | 205        | 1005  | 0            | 0    | 1325      | 305        | 315     | 5    | 520  | 0    | 0    | 0    |
| Ideal Flow (vphpl)            | 1800       | 1900  | 1900         | 1900 | 1900      | 1900       | 1800    | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 5.0        | 7.0   |              |      | 7.0       | 7.0        | 6.0     | 6.0  | 4.0  |      |      |      |
| Lane Util. Factor             | 0.97       | 0.95  |              |      | 0.91      | 1.00       | 0.95    | 0.95 | 1.00 |      |      |      |
| Frt                           | 1.00       | 1.00  |              |      | 1.00      | 0.85       | 1.00    | 1.00 | 0.85 |      |      |      |
| Flt Protected                 | 0.95       | 1.00  |              |      | 1.00      | 1.00       | 0.95    | 0.95 | 1.00 |      |      |      |
| Satd. Flow (prot)             | 3221       | 3438  |              |      | 4803      | 1417       | 1533    | 1627 | 1455 |      |      |      |
| Flt Permitted                 | 0.95       | 1.00  |              |      | 1.00      | 1.00       | 0.95    | 0.95 | 1.00 |      |      |      |
| Satd. Flow (perm)             | 3221       | 3438  |              |      | 4803      | 1417       | 1533    | 1627 | 1455 |      |      |      |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92         | 0.92 | 0.92      | 0.92       | 0.92    | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)               | 223        | 1092  | 0            | 0    | 1440      | 332        | 342     | 5    | 565  | 0    | 0    | 0    |
| RTOR Reduction (vph)          | 0          | 0     | 0            | 0    | 0         | 169        | 0       | 0    | 0    | 0    | 0    | 0    |
| Lane Group Flow (vph)         | 223        | 1092  | 0            | 0    | 1440      | 163        | 174     | 173  | 565  | 0    | 0    | 0    |
| Heavy Vehicles (%)            | 3%         | 5%    | 2%           | 2%   | 8%        | 14%        | 6%      | 0%   | 11%  | 2%   | 2%   | 2%   |
| Turn Type                     | Prot       | NA    |              |      | NA        | Perm       | Perm    | NA   | Free |      |      |      |
| Protected Phases              | 5          | 2     |              |      | 6         |            |         | 8    |      |      |      |      |
| Permitted Phases              |            |       |              |      |           | 6          | 8       |      | Free |      |      |      |
| Actuated Green, G (s)         | 11.8       | 61.0  |              |      | 44.2      | 44.2       | 16.0    | 16.0 | 90.0 |      |      |      |
| Effective Green, g (s)        | 11.8       | 61.0  |              |      | 44.2      | 44.2       | 16.0    | 16.0 | 90.0 |      |      |      |
| Actuated g/C Ratio            | 0.13       | 0.68  |              |      | 0.49      | 0.49       | 0.18    | 0.18 | 1.00 |      |      |      |
| Clearance Time (s)            | 5.0        | 7.0   |              |      | 7.0       | 7.0        | 6.0     | 6.0  |      |      |      |      |
| Vehicle Extension (s)         | 3.0        | 3.0   |              |      | 3.0       | 3.0        | 3.0     | 3.0  |      |      |      |      |
| Lane Grp Cap (vph)            | 422        | 2330  |              |      | 2358      | 695        | 272     | 289  | 1455 |      |      |      |
| v/s Ratio Prot                | 0.07       | c0.32 |              |      | c0.30     |            |         |      |      |      |      |      |
| v/s Ratio Perm                |            |       |              |      |           | 0.12       | c0.11   | 0.11 | 0.39 |      |      |      |
| v/c Ratio                     | 0.53       | 0.47  |              |      | 0.61      | 0.23       | 0.64    | 0.60 | 0.39 |      |      |      |
| Uniform Delay, d1             | 36.5       | 6.8   |              |      | 16.6      | 13.2       | 34.3    | 34.0 | 0.0  |      |      |      |
| Progression Factor            | 1.40       | 0.32  |              |      | 1.00      | 1.00       | 1.00    | 1.00 | 1.00 |      |      |      |
| Incremental Delay, d2         | 1.0        | 0.6   |              |      | 1.2       | 0.8        | 4.9     | 3.3  | 0.8  |      |      |      |
| Delay (s)                     | 52.3       | 2.8   |              |      | 17.8      | 14.0       | 39.2    | 37.4 | 0.8  |      |      |      |
| Level of Service              | D          | А     |              |      | В         | В          | D       | D    | А    |      |      |      |
| Approach Delay (s)            |            | 11.2  |              |      | 17.1      |            |         | 15.1 |      |      | 0.0  |      |
| Approach LOS                  |            | В     |              |      | В         |            |         | В    |      |      | А    |      |
| Intersection Summary          |            |       |              |      |           |            |         |      |      |      |      |      |
| HCM 2000 Control Delay        |            |       | 14.7         | Н    | CM 2000   | Level of   | Service |      | В    |      |      |      |
| HCM 2000 Volume to Capa       | city ratio |       | 0.61         |      |           |            |         |      |      |      |      |      |
| Actuated Cycle Length (s)     |            |       | 90.0         | S    | um of los | t time (s) |         |      | 18.0 |      |      |      |
| Intersection Capacity Utiliza | tion       |       | 76.9%        | IC   | CU Level  | of Service | )       |      | D    |      |      |      |
| Analysis Period (min)         |            |       | 15           |      |           |            |         |      |      |      |      |      |
| c Critical Lane Group         |            |       |              |      |           |            |         |      |      |      |      |      |

| Intersection           |      |      |      |      |      |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Int Delay, s/veh       | 2.1  |      |      |      |      |      |      |      |      |      |      |      |  |
| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | 1    | **   | 1    | 1    | 朴    |      | 1    | et.  |      |      | \$   |      |  |
| Traffic Vol, veh/h     | 245  | 1170 | 110  | 40   | 1330 | 70   | 90   | 5    | 30   | 20   | 5    | 210  |  |
| Future Vol, veh/h      | 245  | 1170 | 110  | 40   | 1330 | 70   | 90   | 5    | 30   | 20   | 5    | 210  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 275  | -    | 0    | 225  | -    | -    | 0    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage  | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 10   | 7    | 3    | 8    | 2    | 7    | 2    | 3    | 2    | 2    | 2    |  |
| M∨mt Flow              | 266  | 1272 | 120  | 43   | 1446 | 76   | 98   | 5    | 33   | 22   | 5    | 228  |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Major1 |   | Maj | or2 |   | Ν | /linor1 |      | ľ    | /linor2 |      |      |  |
|----------------------|--------|---|-----|-----|---|---|---------|------|------|---------|------|------|--|
| Conflicting Flow All | 1522   | 0 | 0 1 | 392 | 0 | 0 | 2616    | 3412 | 636  | 2741    | 3494 | 761  |  |
| Stage 1              | -      | - | -   | -   | - | - | 1804    | 1804 | -    | 1570    | 1570 | -    |  |
| Stage 2              | -      | - | -   | -   | - | - | 812     | 1608 | -    | 1171    | 1924 | -    |  |
| Critical Hdwy        | 4.14   | - | - 4 | .16 | - | - | 7.64    | 6.54 | 6.96 | 7.54    | 6.54 | 6.94 |  |
| Critical Hdwy Stg 1  | -      | - | -   | -   | - | - | 6.64    | 5.54 | -    | 6.54    | 5.54 | -    |  |
| Critical Hdwy Stg 2  | -      | - | -   | -   | - | - | 6.64    | 5.54 | -    | 6.54    | 5.54 | -    |  |
| Follow-up Hdwy       | 2.22   | - | - 2 | .23 | - | - | 3.57    | 4.02 | 3.33 | 3.52    | 4.02 | 3.32 |  |
| Pot Cap-1 Maneuver   | 434    | - |     | 482 | - | - | ~ 11    | 7    | 418  | ~ 9     | 6    | 348  |  |
| Stage 1              | -      | - | -   | -   | - | - | ~ 78    | 130  | -    | 116     | 170  | -    |  |
| Stage 2              | -      | - | -   | -   | - | - | 328     | 162  | -    | 205     | 113  | -    |  |
| Platoon blocked, %   |        | - | -   |     | - | - |         |      |      |         |      |      |  |
| Mov Cap-1 Maneuver   | 434    | - |     | 482 | - | - | -       | ~ 2  | 418  | -       | ~ 2  | 348  |  |
| Mov Cap-2 Maneuver   | r –    | - | -   | -   | - | - | -       | ~ 2  | -    | -       | ~ 2  | -    |  |
| Stage 1              | -      | - | -   | -   | - | - | ~ 30    | 50   | -    | 45      | 155  | -    |  |
| Stage 2              | -      | - | -   | -   | - | - | 99      | 148  | -    | 65      | 44   | -    |  |
|                      |        |   |     |     |   |   |         |      |      |         |      |      |  |

| Approach             | EB  | WB  | NB | SB |  |
|----------------------|-----|-----|----|----|--|
| HCM Control Delay, s | 4.1 | 0.4 |    |    |  |
| HCMLOS               |     |     | -  | _  |  |

| Minor Lane/Major Mvmt | NBLn1 NBLn2 | EBL   | EBT | EBR | WBL  | WBT | WBR SE | 3Ln1 |
|-----------------------|-------------|-------|-----|-----|------|-----|--------|------|
| Capacity (veh/h)      | - 14        | 434   | -   | -   | 482  | -   | -      | -    |
| HCM Lane V/C Ratio    | - 2.717     | 0.614 | -   | -   | 0.09 | -   | -      | -    |
| HCM Control Delay (s) | \$ 1329.6   | 25.6  | -   | -   | 13.2 | -   | -      | -    |
| HCM Lane LOS          | - F         | D     | -   | -   | В    | -   | -      | -    |
| HCM 95th %tile Q(veh) | - 5.6       | 4     | -   | -   | 0.3  | -   | -      | -    |
| Notes                 |             |       |     |     |      |     |        |      |

~: Volume exceeds capacity \$: Delay exceeds 300s

eds 300s +: Computation Not Defined

\*: All major volume in platoon

# HCM 6th Signalized Intersection Summary 27: CR 9 1/2 & SH 66

| 1( | )/( | 07 | /2 | 01 | 9 |
|----|-----|----|----|----|---|
|----|-----|----|----|----|---|

|                              | ٠     |          | $\mathbf{r}$ | 4     | +     | Ł     | 1     | Ť     | 1    | 1     | ŧ     | ~    |
|------------------------------|-------|----------|--------------|-------|-------|-------|-------|-------|------|-------|-------|------|
| Movement                     | EBL   | EBT      | EBR          | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations          | 5     | <b>↑</b> | 1            | 5     | t,    |       | 5     | 1.    |      |       | 4     |      |
| Traffic Volume (veh/h)       | 300   | 480      | 420          | 400   | 835   | 90    | 450   | 300   | 115  | 50    | 210   | 245  |
| Future Volume (veh/h)        | 300   | 480      | 420          | 400   | 835   | 90    | 450   | 300   | 115  | 50    | 210   | 245  |
| Initial Q (Qb), veh          | 0     | 0        | 0            | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00  |          | 1.00         | 1.00  |       | 1.00  | 1.00  |       | 1.00 | 1.00  |       | 1.00 |
| Parking Bus, Adj             | 1.00  | 1.00     | 1.00         | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Work Zone On Approach        |       | No       |              |       | No    |       |       | No    |      |       | No    |      |
| Adj Sat Flow, veh/h/ln       | 1633  | 1781     | 1870         | 1781  | 1796  | 1796  | 1633  | 1826  | 1826 | 1841  | 1841  | 1841 |
| Adj Flow Rate, veh/h         | 326   | 522      | 457          | 435   | 908   | 98    | 489   | 326   | 125  | 54    | 228   | 266  |
| Peak Hour Factor             | 0.92  | 0.92     | 0.92         | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 |
| Percent Heavy Veh, %         | 18    | 8        | 2            | 8     | 7     | 7     | 18    | 5     | 5    | 4     | 4     | 4    |
| Cap, veh/h                   | 223   | 562      | 500          | 321   | 564   | 61    | 371   | 522   | 200  | 57    | 149   | 165  |
| Arrive On Green              | 0.11  | 0.32     | 0.32         | 0.15  | 0.35  | 0.35  | 0.16  | 0.42  | 0.42 | 0.22  | 0.22  | 0.22 |
| Sat Flow, veh/h              | 1555  | 1781     | 1585         | 1697  | 1593  | 172   | 1555  | 1257  | 482  | 123   | 691   | 767  |
| Grp Volume(v), veh/h         | 326   | 522      | 457          | 435   | 0     | 1006  | 489   | 0     | 451  | 548   | 0     | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1555  | 1781     | 1585         | 1697  | 0     | 1765  | 1555  | 0     | 1739 | 1581  | 0     | 0    |
| Q Serve(g_s), s              | 14.0  | 36.9     | 36.1         | 19.0  | 0.0   | 46.0  | 21.0  | 0.0   | 26.6 | 22.4  | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s        | 14.0  | 36.9     | 36.1         | 19.0  | 0.0   | 46.0  | 21.0  | 0.0   | 26.6 | 28.0  | 0.0   | 0.0  |
| Prop In Lane                 | 1.00  |          | 1.00         | 1.00  |       | 0.10  | 1.00  |       | 0.28 | 0.10  |       | 0.49 |
| Lane Grp Cap(c), veh/h       | 223   | 562      | 500          | 321   | 0     | 625   | 371   | 0     | 722  | 371   | 0     | 0    |
| V/C Ratio(X)                 | 1.46  | 0.93     | 0.91         | 1.36  | 0.00  | 1.61  | 1.32  | 0.00  | 0.62 | 1.48  | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h        | 223   | 562      | 500          | 321   | 0     | 625   | 371   | 0     | 722  | 371   | 0     | 0    |
| HCM Platoon Ratio            | 1.00  | 1.00     | 1.00         | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00  | 1.00     | 1.00         | 1.00  | 0.00  | 1.00  | 1.00  | 0.00  | 1.00 | 1.00  | 0.00  | 0.00 |
| Uniform Delay (d), s/veh     | 37.6  | 43.1     | 42.8         | 37.8  | 0.0   | 42.0  | 35.0  | 0.0   | 30.0 | 52.0  | 0.0   | 0.0  |
| Incr Delay (d2), s/veh       | 231.1 | 22.3     | 21.7         | 179.5 | 0.0   | 282.1 | 161.3 | 0.0   | 2.4  | 228.9 | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0      | 0.0          | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/In     | 18.7  | 18.8     | 16.3         | 21.9  | 0.0   | 67.6  | 25.3  | 0.0   | 10.9 | 35.4  | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh | 1     |          |              |       |       |       |       |       |      |       |       |      |
| LnGrp Delay(d),s/veh         | 268.8 | 65.4     | 64.5         | 217.4 | 0.0   | 324.1 | 196.2 | 0.0   | 32.4 | 280.8 | 0.0   | 0.0  |
| LnGrp LOS                    | F     | E        | E            | F     | А     | F     | F     | A     | С    | F     | A     | A    |
| Approach Vol, veh/h          |       | 1305     |              |       | 1441  |       |       | 940   |      |       | 548   |      |
| Approach Delay, s/veh        |       | 115.9    |              |       | 291.9 |       |       | 117.6 |      |       | 280.8 |      |
| Approach LOS                 |       | F        |              |       | F     |       |       | F     |      |       | F     |      |
| Timer - Assigned Phs         | 1     | 2        | 3            | 4     | 5     | 6     |       | 8     |      |       |       |      |
| Phs Duration (G+Y+Rc), s     | 24.0  | 47.0     | 26.0         | 33.0  | 19.0  | 52.0  |       | 59.0  |      |       |       |      |
| Change Period (Y+Rc), s      | 5.0   | 6.0      | 5.0          | 5.0   | 5.0   | 6.0   |       | 5.0   |      |       |       |      |
| Max Green Setting (Gmax), s  | 19.0  | 41.0     | 21.0         | 28.0  | 14.0  | 46.0  |       | 54.0  |      |       |       |      |
| Max Q Clear Time (g c+I1), s | 21.0  | 38.9     | 23.0         | 30.0  | 16.0  | 48.0  |       | 28.6  |      |       |       |      |
| Green Ext Time (p_c), s      | 0.0   | 1.3      | 0.0          | 0.0   | 0.0   | 0.0   |       | 5.1   |      |       |       |      |
| Intersection Summary         |       |          |              |       |       |       |       |       |      |       |       |      |
| HCM 6th Ctrl Delay           |       |          | 197.5        |       |       |       |       |       |      |       |       |      |
| HCM 6th LOS                  |       |          | F            |       |       |       |       |       |      |       |       |      |

#### Intersection

Int Delay, s/veh 3953.3

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    |      | \$   |      |      | \$   |      |      | \$   |      |      | \$   |      |
| Traffic Vol, veh/h     | 75   | 485  | 85   | 150  | 1090 | 20   | 135  | 10   | 105  | 125  | 10   | 100  |
| Future Vol, veh/h      | 75   | 485  | 85   | 150  | 1090 | 20   | 135  | 10   | 105  | 125  | 10   | 100  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0    | 11   | 25   | 0    | 8    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow              | 82   | 527  | 92   | 163  | 1185 | 22   | 147  | 11   | 114  | 136  | 11   | 109  |

| Major/Minor          | Major1 |   | Μ | lajor2 |   |   | Minor1 |      | ľ   | Minor2 |      |      |  |
|----------------------|--------|---|---|--------|---|---|--------|------|-----|--------|------|------|--|
| Conflicting Flow All | 1207   | 0 | 0 | 619    | 0 | 0 | 2319   | 2270 | 573 | 2322   | 2305 | 1196 |  |
| Stage 1              | -      | - | - | -      | - | - | 737    | 737  | -   | 1522   | 1522 | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 1582   | 1533 | -   | 800    | 783  | -    |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5  | 6.2 | 7.1    | 6.5  | 6.2  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5  | -   | 6.1    | 5.5  | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5  | -   | 6.1    | 5.5  | -    |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4    | 3.3 | 3.5    | 4    | 3.3  |  |
| Pot Cap-1 Maneuver   | 585    | - | - | 971    | - | - | ~ 27   | 41   | 523 | ~ 27   | 39   | 229  |  |
| Stage 1              | -      | - | - | -      | - | - | 413    | 428  | -   | 149    | 182  | -    |  |
| Stage 2              | -      | - | - | -      | - | - | ~ 138  | 180  | -   | 382    | 407  | -    |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |      |     |        |      |      |  |
| Mov Cap-1 Maneuver   | 585    | - | - | 971    | - | - | ~ 3    | 16   | 523 | ~ 5    | 15   | 229  |  |
| Mov Cap-2 Maneuver   | • -    | - | - | -      | - | - | ~ 3    | 16   | -   | ~ 5    | 15   | -    |  |
| Stage 1              | -      | - | - | -      | - | - | 323    | 335  | -   | ~ 117  | 89   | -    |  |
| Stage 2              | -      | - | - | -      | - | - | ~ 31   | 88   | -   | 226    | 319  | -    |  |
|                      |        |   |   |        |   |   |        |      |     |        |      |      |  |

| Approach             | EB  | WB  | NB         | SB         |  |
|----------------------|-----|-----|------------|------------|--|
| HCM Control Delay, s | 1.4 | 1.1 | \$ 25443.9 | \$ 13128.3 |  |
| HCM LOS              |     |     | F          | F          |  |

| Minor Lane/Major Mvmt | NBLn1      | EBL   | EBT | EBR | WBL   | WBT | WBR SE | 3Ln1 |
|-----------------------|------------|-------|-----|-----|-------|-----|--------|------|
| Capacity (veh/h)      | 5          | 585   | -   | -   | 971   | -   | -      | 9    |
| HCM Lane V/C Ratio    | 54.348     | 0.139 | -   | -   | 0.168 | -   | - 28   | .382 |
| HCM Control Delay (s) | \$ 25443.9 | 12.1  | 0   | -   | 9.5   | 0   | \$ 131 | 28.3 |
| HCM Lane LOS          | F          | В     | А   | -   | Α     | А   | -      | F    |
| HCM 95th %tile Q(veh) | 36.2       | 0.5   | -   | -   | 0.6   | -   | - 3    | 33.7 |
| Notes                 |            |       |     |     |       |     |        |      |

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

## HCM Signalized Intersection Capacity Analysis 30: CR13/CR 13 & SH 66

|                               | ≯          | -+    | $\mathbf{r}$ | •     |            | •          | 1       | Ť     | 1    | 1    | ţ    | ~    |
|-------------------------------|------------|-------|--------------|-------|------------|------------|---------|-------|------|------|------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR        | NBL     | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations           | 5          | 12    |              | 5     | ţ,         |            |         | 4     |      |      | 4    |      |
| Traffic Volume (vph)          | 45         | 575   | 165          | 85    | 640        | 40         | 220     | 165   | 90   | 45   | 325  | 280  |
| Future Volume (vph)           | 45         | 575   | 165          | 85    | 640        | 40         | 220     | 165   | 90   | 45   | 325  | 280  |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900  | 1900       | 1900       | 1900    | 1900  | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 5.0        | 7.0   |              | 5.0   | 7.0        |            |         | 7.0   |      |      | 7.0  |      |
| Lane Util. Factor             | 1.00       | 1.00  |              | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00 |      |
| Frt                           | 1.00       | 0.97  |              | 1.00  | 0.99       |            |         | 0.97  |      |      | 0.94 |      |
| Flt Protected                 | 0.95       | 1.00  |              | 0.95  | 1.00       |            |         | 0.98  |      |      | 1.00 |      |
| Satd. Flow (prot)             | 1504       | 1676  |              | 1805  | 1711       |            |         | 1719  |      |      | 1749 |      |
| Flt Permitted                 | 0.07       | 1.00  |              | 0.07  | 1.00       |            |         | 0.41  |      |      | 0.93 |      |
| Satd. Flow (perm)             | 113        | 1676  |              | 132   | 1711       |            |         | 718   |      |      | 1634 |      |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92         | 0.92  | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)               | 49         | 625   | 179          | 92    | 696        | 43         | 239     | 179   | 98   | 49   | 353  | 304  |
| RTOR Reduction (vph)          | 0          | 7     | 0            | 0     | 1          | 0          | 0       | 5     | 0    | 0    | 18   | 0    |
| Lane Group Flow (vph)         | 49         | 797   | 0            | 92    | 738        | 0          | 0       | 511   | 0    | 0    | 688  | 0    |
| Heavy Vehicles (%)            | 20%        | 10%   | 8%           | 0%    | 9%         | 28%        | 6%      | 6%    | 2%   | 22%  | 0%   | 1%   |
| Turn Type                     | pm+pt      | NA    |              | pm+pt | NA         |            | Perm    | NA    |      | Perm | NA   |      |
| Protected Phases              | 5          | 2     |              | 1     | 6          |            |         | 8     |      |      | 4    |      |
| Permitted Phases              | 2          |       |              | 6     |            |            | 8       |       |      | 4    |      |      |
| Actuated Green, G (s)         | 62.4       | 56.0  |              | 65.6  | 57.6       |            |         | 68.0  |      |      | 68.0 |      |
| Effective Green, g (s)        | 62.4       | 56.0  |              | 65.6  | 57.6       |            |         | 68.0  |      |      | 68.0 |      |
| Actuated g/C Ratio            | 0.41       | 0.37  |              | 0.43  | 0.38       |            |         | 0.45  |      |      | 0.45 |      |
| Clearance Time (s)            | 5.0        | 7.0   |              | 5.0   | 7.0        |            |         | 7.0   |      |      | 7.0  |      |
| Vehicle Extension (s)         | 4.0        | 6.0   |              | 4.0   | 6.0        |            |         | 5.0   |      |      | 5.0  |      |
| Lane Grp Cap (vph)            | 105        | 621   |              | 145   | 652        |            |         | 323   |      |      | 735  |      |
| v/s Ratio Prot                | 0.02       | c0.48 |              | c0.03 | 0.43       |            |         |       |      |      |      |      |
| v/s Ratio Perm                | 0.17       |       |              | 0.24  |            |            |         | c0.71 |      |      | 0.42 |      |
| v/c Ratio                     | 0.47       | 1.28  |              | 0.63  | 1.13       |            |         | 1.58  |      |      | 0.94 |      |
| Uniform Delay, d1             | 36.1       | 47.5  |              | 35.4  | 46.7       |            |         | 41.5  |      |      | 39.4 |      |
| Progression Factor            | 1.00       | 1.00  |              | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00 |      |
| Incremental Delay, d2         | 4.4        | 139.6 |              | 9.8   | 77.4       |            |         | 275.6 |      |      | 19.7 |      |
| Delay (s)                     | 40.5       | 187.1 |              | 45.2  | 124.1      |            |         | 317.1 |      |      | 59.2 |      |
| Level of Service              | D          | F     |              | D     | F          |            |         | F     |      |      | E    |      |
| Approach Delay (s)            |            | 178.7 |              |       | 115.3      |            |         | 317.1 |      |      | 59.2 |      |
| Approach LOS                  |            | F     |              |       | F          |            |         | F     |      |      | E    |      |
| Intersection Summary          |            |       |              |       |            |            |         |       |      |      |      |      |
| HCM 2000 Control Delay        |            |       | 156.1        | H     | CM 2000    | Level of S | Service |       | F    |      |      |      |
| HCM 2000 Volume to Capa       | city ratio |       | 1.40         |       |            |            |         |       |      |      |      |      |
| Actuated Cycle Length (s)     | -          |       | 151.0        | Si    | um of lost | time (s)   |         |       | 19.0 |      |      |      |
| Intersection Capacity Utiliza | tion       |       | 131.7%       | IC    | U Level o  | of Service |         |       | Н    |      |      |      |
| Analysis Period (min)         |            |       | 15           |       |            |            |         |       |      |      |      |      |
| c Critical Lane Group         |            |       |              |       |            |            |         |       |      |      |      |      |

#### Intersection

| 3.5  |                                                                    |                                                                                                              |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL  | EBT                                                                | WBT                                                                                                          | WBR                                                                                                                                                        | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1    | •                                                                  | •                                                                                                            | 1                                                                                                                                                          | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50   | 660                                                                | 605                                                                                                          | 20                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50   | 660                                                                | 605                                                                                                          | 20                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0    | 0                                                                  | 0                                                                                                            | 0                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Free | Free                                                               | Free                                                                                                         | Free                                                                                                                                                       | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | None                                                               | -                                                                                                            | None                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 525  | -                                                                  | -                                                                                                            | 550                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| # -  | 0                                                                  | 0                                                                                                            | -                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -    | 0                                                                  | 0                                                                                                            | -                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 92   | 92                                                                 | 92                                                                                                           | 92                                                                                                                                                         | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0    | 10                                                                 | 11                                                                                                           | 46                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 54   | 717                                                                | 658                                                                                                          | 22                                                                                                                                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 3.5<br>EBL<br>50<br>50<br>0<br>Free<br>525<br># -<br>92<br>0<br>54 | 3.5<br>EBL EBT<br>50 660<br>50 660<br>0 0<br>Free Free<br>525 -<br># - 00<br>- 00<br>92 92<br>0 10<br>54 717 | 3.5   EBL EBT WBT   1 1 1   50 660 605   50 660 605   50 660 605   0 0 0   Free Free Free   - None -   525 - -   # - 0 0   92 92 92   0 10 11   54 717 658 | 3.5       EBL     EBT     WBT     WBR       Image: Constraint of the stress | 3.5       EBL     EBT     WBT     WBR     SBL       Image: Constraint of the stress of the | 3.5       EBL     EBT     WBT     WBR     SBL     SBR       *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     * |

| Major/Minor          | Major1 | Majo | or2 | N | Minor2 |     |  |
|----------------------|--------|------|-----|---|--------|-----|--|
| Conflicting Flow All | 680    | 0    | -   | 0 | 1483   | 658 |  |
| Stage 1              | -      | -    | -   | - | 658    | -   |  |
| Stage 2              | -      | -    | -   | - | 825    | -   |  |
| Critical Hdwy        | 4.1    | -    | -   | - | 6.53   | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -    | -   | - | 5.53   | -   |  |
| Critical Hdwy Stg 2  | -      | -    | -   | - | 5.53   | -   |  |
| Follow-up Hdwy       | 2.2    | -    | -   | - | 3.617  | 3.3 |  |
| Pot Cap-1 Maneuver   | 922    | -    | -   | - | 130    | 468 |  |
| Stage 1              | -      | -    | -   | - | 495    | -   |  |
| Stage 2              | -      | -    | -   | - | 412    | -   |  |
| Platoon blocked, %   |        | -    | -   | - |        |     |  |
| Mov Cap-1 Maneuver   | 922    | -    | -   | - | 122    | 468 |  |
| Mov Cap-2 Maneuver   | • -    | -    | -   | - | 122    | -   |  |
| Stage 1              | -      | -    | -   | - | 466    | -   |  |
| Stage 2              | -      | -    | -   | - | 412    | -   |  |
|                      |        |      |     |   |        |     |  |

| Approach             | EB  | WB | SB   |  |
|----------------------|-----|----|------|--|
| HCM Control Delay, s | 0.6 | 0  | 26.8 |  |
| HCM LOS              |     |    | D    |  |

| Minor Lane/Major Mvmt | EBL   | EBT | WBT | WBR SBL | n1  |
|-----------------------|-------|-----|-----|---------|-----|
| Capacity (veh/h)      | 922   | -   | -   | - 3     | 56  |
| HCM Lane V/C Ratio    | 0.059 | -   | -   | - 0.    | 55  |
| HCM Control Delay (s) | 9.1   | -   | -   | - 26    | 6.8 |
| HCM Lane LOS          | А     | -   | -   | -       | D   |
| HCM 95th %tile Q(veh) | 0.2   | -   | -   | - 3     | 5.2 |

| Intersection           |        |      |      |      |      |      |
|------------------------|--------|------|------|------|------|------|
| Int Delay, s/veh       | 2.7    |      |      |      |      |      |
| ••                     |        |      |      |      |      |      |
| Movement               | EBT    | EBR  | WBL  | WBI  | NBL  | NBR  |
| Lane Configurations    | Þ      |      |      | ৰ্ন  | Y    |      |
| Traffic Vol, veh/h     | 655    | 25   | 5    | 550  | 75   | 5    |
| Future Vol, veh/h      | 655    | 25   | 5    | 550  | 75   | 5    |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free   | Free | Free | Free | Stop | Stop |
| RT Channelized         | -      | None | -    | None | -    | None |
| Storage Length         | -      | -    | -    | -    | 0    | -    |
| Veh in Median Storage  | e, # 0 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0      | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 92     | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles. %      | 10     | 0    | 0    | 14   | 0    | 0    |
| Mymt Flow              | 712    | 27   | 5    | 598  | 82   | 5    |
|                        |        |      | •    |      |      | •    |

| Major/Minor          | Major1 | N | lajor2 | ľ | /linor1 |     |  |
|----------------------|--------|---|--------|---|---------|-----|--|
| Conflicting Flow All | 0      | 0 | 739    | 0 | 1334    | 726 |  |
| Stage 1              | -      | - | -      | - | 726     | -   |  |
| Stage 2              | -      | - | -      | - | 608     | -   |  |
| Critical Hdwy        | -      | - | 4.1    | - | 6.4     | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | -      | - | 5.4     | -   |  |
| Critical Hdwy Stg 2  | -      | - | -      | - | 5.4     | -   |  |
| Follow-up Hdwy       | -      | - | 2.2    | - | 3.5     | 3.3 |  |
| Pot Cap-1 Maneuver   | -      | - | 876    | - | 171     | 428 |  |
| Stage 1              | -      | - | -      | - | 483     | -   |  |
| Stage 2              | -      | - | -      | - | 547     | -   |  |
| Platoon blocked, %   | -      | - |        | - |         |     |  |
| Mov Cap-1 Maneuve    | r -    | - | 876    | - | 169     | 428 |  |
| Mov Cap-2 Maneuve    | r -    | - | -      | - | 169     | -   |  |
| Stage 1              | -      | - | -      | - | 479     | -   |  |
| Stage 2              | -      | - | -      | - | 547     | -   |  |
|                      |        |   |        |   |         |     |  |

| Approach             | EB | WB  | NB   |
|----------------------|----|-----|------|
| HCM Control Delay, s | 0  | 0.1 | 43.9 |
| HCM LOS              |    |     | Е    |

| Minor Lane/Major Mvmt | NBLn1 | EBT | EBR | WBL   | WBT |  |
|-----------------------|-------|-----|-----|-------|-----|--|
| Capacity (veh/h)      | 176   | -   | -   | 876   | -   |  |
| HCM Lane V/C Ratio    | 0.494 | -   | -   | 0.006 | -   |  |
| HCM Control Delay (s) | 43.9  | -   | -   | 9.1   | 0   |  |
| HCM Lane LOS          | E     | -   | -   | Α     | Α   |  |
| HCM 95th %tile Q(veh) | 2.4   | -   | -   | 0     | -   |  |

| i |     |     |      |   |
|---|-----|-----|------|---|
|   | nte | rse | CTIC | n |
| L | THU | 100 | Olic |   |

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1     | •    | 1    | 1    | •    | 1    |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 10    | 610  | 40   | 60   | 500  | 5    | 45   | 30   | 90   | 5    | 30   | 10   |
| Future Vol, veh/h      | 10    | 610  | 40   | 60   | 500  | 5    | 45   | 30   | 90   | 5    | 30   | 10   |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -     | -    | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length         | 625   | -    | 625  | 700  | -    | 600  | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0     | 10   | 27   | 4    | 12   | 0    | 27   | 6    | 3    | 0    | 23   | 0    |
| Mvmt Flow              | 11    | 663  | 43   | 65   | 543  | 5    | 49   | 33   | 98   | 5    | 33   | 11   |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   | Μ   | lajor2 |   |   | Minor1 |       | Ν     | Ainor2 |       |     |  |
|----------------------|--------|---|-----|--------|---|---|--------|-------|-------|--------|-------|-----|--|
| Conflicting Flow All | 548    | 0 | 0   | 706    | 0 | 0 | 1383   | 1363  | 663   | 1445   | 1401  | 543 |  |
| Stage 1              | -      | - | -   | -      | - | - | 685    | 685   | -     | 673    | 673   | -   |  |
| Stage 2              | -      | - | -   | -      | - | - | 698    | 678   | -     | 772    | 728   | -   |  |
| Critical Hdwy        | 4.1    | - | -   | 4.14   | - | - | 7.37   | 6.56  | 6.23  | 7.1    | 6.73  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | -   | -      | - | - | 6.37   | 5.56  | -     | 6.1    | 5.73  | -   |  |
| Critical Hdwy Stg 2  | -      | - | -   | -      | - | - | 6.37   | 5.56  | -     | 6.1    | 5.73  | -   |  |
| Follow-up Hdwy       | 2.2    | - | - 1 | 2.236  | - | - | 3.743  | 4.054 | 3.327 | 3.5    | 4.207 | 3.3 |  |
| Pot Cap-1 Maneuver   | 1032   | - | -   | 883    | - | - | 107    | 145   | 459   | 111    | 127   | 544 |  |
| Stage 1              | -      | - | -   | -      | - | - | 400    | 442   | -     | 448    | 423   | -   |  |
| Stage 2              | -      | - | -   | -      | - | - | 393    | 446   | -     | 395    | 399   | -   |  |
| Platoon blocked, %   |        | - | -   |        | - | - |        |       |       |        |       |     |  |
| Mov Cap-1 Maneuver   | 1032   | - | -   | 883    | - | - | 77     | 133   | 459   | 66     | 116   | 544 |  |
| Mov Cap-2 Maneuver   | -      | - | -   | -      | - | - | 77     | 133   | -     | 66     | 116   | -   |  |
| Stage 1              | -      | - | -   | -      | - | - | 396    | 437   | -     | 443    | 392   | -   |  |
| Stage 2              | -      | - | -   | -      | - | - | 327    | 413   | -     | 285    | 395   | -   |  |
|                      |        |   |     |        |   |   |        |       |       |        |       |     |  |

| Approach             | EB  | WB | NB    | SB   |  |
|----------------------|-----|----|-------|------|--|
| HCM Control Delay, s | 0.1 | 1  | 154.1 | 49.5 |  |
| HCM LOS              |     |    | F     | E    |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR \$ | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|-------|
| Capacity (veh/h)      | 164   | 1032  | -   | -   | 883   | -   | -      | 128   |
| HCM Lane V/C Ratio    | 1.094 | 0.011 | -   | -   | 0.074 | -   | -      | 0.382 |
| HCM Control Delay (s) | 154.1 | 8.5   | -   | -   | 9.4   | -   | -      | 49.5  |
| HCM Lane LOS          | F     | А     | -   | -   | А     | -   | -      | Е     |
| HCM 95th %tile Q(veh) | 9.2   | 0     | -   | -   | 0.2   | -   | -      | 1.6   |



#### F.2. 2040 PM No Action

## HCM 6th Signalized Intersection Summary 1: McConnell Dr/Stone Canyon Dr & SH 66

10/07/2019

|                                | 4    | X    | 2    | 5    | ×    | ť    | 3    | *    | ~    | 6    | ¥    | ×    |
|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Movement                       | SEL  | SET  | SER  | NWL  | NWT  | NWR  | NEL  | NET  | NER  | SWL  | SWT  | SWR  |
| Lane Configurations            | 1    | **   | 1    | 5    | **   | 1    | 7    | £    |      | 5    | 1.   |      |
| Traffic Volume (veh/h)         | 30   | 990  | 15   | 110  | 885  | 40   | 15   | 10   | 95   | 30   | 10   | 30   |
| Future Volume (veh/h)          | 30   | 990  | 15   | 110  | 885  | 40   | 15   | 10   | 95   | 30   | 10   | 30   |
| Initial Q (Qb), veh            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)            | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach          |      | No   |      |      | No   |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln         | 1870 | 1826 | 1870 | 1870 | 1826 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h           | 33   | 1076 | 16   | 120  | 962  | 43   | 16   | 11   | 103  | 33   | 11   | 33   |
| Peak Hour Factor               | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %           | 2    | 5    | 2    | 2    | 5    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                     | 314  | 938  | 429  | 483  | 1954 | 893  | 358  | 26   | 242  | 293  | 68   | 205  |
| Arrive On Green                | 0.27 | 0.27 | 0.27 | 0.18 | 0.56 | 0.56 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
| Sat Flow, veh/h                | 561  | 3469 | 1585 | 1781 | 3469 | 1585 | 1362 | 155  | 1454 | 1279 | 412  | 1236 |
| Grp Volume(v), veh/h           | 33   | 1076 | 16   | 120  | 962  | 43   | 16   | 0    | 114  | 33   | 0    | 44   |
| Grp Sat Flow(s).veh/h/ln       | 561  | 1735 | 1585 | 1781 | 1735 | 1585 | 1362 | 0    | 1609 | 1279 | 0    | 1648 |
| Q Serve(q s), s                | 2.0  | 12.0 | 0.3  | 1.6  | 7.4  | 0.5  | 0.5  | 0.0  | 2.8  | 1.1  | 0.0  | 1.0  |
| Cycle Q Clear(g_c), s          | 2.0  | 12.0 | 0.3  | 1.6  | 7.4  | 0.5  | 1.5  | 0.0  | 2.8  | 3.9  | 0.0  | 1.0  |
| Prop In Lane                   | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.90 | 1.00 |      | 0.75 |
| Lane Grp Cap(c), veh/h         | 314  | 938  | 429  | 483  | 1954 | 893  | 358  | 0    | 267  | 293  | 0    | 274  |
| V/C Ratio(X)                   | 0.11 | 1.15 | 0.04 | 0.25 | 0.49 | 0.05 | 0.04 | 0.00 | 0.43 | 0.11 | 0.00 | 0.16 |
| Avail Cap(c a), veh/h          | 314  | 938  | 429  | 483  | 1954 | 893  | 377  | 0    | 290  | 311  | 0    | 297  |
| HCM Platoon Ratio              | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh       | 12.5 | 16.2 | 11.9 | 8.3  | 5.9  | 4.3  | 16.5 | 0.0  | 16.6 | 18.3 | 0.0  | 15.8 |
| Incr Delay (d2), s/veh         | 0.2  | 78.7 | 0.1  | 0.3  | 0.3  | 0.0  | 0.1  | 0.0  | 1.5  | 0.2  | 0.0  | 0.4  |
| Initial Q Delav(d3).s/veh      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%).veh/ln       | 0.2  | 13.6 | 0.1  | 0.3  | 1.1  | 0.1  | 0.1  | 0.0  | 1.0  | 0.3  | 0.0  | 0.4  |
| Unsig. Movement Delay, s/veh   | -    |      |      |      |      | -    | -    |      |      |      |      | -    |
| LnGrp Delav(d).s/veh           | 12.8 | 94.9 | 12.0 | 8.5  | 6.1  | 4.4  | 16.5 | 0.0  | 18.1 | 18.6 | 0.0  | 16.2 |
| LnGrp LOS                      | В    | F    | В    | A    | Α    | А    | В    | A    | В    | В    | A    | В    |
| Approach Vol. veh/h            |      | 1125 |      |      | 1125 |      |      | 130  |      |      | 77   |      |
| Approach Delay, s/yeh          |      | 91.3 |      |      | 6.3  |      |      | 17.9 |      |      | 17.2 |      |
| Approach LOS                   |      | F    |      |      | A    |      |      | B    |      |      | B    |      |
| Timer Assigned Phs             | 1    | ว    |      | Λ    |      | 6    |      | -    |      |      | _    |      |
| Timer - Assigned Fits          | 12.0 | 19.0 |      | 12 / |      | 21.0 |      | 12.4 |      |      |      |      |
| Change Deried (V Be)           | 13.0 | 10.0 |      | 13.4 |      | 51.0 |      | 13.4 |      |      |      |      |
| Change Period (1+Rc), S        | 5.0  | 10.0 |      | 0.0  |      | 0.0  |      | 0.0  |      |      |      |      |
| Max Green Setting (Gmax), s    | 8.0  | 12.0 |      | 8.0  |      | 25.0 |      | 8.0  |      |      |      |      |
| iviax Q Clear Time (g_C+I1), s | 3.0  | 14.0 |      | 5.9  |      | 9.4  |      | 4.8  |      |      |      |      |
| Green Ext Time (p_C), s        | 0.1  | 0.0  |      | 0.1  |      | 7.4  |      | 0.2  |      |      |      |      |
| Intersection Summary           |      |      |      |      |      |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay             |      |      | 46.2 |      |      |      |      |      |      |      |      |      |
| HCM 6th LOS                    |      |      | D    |      |      |      |      |      |      |      |      |      |

#### Notes

User approved pedestrian interval to be less than phase max green.

## HCM Signalized Intersection Capacity Analysis 2: US 36 & SH 66

|                               | ٨          | -    | $\mathbf{\hat{z}}$ | 4    |            | *          | 1       | Ť     | 1    | 5     | Ļ     | ~    |
|-------------------------------|------------|------|--------------------|------|------------|------------|---------|-------|------|-------|-------|------|
| Movement                      | EBL        | EBT  | EBR                | WBL  | WBT        | WBR        | NBL     | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations           | 1          | ††   | 1                  | 1    | 14         |            | 5       | र्स   | 1    |       | 4     |      |
| Traffic Volume (vph)          | 25         | 340  | 360                | 60   | 490        | 30         | 490     | 35    | 365  | 40    | 50    | 60   |
| Future Volume (vph)           | 25         | 340  | 360                | 60   | 490        | 30         | 490     | 35    | 365  | 40    | 50    | 60   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900               | 1900 | 1900       | 1900       | 1900    | 1900  | 1900 | 1900  | 1900  | 1900 |
| Total Lost time (s)           | 6.0        | 6.0  | 6.0                | 6.0  | 6.0        |            | 6.0     | 6.0   | 6.0  |       | 6.0   |      |
| Lane Util. Factor             | 1.00       | 0.95 | 1.00               | 1.00 | 0.95       |            | 0.95    | 0.95  | 1.00 |       | 1.00  |      |
| Frt                           | 1.00       | 1.00 | 0.85               | 1.00 | 0.99       |            | 1.00    | 1.00  | 0.85 |       | 0.95  |      |
| Flt Protected                 | 0.95       | 1.00 | 1.00               | 0.95 | 1.00       |            | 0.95    | 0.96  | 1.00 |       | 0.99  |      |
| Satd. Flow (prot)             | 1624       | 3185 | 1425               | 1593 | 3104       |            | 1442    | 1468  | 1358 |       | 1596  |      |
| Flt Permitted                 | 0.34       | 1.00 | 1.00               | 0.52 | 1.00       |            | 0.95    | 0.96  | 1.00 |       | 0.99  |      |
| Satd. Flow (perm)             | 589        | 3185 | 1425               | 874  | 3104       |            | 1442    | 1468  | 1358 |       | 1596  |      |
| Peak-hour factor, PHF         | 0.92       | 0.92 | 0.92               | 0.92 | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 |
| Adj. Flow (vph)               | 27         | 370  | 391                | 65   | 533        | 33         | 533     | 38    | 397  | 43    | 54    | 65   |
| RTOR Reduction (vph)          | 0          | 0    | 281                | 0    | 5          | 0          | 0       | 0     | 224  | 0     | 27    | 0    |
| Lane Group Flow (vph)         | 27         | 370  | 110                | 65   | 561        | 0          | 282     | 289   | 173  | 0     | 135   | 0    |
| Heavy Vehicles (%)            | 0%         | 2%   | 2%                 | 2%   | 4%         | 0%         | 7%      | 0%    | 7%   | 0%    | 0%    | 0%   |
| Turn Type                     | Perm       | NA   | Perm               | Perm | NA         |            | Split   | NA    | Perm | Split | NA    |      |
| Protected Phases              |            | 2    |                    |      | 6          |            | 4       | 4     |      | 8     | 8     |      |
| Permitted Phases              | 2          |      | 2                  | 6    |            |            |         |       | 4    |       |       |      |
| Actuated Green, G (s)         | 20.6       | 20.6 | 20.6               | 20.6 | 20.6       |            | 22.6    | 22.6  | 22.6 |       | 12.1  |      |
| Effective Green, g (s)        | 20.6       | 20.6 | 20.6               | 20.6 | 20.6       |            | 22.6    | 22.6  | 22.6 |       | 12.1  |      |
| Actuated g/C Ratio            | 0.28       | 0.28 | 0.28               | 0.28 | 0.28       |            | 0.31    | 0.31  | 0.31 |       | 0.17  |      |
| Clearance Time (s)            | 6.0        | 6.0  | 6.0                | 6.0  | 6.0        |            | 6.0     | 6.0   | 6.0  |       | 6.0   |      |
| Vehicle Extension (s)         | 4.0        | 4.0  | 4.0                | 4.0  | 4.0        |            | 4.0     | 4.0   | 4.0  |       | 4.0   |      |
| Lane Grp Cap (vph)            | 165        | 895  | 400                | 245  | 872        |            | 444     | 452   | 418  |       | 263   |      |
| v/s Ratio Prot                |            | 0.12 |                    |      | c0.18      |            | 0.20    | c0.20 |      |       | c0.08 |      |
| v/s Ratio Perm                | 0.05       |      | 0.08               | 0.07 |            |            |         |       | 0.13 |       |       |      |
| v/c Ratio                     | 0.16       | 0.41 | 0.27               | 0.27 | 0.64       |            | 0.64    | 0.64  | 0.41 |       | 0.51  |      |
| Uniform Delay, d1             | 19.9       | 21.4 | 20.5               | 20.5 | 23.1       |            | 21.8    | 21.8  | 20.1 |       | 27.9  |      |
| Progression Factor            | 1.00       | 1.00 | 1.00               | 1.00 | 1.00       |            | 1.00    | 1.00  | 1.00 |       | 1.00  |      |
| Incremental Delay, d2         | 0.6        | 0.4  | 0.5                | 0.8  | 1.8        |            | 3.3     | 3.3   | 0.9  |       | 2.3   |      |
| Delay (s)                     | 20.5       | 21.9 | 21.0               | 21.3 | 25.0       |            | 25.1    | 25.2  | 21.0 |       | 30.2  |      |
| Level of Service              | С          | С    | С                  | С    | С          |            | С       | С     | С    |       | С     |      |
| Approach Delay (s)            |            | 21.4 |                    |      | 24.6       |            |         | 23.5  |      |       | 30.2  |      |
| Approach LOS                  |            | С    |                    |      | С          |            |         | С     |      |       | С     |      |
| Intersection Summary          |            |      |                    |      |            |            |         |       |      |       |       |      |
| HCM 2000 Control Delay        |            |      | 23.5               | Н    | CM 2000    | Level of S | Service |       | С    |       |       |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.61               |      |            |            |         |       |      |       |       |      |
| Actuated Cycle Length (s)     |            |      | 73.3               | S    | um of lost | time (s)   |         |       | 18.0 |       |       |      |
| Intersection Capacity Utiliza | tion       |      | 62.2%              | IC   | U Level o  | of Service |         |       | В    |       |       |      |
| Analysis Period (min)         |            |      | 15                 |      |            |            |         |       |      |       |       |      |
| c Critical Lane Group         |            |      |                    |      |            |            |         |       |      |       |       |      |

# HCM 6th Signalized Intersection Summary 4: N 75th St & SH 66

|                                | ٠    |          | $\mathbf{\hat{v}}$ | 4    | +    | •    | 1    | Ť    | 1    | 5    | Ļ    | ~    |
|--------------------------------|------|----------|--------------------|------|------|------|------|------|------|------|------|------|
| Movement                       | EBL  | EBT      | EBR                | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations            | 5    | <b>↑</b> | 1                  | 5    | •    | 1    |      | 4.   |      |      | 4.   |      |
| Traffic Volume (veh/h)         | 80   | 960      | 95                 | 55   | 425  | 10   | 135  | 175  | 285  | 5    | 15   | 15   |
| Future Volume (veh/h)          | 80   | 960      | 95                 | 55   | 425  | 10   | 135  | 175  | 285  | 5    | 15   | 15   |
| Initial Q (Qb), veh            | 0    | 0        | 0                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A pbT)            | 1.00 |          | 1.00               | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj               | 1.00 | 1.00     | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach          |      | No       |                    |      | No   |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln         | 1737 | 1856     | 1900               | 1870 | 1826 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Adj Flow Rate, veh/h           | 87   | 1043     | 103                | 60   | 462  | 11   | 147  | 190  | 0    | 5    | 16   | 0    |
| Peak Hour Factor               | 0.92 | 0.92     | 0.92               | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %           | 11   | 3        | 0                  | 2    | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Cap, veh/h                     | 505  | 1009     | 876                | 175  | 980  | 864  | 213  | 224  |      | 108  | 319  |      |
| Arrive On Green                | 0.06 | 0.54     | 0.54               | 0.06 | 0.54 | 0.54 | 0.23 | 0.23 | 0.00 | 0.23 | 0.23 | 0.00 |
| Sat Flow, veh/h                | 1654 | 1856     | 1610               | 1781 | 1826 | 1610 | 694  | 971  | 0    | 272  | 1382 | 0    |
| Grp Volume(v), veh/h           | 87   | 1043     | 103                | 60   | 462  | 11   | 337  | 0    | 0    | 21   | 0    | 0    |
| Grp Sat Flow(s).veh/h/ln       | 1654 | 1856     | 1610               | 1781 | 1826 | 1610 | 1665 | 0    | 0    | 1654 | 0    | 0    |
| Q Serve(q s), s                | 2.2  | 53.5     | 3.1                | 1.4  | 15.4 | 0.3  | 18.3 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Cycle Q Clear(g_c), s          | 2.2  | 53.5     | 3.1                | 1.4  | 15.4 | 0.3  | 19.2 | 0.0  | 0.0  | 0.8  | 0.0  | 0.0  |
| Prop In Lane                   | 1.00 |          | 1.00               | 1.00 |      | 1.00 | 0.44 |      | 0.00 | 0.24 |      | 0.00 |
| Lane Grp Cap(c), veh/h         | 505  | 1009     | 876                | 175  | 980  | 864  | 437  | 0    |      | 427  | 0    |      |
| V/C Ratio(X)                   | 0.17 | 1.03     | 0.12               | 0.34 | 0.47 | 0.01 | 0.77 | 0.00 |      | 0.05 | 0.00 |      |
| Avail Cap(c a), veh/h          | 517  | 1009     | 876                | 200  | 991  | 874  | 610  | 0    |      | 602  | 0    |      |
| HCM Platoon Ratio              | 1.00 | 1.00     | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)             | 1.00 | 1.00     | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| Uniform Delay (d), s/veh       | 9.6  | 22.4     | 10.9               | 22.6 | 14.1 | 10.6 | 36.4 | 0.0  | 0.0  | 29.4 | 0.0  | 0.0  |
| Incr Delay (d2), s/veh         | 0.2  | 37.2     | 0.1                | 1.1  | 0.4  | 0.0  | 4.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Initial Q Delav(d3).s/veh      | 0.0  | 0.0      | 0.0                | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln       | 0.7  | 29.6     | 1.0                | 0.7  | 5.6  | 0.1  | 8.1  | 0.0  | 0.0  | 0.4  | 0.0  | 0.0  |
| Unsig. Movement Delay, s/veh   |      |          |                    |      |      |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh           | 9.8  | 59.7     | 11.0               | 23.7 | 14.5 | 10.6 | 40.4 | 0.0  | 0.0  | 29.5 | 0.0  | 0.0  |
| LnGrp LOS                      | А    | F        | В                  | С    | В    | В    | D    | А    |      | С    | А    |      |
| Approach Vol. veh/h            |      | 1233     |                    |      | 533  |      |      | 337  | А    |      | 21   | A    |
| Approach Delay, s/veh          |      | 52.1     |                    |      | 15.4 |      |      | 40.4 |      |      | 29.5 |      |
| Approach LOS                   |      | D        |                    |      | В    |      |      | D    |      |      | С    |      |
| Timer - Assigned Phs           | 1    | 2        |                    | 4    | 5    | 6    |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc) s        | 10.1 | 60.5     |                    | 27.7 | 10.8 | 59.8 |      | 27.7 |      |      |      |      |
| Change Period (Y+Rc) s         | 4.5  | 7.0      |                    | 5.0  | 4.5  | 7.0  |      | 5.0  |      |      |      |      |
| Max Green Setting (Gmax) s     | 7.0  | 53.5     |                    | 33.0 | 7.1  | 53.4 |      | 33.0 |      |      |      |      |
| Max $O$ Clear Time (q. c+11) s | 3.4  | 55.5     |                    | 2.8  | 4.2  | 17.4 |      | 21.2 |      |      |      |      |
| Green Ext Time (n_c) s         | 0.0  | 0.0      |                    | 0.1  | 0.0  | 27   |      | 1.5  |      |      |      |      |
|                                | 0.0  | 0.0      |                    | 0.1  | 0.0  | 2.1  |      |      |      |      |      |      |
| Intersection Summary           |      |          | 40.0               |      |      |      |      |      |      |      |      |      |
| HUM 6th Utri Delay             |      |          | 40.8               |      |      |      |      |      |      |      |      |      |
| HUM 6th LUS                    |      |          | D                  |      |      |      |      |      |      |      |      |      |

#### Notes

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1    | 1    | 1    | 1    | 1    | 1    |      | \$   |      |      | \$   |      |
| Traffic Vol, veh/h     | 35   | 1165 | 30   | 20   | 480  | 65   | 10   | 5    | 10   | 20   | 5    | 5    |
| Future Vol, veh/h      | 35   | 1165 | 30   | 20   | 480  | 65   | 10   | 5    | 10   | 20   | 5    | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | Stop | -    | -    | Stop |
| Storage Length         | 475  | -    | 475  | 325  | -    | 325  | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0    | 4    | 0    | 0    | 4    | 0    | 0    | 0    | 4    | 0    | 0    | 0    |
| Mvmt Flow              | 38   | 1266 | 33   | 22   | 522  | 71   | 11   | 5    | 11   | 22   | 5    | 5    |

| Major/Minor          | Major1 |   | N | lajor2 |   | Ν | /linor1 |      | ľ     | Minor2 |      |     |  |
|----------------------|--------|---|---|--------|---|---|---------|------|-------|--------|------|-----|--|
| Conflicting Flow All | 593    | 0 | 0 | 1299   | 0 | 0 | 1946    | 1979 | 1266  | 1927   | 1941 | 522 |  |
| Stage 1              | -      | - | - | -      | - | - | 1342    | 1342 | -     | 566    | 566  | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 604     | 637  | -     | 1361   | 1375 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1     | 6.5  | 6.24  | 7.1    | 6.5  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1     | 5.5  | -     | 6.1    | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1     | 5.5  | -     | 6.1    | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5     | 4    | 3.336 | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 993    | - | - | 540    | - | - | 49      | 62   | 204   | 51     | 66   | 559 |  |
| Stage 1              | -      | - | - | -      | - | - | 190     | 223  | -     | 513    | 511  | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 489     | 475  | -     | 185    | 215  | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |         |      |       |        |      |     |  |
| Mov Cap-1 Maneuver   | 993    | - | - | 540    | - | - | 43      | 57   | 204   | 42     | 61   | 559 |  |
| Mov Cap-2 Maneuver   | • -    | - | - | -      | - | - | 43      | 57   | -     | 42     | 61   | -   |  |
| Stage 1              | -      | - | - | -      | - | - | 183     | 215  | -     | 494    | 490  | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 459     | 456  | -     | 164    | 207  | -   |  |
|                      |        |   |   |        |   |   |         |      |       |        |      |     |  |

| Approach             | EB  | WB  | NB   | SB    |  |
|----------------------|-----|-----|------|-------|--|
| HCM Control Delay, s | 0.2 | 0.4 | 89.5 | 148.5 |  |
| HCM LOS              |     |     | F    | F     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL  | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|-------|-----|-----|------|-----|-------|-------|--|
| Capacity (veh/h)      | 68    | 993   | -   | -   | 540  | -   | -     | 53    |  |
| HCM Lane V/C Ratio    | 0.4   | 0.038 | -   | -   | 0.04 | -   | -     | 0.615 |  |
| HCM Control Delay (s) | 89.5  | 8.8   | -   | -   | 11.9 | -   | -     | 148.5 |  |
| HCM Lane LOS          | F     | А     | -   | -   | В    | -   | -     | F     |  |
| HCM 95th %tile Q(veh) | 1.5   | 0.1   | -   | -   | 0.1  | -   | -     | 2.4   |  |
| Intersection           |      |      |      |            |      |      |
|------------------------|------|------|------|------------|------|------|
| Int Delay, s/veh       | 0.6  |      |      |            |      |      |
| Maxamant               | ГОТ  |      |      |            | NDI  |      |
| wovement               | EBT  | EBK  | VVBL | <b>WRI</b> | INBL | NBK  |
| Lane Configurations    | +    | 1    | 1    | +          | 5    | 1    |
| Traffic Vol, veh/h     | 1175 | 20   | 60   | 560        | 5    | 5    |
| Future Vol, veh/h      | 1175 | 20   | 60   | 560        | 5    | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0          | 0    | 0    |
| Sign Control           | Free | Free | Free | Free       | Stop | Stop |
| RT Channelized         | -    | None | -    | None       | -    | Stop |
| Storage Length         | -    | 0    | 575  | -          | 150  | 0    |
| Veh in Median Storage  | e,#0 | -    | -    | 0          | 0    | -    |
| Grade, %               | 0    | -    | -    | 0          | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92         | 92   | 92   |
| Heavy Vehicles. %      | 2    | 2    | 2    | 2          | 2    | 2    |
|                        |      |      |      |            |      |      |

| Major/Minor          | Major1 | Μ   | lajor2 |   | Minor1 |       |  |
|----------------------|--------|-----|--------|---|--------|-------|--|
| Conflicting Flow All | 0      | 0   | 1299   | 0 | 2016   | 1277  |  |
| Stage 1              | -      | -   | -      | - | 1277   | -     |  |
| Stage 2              | -      | -   | -      | - | 739    | -     |  |
| Critical Hdwy        | -      | -   | 4.12   | - | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1  | -      | -   | -      | - | 5.42   | -     |  |
| Critical Hdwy Stg 2  | -      | -   | -      | - | 5.42   | -     |  |
| Follow-up Hdwy       | -      | - 2 | 2.218  | - | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver   | -      | -   | 533    | - | 64     | 203   |  |
| Stage 1              | -      | -   | -      | - | 262    | -     |  |
| Stage 2              | -      | -   | -      | - | 472    | -     |  |
| Platoon blocked, %   | -      | -   |        | - |        |       |  |
| Mov Cap-1 Maneuve    | r -    | -   | 533    | - | 56     | 203   |  |
| Mov Cap-2 Maneuve    | r -    | -   | -      | - | 157    | -     |  |
| Stage 1              | -      | -   | -      | - | 230    | -     |  |
| Stage 2              | -      | -   | -      | - | 472    | -     |  |
|                      |        |     |        |   |        |       |  |

| Approach             | EB | WB  | NB |
|----------------------|----|-----|----|
| HCM Control Delay, s | 0  | 1.2 | 26 |
| HCM LOS              |    |     | D  |

| Minor Lane/Major Mvmt | NBLn1 I | NBLn2 | EBT | EBR | WBL   | WBT |
|-----------------------|---------|-------|-----|-----|-------|-----|
| Capacity (veh/h)      | 157     | 203   | -   | -   | 533   | -   |
| HCM Lane V/C Ratio    | 0.035   | 0.027 | -   | -   | 0.122 | -   |
| HCM Control Delay (s) | 28.8    | 23.2  | -   | -   | 12.7  | -   |
| HCM Lane LOS          | D       | С     | -   | -   | В     | -   |
| HCM 95th %tile Q(veh) | 0.1     | 0.1   | -   | -   | 0.4   | -   |

| 10/07/2019 | 9 |
|------------|---|
|------------|---|

| Intersection           |       |          |      |      |      |      |
|------------------------|-------|----------|------|------|------|------|
| Int Delay, s/veh       | 0.8   |          |      |      |      |      |
| Movement               | EBL   | EBT      | WBT  | WBR  | SBL  | SBR  |
| Lane Configurations    | 1     | <b>↑</b> | ţ,   |      | Y    |      |
| Traffic Vol, veh/h     | 5     | 1195     | 615  | 30   | 15   | 5    |
| Future Vol, veh/h      | 5     | 1195     | 615  | 30   | 15   | 5    |
| Conflicting Peds, #/hr | 0     | 0        | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free     | Free | Free | Stop | Stop |
| RT Channelized         | -     | None     | -    | None | -    | None |
| Storage Length         | 200   | -        | -    | -    | 0    | -    |
| Veh in Median Storage  | , # - | 0        | 0    | -    | 0    | -    |
| Grade, %               | -     | 0        | 0    | -    | 0    | -    |
| Peak Hour Factor       | 92    | 92       | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0     | 3        | 4    | 25   | 25   | 0    |
| Mvmt Flow              | 5     | 1299     | 668  | 33   | 16   | 5    |
|                        |       |          |      |      |      |      |

| Major/Minor          | Major1 | Maj | or2 | ľ | Minor2 |     |  |
|----------------------|--------|-----|-----|---|--------|-----|--|
| Conflicting Flow All | 701    | 0   | -   | 0 | 1994   | 685 |  |
| Stage 1              | -      | -   | -   | - | 685    | -   |  |
| Stage 2              | -      | -   | -   | - | 1309   | -   |  |
| Critical Hdwy        | 4.1    | -   | -   | - | 6.65   | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -   | -   | - | 5.65   | -   |  |
| Critical Hdwy Stg 2  | -      | -   | -   | - | 5.65   | -   |  |
| Follow-up Hdwy       | 2.2    | -   | -   | - | 3.725  | 3.3 |  |
| Pot Cap-1 Maneuver   | 905    | -   | -   | - | 57     | 452 |  |
| Stage 1              | -      | -   | -   | - | 460    | -   |  |
| Stage 2              | -      | -   | -   | - | 226    | -   |  |
| Platoon blocked, %   |        | -   | -   | - |        |     |  |
| Mov Cap-1 Maneuver   | 905    | -   | -   | - | 57     | 452 |  |
| Mov Cap-2 Maneuver   | • -    | -   | -   | - | 57     | -   |  |
| Stage 1              | -      | -   | -   | - | 457    | -   |  |
| Stage 2              | -      | -   | -   | - | 226    | -   |  |
|                      |        |     |     |   |        |     |  |

| Approach             | EB | WB | SB |  |
|----------------------|----|----|----|--|
| HCM Control Delay, s | 0  | 0  | 74 |  |
| HCM LOS              |    |    | F  |  |

| Minor Lane/Major Mvmt | EBL   | EBT | WBT | WBR SBLn1 |
|-----------------------|-------|-----|-----|-----------|
| Capacity (veh/h)      | 905   | -   | -   | - 73      |
| HCM Lane V/C Ratio    | 0.006 | -   | -   | - 0.298   |
| HCM Control Delay (s) | 9     | -   | -   | - 74      |
| HCM Lane LOS          | А     | -   | -   | - F       |
| HCM 95th %tile Q(veh) | 0     | -   | -   | - 1.1     |

### Intersection

Int Delay, s/veh

| Movement EB              | 3L | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|----|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations      |    | \$   |      |      | \$   |      |      | \$   |      |      | \$   |      |
| Traffic Vol, veh/h       | 5  | 1200 | 5    | 25   | 635  | 25   | 5    | 10   | 30   | 30   | 10   | 5    |
| Future Vol, veh/h        | 5  | 1200 | 5    | 25   | 635  | 25   | 5    | 10   | 30   | 30   | 10   | 5    |
| Conflicting Peds, #/hr   | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control Fre         | e  | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -  | -    | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length           | -  | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor 9       | 92 | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %        | 2  | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 5  | 1304 | 5    | 27   | 690  | 27   | 5    | 11   | 33   | 33   | 11   | 5    |

| Major/Minor          | Major1 |   | Major2  |   | Minor1  |       |       | Minor2 |       |       |  |
|----------------------|--------|---|---------|---|---------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 717    | 0 | 0 1309  | 0 | 0 2083  | 2088  | 1307  | 2097   | 2077  | 704   |  |
| Stage 1              | -      | - |         | - | - 1317  | 1317  | -     | 758    | 758   | -     |  |
| Stage 2              | -      | - |         | - | - 766   | 771   | -     | 1339   | 1319  | -     |  |
| Critical Hdwy        | 4.12   | - | - 4.12  | - | - 7.12  | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - 2.218 | - | - 3.518 | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 884    | - | - 529   | - | - 39    | 53    | 195   | 38     | 54    | 437   |  |
| Stage 1              | -      | - |         | - | - 194   | 227   | -     | 399    | 415   | -     |  |
| Stage 2              | -      | - |         | - | - 395   | 410   | -     | 188    | 227   | -     |  |
| Platoon blocked, %   |        | - | -       | - | -       |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 884    | - | - 529   | - | - 29    | 47    | 195   | ~ 24   | 48    | 437   |  |
| Mov Cap-2 Maneuver   | · _    | - |         | - | - 29    | 47    | -     | ~ 24   | 48    | -     |  |
| Stage 1              | -      | - |         | - | - 190   | 222   | -     | 391    | 380   | -     |  |
| Stage 2              | -      | - |         | - | - 347   | 375   | -     | 146    | 222   | -     |  |
|                      |        |   |         |   |         |       |       |        |       |       |  |

| Approach             | EB | WB  | NB   | SB       |  |
|----------------------|----|-----|------|----------|--|
| HCM Control Delay, s | 0  | 0.4 | 97.5 | \$ 566.4 |  |
| HCM LOS              |    |     | F    | F        |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR SE | 3Ln1 |      |  |  |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|------|------|--|--|
| Capacity (veh/h)      | 83    | 884   | -   | -   | 529   | -   | -      | 31   |      |  |  |
| HCM Lane V/C Ratio    | 0.589 | 0.006 | -   | -   | 0.051 | -   | - 1    | .578 |      |  |  |
| HCM Control Delay (s) | 97.5  | 9.1   | 0   | -   | 12.2  | 0   | -\$ 5  | 66.4 |      |  |  |
| HCM Lane LOS          | F     | А     | Α   | -   | В     | А   | -      | F    |      |  |  |
| HCM 95th %tile Q(veh) | 2.7   | 0     | -   | -   | 0.2   | -   | -      | 5.5  |      |  |  |
| Notes                 |       |       |     |     |       |     |        |      |      |  |  |
| 110163                |       |       |     | -   |       |     |        |      | <br> |  |  |

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

## HCM Signalized Intersection Capacity Analysis 9: 95th St/Hover Rd & SH 66

| 1 | 0/ | 0 | 7 | 2 | 0 | 19 |
|---|----|---|---|---|---|----|
|---|----|---|---|---|---|----|

|                               | ٨          | -     | $\mathbf{r}$ | 1     | +          | ×          | 1       | Ť     | 1     | 5     | ţ    | ~    |
|-------------------------------|------------|-------|--------------|-------|------------|------------|---------|-------|-------|-------|------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR        | NBL     | NBT   | NBR   | SBL   | SBT  | SBR  |
| Lane Configurations           | 5          | •     | 1            | 55    | •          | 1          | 5       | •     | 1     | 5     | 1.   |      |
| Traffic Volume (vph)          | 40         | 775   | 445          | 895   | 350        | 35         | 325     | 250   | 1585  | 35    | 130  | 10   |
| Future Volume (vph)           | 40         | 775   | 445          | 895   | 350        | 35         | 325     | 250   | 1585  | 35    | 130  | 10   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1800  | 1900       | 1900       | 1900    | 1900  | 1900  | 1900  | 1900 | 1900 |
| Total Lost time (s)           | 6.6        | 6.4   | 6.4          | 6.5   | 6.4        | 6.4        | 5.7     | 5.7   | 5.7   | 5.8   | 5.7  |      |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00         | 0.97  | 1.00       | 1.00       | 1.00    | 1.00  | 1.00  | 1.00  | 1.00 |      |
| Frt                           | 1.00       | 1.00  | 0.85         | 1.00  | 1.00       | 0.85       | 1.00    | 1.00  | 0.85  | 1.00  | 0.99 |      |
| Flt Protected                 | 0.95       | 1.00  | 1.00         | 0.95  | 1.00       | 1.00       | 0.95    | 1.00  | 1.00  | 0.95  | 1.00 |      |
| Satd. Flow (prot)             | 1805       | 1827  | 1599         | 3252  | 1792       | 1615       | 1752    | 1863  | 1553  | 1805  | 1877 |      |
| Flt Permitted                 | 0.54       | 1.00  | 1.00         | 0.95  | 1.00       | 1.00       | 0.51    | 1.00  | 1.00  | 0.59  | 1.00 |      |
| Satd. Flow (perm)             | 1019       | 1827  | 1599         | 3252  | 1792       | 1615       | 945     | 1863  | 1553  | 1125  | 1877 |      |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92         | 0.92  | 0.92       | 0.92       | 0.92    | 0.92  | 0.92  | 0.92  | 0.92 | 0.92 |
| Adj. Flow (vph)               | 43         | 842   | 484          | 973   | 380        | 38         | 353     | 272   | 1723  | 38    | 141  | 11   |
| RTOR Reduction (vph)          | 0          | 0     | 259          | 0     | 0          | 23         | 0       | 0     | 206   | 0     | 1    | 0    |
| Lane Group Flow (vph)         | 43         | 842   | 225          | 973   | 380        | 15         | 353     | 272   | 1517  | 38    | 151  | 0    |
| Heavy Vehicles (%)            | 0%         | 4%    | 1%           | 2%    | 6%         | 0%         | 3%      | 2%    | 4%    | 0%    | 0%   | 2%   |
| Turn Type                     | pm+pt      | NA    | Perm         | Prot  | NA         | Perm       | pm+pt   | NA    | Perm  | pm+pt | NA   |      |
| Protected Phases              | 7          | 4     |              | 3     | 8          |            | 5       | 2     |       | 1     | 6    |      |
| Permitted Phases              | 4          |       | 4            |       |            | 8          | 2       |       | 2     | 6     |      |      |
| Actuated Green, G (s)         | 44.4       | 41.2  | 41.2         | 21.5  | 59.4       | 59.4       | 69.3    | 60.3  | 60.3  | 43.0  | 39.8 |      |
| Effective Green, g (s)        | 44.4       | 41.2  | 41.2         | 21.5  | 59.4       | 59.4       | 69.3    | 60.3  | 60.3  | 43.0  | 39.8 |      |
| Actuated g/C Ratio            | 0.29       | 0.27  | 0.27         | 0.14  | 0.39       | 0.39       | 0.46    | 0.40  | 0.40  | 0.29  | 0.26 |      |
| Clearance Time (s)            | 6.6        | 6.4   | 6.4          | 6.5   | 6.4        | 6.4        | 5.7     | 5.7   | 5.7   | 5.8   | 5.7  |      |
| Vehicle Extension (s)         | 2.0        | 4.0   | 4.0          | 3.0   | 4.0        | 4.0        | 3.0     | 3.0   | 3.0   | 3.0   | 3.0  |      |
| Lane Grp Cap (vph)            | 317        | 499   | 437          | 464   | 706        | 636        | 562     | 745   | 621   | 335   | 496  |      |
| v/s Ratio Prot                | 0.00       | c0.46 |              | c0.30 | 0.21       |            | c0.10   | 0.15  |       | 0.00  | 0.08 |      |
| v/s Ratio Perm                | 0.04       |       | 0.14         |       |            | 0.01       | 0.19    |       | c0.98 | 0.03  |      |      |
| v/c Ratio                     | 0.14       | 1.69  | 0.51         | 2.10  | 0.54       | 0.02       | 0.63    | 0.37  | 2.44  | 0.11  | 0.30 |      |
| Uniform Delay, d1             | 38.4       | 54.7  | 46.2         | 64.5  | 35.1       | 27.9       | 28.0    | 31.7  | 45.1  | 39.3  | 44.3 |      |
| Progression Factor            | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       | 1.00       | 1.00    | 1.00  | 1.00  | 1.00  | 1.00 |      |
| Incremental Delay, d2         | 0.1        | 317.9 | 1.4          | 500.9 | 1.0        | 0.0        | 2.2     | 0.3   | 654.4 | 0.2   | 0.3  |      |
| Delay (s)                     | 38.4       | 372.6 | 47.6         | 565.5 | 36.1       | 27.9       | 30.2    | 32.0  | 699.5 | 39.4  | 44.7 |      |
| Level of Service              | D          | F     | D            | F     | D          | С          | С       | С     | F     | D     | D    |      |
| Approach Delay (s)            |            | 247.2 |              |       | 406.2      |            |         | 521.6 |       |       | 43.6 |      |
| Approach LOS                  |            | F     |              |       | F          |            |         | F     |       |       | D    |      |
| Intersection Summary          |            |       |              |       |            |            |         |       |       |       |      |      |
| HCM 2000 Control Delay        |            |       | 403.2        | H     | CM 2000    | Level of   | Service |       | F     |       |      |      |
| HCM 2000 Volume to Capac      | city ratio |       | 2.11         |       |            |            |         |       |       |       |      |      |
| Actuated Cycle Length (s)     |            |       | 150.6        | Si    | um of lost | t time (s) |         |       | 24.5  |       |      |      |
| Intersection Capacity Utiliza | tion       |       | 157.2%       | IC    | U Level o  | of Service | 9       |       | Н     |       |      |      |
| Analysis Period (min)         |            |       | 15           |       |            |            |         |       |       |       |      |      |
| c Critical Lane Group         |            |       |              |       |            |            |         |       |       |       |      |      |

|   |    |     |    |   | 12 |   |   |
|---|----|-----|----|---|----|---|---|
| n | tr | \r. | ~~ | 0 | п  | 2 | n |
|   |    |     | ъ. |   |    | U |   |
|   |    |     | ~~ |   | -  | - |   |

Int Delay, s/veh

| Movement               | EBL   | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT           | SBR  |
|------------------------|-------|----------|------|------|------|------|------|------|------|------|---------------|------|
| Lane Configurations    | 1     | <b>↑</b> | 1    | 1    | t,   |      |      | ৰ্শ  | 1    |      | <del>با</del> | 1    |
| Traffic Vol, veh/h     | 5     | 2390     | 5    | 110  | 1275 | 5    | 5    | 0    | 45   | 5    | 0             | 5    |
| Future Vol, veh/h      | 5     | 2390     | 5    | 110  | 1275 | 5    | 5    | 0    | 45   | 5    | 0             | 5    |
| Conflicting Peds, #/hr | 0     | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0             | 0    |
| Sign Control           | Free  | Free     | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop          | Stop |
| RT Channelized         | -     | -        | None | -    | -    | None | -    | -    | None | -    | -             | None |
| Storage Length         | 150   | -        | 0    | 150  | -    | -    | -    | -    | 125  | -    | -             | 75   |
| Veh in Median Storage  | , # - | 0        | -    | -    | 0    | -    | -    | 0    | -    | -    | 0             | -    |
| Grade, %               | -     | 0        | -    | -    | 0    | -    | -    | 0    | -    | -    | 0             | -    |
| Peak Hour Factor       | 92    | 92       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92            | 92   |
| Heavy Vehicles, %      | 2     | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2             | 2    |
| Mvmt Flow              | 5     | 2598     | 5    | 120  | 1386 | 5    | 5    | 0    | 49   | 5    | 0             | 5    |
|                        |       |          |      |      |      |      |      |      |      |      |               |      |

| Major/Minor          | Major1 |   | Major2  |   | Minor1  |       | I     | Minor2 |       |       |  |
|----------------------|--------|---|---------|---|---------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 1391   | 0 | 0 2603  | 0 | 0 4239  | 4239  | 2598  | 4264   | 4242  | 1389  |  |
| Stage 1              | -      | - |         | - | - 2608  | 2608  | -     | 1629   | 1629  | -     |  |
| Stage 2              | -      | - |         | - | - 1631  | 1631  | -     | 2635   | 2613  | -     |  |
| Critical Hdwy        | 4.12   | - | - 4.12  | - | - 7.12  | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - 2.218 | - | - 3.518 | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 492    | - | - 166   | - | - ~1    | 2     | ~ 32  | ~ 1    | 2     | 175   |  |
| Stage 1              | -      | - |         | - | - 34    | 51    | -     | 128    | 160   | -     |  |
| Stage 2              | -      | - |         | - | - 128   | 160   | -     | 32     | 50    | -     |  |
| Platoon blocked, %   |        | - | -       | - | -       |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 492    | - | - 166   | - | - 0     | 1     | ~ 32  | -      | 1     | 175   |  |
| Mov Cap-2 Maneuver   | -      | - |         | - | - 0     | 1     | -     | -      | 1     | -     |  |
| Stage 1              | -      | - |         | - | - 34    | 50    | -     | 127    | 44    | -     |  |
| Stage 2              | -      | - |         | - | - 34    | 44    | -     | -      | 50    | -     |  |
|                      |        |   |         |   |         |       |       |        |       |       |  |

| Approach             | EB | WB  | NB | SB |  |
|----------------------|----|-----|----|----|--|
| HCM Control Delay, s | 0  | 5.4 |    |    |  |
| HCM LOS              |    |     | -  | -  |  |

| Minor Lane/Major Mvmt | NBLn1 N | BLn2  | EBL   | EBT | EBR | WBL  | WBT | WBR SI | BLn1 S | BLn2  |
|-----------------------|---------|-------|-------|-----|-----|------|-----|--------|--------|-------|
| Capacity (veh/h)      | -       | 32    | 492   | -   | -   | 166  | -   | -      | -      | 175   |
| HCM Lane V/C Ratio    | - 1     | .529  | 0.011 | -   | -   | 0.72 | -   | -      | -      | 0.031 |
| HCM Control Delay (s) | -\$ 5   | 538.9 | 12.4  | -   | -   | 68.6 | -   | -      | -      | 26.2  |
| HCM Lane LOS          | -       | F     | В     | -   | -   | F    | -   | -      | -      | D     |
| HCM 95th %tile Q(veh) | -       | 5.5   | 0     | -   | -   | 4.4  | -   | -      | -      | 0.1   |
| NL (                  |         |       |       |     |     |      |     |        |        |       |

Notes

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

| 22.3 |                                                                                     |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBT  | EBR                                                                                 | WBL                                                                                                                                                                                                                                                                            | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                  | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •    | 1                                                                                   | 1                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2355 | 80                                                                                  | 155                                                                                                                                                                                                                                                                            | 1350                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2355 | 80                                                                                  | 155                                                                                                                                                                                                                                                                            | 1350                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0    | 0                                                                                   | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Free | Free                                                                                | Free                                                                                                                                                                                                                                                                           | Free                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | None                                                                                | -                                                                                                                                                                                                                                                                              | None                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | 250                                                                                 | 300                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                    | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ,# 0 | -                                                                                   | -                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0    | -                                                                                   | -                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 88   | 56                                                                                  | 63                                                                                                                                                                                                                                                                             | 91                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3    | 0                                                                                   | 1                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2676 | 143                                                                                 | 246                                                                                                                                                                                                                                                                            | 1484                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 22.3<br>EBT<br>↑<br>2355<br>2355<br>0<br>Free<br>-<br>, # 0<br>0<br>88<br>3<br>2676 | 22.3         EBT       EBR         ↑       *         2355       80         2355       80         0       0         Free       Free         -       None         -       250         ,#0       -         0       -         88       56         3       0         2676       143 | 22.3         EBT       EBR       WBL         ↑       ↑       ↑         2355       80       155         2355       80       155         2355       80       155         2355       80       155         0       0       0         Free       Free       Free         None       -       -         0       -       -         0       -       -         88       56       63         3       0       1         2676       143       246 | 22.3         EBT       EBR       WBL       WBT         *       *       *       *         2355       80       155       1350         2355       80       155       1350         2355       80       155       1350         2355       80       155       1350         0       0       0       0         Free       Free       Free       Free         -       None       -       None         -       250       300       -         # 0       -       -       0         0       -       -       0         8       56       63       91         3       0       1       3         2676       143       246       1484 | 22.3           EBT         EBR         WBL         WBT         NBL           ↑         ↑         ↑         ↑         ↑         ↑           2355         80         155         1350         35           2355         80         155         1350         35           2355         80         155         1350         35           0         0         0         0         0           Free         Free         Free         Stop           -         None         -         275           # 0         -         -         0         0           0         -         -         0         0           0         -         -         0         0           0         -         -         0         0           0         -         -         0         0           0         -         -         0         0           0         -         -         0         0           0         -         -         0         0           0         143         246         1484         56 |

| Major/Minor          | Major1 | Major2  | Minor1 |       |  |
|----------------------|--------|---------|--------|-------|--|
| Conflicting Flow All | 0      | 0 2819  | 0 4652 | 2676  |  |
| Stage 1              | -      |         | - 2676 | -     |  |
| Stage 2              | -      |         | - 1976 | -     |  |
| Critical Hdwy        | -      | - 4.11  | - 6.4  | 6.21  |  |
| Critical Hdwy Stg 1  | -      |         | - 5.4  | -     |  |
| Critical Hdwy Stg 2  | -      |         | - 5.4  | -     |  |
| Follow-up Hdwy       | -      | - 2.209 | - 3.5  | 3.309 |  |
| Pot Cap-1 Maneuver   | -      | - ~ 137 | - ~1   | ~ 29  |  |
| Stage 1              | -      |         | - ~ 52 | -     |  |
| Stage 2              | -      |         | - 119  | -     |  |
| Platoon blocked, %   | -      | -       | -      |       |  |
| Mov Cap-1 Maneuve    | r -    | - ~ 137 | - 0    | ~ 29  |  |
| Mov Cap-2 Maneuve    | r -    |         | - 0    | -     |  |
| Stage 1              | -      |         | - 0    | -     |  |
| Stage 2              | -      |         | - 119  | -     |  |
|                      |        |         |        |       |  |

| Approach             | EB | WB   | NB |
|----------------------|----|------|----|
| HCM Control Delay, s | 0  | 62.8 |    |
| HCM LOS              |    |      | -  |

| Minor Lane/Major Mvmt | NBLn1 NBLn2 | EBT | EBR WBL   | WBT |
|-----------------------|-------------|-----|-----------|-----|
| Capacity (veh/h)      | - 29        | -   | - ~137    | -   |
| HCM Lane V/C Ratio    | - 8.836     | -   | - 1.796   | -   |
| HCM Control Delay (s) | \$ 3790.3   | -   | -\$ 441.2 | -   |
| HCM Lane LOS          | - F         | -   | - F       | -   |
| HCM 95th %tile Q(veh) | - 31.5      | -   | - 18.6    | -   |
| <b>N</b> 1 <i>i</i>   |             |     |           |     |

### Notes

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

\*: All major volume in platoon

10/07/2019

| n | to | rc  | ^ | <b>ot</b> | inn | 1 |
|---|----|-----|---|-----------|-----|---|
|   |    | 1.5 | - |           |     |   |
|   |    | 10  | • | υı        |     |   |

Int Delay, s/veh

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1     | 1    | 1    | 1    | 1    | 1    |      | र्भ  | 1    |      | ्र   | 1    |
| Traffic Vol, veh/h     | 20    | 2490 | 50   | 35   | 1430 | 50   | 20   | 5    | 175  | 15   | 10   | 55   |
| Future Vol, veh/h      | 20    | 2490 | 50   | 35   | 1430 | 50   | 20   | 5    | 175  | 15   | 10   | 55   |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -     | -    | None | -    | -    | None | -    | -    | Stop | -    | -    | None |
| Storage Length         | 300   | -    | 300  | 325  | -    | 0    | -    | -    | 125  | -    | -    | 0    |
| Veh in Median Storage, | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 22    | 2707 | 54   | 38   | 1554 | 54   | 22   | 5    | 190  | 16   | 11   | 60   |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   | Major2  |     | Minor1  |       | l     | Minor2 |       |       |  |
|----------------------|--------|---|---------|-----|---------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 1608   | 0 | 0 2761  | 0 ( | ) 4444  | 4435  | 2707  | 4411   | 4435  | 1554  |  |
| Stage 1              | -      | - |         | -   | - 2751  | 2751  | -     | 1630   | 1630  | -     |  |
| Stage 2              | -      | - |         | -   | - 1693  | 1684  | -     | 2781   | 2805  | -     |  |
| Critical Hdwy        | 4.12   | - | - 4.12  | -   | - 7.12  | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - |         | -   | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - |         | -   | - 6.12  | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - 2.218 | -   | - 3.518 | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 406    | - | - 143   | -   | - ~1    | ~ 1   | ~ 27  | ~ 1    | ~ 1   | 139   |  |
| Stage 1              | -      | - |         | -   | - 27    | 42    | -     | 128    | 160   | -     |  |
| Stage 2              | -      | - |         | -   | - 118   | 150   | -     | 26     | 40    | -     |  |
| Platoon blocked, %   |        | - | -       | -   | -       |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 406    | - | - 143   | -   |         | ~ 1   | ~ 27  | -      | ~ 1   | 139   |  |
| Mov Cap-2 Maneuver   | -      | - |         | -   |         | ~ 1   | -     | -      | ~ 1   | -     |  |
| Stage 1              | -      | - |         | -   | - 26    | 40    | -     | 121    | 117   | -     |  |
| Stage 2              | -      | - |         | -   | - 45    | 110   | -     | -      | 38    | -     |  |
|                      |        |   |         |     |         |       |       |        |       |       |  |

| Approach             | EB  | WB  | NB | SB |  |
|----------------------|-----|-----|----|----|--|
| HCM Control Delay, s | 0.1 | 0.9 |    |    |  |
| HCM LOS              |     |     | -  | -  |  |

| Minor Lane/Major Mvmt | NBLn1 NBL | Ln2   | EBL   | EBT | EBR | WBL   | WBT | WBR SI | BLn1 S | SBLn2 |
|-----------------------|-----------|-------|-------|-----|-----|-------|-----|--------|--------|-------|
| Capacity (veh/h)      | -         | 27    | 406   | -   | -   | 143   | -   | -      | -      | 139   |
| HCM Lane V/C Ratio    | - 7.0     | 045 ( | 0.054 | -   | -   | 0.266 | -   | -      | -      | 0.43  |
| HCM Control Delay (s) | -\$30     | 006   | 14.4  | -   | -   | 39.1  | -   | -      | -      | 49.1  |
| HCM Lane LOS          | -         | F     | В     | -   | -   | Е     | -   | -      | -      | Е     |
| HCM 95th %tile Q(veh) | - 2       | 23.4  | 0.2   | -   | -   | 1     | -   | -      | -      | 1.9   |
| <b>N</b> 1 <i>i</i>   |           |       |       |     |     |       |     |        |        |       |

Notes

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

### HCM 6th Signalized Intersection Summary 13: US 287 & SH 66

| 1 | 0/ | 0 | 7 | 12 | 0 | 1 | 9 |
|---|----|---|---|----|---|---|---|
|---|----|---|---|----|---|---|---|

|                              | ٨     | -+    | $\mathbf{r}$ | 1     | -     | *     | 1     | Ť     | ٢    | 1     | ŧ        | ~    |
|------------------------------|-------|-------|--------------|-------|-------|-------|-------|-------|------|-------|----------|------|
| Movement                     | EBL   | EBT   | EBR          | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations          | 57    | **    | 1            | 55    | **    | 1     | 5     | **    | 1    | 5     | <b>^</b> | 1    |
| Traffic Volume (veh/h)       | 1265  | 1015  | 400          | 370   | 500   | 260   | 415   | 1100  | 380  | 185   | 750      | 600  |
| Future Volume (veh/h)        | 1265  | 1015  | 400          | 370   | 500   | 260   | 415   | 1100  | 380  | 185   | 750      | 600  |
| Initial Q (Qb), veh          | 0     | 0     | 0            | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00  |       | 1.00         | 1.00  |       | 1.00  | 1.00  |       | 1.00 | 1.00  |          | 1.00 |
| Parking Bus, Adj             | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00 |
| Work Zone On Approach        |       | No    |              |       | No    |       |       | No    |      |       | No       |      |
| Adj Sat Flow, veh/h/ln       | 1595  | 1657  | 1643         | 1569  | 1643  | 1643  | 1657  | 1630  | 1670 | 1670  | 1697     | 1683 |
| Adj Flow Rate, veh/h         | 1375  | 1103  | 0            | 402   | 543   | 0     | 451   | 1196  | 0    | 201   | 815      | 0    |
| Peak Hour Factor             | 0.92  | 0.92  | 0.92         | 0.92  | 0.92  | 0.92  | 0.92  | 0.92  | 0.92 | 0.92  | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2     | 4     | 5            | 4     | 5     | 5     | 4     | 6     | 3    | 3     | 1        | 2    |
| Cap, veh/h                   | 987   | 1110  |              | 424   | 511   |       | 302   | 933   |      | 145   | 649      |      |
| Arrive On Green              | 0.33  | 0.35  | 0.00         | 0.15  | 0.16  | 0.00  | 0.16  | 0.30  | 0.00 | 0.06  | 0.20     | 0.00 |
| Sat Flow, veh/h              | 2946  | 3148  | 1393         | 2900  | 3122  | 1393  | 1578  | 3097  | 1415 | 1590  | 3224     | 1427 |
| Grp Volume(v), veh/h         | 1375  | 1103  | 0            | 402   | 543   | 0     | 451   | 1196  | 0    | 201   | 815      | 0    |
| Grp Sat Flow(s).veh/h/ln     | 1473  | 1574  | 1393         | 1450  | 1561  | 1393  | 1578  | 1548  | 1415 | 1590  | 1612     | 1427 |
| Q Serve(q s), s              | 53.6  | 55.9  | 0.0          | 22.0  | 26.2  | 0.0   | 26.1  | 48.2  | 0.0  | 10.1  | 32.2     | 0.0  |
| Cycle Q Clear(q c), s        | 53.6  | 55.9  | 0.0          | 22.0  | 26.2  | 0.0   | 26.1  | 48.2  | 0.0  | 10.1  | 32.2     | 0.0  |
| Prop In Lane                 | 1.00  |       | 1.00         | 1.00  |       | 1.00  | 1.00  |       | 1.00 | 1.00  |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 987   | 1110  |              | 424   | 511   |       | 302   | 933   |      | 145   | 649      |      |
| V/C Ratio(X)                 | 1.39  | 0.99  |              | 0.95  | 1.06  |       | 1.49  | 1.28  |      | 1.38  | 1.26     |      |
| Avail Cap(c a), veh/h        | 987   | 1110  |              | 424   | 511   |       | 302   | 933   |      | 145   | 649      |      |
| HCM Platoon Ratio            | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00  | 1.00  | 0.00         | 1.00  | 1.00  | 0.00  | 1.00  | 1.00  | 0.00 | 1.00  | 1.00     | 0.00 |
| Uniform Delay (d), s/veh     | 53.2  | 51.6  | 0.0          | 67.7  | 66.9  | 0.0   | 50.2  | 55.9  | 0.0  | 54.3  | 63.9     | 0.0  |
| Incr Delay (d2), s/veh       | 183.1 | 25.6  | 0.0          | 30.4  | 57.3  | 0.0   | 238.0 | 135.1 | 0.0  | 208.9 | 127.6    | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0   | 0.0          | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 44.1  | 25.0  | 0.0          | 9.7   | 14.2  | 0.0   | 29.0  | 35.9  | 0.0  | 9.9   | 24.5     | 0.0  |
| Unsig. Movement Delay, s/veh | ı     |       |              |       |       |       |       |       |      |       |          |      |
| LnGrp Delay(d),s/veh         | 236.3 | 77.3  | 0.0          | 98.1  | 124.2 | 0.0   | 288.2 | 191.0 | 0.0  | 263.2 | 191.5    | 0.0  |
| LnGrp LOS                    | F     | E     |              | F     | F     |       | F     | F     |      | F     | F        |      |
| Approach Vol, veh/h          |       | 2478  | А            |       | 945   | А     |       | 1647  | А    |       | 1016     | A    |
| Approach Delay, s/veh        |       | 165.5 |              |       | 113.1 |       |       | 217.6 |      |       | 205.7    |      |
| Approach LOS                 |       | F     |              |       | F     |       |       | F     |      |       | F        |      |
| Timer - Assigned Phs         | 1     | 2     | 3            | 4     | 5     | 6     | 7     | 8     |      |       |          |      |
| Phs Duration (G+Y+Rc), s     | 16.0  | 54.0  | 30.3         | 63.2  | 32.0  | 38.0  | 60.5  | 33.0  |      |       |          |      |
| Change Period (Y+Rc), s      | 5.9   | * 5.8 | * 6.8        | * 6.8 | 5.9   | * 5.8 | * 6.8 | * 6.8 |      |       |          |      |
| Max Green Setting (Gmax), s  | 10.1  | * 48  | * 20         | * 56  | 26.1  | * 32  | * 50  | * 26  |      |       |          |      |
| Max Q Clear Time (g_c+l1), s | 12.1  | 50.2  | 24.0         | 57.9  | 28.1  | 34.2  | 55.6  | 28.2  |      |       |          |      |
| Green Ext Time (p_c), s      | 0.0   | 0.0   | 0.0          | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |      |       |          |      |
| Intersection Summary         |       |       |              |       |       |       |       |       |      |       |          |      |
| HCM 6th Ctrl Delay           |       |       | 178.2        |       |       |       |       |       |      |       |          |      |
| HCM 6th LOS                  |       |       | F            |       |       |       |       |       |      |       |          |      |

### Notes

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

|                              | ≯    |      | +    | *    | 1    | ~    |     |      |  |  |
|------------------------------|------|------|------|------|------|------|-----|------|--|--|
| Movement                     | EBL  | EBT  | WBT  | WBR  | SBL  | SBR  |     |      |  |  |
| Lane Configurations          | 5    | **   | **   | 1    | 5    | 1    |     |      |  |  |
| Traffic Volume (veh/h)       | 125  | 1455 | 1090 | 80   | 190  | 40   |     |      |  |  |
| Future Volume (veh/h)        | 125  | 1455 | 1090 | 80   | 190  | 40   |     |      |  |  |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0    | 0    |     |      |  |  |
| Ped-Bike Adj(A_pbT)          | 1.00 |      |      | 1.00 | 1.00 | 1.00 |     |      |  |  |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |      |  |  |
| Work Zone On Approach        |      | No   | No   |      | No   |      |     |      |  |  |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |     |      |  |  |
| Adj Flow Rate, veh/h         | 136  | 1582 | 1185 | 87   | 207  | 43   |     |      |  |  |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |     |      |  |  |
| Percent Heavy Veh, %         | 2    | 2    | 2    | 2    | 2    | 2    |     |      |  |  |
| Cap, veh/h                   | 348  | 2531 | 2098 | 936  | 254  | 226  |     |      |  |  |
| Arrive On Green              | 0.05 | 0.71 | 0.59 | 0.59 | 0.14 | 0.14 |     |      |  |  |
| Sat Flow, veh/h              | 1781 | 3647 | 3647 | 1585 | 1781 | 1585 |     |      |  |  |
| Grp Volume(v), veh/h         | 136  | 1582 | 1185 | 87   | 207  | 43   |     |      |  |  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777 | 1777 | 1585 | 1781 | 1585 |     |      |  |  |
| Q Serve(g_s), s              | 2.2  | 18.5 | 16.4 | 1.9  | 9.0  | 1.9  |     |      |  |  |
| Cycle Q Clear(g_c), s        | 2.2  | 18.5 | 16.4 | 1.9  | 9.0  | 1.9  |     |      |  |  |
| Prop In Lane                 | 1.00 |      |      | 1.00 | 1.00 | 1.00 |     |      |  |  |
| Lane Grp Cap(c), veh/h       | 348  | 2531 | 2098 | 936  | 254  | 226  |     |      |  |  |
| V/C Ratio(X)                 | 0.39 | 0.63 | 0.56 | 0.09 | 0.81 | 0.19 |     |      |  |  |
| Avail Cap(c_a), veh/h        | 398  | 2531 | 2098 | 936  | 557  | 495  |     |      |  |  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |      |  |  |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |      |  |  |
| Uniform Delay (d), s/veh     | 7.9  | 6.0  | 10.1 | 7.1  | 33.3 | 30.2 |     |      |  |  |
| Incr Delay (d2), s/veh       | 0.7  | 1.2  | 1.1  | 0.2  | 4.7  | 0.3  |     |      |  |  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |     |      |  |  |
| %ile BackOfQ(50%),veh/In     | 0.6  | 3.8  | 4.9  | 0.5  | 4.1  | 1.8  |     |      |  |  |
| Unsig. Movement Delay, s/veh |      |      |      |      |      |      |     |      |  |  |
| LnGrp Delay(d),s/veh         | 8.6  | 7.1  | 11.2 | 7.3  | 38.0 | 30.5 |     |      |  |  |
| LnGrp LOS                    | Α    | Α    | В    | A    | D    | С    |     |      |  |  |
| Approach Vol, veh/h          |      | 1718 | 1272 |      | 250  |      |     |      |  |  |
| Approach Delay, s/veh        |      | 7.3  | 10.9 |      | 36.7 |      |     |      |  |  |
| Approach LOS                 |      | А    | В    |      | D    |      |     |      |  |  |
| Timer - Assigned Phs         |      |      |      | 4    |      | 6    | 7   | 8    |  |  |
| Phs Duration (G+Y+Rc), s     |      |      |      | 63.4 |      | 16.6 | 9.8 | 53.6 |  |  |
| Change Period (Y+Rc), s      |      |      |      | 6.4  |      | 5.2  | 5.7 | 6.4  |  |  |
| Max Green Setting (Gmax), s  |      |      |      | 43.4 |      | 25.0 | 6.3 | 31.4 |  |  |
| Max Q Clear Time (g_c+I1), s |      |      |      | 20.5 |      | 11.0 | 4.2 | 18.4 |  |  |
| Green Ext Time (p_c), s      |      |      |      | 7.5  |      | 0.4  | 0.1 | 4.3  |  |  |
| Intersection Summary         |      |      |      |      |      |      |     |      |  |  |
| HCM 6th Ctrl Delay           |      |      | 11.0 |      |      |      |     |      |  |  |
| HCM 6th LOS                  |      |      | В    |      |      |      |     |      |  |  |

### Intersection

Int Delay, s/veh

| Movement I               | EBL | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|-----|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations      | 1   | 1    | 1    | 1    | 1    | 1    |      | र्भ  | 1    |      | र्भ  | 1    |
| Traffic Vol, veh/h       | 25  | 1565 | 55   | 90   | 1145 | 60   | 5    | 5    | 45   | 40   | 5    | 20   |
| Future Vol, veh/h        | 25  | 1565 | 55   | 90   | 1145 | 60   | 5    | 5    | 45   | 40   | 5    | 20   |
| Conflicting Peds, #/hr   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control F           | ree | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -   | -    | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length           | 325 | -    | 275  | 675  | -    | 400  | 150  | -    | 0    | -    | -    | 50   |
| Veh in Median Storage, # |     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -   | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 92  | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %        | 0   | 3    | 17   | 9    | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mvmt Flow                | 27  | 1701 | 60   | 98   | 1245 | 65   | 5    | 5    | 49   | 43   | 5    | 22   |

| Major/Minor          | Major1 |   | Major2  |   | Ν | 1inor1 |      | ľ    | /linor2 |      |      |  |
|----------------------|--------|---|---------|---|---|--------|------|------|---------|------|------|--|
| Conflicting Flow All | 1310   | 0 | 0 1761  | 0 | 0 | 3242   | 3261 | 1701 | 3253    | 3256 | 1245 |  |
| Stage 1              | -      | - |         | - | - | 1755   | 1755 | -    | 1441    | 1441 | -    |  |
| Stage 2              | -      | - |         | - | - | 1487   | 1506 | -    | 1812    | 1815 | -    |  |
| Critical Hdwy        | 4.1    | - | - 4.19  | - | - | 7.1    | 6.5  | 6.2  | 7.1     | 6.5  | 6.2  |  |
| Critical Hdwy Stg 1  | -      | - |         | - | - | 6.1    | 5.5  | -    | 6.1     | 5.5  | -    |  |
| Critical Hdwy Stg 2  | -      | - |         | - | - | 6.1    | 5.5  | -    | 6.1     | 5.5  | -    |  |
| Follow-up Hdwy       | 2.2    | - | - 2.281 | - | - | 3.5    | 4    | 3.3  | 3.5     | 4    | 3.3  |  |
| Pot Cap-1 Maneuver   | 535    | - | - 337   | - | - | 6      | 9    | 115  | ~ 6     | 9    | 214  |  |
| Stage 1              | -      | - |         | - | - | 110    | 140  | -    | 166     | 200  | -    |  |
| Stage 2              | -      | - |         | - | - | 157    | 186  | -    | 102     | 131  | -    |  |
| Platoon blocked, %   |        | - | -       | - | - |        |      |      |         |      |      |  |
| Mov Cap-1 Maneuver   | 535    | - | - 337   | - | - | ~ 1    | 6    | 115  | ~ 1     | 6    | 214  |  |
| Mov Cap-2 Maneuver   | -      | - |         | - | - | ~ 1    | 6    | -    | ~ 1     | 6    | -    |  |
| Stage 1              | -      | - |         | - | - | 105    | 133  | -    | 158     | 142  | -    |  |
| Stage 2              | -      | - |         | - | - | 96     | 132  | -    | 53      | 124  | -    |  |
|                      |        |   |         |   |   |        |      |      |         |      |      |  |

| Approach             | EB  | WB  | NB       | SB         |  |
|----------------------|-----|-----|----------|------------|--|
| HCM Control Delay, s | 0.2 | 1.4 | \$ 979.2 | \$ 19645.3 |  |
| HCM LOS              |     |     | F        | F          |  |

| Minor Lane/Major Mvmt | NBLn1     | NBLn2 | EBL   | EBT | EBR | WBL  | WBT | WBR SBLn1 | SBLn2 |
|-----------------------|-----------|-------|-------|-----|-----|------|-----|-----------|-------|
| Capacity (veh/h)      | 2         | 115   | 535   | -   | -   | 337  | -   | - 1       | 214   |
| HCM Lane V/C Ratio    | 5.435     | 0.425 | 0.051 | -   | -   | 0.29 | -   | - 48.913  | 0.102 |
| HCM Control Delay (s) | \$ 5126.1 | 57.7  | 12.1  | -   | -   | 20   | -   | \$ 28366  | 23.7  |
| HCM Lane LOS          | F         | F     | В     | -   | -   | С    | -   | - F       | C     |
| HCM 95th %tile Q(veh) | 2.6       | 1.8   | 0.2   | -   | -   | 1.2  | -   | - 8.2     | 2 0.3 |
| Notes                 |           |       |       |     |     |      |     |           |       |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All

\*: All major volume in platoon

## HCM Signalized Intersection Capacity Analysis 16: Pace St & SH 66

|                               | ≁          | -+    | $\mathbf{r}$ | 4     |            | •          | 1       | Ť    | 1    | 1    | Ļ     | ~    |
|-------------------------------|------------|-------|--------------|-------|------------|------------|---------|------|------|------|-------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR        | NBL     | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           | 1          | ↑     | 1            | 1     | <b>†</b>   |            | 1       | et.  |      |      | 4     |      |
| Traffic Volume (vph)          | 5          | 1395  | 255          | 320   | 1045       | 5          | 250     | 5    | 290  | 5    | 5     | 5    |
| Future Volume (vph)           | 5          | 1395  | 255          | 320   | 1045       | 5          | 250     | 5    | 290  | 5    | 5     | 5    |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900  | 1900       | 1900       | 1900    | 1900 | 1900 | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 6.8        | 6.8   | 6.8          | 6.8   | 6.8        |            | 5.7     | 5.7  |      |      | 4.5   |      |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       |            | 1.00    | 1.00 |      |      | 1.00  |      |
| Frt                           | 1.00       | 1.00  | 0.85         | 1.00  | 1.00       |            | 1.00    | 0.85 |      |      | 0.95  |      |
| Flt Protected                 | 0.95       | 1.00  | 1.00         | 0.95  | 1.00       |            | 0.95    | 1.00 |      |      | 0.98  |      |
| Satd. Flow (prot)             | 1770       | 1845  | 1599         | 1752  | 1792       |            | 1770    | 1603 |      |      | 1750  |      |
| Flt Permitted                 | 0.05       | 1.00  | 1.00         | 0.05  | 1.00       |            | 0.95    | 1.00 |      |      | 0.89  |      |
| Satd. Flow (perm)             | 101        | 1845  | 1599         | 91    | 1792       |            | 1770    | 1603 |      |      | 1581  |      |
| Peak-hour factor, PHF         | 0.92       | 0.89  | 0.78         | 0.90  | 0.90       | 0.92       | 0.81    | 0.92 | 0.86 | 0.92 | 0.92  | 0.92 |
| Adj. Flow (vph)               | 5          | 1567  | 327          | 356   | 1161       | 5          | 309     | 5    | 337  | 5    | 5     | 5    |
| RTOR Reduction (vph)          | 0          | 0     | 85           | 0     | 0          | 0          | 0       | 265  | 0    | 0    | 5     | 0    |
| Lane Group Flow (vph)         | 5          | 1567  | 242          | 356   | 1166       | 0          | 309     | 77   | 0    | 0    | 10    | 0    |
| Heavy Vehicles (%)            | 2%         | 3%    | 1%           | 3%    | 6%         | 2%         | 2%      | 2%   | 1%   | 2%   | 2%    | 2%   |
| Turn Type                     | Perm       | NA    | Perm         | pm+pt | NA         |            | Split   | NA   |      | Perm | NA    |      |
| Protected Phases              |            | 4     |              | 3     | 8          |            | 2       | 2    |      |      | 6     |      |
| Permitted Phases              | 4          |       | 4            | 8     |            |            |         |      |      | 6    |       |      |
| Actuated Green, G (s)         | 73.9       | 73.9  | 73.9         | 92.9  | 92.9       |            | 22.3    | 22.3 |      |      | 3.0   |      |
| Effective Green, g (s)        | 73.9       | 73.9  | 73.9         | 92.9  | 92.9       |            | 22.3    | 22.3 |      |      | 3.0   |      |
| Actuated g/C Ratio            | 0.55       | 0.55  | 0.55         | 0.69  | 0.69       |            | 0.16    | 0.16 |      |      | 0.02  |      |
| Clearance Time (s)            | 6.8        | 6.8   | 6.8          | 6.8   | 6.8        |            | 5.7     | 5.7  |      |      | 4.5   |      |
| Vehicle Extension (s)         | 2.0        | 2.0   | 2.0          | 2.0   | 2.0        |            | 2.5     | 2.5  |      |      | 3.0   |      |
| Lane Grp Cap (vph)            | 55         | 1008  | 874          | 212   | 1231       |            | 291     | 264  |      |      | 35    |      |
| v/s Ratio Prot                |            | 0.85  |              | c0.15 | 0.65       |            | c0.17   | 0.05 |      |      |       |      |
| v/s Ratio Perm                | 0.05       |       | 0.15         | c1.00 |            |            |         |      |      |      | c0.01 |      |
| v/c Ratio                     | 0.09       | 1.55  | 0.28         | 1.68  | 0.95       |            | 1.06    | 0.29 |      |      | 0.29  |      |
| Uniform Delay, d1             | 14.6       | 30.6  | 16.4         | 56.8  | 19.0       |            | 56.4    | 49.5 |      |      | 65.1  |      |
| Progression Factor            | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       |            | 1.00    | 1.00 |      |      | 1.00  |      |
| Incremental Delay, d2         | 3.2        | 254.5 | 0.8          | 325.4 | 15.8       |            | 70.0    | 0.5  |      |      | 4.5   |      |
| Delay (s)                     | 17.9       | 285.1 | 17.2         | 382.2 | 34.7       |            | 126.5   | 50.0 |      |      | 69.6  |      |
| Level of Service              | В          | F     | В            | F     | С          |            | F       | D    |      |      | E     |      |
| Approach Delay (s)            |            | 238.3 |              |       | 116.0      |            |         | 86.3 |      |      | 69.6  |      |
| Approach LOS                  |            | F     |              |       | F          |            |         | F    |      |      | E     |      |
| Intersection Summary          |            |       |              |       |            |            |         |      |      |      |       |      |
| HCM 2000 Control Delay        |            |       | 167.9        | H     | CM 2000    | Level of S | Service |      | F    |      |       |      |
| HCM 2000 Volume to Capac      | city ratio |       | 1.58         |       |            |            |         |      |      |      |       |      |
| Actuated Cycle Length (s)     |            |       | 135.2        | Si    | um of lost | time (s)   |         | 23.8 |      |      |       |      |
| Intersection Capacity Utiliza | tion       |       | 127.7%       | IC    | U Level o  | of Service |         |      | Н    |      |       |      |
| Analysis Period (min)         |            |       | 15           |       |            |            |         |      |      |      |       |      |
| c Critical Lane Group         |            |       |              |       |            |            |         |      |      |      |       |      |

## HCM Signalized Intersection Capacity Analysis 18: County Line Rd/CR 1 & SH 66

| 1 | 0/ | 0 | 7/ | 2 | 0 | 19 |  |
|---|----|---|----|---|---|----|--|
|---|----|---|----|---|---|----|--|

|                                          | ٨          | -     | 7     | •         | +          | 4          | 1       | Ť     | ۲    | \$   | ţ    | ~    |
|------------------------------------------|------------|-------|-------|-----------|------------|------------|---------|-------|------|------|------|------|
| Movement                                 | EBL        | EBT   | EBR   | WBL       | WBT        | WBR        | NBL     | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations                      | 5          | •     | 1     | 5         | 14         |            | 5       | •     | 1    | 5    | •    | 7    |
| Traffic Volume (vph)                     | 205        | 950   | 480   | 560       | 850        | 35         | 440     | 260   | 795  | 30   | 120  | 80   |
| Future Volume (vph)                      | 205        | 950   | 480   | 560       | 850        | 35         | 440     | 260   | 795  | 30   | 120  | 80   |
| Ideal Flow (vphpl)                       | 1900       | 1900  | 1900  | 1800      | 1900       | 1900       | 1900    | 1900  | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)                      | 4.5        | 7.0   | 7.0   | 4.5       | 7.0        |            | 5.0     | 5.0   | 4.0  | 5.0  | 5.0  | 4.0  |
| Lane Util. Factor                        | 1.00       | 1.00  | 1.00  | 1.00      | 1.00       |            | 1.00    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt                                      | 1.00       | 1.00  | 0.85  | 1.00      | 0.99       |            | 1.00    | 1.00  | 0.85 | 1.00 | 1.00 | 0.85 |
| Flt Protected                            | 0.95       | 1.00  | 1.00  | 0.95      | 1.00       |            | 0.95    | 1.00  | 1.00 | 0.95 | 1.00 | 1.00 |
| Satd. Flow (prot)                        | 1770       | 1845  | 1583  | 1660      | 1758       |            | 1504    | 1863  | 1583 | 1671 | 1863 | 1615 |
| Flt Permitted                            | 0.12       | 1.00  | 1.00  | 0.11      | 1.00       |            | 0.67    | 1.00  | 1.00 | 0.39 | 1.00 | 1.00 |
| Satd. Flow (perm)                        | 233        | 1845  | 1583  | 192       | 1758       |            | 1067    | 1863  | 1583 | 685  | 1863 | 1615 |
| Peak-hour factor, PHF                    | 0.92       | 0.92  | 0.92  | 0.92      | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)                          | 223        | 1033  | 522   | 609       | 924        | 38         | 478     | 283   | 864  | 33   | 130  | 87   |
| RTOR Reduction (vph)                     | 0          | 0     | 232   | 0         | 2          | 0          | 0       | 0     | 0    | 0    | 0    | 0    |
| Lane Group Flow (vph)                    | 223        | 1033  | 290   | 609       | 960        | 0          | 478     | 283   | 864  | 33   | 130  | 87   |
| Heavy Vehicles (%)                       | 2%         | 3%    | 2%    | 3%        | 6%         | 43%        | 20%     | 2%    | 2%   | 8%   | 2%   | 0%   |
| Turn Type                                | pm+pt      | NA    | Perm  | pm+pt     | NA         |            | Perm    | NA    | Free | Perm | NA   | Free |
| Protected Phases                         | 5          | 2     |       | 1         | 6          |            |         | 8     |      |      | 4    |      |
| Permitted Phases                         | 2          |       | 2     | 6         |            |            | 8       |       | Free | 4    |      | Free |
| Actuated Green, G (s)                    | 39.0       | 32.0  | 32.0  | 49.0      | 37.5       |            | 19.0    | 19.0  | 80.0 | 19.0 | 19.0 | 80.0 |
| Effective Green, g (s)                   | 39.0       | 32.0  | 32.0  | 49.0      | 37.5       |            | 19.0    | 19.0  | 80.0 | 19.0 | 19.0 | 80.0 |
| Actuated g/C Ratio                       | 0.49       | 0.40  | 0.40  | 0.61      | 0.47       |            | 0.24    | 0.24  | 1.00 | 0.24 | 0.24 | 1.00 |
| Clearance Time (s)                       | 4.5        | 7.0   | 7.0   | 4.5       | 7.0        |            | 5.0     | 5.0   |      | 5.0  | 5.0  |      |
| Vehicle Extension (s)                    | 2.5        | 5.0   | 5.0   | 2.5       | 5.0        |            | 3.0     | 3.0   |      | 3.0  | 3.0  |      |
| Lane Grp Cap (vph)                       | 248        | 738   | 633   | 346       | 824        |            | 253     | 442   | 1583 | 162  | 442  | 1615 |
| v/s Ratio Prot                           | 0.08       | 0.56  |       | c0.27     | 0.55       |            |         | 0.15  |      |      | 0.07 |      |
| v/s Ratio Perm                           | 0.36       |       | 0.18  | c0.80     |            |            | c0.45   |       | 0.55 | 0.05 |      | 0.05 |
| v/c Ratio                                | 0.90       | 1.40  | 0.46  | 1.76      | 1.17       |            | 1.89    | 0.64  | 0.55 | 0.20 | 0.29 | 0.05 |
| Uniform Delay, d1                        | 17.6       | 24.0  | 17.6  | 23.8      | 21.2       |            | 30.5    | 27.4  | 0.0  | 24.4 | 25.0 | 0.0  |
| Progression Factor                       | 1.00       | 1.00  | 1.00  | 1.00      | 1.00       |            | 1.00    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2                    | 31.4       | 188.0 | 1.1   | 353.7     | 87.6       |            | 414.8   | 3.2   | 1.4  | 0.6  | 0.4  | 0.1  |
| Delay (s)                                | 49.0       | 212.0 | 18.7  | 377.5     | 108.8      |            | 445.3   | 30.6  | 1.4  | 25.1 | 25.4 | 0.1  |
| Level of Service                         | D          | F     | В     | F         | F          |            | F       | С     | А    | С    | С    | A    |
| Approach Delay (s)                       |            | 134.8 |       |           | 213.0      |            |         | 137.0 |      |      | 16.5 |      |
| Approach LOS                             |            | F     |       |           | F          |            |         | F     |      |      | В    |      |
| Intersection Summary                     |            |       |       |           |            |            |         |       |      |      |      |      |
| HCM 2000 Control Delay                   |            |       | 153.4 | Н         | CM 2000    | Level of S | Service |       | F    |      |      |      |
| HCM 2000 Volume to Capa                  | city ratio |       | 1.87  |           |            |            |         |       |      |      |      |      |
| Actuated Cycle Length (s)                | -          |       | 80.0  | S         | um of lost | t time (s) |         |       | 16.5 |      |      |      |
| Intersection Capacity Utilization 127.5% |            |       | IC    | U Level o | of Service |            |         | Н     |      |      |      |      |
| Analysis Period (min)                    |            |       | 15    |           |            |            |         |       |      |      |      |      |
| c Critical Lane Group                    |            |       |       |           |            |            |         |       |      |      |      |      |

| Intersection           |        |      |      |      |      |      |
|------------------------|--------|------|------|------|------|------|
| Int Delay, s/veh       | 2.2    |      |      |      |      |      |
| Movement               | EDT    | EDD  |      |      | NDI  | NDD  |
| wovement               | EDI    | EDR  | VVDL | VVDI | INDL | NDN  |
| Lane Configurations    | T.     |      |      | र्च  | Y    |      |
| Traffic Vol, veh/h     | 1765   | 10   | 5    | 1440 | 5    | 5    |
| Future Vol, veh/h      | 1765   | 10   | 5    | 1440 | 5    | 5    |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free   | Free | Free | Free | Stop | Stop |
| RT Channelized         | -      | None | -    | None | -    | None |
| Storage Length         | -      | -    | -    | -    | 0    | -    |
| Veh in Median Storage  | e, # 0 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0      | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 92     | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2      | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 1918   | 11   | 5    | 1565 | 5    | 5    |
|                        |        |      |      |      |      |      |

| Major/Minor          | Major1 | l      | Major2 |     | Minor1 |       |  |
|----------------------|--------|--------|--------|-----|--------|-------|--|
| Conflicting Flow All | 0      | 0      | 1929   | 0   | 3499   | 1924  |  |
| Stage 1              | -      | -      | -      | -   | 1924   | -     |  |
| Stage 2              | -      | -      | -      | -   | 1575   | -     |  |
| Critical Hdwy        | -      | -      | 4.12   | -   | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1  | -      | -      | -      | -   | 5.42   | -     |  |
| Critical Hdwy Stg 2  | -      | -      | -      | -   | 5.42   | -     |  |
| Follow-up Hdwy       | -      | -      | 2.218  | -   | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver   | -      | -      | 305    | -   | 7      | 83    |  |
| Stage 1              | -      | -      | -      | -   | 125    | -     |  |
| Stage 2              | -      | -      | -      | -   | 187    | -     |  |
| Platoon blocked, %   | -      | -      |        | -   |        |       |  |
| Mov Cap-1 Maneuver   | · –    | -      | 305    | -   | 6      | 83    |  |
| Mov Cap-2 Maneuver   | -      | -      | -      | -   | 6      | -     |  |
| Stage 1              | -      | -      | -      | -   | 109    | -     |  |
| Stage 2              | -      | -      | -      | -   | 187    | -     |  |
|                      |        |        |        |     |        |       |  |
| Approach             | EB     |        | WB     |     | NB     |       |  |
| HCM Control Delay, s | 0      |        | 0.1    | \$  | 5711.1 |       |  |
| HCM LOS              |        |        |        |     | F      |       |  |
|                      |        |        |        |     |        |       |  |
| Minor Lane/Major Mvr | nt l   | NBLn1  | EBT    | EBR | WBL    | WBT   |  |
| Capacity (veh/h)     |        | 11     | -      | -   | 305    | -     |  |
| HCM Lane V/C Ratio   |        | 0.988  | -      | -   | 0.018  | -     |  |
| HCM Control Delay (s | 5) \$  | 5711.1 | -      | -   | 17     | 0     |  |
| HCM Lane LOS         |        | F      | -      | -   | С      | А     |  |

### Notes

~: Volume exceeds capacity \$:

2

\$: Delay exceeds 300s +: Computation Not Defined \*: A

-

0.1

\*: All major volume in platoon

HCM 95th %tile Q(veh)

| i |      |     |       |   |
|---|------|-----|-------|---|
| I | nte  | rse | ontin | n |
| L | 1100 | 100 |       |   |

Int Delay, s/veh

| Movement         EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT         SBR           Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations         Image: Configuration in the image: Configuratinet in the image: Configuration in the image: Configuration in t |
| Traffic Vol, veh/h         185         1565         20         5         1320         85         10         15         10         150         5         115           Future Vol, veh/h         185         1565         20         5         1320         85         10         15         10         150         5         115           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Future Vol, veh/h         185         1565         20         5         1320         85         10         15         10         150         5         115           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RT Channelized None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Veh in Median Storage, # - 0 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Grade, % - 0 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heavy Vehicles, % 0 3 0 0 5 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mvmt Flow 201 1701 22 5 1435 92 11 16 11 163 5 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Major/Minor          | Major1 |   | Ν | lajor2 |   | N | Minor1 |      | ľ    | Minor2 |      |      |  |
|----------------------|--------|---|---|--------|---|---|--------|------|------|--------|------|------|--|
| Conflicting Flow All | 1527   | 0 | 0 | 1723   | 0 | 0 | 3670   | 3651 | 1712 | 3619   | 3616 | 1481 |  |
| Stage 1              | -      | - | - | -      | - | - | 2114   | 2114 | -    | 1491   | 1491 | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 1556   | 1537 | -    | 2128   | 2125 | -    |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5  | 6.2  | 7.1    | 6.5  | 6.2  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5  | -    | 6.1    | 5.5  | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5  | -    | 6.1    | 5.5  | -    |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4    | 3.3  | 3.5    | 4    | 3.3  |  |
| Pot Cap-1 Maneuver   | 442    | - | - | 372    | - | - | ~ 3    | ~ 5  | 113  | ~ 3    | ~ 5  | 156  |  |
| Stage 1              | -      | - | - | -      | - | - | 67     | 92   | -    | ~ 156  | 189  | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 143    | 179  | -    | ~ 66   | 91   | -    |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |      |      |        |      |      |  |
| Mov Cap-1 Maneuver   | 442    | - | - | 372    | - | - | -      | 0    | 113  | -      | 0    | 156  |  |
| Mov Cap-2 Maneuver   | r -    | - | - | -      | - | - | -      | 0    | -    | -      | 0    | -    |  |
| Stage 1              | -      | - | - | -      | - | - | 67     | 0    | -    | ~ 156  | 171  | -    |  |
| Stage 2              | -      | - | - | -      | - | - | 25     | 162  | -    | -      | 0    | -    |  |
|                      |        |   |   |        |   |   |        |      |      |        |      |      |  |

| Approach             | EB  | WB  | NB | SB |  |
|----------------------|-----|-----|----|----|--|
| HCM Control Delay, s | 2.1 | 0.1 |    |    |  |
| HCM LOS              |     |     | -  | -  |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | BLn1 |  |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|------|--|
| Capacity (veh/h)      | -     | 442   | -   | -   | 372   | -   | -     | -    |  |
| HCM Lane V/C Ratio    | -     | 0.455 | -   | -   | 0.015 | -   | -     | -    |  |
| HCM Control Delay (s) | -     | 19.8  | 0   | -   | 14.8  | 0   | -     | -    |  |
| HCM Lane LOS          | -     | С     | А   | -   | В     | А   | -     | -    |  |
| HCM 95th %tile Q(veh) | -     | 2.3   | -   | -   | 0     | -   | -     | -    |  |
| Natao                 |       |       |     |     |       |     |       |      |  |
| Notes                 |       |       |     |     |       |     |       |      |  |

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

SBR

80

SBT

**4** 125

| Intersection        |     |      |     |     |      |     |     |     |
|---------------------|-----|------|-----|-----|------|-----|-----|-----|
| Int Delay, s/veh    | 1.1 |      |     |     |      |     |     |     |
| Movement            | EBL | EBT  | EBR | WBL | WBT  | WBR | NBL | NBT |
| Lane Configurations | 1   | t,   |     | 1   | et.  |     |     | \$  |
| Traffic Vol, veh/h  | 170 | 1460 | 95  | 40  | 1280 | 165 | 50  | 150 |
| Future Vol, veh/h   | 170 | 1460 | 95  | 40  | 1280 | 165 | 50  | 150 |

| 170  | 1460                                             | 95                                                                                    | 40                                                                                                                                                                                                                                                              | 1280                                                                                                                                                                                                                                                                                                                                              | 165                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 0                                                | 0                                                                                     | 0                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Free | Free                                             | Free                                                                                  | Free                                                                                                                                                                                                                                                            | Free                                                                                                                                                                                                                                                                                                                                              | Free                                                                                                                                                                                                                                                                                                                                                                                                                              | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -    | -                                                | None                                                                                  | -                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 430  | -                                                | -                                                                                     | 350                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| # -  | 0                                                | -                                                                                     | -                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -    | 0                                                | -                                                                                     | -                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 92   | 92                                               | 92                                                                                    | 92                                                                                                                                                                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                | 92                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6    | 3                                                | 0                                                                                     | 0                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 185  | 1587                                             | 103                                                                                   | 43                                                                                                                                                                                                                                                              | 1391                                                                                                                                                                                                                                                                                                                                              | 179                                                                                                                                                                                                                                                                                                                                                                                                                               | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | 170<br>0<br>Free<br>430<br># -<br>92<br>6<br>185 | 170 1460<br>0 0<br>Free Free<br><br>430 -<br># - 0<br>- 0<br>92 92<br>6 3<br>185 1587 | 170       1460       95         0       0       0         Free       Free       Free         -       -       None         430       -       -         #       0       -         92       92       92         6       3       0         185       1587       103 | 170       1460       95       40         0       0       0       0         Free       Free       Free       Free         -       -       None       -         430       -       -       350         # -       0       -       -         92       92       92       92         6       3       0       0         185       1587       103       43 | 170       1460       95       40       1280         0       0       0       0       0         Free       Free       Free       Free       Free         -       -       None       -       -         430       -       -       350       -         #       0       -       -       0         92       92       92       92       92         6       3       0       0       5         185       1587       103       43       1391 | 170       1460       95       40       1280       165         0       0       0       0       0       0       0         Free       Free       Free       Free       Free       Free       Free         -       None       -       -       None       -       -       None         430       -       -       350       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | 170       1460       95       40       1280       165       50         0       0       0       0       0       0       0       0         Free       Free       Free       Free       Free       Free       Stop         -       None       -       -       None       -       -       -         430       -       -       350       -       -       -       -         430       -       -       350       -       -       -       -         430       -       -       350       -       -       -       -       -         430       -       -       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | 170       1460       95       40       1280       165       50       150         0       0       0       0       0       0       0       0       0         Free       Free       Free       Free       Free       Free       Stop       Stop         -       None       -       -       None       -       -         430       -       -       350       -       -       -         430       -       -       350       -       -       -         # -       0       -       -       0       -       -       0         -       0       -       -       0       -       -       0         92       92       92       92       92       92       92       92         6       3       0       0       5       14       0       0         185       1587       103       43       1391       179       54       163 | 170       1460       95       40       1280       165       50       150       30         0       0       0       0       0       0       0       0       0       0         Free       Free       Free       Free       Free       Free       Stop       Stop       Stop         430       -       -       350       -       -       -       None         430       -       -       350       -       -       -       None         430       -       -       350       -       -       -       -       None         430       -       -       350       -       -       -       -       None         430       -       -       350       -       -       -       -       -         #       0       -       -       0       -       -       0       -       -         92       92       92       92       92       92       92       92       92         6       3       0       0       5       14       0       0       60         185       1587 <t< td=""><td>170       1460       95       40       1280       165       50       150       30       70         0       0       0       0       0       0       0       0       0       0       0         Free       Free       Free       Free       Free       Free       Stop       Stop       Stop       Stop         -       None       -       -       None       -       None       -       -       None       -         430       -       -       350       -       -       -       None       -       -       -         430       -       -       350       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       &lt;</td><td>170       1460       95       40       1280       165       50       150       30       70       125         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<td>170       1460       95       40       1280       165       50       150       30       70       125       80         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       14       0       0       0       0       14       0       0       0       130       13       130       13       163       33       76       136       87       14       163       33       76       136       87       14       163       163</td></td></t<> | 170       1460       95       40       1280       165       50       150       30       70         0       0       0       0       0       0       0       0       0       0       0         Free       Free       Free       Free       Free       Free       Stop       Stop       Stop       Stop         -       None       -       -       None       -       None       -       -       None       -         430       -       -       350       -       -       -       None       -       -       -         430       -       -       350       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       < | 170       1460       95       40       1280       165       50       150       30       70       125         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>170       1460       95       40       1280       165       50       150       30       70       125       80         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       14       0       0       0       0       14       0       0       0       130       13       130       13       163       33       76       136       87       14       163       33       76       136       87       14       163       163</td> | 170       1460       95       40       1280       165       50       150       30       70       125       80         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       14       0       0       0       0       14       0       0       0       130       13       130       13       163       33       76       136       87       14       163       33       76       136       87       14       163       163 |

NBR

30

SBL

70

| Major/Minor          | Major1 |   | Μ | lajor2 |   | Ν | /linor1 |       |      | Minor2 |      |       |  |
|----------------------|--------|---|---|--------|---|---|---------|-------|------|--------|------|-------|--|
| Conflicting Flow All | 1570   | 0 | 0 | 1690   | 0 | 0 | 3687    | 3665  | 1639 | 3674   | 3627 | 1481  |  |
| Stage 1              | -      | - | - | -      | - | - | 2009    | 2009  | -    | 1567   | 1567 | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 1678    | 1656  | -    | 2107   | 2060 | -     |  |
| Critical Hdwy        | 4.16   | - | - | 4.1    | - | - | 7.1     | 6.5   | 6.8  | 7.27   | 6.5  | 6.23  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1     | 5.5   | -    | 6.27   | 5.5  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1     | 5.5   | -    | 6.27   | 5.5  | -     |  |
| Follow-up Hdwy       | 2.254  | - | - | 2.2    | - | - | 3.5     | 4     | 3.84 | 3.653  | 4    | 3.327 |  |
| Pot Cap-1 Maneuver   | 409    | - | - | 383    | - | - | ~ 3     | ~ 5   | 90   | ~ 2    | ~ 5  | 153   |  |
| Stage 1              | -      | - | - | -      | - | - | 78      | ~ 105 | -    | 128    | 173  | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 121     | ~ 157 | -    | ~ 61   | ~ 99 | -     |  |
| Platoon blocked, %   |        | - | - |        | - | - |         |       |      |        |      |       |  |
| Mov Cap-1 Maneuver   | 409    | - | - | 383    | - | - | -       | ~ 2   | 90   | -      | ~ 2  | 153   |  |
| Mov Cap-2 Maneuver   | _      | - | - | -      | - | - | -       | ~ 2   | -    | -      | ~ 2  | -     |  |
| Stage 1              | -      | - | - | -      | - | - | ~ 43    | ~ 58  | -    | ~ 70   | 154  | -     |  |
| Stage 2              | -      | - | - | -      | - | - | ~ 5     | ~ 139 | -    | -      | ~ 54 | -     |  |
|                      |        |   |   |        |   |   |         |       |      |        |      |       |  |

| Approach             | EB  | WB  | NB | SB |  |
|----------------------|-----|-----|----|----|--|
| HCM Control Delay, s | 2.1 | 0.4 |    |    |  |
| HCM LOS              |     |     | -  | -  |  |

| Minor Lane/Major Mvmt      | NBLn1 | EBL      | EBT     | EBR   | WBL    | WBT      | WBR S   | BLn1  |                                |
|----------------------------|-------|----------|---------|-------|--------|----------|---------|-------|--------------------------------|
| Capacity (veh/h)           | -     | 409      | -       | -     | 383    | -        | -       | -     |                                |
| HCM Lane V/C Ratio         | -     | 0.452    | -       | -     | 0.114  | -        | -       | -     |                                |
| HCM Control Delay (s)      | -     | 20.9     | -       | -     | 15.6   | -        | -       | -     |                                |
| HCM Lane LOS               | -     | С        | -       | -     | С      | -        | -       | -     |                                |
| HCM 95th %tile Q(veh)      | -     | 2.3      | -       | -     | 0.4    | -        | -       | -     |                                |
| Notes                      |       |          |         |       |        |          |         |       |                                |
| ~: Volume exceeds capacity | \$: D | elay exc | eeds 30 | )0s · | +: Com | outation | Not Def | fined | *: All major volume in platoon |

## HCM Signalized Intersection Capacity Analysis 22: CR 7 & SH 66

|                               | ٨          |       | $\mathbf{r}$ | 4     | +          | •          | 1       | Ť     | 1    | 1    | ŧ     | ~    |
|-------------------------------|------------|-------|--------------|-------|------------|------------|---------|-------|------|------|-------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR        | NBL     | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           | 5          | Ť     | 1            | 1     | 1.         |            |         | 4     |      |      | र्च   | 1    |
| Traffic Volume (vph)          | 180        | 1135  | 245          | 400   | 1310       | 165        | 80      | 470   | 325  | 200  | 300   | 95   |
| Future Volume (vph)           | 180        | 1135  | 245          | 400   | 1310       | 165        | 80      | 470   | 325  | 200  | 300   | 95   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900  | 1900       | 1900       | 1900    | 1900  | 1900 | 1900 | 1900  | 1900 |
| Total Lost time (s)           | 5.0        | 7.0   | 7.0          | 5.0   | 7.0        |            |         | 5.0   |      |      | 5.0   | 5.0  |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00  | 1.00 |
| Frt                           | 1.00       | 1.00  | 0.85         | 1.00  | 0.98       |            |         | 0.95  |      |      | 1.00  | 0.85 |
| Flt Protected                 | 0.95       | 1.00  | 1.00         | 0.95  | 1.00       |            |         | 1.00  |      |      | 0.98  | 1.00 |
| Satd. Flow (prot)             | 1719       | 1845  | 1615         | 1805  | 1753       |            |         | 1727  |      |      | 1863  | 1599 |
| Flt Permitted                 | 0.07       | 1.00  | 1.00         | 0.06  | 1.00       |            |         | 0.48  |      |      | 0.32  | 1.00 |
| Satd. Flow (perm)             | 127        | 1845  | 1615         | 123   | 1753       |            |         | 830   |      |      | 603   | 1599 |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92         | 0.92  | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92 | 0.92  | 0.92 |
| Adj. Flow (vph)               | 196        | 1234  | 266          | 435   | 1424       | 179        | 87      | 511   | 353  | 217  | 326   | 103  |
| RTOR Reduction (vph)          | 0          | 0     | 57           | 0     | 3          | 0          | 0       | 14    | 0    | 0    | 0     | 60   |
| Lane Group Flow (vph)         | 196        | 1234  | 209          | 435   | 1600       | 0          | 0       | 937   | 0    | 0    | 543   | 43   |
| Heavy Vehicles (%)            | 5%         | 3%    | 0%           | 0%    | 6%         | 11%        | 6%      | 3%    | 5%   | 0%   | 0%    | 1%   |
| Turn Type                     | pm+pt      | NA    | Perm         | pm+pt | NA         |            | Perm    | NA    |      | Perm | NA    | Perm |
| Protected Phases              | 5          | 2     |              | 1     | 6          |            |         | 8     |      |      | 4     |      |
| Permitted Phases              | 2          |       | 2            | 6     |            |            | 8       |       |      | 4    |       | 4    |
| Actuated Green, G (s)         | 65.0       | 57.0  | 57.0         | 76.0  | 63.0       |            |         | 62.0  |      |      | 62.0  | 62.0 |
| Effective Green, g (s)        | 65.0       | 57.0  | 57.0         | 76.0  | 63.0       |            |         | 62.0  |      |      | 62.0  | 62.0 |
| Actuated g/C Ratio            | 0.43       | 0.38  | 0.38         | 0.51  | 0.42       |            |         | 0.41  |      |      | 0.41  | 0.41 |
| Clearance Time (s)            | 5.0        | 7.0   | 7.0          | 5.0   | 7.0        |            |         | 5.0   |      |      | 5.0   | 5.0  |
| Vehicle Extension (s)         | 3.0        | 5.0   | 5.0          | 3.0   | 5.0        |            |         | 3.0   |      |      | 3.0   | 3.0  |
| Lane Grp Cap (vph)            | 139        | 701   | 613          | 219   | 736        |            |         | 343   |      |      | 249   | 660  |
| v/s Ratio Prot                | 0.07       | 0.67  |              | c0.19 | c0.91      |            |         |       |      |      |       |      |
| v/s Ratio Perm                | 0.53       |       | 0.13         | 0.82  |            |            |         | c1.13 |      |      | 0.90  | 0.03 |
| v/c Ratio                     | 1.41       | 1.76  | 0.34         | 1.99  | 2.17       |            |         | 2.73  |      |      | 2.18  | 0.07 |
| Uniform Delay, d1             | 39.4       | 46.5  | 33.1         | 48.8  | 43.5       |            |         | 44.0  |      |      | 44.0  | 26.5 |
| Progression Factor            | 1.00       | 1.00  | 1.00         | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00  | 1.00 |
| Incremental Delay, d2         | 221.6      | 348.0 | 0.7          | 459.8 | 532.8      |            |         | 787.4 |      |      | 544.4 | 0.0  |
| Delay (s)                     | 261.0      | 394.5 | 33.8         | 508.6 | 576.3      |            |         | 831.4 |      |      | 588.4 | 26.6 |
| Level of Service              | F          | F     | С            | F     | F          |            |         | F     |      |      | F     | С    |
| Approach Delay (s)            |            | 322.5 |              |       | 561.9      |            |         | 831.4 |      |      | 498.8 |      |
| Approach LOS                  |            | F     |              |       | F          |            |         | F     |      |      | F     |      |
| Intersection Summary          |            |       |              |       |            |            |         |       |      |      |       |      |
| HCM 2000 Control Delay        |            |       | 526.1        | Н     | CM 2000    | Level of S | Service |       | F    |      |       |      |
| HCM 2000 Volume to Capa       | city ratio |       | 2.46         |       |            |            |         |       |      |      |       |      |
| Actuated Cycle Length (s)     | -          |       | 150.0        | S     | um of lost | t time (s) |         |       | 17.0 |      |       |      |
| Intersection Capacity Utiliza | ition      |       | 183.1%       | IC    | CU Level o | of Service |         |       | Н    |      |       |      |
| Analysis Period (min)         |            |       | 15           |       |            |            |         |       |      |      |       |      |
| c Critical Lane Group         |            |       |              |       |            |            |         |       |      |      |       |      |

## HCM Signalized Intersection Capacity Analysis 24: I-25 SB On Ramp/I-25 SB Off Ramp & SH 66

10/07/2019

|                                   | ٠     | -    | $\mathbf{r}$ | -    |            | *          | 1       | Ť    | 1    | 1    | ŧ    | ~     |
|-----------------------------------|-------|------|--------------|------|------------|------------|---------|------|------|------|------|-------|
| Movement                          | EBL   | EBT  | EBR          | WBL  | WBT        | WBR        | NBL     | NBT  | NBR  | SBL  | SBT  | SBR   |
| Lane Configurations               |       | ***  | 1            | 55   | **         |            |         |      |      | 5    | ર્સ  | 7     |
| Traffic Volume (vph)              | 0     | 1170 | 490          | 565  | 1545       | 0          | 0       | 0    | 0    | 220  | 10   | 330   |
| Future Volume (vph)               | 0     | 1170 | 490          | 565  | 1545       | 0          | 0       | 0    | 0    | 220  | 10   | 330   |
| Ideal Flow (vphpl)                | 1900  | 1900 | 1900         | 1800 | 1900       | 1900       | 1900    | 1900 | 1900 | 1900 | 1900 | 1900  |
| Total Lost time (s)               |       | 7.0  | 7.0          | 7.0  | 7.0        |            |         |      |      | 6.0  | 6.0  | 4.0   |
| Lane Util. Factor                 |       | 0.91 | 1.00         | 0.97 | 0.95       |            |         |      |      | 0.95 | 0.95 | 1.00  |
| Frt                               |       | 1.00 | 0.85         | 1.00 | 1.00       |            |         |      |      | 1.00 | 1.00 | 0.85  |
| Flt Protected                     |       | 1.00 | 1.00         | 0.95 | 1.00       |            |         |      |      | 0.95 | 0.96 | 1.00  |
| Satd. Flow (prot)                 |       | 5036 | 1568         | 3072 | 3374       |            |         |      |      | 1545 | 1529 | 1568  |
| Flt Permitted                     |       | 1.00 | 1.00         | 0.95 | 1.00       |            |         |      |      | 0.95 | 0.96 | 1.00  |
| Satd. Flow (perm)                 |       | 5036 | 1568         | 3072 | 3374       |            |         |      |      | 1545 | 1529 | 1568  |
| Peak-hour factor, PHF             | 0.92  | 0.92 | 0.92         | 0.92 | 0.92       | 0.92       | 0.92    | 0.92 | 0.92 | 0.92 | 0.92 | 0.92  |
| Adj. Flow (vph)                   | 0     | 1272 | 533          | 614  | 1679       | 0          | 0       | 0    | 0    | 239  | 11   | 359   |
| RTOR Reduction (vph)              | 0     | 0    | 264          | 0    | 0          | 0          | 0       | 0    | 0    | 0    | 0    | 0     |
| Lane Group Flow (vph)             | 0     | 1272 | 269          | 614  | 1679       | 0          | 0       | 0    | 0    | 124  | 126  | 359   |
| Heavy Vehicles (%)                | 2%    | 3%   | 3%           | 8%   | 7%         | 2%         | 2%      | 2%   | 2%   | 11%  | 33%  | 3%    |
| Turn Type                         |       | NA   | Perm         | Prot | NA         |            |         |      |      | Perm | NA   | Free  |
| Protected Phases                  |       | 2    |              | 1    | 6          |            |         |      |      |      | 4    |       |
| Permitted Phases                  |       |      | 2            |      |            |            |         |      |      | 4    |      | Free  |
| Actuated Green, G (s)             |       | 38.7 | 38.7         | 28.0 | 73.7       |            |         |      |      | 13.3 | 13.3 | 100.0 |
| Effective Green, g (s)            |       | 38.7 | 38.7         | 28.0 | 73.7       |            |         |      |      | 13.3 | 13.3 | 100.0 |
| Actuated g/C Ratio                |       | 0.39 | 0.39         | 0.28 | 0.74       |            |         |      |      | 0.13 | 0.13 | 1.00  |
| Clearance Time (s)                |       | 7.0  | 7.0          | 7.0  | 7.0        |            |         |      |      | 6.0  | 6.0  |       |
| Vehicle Extension (s)             |       | 3.0  | 3.0          | 3.0  | 3.0        |            |         |      |      | 3.0  | 3.0  |       |
| Lane Grp Cap (vph)                |       | 1948 | 606          | 860  | 2486       |            |         |      |      | 205  | 203  | 1568  |
| v/s Ratio Prot                    |       | 0.25 |              | 0.20 | c0.50      |            |         |      |      |      |      |       |
| v/s Ratio Perm                    |       |      | 0.17         |      |            |            |         |      |      | 0.08 | 0.08 | 0.23  |
| v/c Ratio                         |       | 0.65 | 0.44         | 0.71 | 0.68       |            |         |      |      | 0.60 | 0.62 | 0.23  |
| Uniform Delay, d1                 |       | 25.1 | 22.7         | 32.4 | 6.9        |            |         |      |      | 40.9 | 41.0 | 0.0   |
| Progression Factor                |       | 1.00 | 1.00         | 0.73 | 0.33       |            |         |      |      | 1.00 | 1.00 | 1.00  |
| Incremental Delay, d2             |       | 1.7  | 2.4          | 1.8  | 1.0        |            |         |      |      | 5.0  | 5.8  | 0.3   |
| Delay (s)                         |       | 26.9 | 25.0         | 25.6 | 3.2        |            |         |      |      | 45.8 | 46.7 | 0.3   |
| Level of Service                  |       | С    | С            | С    | А          |            |         |      |      | D    | D    | А     |
| Approach Delay (s)                |       | 26.3 |              |      | 9.2        |            |         | 0.0  |      |      | 19.2 |       |
| Approach LOS                      |       | С    |              |      | А          |            |         | А    |      |      | В    |       |
| Intersection Summary              |       |      |              |      |            |            |         |      |      |      |      |       |
| HCM 2000 Control Delay            |       |      | 17.1         | Н    | CM 2000    | Level of S | Service |      | В    |      |      |       |
| HCM 2000 Volume to Capacity       | ratio |      | 0.73         |      |            |            |         |      |      |      |      |       |
| Actuated Cycle Length (s)         |       |      | 100.0        | S    | um of lost | t time (s) |         |      | 20.0 |      |      |       |
| Intersection Capacity Utilization |       |      | 70.7%        | IC   | CU Level o | of Service |         |      | С    |      |      |       |
| Analysis Period (min)             |       |      | 15           |      |            |            |         |      |      |      |      |       |
| c Critical Lane Group             |       |      |              |      |            |            |         |      |      |      |      |       |

## HCM Signalized Intersection Capacity Analysis 25: I-25 NB Off Ramp/I-25 NB On Ramp & SH 66

10/07/2019

|                               | ٨          | -+   | 7     | *    | +         | *          | 1       | Ť    | 1     | 1    | ŧ    | ~    |
|-------------------------------|------------|------|-------|------|-----------|------------|---------|------|-------|------|------|------|
| Movement                      | EBL        | EBT  | EBR   | WBL  | WBT       | WBR        | NBL     | NBT  | NBR   | SBL  | SBT  | SBR  |
| Lane Configurations           | 55         | **   |       |      | ***       | 1          | 5       | र्स  | 1     |      |      |      |
| Traffic Volume (vph)          | 275        | 1115 | 0     | 0    | 1620      | 310        | 490     | 0    | 685   | 0    | 0    | 0    |
| Future Volume (vph)           | 275        | 1115 | 0     | 0    | 1620      | 310        | 490     | 0    | 685   | 0    | 0    | 0    |
| Ideal Flow (vphpl)            | 1800       | 1900 | 1900  | 1900 | 1900      | 1900       | 1800    | 1900 | 1900  | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 5.0        | 7.0  |       |      | 7.0       | 7.0        | 6.0     | 6.0  | 4.0   |      |      |      |
| Lane Util. Factor             | 0.97       | 0.95 |       |      | 0.91      | 1.00       | 0.95    | 0.95 | 1.00  |      |      |      |
| Frt                           | 1.00       | 1.00 |       |      | 1.00      | 0.85       | 1.00    | 1.00 | 0.85  |      |      |      |
| Flt Protected                 | 0.95       | 1.00 |       |      | 1.00      | 1.00       | 0.95    | 0.95 | 1.00  |      |      |      |
| Satd. Flow (prot)             | 3221       | 3438 |       |      | 4803      | 1417       | 1533    | 1618 | 1455  |      |      |      |
| Flt Permitted                 | 0.95       | 1.00 |       |      | 1.00      | 1.00       | 0.95    | 0.95 | 1.00  |      |      |      |
| Satd. Flow (perm)             | 3221       | 3438 |       |      | 4803      | 1417       | 1533    | 1618 | 1455  |      |      |      |
| Peak-hour factor, PHF         | 0.92       | 0.92 | 0.92  | 0.92 | 0.92      | 0.92       | 0.92    | 0.92 | 0.92  | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)               | 299        | 1212 | 0     | 0    | 1761      | 337        | 533     | 0    | 745   | 0    | 0    | 0    |
| RTOR Reduction (vph)          | 0          | 0    | 0     | 0    | 0         | 183        | 0       | 0    | 0     | 0    | 0    | 0    |
| Lane Group Flow (vph)         | 299        | 1212 | 0     | 0    | 1761      | 154        | 266     | 267  | 745   | 0    | 0    | 0    |
| Heavy Vehicles (%)            | 3%         | 5%   | 2%    | 2%   | 8%        | 14%        | 6%      | 0%   | 11%   | 2%   | 2%   | 2%   |
| Turn Type                     | Prot       | NA   |       |      | NA        | Perm       | Perm    | NA   | Free  |      |      |      |
| Protected Phases              | 5          | 2    |       |      | 6         |            |         | 8    |       |      |      |      |
| Permitted Phases              |            |      |       |      |           | 6          | 8       |      | Free  |      |      |      |
| Actuated Green, G (s)         | 14.5       | 63.8 |       |      | 44.3      | 44.3       | 23.2    | 23.2 | 100.0 |      |      |      |
| Effective Green, g (s)        | 14.5       | 63.8 |       |      | 44.3      | 44.3       | 23.2    | 23.2 | 100.0 |      |      |      |
| Actuated g/C Ratio            | 0.14       | 0.64 |       |      | 0.44      | 0.44       | 0.23    | 0.23 | 1.00  |      |      |      |
| Clearance Time (s)            | 5.0        | 7.0  |       |      | 7.0       | 7.0        | 6.0     | 6.0  |       |      |      |      |
| Vehicle Extension (s)         | 3.0        | 3.0  |       |      | 3.0       | 3.0        | 3.0     | 3.0  |       |      |      |      |
| Lane Grp Cap (vph)            | 467        | 2193 |       |      | 2127      | 627        | 355     | 375  | 1455  |      |      |      |
| v/s Ratio Prot                | 0.09       | 0.35 |       |      | c0.37     |            |         |      |       |      |      |      |
| v/s Ratio Perm                |            |      |       |      |           | 0.11       | c0.17   | 0.17 | c0.51 |      |      |      |
| v/c Ratio                     | 0.64       | 0.55 |       |      | 0.83      | 0.25       | 0.75    | 0.71 | 0.51  |      |      |      |
| Uniform Delay, d1             | 40.3       | 10.1 |       |      | 24.5      | 17.4       | 35.7    | 35.3 | 0.0   |      |      |      |
| Progression Factor            | 1.41       | 0.28 |       |      | 1.00      | 1.00       | 1.00    | 1.00 | 1.00  |      |      |      |
| Incremental Delay, d2         | 2.4        | 0.8  |       |      | 3.9       | 0.9        | 8.4     | 6.3  | 1.3   |      |      |      |
| Delay (s)                     | 59.0       | 3.6  |       |      | 28.4      | 18.3       | 44.1    | 41.6 | 1.3   |      |      |      |
| Level of Service              | Е          | А    |       |      | С         | В          | D       | D    | А     |      |      |      |
| Approach Delay (s)            |            | 14.6 |       |      | 26.8      |            |         | 18.6 |       |      | 0.0  |      |
| Approach LOS                  |            | В    |       |      | С         |            |         | В    |       |      | А    |      |
| Intersection Summary          |            |      |       |      |           |            |         |      |       |      |      |      |
| HCM 2000 Control Delay        |            |      | 20.9  | Н    | CM 2000   | Level of   | Service |      | С     |      |      |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.78  |      |           |            |         |      |       |      |      |      |
| Actuated Cycle Length (s)     |            |      | 100.0 | S    | um of los | t time (s) |         |      | 18.0  |      |      |      |
| Intersection Capacity Utiliza | ition      |      | 70.7% | IC   | CU Level  | of Service | )       |      | С     |      |      |      |
| Analysis Period (min)         |            |      | 15    |      |           |            |         |      |       |      |      |      |
| c Critical Lane Group         |            |      |       |      |           |            |         |      |       |      |      |      |

### Intersection

Int Delay, s/veh 1621.2

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1    | **   | 1    | 1    | 14   |      | 1    | t,   |      |      | \$   |      |
| Traffic Vol, veh/h     | 225  | 1465 | 110  | 20   | 1430 | 20   | 125  | 0    | 60   | 75   | 5    | 375  |
| Future Vol, veh/h      | 225  | 1465 | 110  | 20   | 1430 | 20   | 125  | 0    | 60   | 75   | 5    | 375  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None |
| Storage Length         | 275  | -    | 0    | 225  | -    | -    | 0    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2    | 10   | 7    | 3    | 8    | 2    | 7    | 2    | 3    | 2    | 2    | 2    |
| Mvmt Flow              | 245  | 1592 | 120  | 22   | 1554 | 22   | 136  | 0    | 65   | 82   | 5    | 408  |

| Major/Minor          | Major1 |   | Ν | lajor2 |   | Ν | Minor1 |      | ľ    | Minor2 |      |       |  |
|----------------------|--------|---|---|--------|---|---|--------|------|------|--------|------|-------|--|
| Conflicting Flow All | 1576   | 0 | 0 | 1712   | 0 | 0 | 2906   | 3702 | 796  | 2895   | 3811 | 788   |  |
| Stage 1              | -      | - | - | -      | - | - | 2082   | 2082 | -    | 1609   | 1609 | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 824    | 1620 | -    | 1286   | 2202 | -     |  |
| Critical Hdwy        | 4.14   | - | - | 4.16   | - | - | 7.64   | 6.54 | 6.96 | 7.54   | 6.54 | 6.94  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.64   | 5.54 | -    | 6.54   | 5.54 | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.64   | 5.54 | -    | 6.54   | 5.54 | -     |  |
| Follow-up Hdwy       | 2.22   | - | - | 2.23   | - | - | 3.57   | 4.02 | 3.33 | 3.52   | 4.02 | 3.32  |  |
| Pot Cap-1 Maneuver   | 414    | - | - | 362    | - | - | ~ 6    | 5    | 328  | ~ 7    | ~ 4  | ~ 334 |  |
| Stage 1              | -      | - | - | -      | - | - | ~ 51   | 94   | -    | 109    | 162  | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 323    | 160  | -    | 174    | 81   | -     |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |      |      |        |      |       |  |
| Mov Cap-1 Maneuver   | 414    | - | - | 362    | - | - | -      | 2    | 328  | ~ 3    | ~ 2  | ~ 334 |  |
| Mov Cap-2 Maneuver   | • -    | - | - | -      | - | - | -      | 2    | -    | ~ 3    | ~ 2  | -     |  |
| Stage 1              | -      | - | - | -      | - | - | ~ 21   | 38   | -    | ~ 44   | 152  | -     |  |
| Stage 2              | -      | - | - | -      | - | - | -      | 150  | -    | ~ 57   | 33   | -     |  |
|                      |        |   |   |        |   |   |        |      |      |        |      |       |  |

| Approach             | EB  | WB  | NB | SB         |  |
|----------------------|-----|-----|----|------------|--|
| HCM Control Delay, s | 3.2 | 0.2 |    | \$ 13918.3 |  |
| HCM LOS              |     |     | -  | F          |  |

| Minor Lane/Major Mvmt | NBLn1 | NBLn2 | EBL   | EBT | EBR | WBL  | WBT | WBR SBLn   |
|-----------------------|-------|-------|-------|-----|-----|------|-----|------------|
| Capacity (veh/h)      | -     | 328   | 414   | -   | -   | 362  | -   | - 16       |
| HCM Lane V/C Ratio    | -     | 0.199 | 0.591 | -   | -   | 0.06 | -   | - 30.91    |
| HCM Control Delay (s) | -     | 18.7  | 25.5  | -   | -   | 15.6 | -   | \$ 13918.3 |
| HCM Lane LOS          | -     | С     | D     | -   | -   | С    | -   | - F        |
| HCM 95th %tile Q(veh) | -     | 0.7   | 3.7   | -   | -   | 0.2  | -   | - 62.8     |
| Notes                 |       |       |       |     |     |      |     |            |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

# HCM 6th Signalized Intersection Summary 27: CR 9 1/2 & SH 66

| 10/07/20 | 19 |
|----------|----|
|----------|----|

|                              | ٨     |       | $\mathbf{r}$ | •     | -        | *     | 1     | Ť     | 1    | 1      | ŧ        | ~        |
|------------------------------|-------|-------|--------------|-------|----------|-------|-------|-------|------|--------|----------|----------|
| Movement                     | EBL   | EBT   | EBR          | WBL   | WBT      | WBR   | NBL   | NBT   | NBR  | SBL    | SBT      | SBR      |
| Lane Configurations          | 5     | ↑     | 7            | 5     | Ъ        |       | 5     | 1.    |      |        | 4        |          |
| Traffic Volume (veh/h)       | 290   | 910   | 400          | 130   | 580      | 45    | 455   | 290   | 475  | 100    | 355      | 435      |
| Future Volume (veh/h)        | 290   | 910   | 400          | 130   | 580      | 45    | 455   | 290   | 475  | 100    | 355      | 435      |
| Initial Q (Qb), veh          | 0     | 0     | 0            | 0     | 0        | 0     | 0     | 0     | 0    | 0      | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00  |       | 1.00         | 1.00  |          | 1.00  | 1.00  |       | 1.00 | 1.00   |          | 1.00     |
| Parking Bus, Adj             | 1.00  | 1.00  | 1.00         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00   | 1.00     | 1.00     |
| Work Zone On Approach        |       | No    |              |       | No       |       |       | No    |      |        | No       |          |
| Adj Sat Flow, veh/h/ln       | 1633  | 1781  | 1870         | 1781  | 1796     | 1796  | 1633  | 1826  | 1826 | 1841   | 1841     | 1841     |
| Adj Flow Rate, veh/h         | 315   | 989   | 435          | 141   | 630      | 49    | 495   | 315   | 516  | 109    | 386      | 473      |
| Peak Hour Factor             | 0.92  | 0.92  | 0.92         | 0.92  | 0.92     | 0.92  | 0.92  | 0.92  | 0.92 | 0.92   | 0.92     | 0.92     |
| Percent Heavy Veh, %         | 18    | 8     | 2            | 8     | 7        | 7     | 18    | 5     | 5    | 4      | 4        | 4        |
| Cap, veh/h                   | 185   | 484   | 430          | 148   | 400      | 31    | 289   | 347   | 568  | 45     | 90       | 102      |
| Arrive On Green              | 0.09  | 0.27  | 0.27         | 0.06  | 0.24     | 0.24  | 0.09  | 0.56  | 0.56 | 0.43   | 0.43     | 0.43     |
| Sat Flow, veh/h              | 1555  | 1781  | 1585         | 1697  | 1645     | 128   | 1555  | 623   | 1020 | 39     | 211      | 238      |
| Grp Volume(v), veh/h         | 315   | 989   | 435          | 141   | 0        | 679   | 495   | 0     | 831  | 968    | 0        | 0        |
| Grp Sat Flow(s),veh/h/ln     | 1555  | 1781  | 1585         | 1697  | 0        | 1773  | 1555  | 0     | 1642 | 488    | 0        | 0        |
| Q Serve(g_s), s              | 12.0  | 38.0  | 38.0         | 8.0   | 0.0      | 34.0  | 13.0  | 0.0   | 63.5 | 14.5   | 0.0      | 0.0      |
| Cycle Q Clear(g_c), s        | 12.0  | 38.0  | 38.0         | 8.0   | 0.0      | 34.0  | 13.0  | 0.0   | 63.5 | 60.0   | 0.0      | 0.0      |
| Prop In Lane                 | 1.00  |       | 1.00         | 1.00  |          | 0.07  | 1.00  |       | 0.62 | 0.11   |          | 0.49     |
| Lane Grp Cap(c), veh/h       | 185   | 484   | 430          | 148   | 0        | 431   | 289   | 0     | 915  | 238    | 0        | 0        |
| V/C Ratio(X)                 | 1.70  | 2.05  | 1.01         | 0.95  | 0.00     | 1.58  | 1.71  | 0.00  | 0.91 | 4.07   | 0.00     | 0.00     |
| Avail Cap(c_a), veh/h        | 185   | 484   | 430          | 148   | 0        | 431   | 289   | 0     | 915  | 238    | 0        | 0        |
| HCM Platoon Ratio            | 1.00  | 1.00  | 1.00         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00   | 1.00     | 1.00     |
| Upstream Filter(I)           | 1.00  | 1.00  | 1.00         | 1.00  | 0.00     | 1.00  | 1.00  | 0.00  | 1.00 | 1.00   | 0.00     | 0.00     |
| Uniform Delay (d), s/veh     | 40.4  | 51.0  | 51.0         | 43.9  | 0.0      | 53.0  | 25.8  | 0.0   | 27.8 | 50.6   | 0.0      | 0.0      |
| Incr Delay (d2), s/veh       | 339.3 | 477.6 | 46.2         | 59.2  | 0.0      | 270.5 | 334.4 | 0.0   | 13.3 | 1393.3 | 0.0      | 0.0      |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0   | 0.0          | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0  | 0.0    | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/In     | 22.0  | 80.3  | 19.9         | 6.0   | 0.0      | 46.8  | 31.8  | 0.0   | 25.6 | 100.2  | 0.0      | 0.0      |
| Unsig. Movement Delay, s/veh |       |       | 07.0         | 100.1 |          |       |       |       |      |        |          |          |
| LnGrp Delay(d),s/veh         | 379.7 | 528.6 | 97.2         | 103.1 | 0.0      | 323.5 | 360.2 | 0.0   | 41.1 | 1443.9 | 0.0      | 0.0      |
| LnGrp LOS                    | F     | +     | F            | F     | <u>A</u> | F     | F     | A     | D    | F      | <u>A</u> | <u> </u> |
| Approach Vol, veh/h          |       | 1/39  |              |       | 820      |       |       | 1326  |      |        | 968      |          |
| Approach Delay, s/veh        |       | 393.7 |              |       | 285.6    |       |       | 160.2 |      |        | 1443.9   |          |
| Approach LOS                 |       | F     |              |       | F        |       |       | F     |      |        | F        |          |
| Timer - Assigned Phs         | 1     | 2     | 3            | 4     | 5        | 6     |       | 8     |      |        |          |          |
| Phs Duration (G+Y+Rc), s     | 13.0  | 44.0  | 18.0         | 65.0  | 17.0     | 40.0  |       | 83.0  |      |        |          |          |
| Change Period (Y+Rc), s      | 5.0   | 6.0   | 5.0          | 5.0   | 5.0      | 6.0   |       | 5.0   |      |        |          |          |
| Max Green Setting (Gmax), s  | 8.0   | 38.0  | 13.0         | 60.0  | 12.0     | 34.0  |       | 78.0  |      |        |          |          |
| Max Q Clear Time (g_c+I1), s | 10.0  | 40.0  | 15.0         | 62.0  | 14.0     | 36.0  |       | 65.5  |      |        |          |          |
| Green Ext Time (p_c), s      | 0.0   | 0.0   | 0.0          | 0.0   | 0.0      | 0.0   |       | 7.3   |      |        |          |          |
| Intersection Summary         |       |       |              |       |          |       |       |       |      |        |          |          |
| HCM 6th Ctrl Delay           |       |       | 521.1        |       |          |       |       |       |      |        |          |          |
| HCM 6th LOS                  |       |       | F            |       |          |       |       |       |      |        |          |          |

| Intersection           |      |      |      |      |      |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Int Delay, s/veh       | 1.2  |      |      |      |      |      |      |      |      |      |      |      |  |
| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    |      | \$   |      |      | \$   |      |      | \$   |      |      | \$   |      |  |
| Traffic Vol, veh/h     | 110  | 1205 | 170  | 140  | 585  | 75   | 105  | 15   | 170  | 80   | 15   | 65   |  |
| Future Vol, veh/h      | 110  | 1205 | 170  | 140  | 585  | 75   | 105  | 15   | 170  | 80   | 15   | 65   |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 0    | 11   | 25   | 0    | 8    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Mvmt Flow              | 120  | 1310 | 185  | 152  | 636  | 82   | 114  | 16   | 185  | 87   | 16   | 71   |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Major1 |   | N | lajor2 |   | Ν | Minor1 |      | ľ     | Minor2 |      |     |  |
|----------------------|--------|---|---|--------|---|---|--------|------|-------|--------|------|-----|--|
| Conflicting Flow All | 718    | 0 | 0 | 1495   | 0 | 0 | 2668   | 2665 | 1403  | 2724   | 2716 | 677 |  |
| Stage 1              | -      | - | - | -      | - | - | 1643   | 1643 | -     | 981    | 981  | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 1025   | 1022 | -     | 1743   | 1735 | -   |  |
| Critical Hdwy        | 4.1    | - | - | 4.1    | - | - | 7.1    | 6.5  | 6.2   | 7.1    | 6.5  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.1    | 5.5  | -     | 6.1    | 5.5  | -   |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.1    | 5.5  | -     | 6.1    | 5.5  | -   |  |
| Follow-up Hdwy       | 2.2    | - | - | 2.2    | - | - | 3.5    | 4    | 3.3   | 3.5    | 4    | 3.3 |  |
| Pot Cap-1 Maneuver   | 892    | - | - | 455    | - | - | ~ 15   | 23   | ~ 173 | ~ 14   | 21   | 456 |  |
| Stage 1              | -      | - | - | -      | - | - | 127    | 159  | -     | 303    | 330  | -   |  |
| Stage 2              | -      | - | - | -      | - | - | 286    | 316  | -     | 111    | 143  | -   |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |      |       |        |      |     |  |
| Mov Cap-1 Maneuver   | r 892  | - | - | 455    | - | - | -      | ~ 1  | ~ 173 | -      | ~ 1  | 456 |  |
| Mov Cap-2 Maneuver   | r -    | - | - | -      | - | - | -      | ~ 1  | -     | -      | ~ 1  | -   |  |
| Stage 1              | -      | - | - | -      | - | - | ~ 12   | ~ 16 | -     | ~ 30   | 144  | -   |  |
| Stage 2              | -      | - | - | -      | - | - | ~ 93   | 138  | -     | 0      | ~ 14 | -   |  |
|                      |        |   |   |        |   |   |        |      |       |        |      |     |  |

| Approach             | EB  | WB  | NB | SB |
|----------------------|-----|-----|----|----|
| HCM Control Delay, s | 0.7 | 2.9 |    |    |
| HCM LOS              |     |     | -  | -  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR SB | Ln1 |      |  |  |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|-----|------|--|--|
| Capacity (veh/h)      | -     | 892   | -   | -   | 455   | -   | -      | -   |      |  |  |
| HCM Lane V/C Ratio    | -     | 0.134 | -   | -   | 0.334 | -   | -      | -   |      |  |  |
| HCM Control Delay (s) | -     | 9.7   | 0   | -   | 16.8  | 0   | -      | -   |      |  |  |
| HCM Lane LOS          | -     | А     | Α   | -   | С     | А   | -      | -   |      |  |  |
| HCM 95th %tile Q(veh) | -     | 0.5   | -   | -   | 1.5   | -   | -      | -   |      |  |  |
| Notos                 |       |       |     |     |       |     |        |     |      |  |  |
|                       |       |       |     | -   | _     |     |        |     | <br> |  |  |

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

## HCM Signalized Intersection Capacity Analysis 30: CR13/CR 13 & SH 66

|                               | ٠          | -+    | $\mathbf{r}$ | 4     | +          | •          | 1       | Ť     | 1    | 1    | ţ    | ~    |
|-------------------------------|------------|-------|--------------|-------|------------|------------|---------|-------|------|------|------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL   | WBT        | WBR        | NBL     | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations           | 5          | 1.    |              | 5     | ţ,         |            |         | 4     |      |      | 4    |      |
| Traffic Volume (vph)          | 130        | 950   | 215          | 90    | 685        | 25         | 140     | 325   | 120  | 20   | 210  | 25   |
| Future Volume (vph)           | 130        | 950   | 215          | 90    | 685        | 25         | 140     | 325   | 120  | 20   | 210  | 25   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900  | 1900       | 1900       | 1900    | 1900  | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 5.0        | 7.0   |              | 5.0   | 7.0        |            |         | 7.0   |      |      | 7.0  |      |
| Lane Util. Factor             | 1.00       | 1.00  |              | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00 |      |
| Frt                           | 1.00       | 0.97  |              | 1.00  | 0.99       |            |         | 0.97  |      |      | 0.99 |      |
| Flt Protected                 | 0.95       | 1.00  |              | 0.95  | 1.00       |            |         | 0.99  |      |      | 1.00 |      |
| Satd. Flow (prot)             | 1504       | 1685  |              | 1805  | 1723       |            |         | 1736  |      |      | 1834 |      |
| Flt Permitted                 | 0.13       | 1.00  |              | 0.05  | 1.00       |            |         | 0.72  |      |      | 0.89 |      |
| Satd. Flow (perm)             | 213        | 1685  |              | 100   | 1723       |            |         | 1270  |      |      | 1638 |      |
| Peak-hour factor, PHF         | 0.92       | 0.92  | 0.92         | 0.92  | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)               | 141        | 1033  | 234          | 98    | 745        | 27         | 152     | 353   | 130  | 22   | 228  | 27   |
| RTOR Reduction (vph)          | 0          | 5     | 0            | 0     | 1          | 0          | 0       | 6     | 0    | 0    | 3    | 0    |
| Lane Group Flow (vph)         | 141        | 1262  | 0            | 98    | 771        | 0          | 0       | 629   | 0    | 0    | 274  | 0    |
| Heavy Vehicles (%)            | 20%        | 10%   | 8%           | 0%    | 9%         | 28%        | 6%      | 6%    | 2%   | 22%  | 0%   | 1%   |
| Turn Type                     | pm+pt      | NA    |              | pm+pt | NA         |            | Perm    | NA    |      | Perm | NA   |      |
| Protected Phases              | 5          | 2     |              | 1     | 6          |            |         | 8     |      |      | 4    |      |
| Permitted Phases              | 2          |       |              | 6     |            |            | 8       |       |      | 4    |      |      |
| Actuated Green, G (s)         | 84.0       | 76.0  |              | 84.0  | 76.0       |            |         | 47.0  |      |      | 47.0 |      |
| Effective Green, g (s)        | 84.0       | 76.0  |              | 84.0  | 76.0       |            |         | 47.0  |      |      | 47.0 |      |
| Actuated g/C Ratio            | 0.56       | 0.51  |              | 0.56  | 0.51       |            |         | 0.31  |      |      | 0.31 |      |
| Clearance Time (s)            | 5.0        | 7.0   |              | 5.0   | 7.0        |            |         | 7.0   |      |      | 7.0  |      |
| Vehicle Extension (s)         | 4.0        | 6.0   |              | 4.0   | 6.0        |            |         | 5.0   |      |      | 5.0  |      |
| Lane Grp Cap (vph)            | 188        | 853   |              | 146   | 872        |            |         | 397   |      |      | 513  |      |
| v/s Ratio Prot                | c0.04      | c0.75 |              | 0.04  | 0.45       |            |         |       |      |      |      |      |
| v/s Ratio Perm                | 0.38       |       |              | 0.34  |            |            |         | c0.50 |      |      | 0.17 |      |
| v/c Ratio                     | 0.75       | 1.48  |              | 0.67  | 0.88       |            |         | 1.58  |      |      | 0.53 |      |
| Uniform Delay, d1             | 26.4       | 37.0  |              | 33.6  | 33.1       |            |         | 51.5  |      |      | 42.5 |      |
| Progression Factor            | 1.00       | 1.00  |              | 1.00  | 1.00       |            |         | 1.00  |      |      | 1.00 |      |
| Incremental Delay, d2         | 16.3       | 221.9 |              | 12.5  | 11.8       |            |         | 274.5 |      |      | 2.0  |      |
| Delay (s)                     | 42.7       | 258.9 |              | 46.1  | 44.8       |            |         | 326.0 |      |      | 44.4 |      |
| Level of Service              | D          | F     |              | D     | D          |            |         | F     |      |      | D    |      |
| Approach Delay (s)            |            | 237.2 |              |       | 45.0       |            |         | 326.0 |      |      | 44.4 |      |
| Approach LOS                  |            | F     |              |       | D          |            |         | F     |      |      | D    |      |
| Intersection Summary          |            |       |              |       |            |            |         |       |      |      |      |      |
| HCM 2000 Control Delay        |            |       | 185.7        | H     | CM 2000    | Level of S | Service |       | F    |      |      |      |
| HCM 2000 Volume to Capa       | city ratio |       | 1.47         |       |            |            |         |       |      |      |      |      |
| Actuated Cycle Length (s)     |            |       | 150.0        | Si    | um of lost | time (s)   |         |       | 19.0 |      |      |      |
| Intersection Capacity Utiliza | tion       |       | 137.2%       | IC    | U Level o  | of Service |         |       | Н    |      |      |      |
| Analysis Period (min)         |            |       | 15           |       |            |            |         |       |      |      |      |      |
| c Critical Lane Group         |            |       |              |       |            |            |         |       |      |      |      |      |

| Intersection    |    |
|-----------------|----|
| Int Delay s/veh | 39 |

| The Delay, Siven       | 0.5    |      |          |      |      |      |
|------------------------|--------|------|----------|------|------|------|
| Movement               | EBL    | EBT  | WBT      | WBR  | SBL  | SBR  |
| Lane Configurations    | ٦      | 1    | <b>↑</b> | 1    | Y    |      |
| Traffic Vol, veh/h     | 190    | 900  | 745      | 15   | 15   | 55   |
| Future Vol, veh/h      | 190    | 900  | 745      | 15   | 15   | 55   |
| Conflicting Peds, #/hr | 0      | 0    | 0        | 0    | 0    | 0    |
| Sign Control           | Free   | Free | Free     | Free | Stop | Stop |
| RT Channelized         | -      | None | -        | None | -    | None |
| Storage Length         | 525    | -    | -        | 550  | 0    | -    |
| Veh in Median Storage  | e, # - | 0    | 0        | -    | 0    | -    |
| Grade, %               | -      | 0    | 0        | -    | 0    | -    |
| Peak Hour Factor       | 92     | 92   | 92       | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0      | 10   | 11       | 46   | 13   | 0    |
| Mvmt Flow              | 207    | 978  | 810      | 16   | 16   | 60   |
|                        |        |      |          |      |      |      |

| Major/Minor          | Major1 | Majo | or2 | ſ | Minor2 |     |  |
|----------------------|--------|------|-----|---|--------|-----|--|
| Conflicting Flow All | 826    | 0    | -   | 0 | 2202   | 810 |  |
| Stage 1              | -      | -    | -   | - | 810    | -   |  |
| Stage 2              | -      | -    | -   | - | 1392   | -   |  |
| Critical Hdwy        | 4.1    | -    | -   | - | 6.53   | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -    | -   | - | 5.53   | -   |  |
| Critical Hdwy Stg 2  | -      | -    | -   | - | 5.53   | -   |  |
| Follow-up Hdwy       | 2.2    | -    | -   | - | 3.617  | 3.3 |  |
| Pot Cap-1 Maneuver   | 813    | -    | -   | - | 46     | 383 |  |
| Stage 1              | -      | -    | -   | - | 419    | -   |  |
| Stage 2              | -      | -    | -   | - | 218    | -   |  |
| Platoon blocked, %   |        | -    | -   | - |        |     |  |
| Mov Cap-1 Maneuver   | r 813  | -    | -   | - | 34     | 383 |  |
| Mov Cap-2 Maneuver   | r –    | -    | -   | - | 34     | -   |  |
| Stage 1              | -      | -    | -   | - | 312    | -   |  |
| Stage 2              | -      | -    | -   | - | 218    | -   |  |
|                      |        |      |     |   |        |     |  |

| Approach             | EB  | WB | SB   |  |
|----------------------|-----|----|------|--|
| HCM Control Delay, s | 1.9 | 0  | 76.5 |  |
| HCM LOS              |     |    | F    |  |

| Vinor Lane/Major Mvmt | EBL   | EBT | WBT | WBR SBLn1 |
|-----------------------|-------|-----|-----|-----------|
| Capacity (veh/h)      | 813   | -   | -   | - 120     |
| HCM Lane V/C Ratio    | 0.254 | -   | -   | - 0.634   |
| HCM Control Delay (s) | 10.9  | -   | -   | - 76.5    |
| HCM Lane LOS          | В     | -   | -   | - F       |
| HCM 95th %tile Q(veh) | 1     | -   | -   | - 3.3     |

| Intersection           |        |      |       |      |      |      |
|------------------------|--------|------|-------|------|------|------|
| Int Delay, s/veh       | 3.6    |      |       |      |      |      |
|                        |        |      | 14/51 |      |      |      |
| Movement               | EBT    | EBR  | WBL   | WBI  | NBL  | NBR  |
| Lane Configurations    | Þ      |      |       | ÷.   | Y    |      |
| Traffic Vol, veh/h     | 825    | 90   | 5     | 700  | 60   | 5    |
| Future Vol, veh/h      | 825    | 90   | 5     | 700  | 60   | 5    |
| Conflicting Peds, #/hr | 0      | 0    | 0     | 0    | 0    | 0    |
| Sign Control           | Free   | Free | Free  | Free | Stop | Stop |
| RT Channelized         | -      | None | -     | None | -    | None |
| Storage Length         | -      | -    | -     | -    | 0    | -    |
| Veh in Median Storage  | e, # 0 | -    | -     | 0    | 0    | -    |
| Grade, %               | 0      | -    | -     | 0    | 0    | -    |
| Peak Hour Factor       | 92     | 92   | 92    | 92   | 92   | 92   |
| Heavy Vehicles, %      | 10     | 0    | 0     | 14   | 0    | 0    |
| Mymt Flow              | 897    | 98   | 5     | 761  | 65   | 5    |
|                        |        |      |       | -    |      | -    |

| Major/Minor          | Major1 | N | lajor2 | I | Minor1 |     |  |
|----------------------|--------|---|--------|---|--------|-----|--|
| Conflicting Flow All | 0      | 0 | 995    | 0 | 1717   | 946 |  |
| Stage 1              | -      | - | -      | - | 946    | -   |  |
| Stage 2              | -      | - | -      | - | 771    | -   |  |
| Critical Hdwy        | -      | - | 4.1    | - | 6.4    | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | -      | - | 5.4    | -   |  |
| Critical Hdwy Stg 2  | -      | - | -      | - | 5.4    | -   |  |
| Follow-up Hdwy       | -      | - | 2.2    | - | 3.5    | 3.3 |  |
| Pot Cap-1 Maneuver   | -      | - | 703    | - | 100    | 320 |  |
| Stage 1              | -      | - | -      | - | 381    | -   |  |
| Stage 2              | -      | - | -      | - | 460    | -   |  |
| Platoon blocked, %   | -      | - |        | - |        |     |  |
| Mov Cap-1 Maneuve    | r -    | - | 703    | - | 99     | 320 |  |
| Mov Cap-2 Maneuve    | r -    | - | -      | - | 99     | -   |  |
| Stage 1              | -      | - | -      | - | 376    | -   |  |
| Stage 2              | -      | - | -      | - | 460    | -   |  |
|                      |        |   |        |   |        |     |  |

| Approach             | EB | WB  | NB   |
|----------------------|----|-----|------|
| HCM Control Delay, s | 0  | 0.1 | 91.4 |
| HCM LOS              |    |     | F    |

| Minor Lane/Major Mvmt | NBLn1 | EBT | EBR | WBL   | WBT |  |  |
|-----------------------|-------|-----|-----|-------|-----|--|--|
| Capacity (veh/h)      | 105   | -   | -   | 703   | -   |  |  |
| HCM Lane V/C Ratio    | 0.673 | -   | -   | 0.008 | -   |  |  |
| HCM Control Delay (s) | 91.4  | -   | -   | 10.2  | 0   |  |  |
| HCM Lane LOS          | F     | -   | -   | В     | А   |  |  |
| HCM 95th %tile Q(veh) | 3.4   | -   | -   | 0     | -   |  |  |

### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    | 1    | 1    | 1    | 1    | 1    | 1    |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 20   | 755  | 55   | 65   | 635  | 5    | 60   | 65   | 75   | 5    | 30   | 10   |
| Future Vol, veh/h      | 20   | 755  | 55   | 65   | 635  | 5    | 60   | 65   | 75   | 5    | 30   | 10   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None |
| Storage Length         | 625  | -    | 625  | 700  | -    | 600  | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0    | 10   | 27   | 4    | 12   | 0    | 27   | 6    | 3    | 0    | 23   | 0    |
| Mvmt Flow              | 22   | 821  | 60   | 71   | 690  | 5    | 65   | 71   | 82   | 5    | 33   | 11   |

| Major/Minor          | Major1 |   | Μ   | lajor2 |   | l | Minor1 |       | ſ     | Minor2 |       |     |  |
|----------------------|--------|---|-----|--------|---|---|--------|-------|-------|--------|-------|-----|--|
| Conflicting Flow All | 695    | 0 | 0   | 881    | 0 | 0 | 1722   | 1702  | 821   | 1804   | 1757  | 690 |  |
| Stage 1              | -      | - | -   | -      | - | - | 865    | 865   | -     | 832    | 832   | -   |  |
| Stage 2              | -      | - | -   | -      | - | - | 857    | 837   | -     | 972    | 925   | -   |  |
| Critical Hdwy        | 4.1    | - | -   | 4.14   | - | - | 7.37   | 6.56  | 6.23  | 7.1    | 6.73  | 6.2 |  |
| Critical Hdwy Stg 1  | -      | - | -   | -      | - | - | 6.37   | 5.56  | -     | 6.1    | 5.73  | -   |  |
| Critical Hdwy Stg 2  | -      | - | -   | -      | - | - | 6.37   | 5.56  | -     | 6.1    | 5.73  | -   |  |
| Follow-up Hdwy       | 2.2    | - | - 2 | 2.236  | - | - | 3.743  | 4.054 | 3.327 | 3.5    | 4.207 | 3.3 |  |
| Pot Cap-1 Maneuver   | 910    | - | -   | 759    | - | - | ~ 61   | 90    | 373   | 62     | 75    | 449 |  |
| Stage 1              | -      | - | -   | -      | - | - | 316    | 365   | -     | 366    | 356   | -   |  |
| Stage 2              | -      | - | -   | -      | - | - | 319    | 376   | -     | 306    | 321   | -   |  |
| Platoon blocked, %   |        | - | -   |        | - | - |        |       |       |        |       |     |  |
| Mov Cap-1 Maneuver   | · 910  | - | -   | 759    | - | - | ~ 33   | 80    | 373   | 11     | 66    | 449 |  |
| Mov Cap-2 Maneuver   | · _    | - | -   | -      | - | - | ~ 33   | 80    | -     | 11     | 66    | -   |  |
| Stage 1              | -      | - | -   | -      | - | - | 308    | 356   | -     | 357    | 323   | -   |  |
| Stage 2              | -      | - | -   | -      | - | - | 254    | 341   | -     | 187    | 313   | -   |  |
|                      |        |   |     |        |   |   |        |       |       |        |       |     |  |

| Approach             | EB  | WB  | NB        | SB    |  |
|----------------------|-----|-----|-----------|-------|--|
| HCM Control Delay, s | 0.2 | 0.9 | \$ 1053.5 | 269.8 |  |
| HCM LOS              |     |     | F         | F     |  |

| Minor Lane/Major Mvmt | NBLn1     | EBL   | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |
|-----------------------|-----------|-------|-----|-----|-------|-----|-------|-------|
| Capacity (veh/h)      | 71        | 910   | -   | -   | 759   | -   | -     | 48    |
| HCM Lane V/C Ratio    | 3.062     | 0.024 | -   | -   | 0.093 | -   | -     | 1.019 |
| HCM Control Delay (s) | \$ 1053.5 | 9.1   | -   | -   | 10.2  | -   | -     | 269.8 |
| HCM Lane LOS          | F         | А     | -   | -   | В     | -   | -     | F     |
| HCM 95th %tile Q(veh) | 22        | 0.1   | -   | -   | 0.3   | -   | -     | 4.3   |
| Notes                 |           |       |     |     |       |     |       |       |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

\*: All major volume in platoon



## F.3. 2040 AM with Recommended PEL Laneage and ACP Implemented

### HCM 6th Signalized Intersection Summary 1: McConnell Dr/Stone Canyon Dr & SH 66

03/12/2020

| Movement         SEL         SET         SER         NWL         NWR         NEL         NEL         NER         SWL         SWL         SWR           Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< th=""><th></th><th>4</th><th>×</th><th>2</th><th>5</th><th>×</th><th>۲</th><th>3</th><th>*</th><th>~</th><th>Ĺ</th><th>×</th><th>*</th></td<>                                                                                                                                        |                              | 4    | ×    | 2    | 5    | ×        | ۲    | 3    | *    | ~    | Ĺ    | ×         | *    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|------|------|------|----------|------|------|------|------|------|-----------|------|
| Lane Configurations       1       1       1       1       1       1       1       1         Trafic Volume (veh/h)       15       740       65       195       460       15       65       15       235       40       35       40         Initial Q(b), veh       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </th <th>Movement</th> <th>SEL</th> <th>SET</th> <th>SER</th> <th>NWL</th> <th>NWT</th> <th>NWR</th> <th>NEL</th> <th>NET</th> <th>NER</th> <th>SWL</th> <th>SWT</th> <th>SWR</th>                                                                                                                                                                                                           | Movement                     | SEL  | SET  | SER  | NWL  | NWT      | NWR  | NEL  | NET  | NER  | SWL  | SWT       | SWR  |
| Traffic Volume (veh/h)       15       740       65       195       460       15       65       15       235       40       35       40         Future Volume (veh/h)       15       740       65       195       460       15       65       15       235       40       35       40         Initial Q (2b), veh       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>Lane Configurations</td><td>5</td><td>**</td><td>1</td><td>1</td><td>**</td><td>1</td><td>1</td><td>f,</td><td></td><td>1</td><td>¢Î,</td><td></td></td<>                                                                                                                                                                                                                | Lane Configurations          | 5    | **   | 1    | 1    | **       | 1    | 1    | f,   |      | 1    | ¢Î,       |      |
| Future Volume (veh/h)         15         740         65         195         460         15         65         15         235         40         35         40           Initial Q (Qb), veh         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                    | Traffic Volume (veh/h)       | 15   | 740  | 65   | 195  | 460      | 15   | 65   | 15   | 235  | 40   | 35        | 40   |
| Initial Q(Db), veh       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                               | Future Volume (veh/h)        | 15   | 740  | 65   | 195  | 460      | 15   | 65   | 15   | 235  | 40   | 35        | 40   |
| Ped-Bike Adj(A_pbT)       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                     | Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0         | 0    |
| Parking Bus, Adj       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0                                                                                                                                                                                                                                              | Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |           | 1.00 |
| Work Zone On Approach         No         No         No         No           Adj Sat Flow, vehr/hin         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         <                                                                                                                                                         | Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 |
| Acj Sat Flow, veh/h/ln       1870       1826       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       <                                                                                                                                                                                                                                          | Work Zone On Approach        |      | No   |      |      | No       |      |      | No   |      |      | No        |      |
| Adj Flow Rate, veh/h       16       804       71       212       500       16       71       16       255       43       38       43         Peak Hour Factor       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92 <td>Adj Sat Flow, veh/h/ln</td> <td>1870</td> <td>1826</td> <td>1870</td> <td>1870</td> <td>1826</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td>                                                  | Adj Sat Flow, veh/h/ln       | 1870 | 1826 | 1870 | 1870 | 1826     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870      | 1870 |
| Peak Hour Factor       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.93       0.93       0.93       0.9                                                                                                                                                                                                                                              | Adj Flow Rate, veh/h         | 16   | 804  | 71   | 212  | 500      | 16   | 71   | 16   | 255  | 43   | 38        | 43   |
| Percent Heavy Veh, %       2       5       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                             | Peak Hour Factor             | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92      | 0.92 |
| Cap, veh/h         342         1019         466         458         1999         913         331         17         273         161         145         165           Arrive On Green         0.29         0.29         0.29         0.16         0.58         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.19         0.16         0.15         100         160         16         71         0         271         43         0         81           Grp Sat Flow(s) veh/h         885         1735         1585         1781         1735         1585         1317         0         1599         1108         0         1707           Qrele Q Clear(g.o.s         4.2         106         1.6         0.2         35.0         0.2         4.4         0.0         8.3         0.7         0.0         0.20         0.20         0.21         0.0<                                                                                                                                                                                      | Percent Heavy Veh, %         | 2    | 5    | 2    | 2    | 5        | 2    | 2    | 2    | 2    | 2    | 2         | 2    |
| Arrive On Green       0.29       0.29       0.29       0.16       0.58       0.58       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.10       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                     | Cap, veh/h                   | 342  | 1019 | 466  | 458  | 1999     | 913  | 331  | 17   | 273  | 161  | 145       | 165  |
| Sat Flow, veh/h         885         3469         1585         1781         3469         1585         1317         94         1505         1108         801         906           Grp Volume(v), veh/h         16         804         71         212         500         16         71         0         271         43         0         81           Grp Sat Flow(s), veh/h/lin         885         1735         1585         1781         1735         1585         1317         0         83.0         0         100         1707           Q Serve(g.s), s         0.7         10.6         1.6         0.2         3.5         0.2         2.4         0.0         8.3         9.0         0.0         2.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00         0.93         0.27         0.00         0.53           Lane Grp Cap(c), veh/h         342         108         122         458         2030         927         331         0         290         161         0         310           V/C Ratio(X)         0.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 </td <td>Arrive On Green</td> <td>0.29</td> <td>0.29</td> <td>0.29</td> <td>0.16</td> <td>0.58</td> <td>0.58</td> <td>0.18</td> <td>0.18</td> <td>0.18</td> <td>0.18</td> <td>0.18</td> <td>0.18</td> | Arrive On Green              | 0.29 | 0.29 | 0.29 | 0.16 | 0.58     | 0.58 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18      | 0.18 |
| Grp Volume(v), veh/h       16       804       71       212       500       16       71       0       271       43       0       81         Grp Sat Flow(s), veh/h/ln       885       1735       1585       1781       1735       1585       1317       0       1599       1108       0       1707         Q Serve(g_s), s       0.7       10.6       1.6       0.2       3.5       0.2       2.4       0.0       8.3       0.7       0.0       2.0         Cycle Q Clear(g_c), s       4.2       10.6       1.6       0.2       3.5       0.2       2.4       4.0       8.3       9.0       0.0       2.0         Prop In Lane       1.00       1.00       1.00       1.00       1.00       1.00       0.00       0.93       0.27       0.00       0.26         Avail Cap(c_a), veh/h       368       1120       512       458       2030       927       331       0       290       161       0       310         HCM Platon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                     | Sat Flow, veh/h              | 885  | 3469 | 1585 | 1781 | 3469     | 1585 | 1317 | 94   | 1505 | 1108 | 801       | 906  |
| Grp Sat Flow(s),veh/h/ln       885       1735       1585       1781       1735       1585       1317       0       1599       1108       0       1707         Q Serve(g.s), s       0.7       10.6       1.6       0.2       3.5       0.2       2.4       0.0       8.3       0.7       0.0       2.0         Cycle Q Clear(g.c), s       4.2       10.6       1.6       0.2       3.5       0.2       4.4       0.0       8.3       9.0       0.0       2.0         Prop In Lane       1.00       1.00       1.00       1.00       1.00       0.94       1.00       0.53         Lane Grp Cap(c), veh/h       342       1019       466       458       1999       913       331       0       290       161       0       310         V/C Ratio(X)       0.05       0.79       0.15       0.46       0.25       0.02       0.21       0.00       0.33       0.27       0.00       0.26         Avait Cap(c, a), veh/h       368       1120       512       458       2030       927       331       0       200       1.60       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                     | Grp Volume(v), veh/h         | 16   | 804  | 71   | 212  | 500      | 16   | 71   | 0    | 271  | 43   | 0         | 81   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grp Sat Flow(s),veh/h/ln     | 885  | 1735 | 1585 | 1781 | 1735     | 1585 | 1317 | 0    | 1599 | 1108 | 0         | 1707 |
| Cycle Q Clear(g_c), s         4.2         10.6         1.6         0.2         3.5         0.2         4.4         0.0         8.3         9.0         0.0         2.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00         0.94         1.00         0.53           Lane Grp Cap(c), veh/h         342         1019         466         458         1999         913         331         0         290         161         0         310           V/C Ratio(X)         0.05         0.79         0.15         0.46         0.25         0.02         0.21         0.00         0.93         0.27         0.00         0.26           Avail Cap(c_a), veh/h         368         1120         512         458         2030         927         331         0         290         161         0         310           HCM Platcon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                | Q Serve(q s), s              | 0.7  | 10.6 | 1.6  | 0.2  | 3.5      | 0.2  | 2.4  | 0.0  | 8.3  | 0.7  | 0.0       | 2.0  |
| Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00         0.94         1.00         0.53           Lane Grp Cap(c), veh/h         342         1019         466         458         1999         913         331         0         290         161         0         310           V/C Ratio(X)         0.05         0.79         0.15         0.46         0.25         0.02         0.21         0.00         0.93         0.27         0.00         0.26           Avail Cap(c. a), veh/h         368         1120         512         458         2030         927         331         0         290         161         0         310           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                          | Cycle Q Clear(q c), s        | 4.2  | 10.6 | 1.6  | 0.2  | 3.5      | 0.2  | 4.4  | 0.0  | 8.3  | 9.0  | 0.0       | 2.0  |
| Lane Grp Cap(c), veh/h 342 1019 466 458 1999 913 331 0 290 161 0 310<br>V/C Ratio(X) 0.05 0.79 0.15 0.46 0.25 0.02 0.21 0.00 0.93 0.27 0.00 0.26<br>Avail Cap(c_a), veh/h 368 1120 512 458 2030 927 331 0 290 161 0 310<br>HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prop In Lane                 | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 0.94 | 1.00 |           | 0.53 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lane Grp Cap(c), veh/h       | 342  | 1019 | 466  | 458  | 1999     | 913  | 331  | 0    | 290  | 161  | 0         | 310  |
| Avail Cap(c_a), veh/h       368       1120       512       458       2030       927       331       0       290       161       0       310         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00 <td< td=""><td>V/C Ratio(X)</td><td>0.05</td><td>0.79</td><td>0.15</td><td>0.46</td><td>0.25</td><td>0.02</td><td>0.21</td><td>0.00</td><td>0.93</td><td>0.27</td><td>0.00</td><td>0.26</td></td<>                                                          | V/C Ratio(X)                 | 0.05 | 0.79 | 0.15 | 0.46 | 0.25     | 0.02 | 0.21 | 0.00 | 0.93 | 0.27 | 0.00      | 0.26 |
| HCM Platon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0                                                                                                                                                                                                                                              | Avail Cap(c a), veh/h        | 368  | 1120 | 512  | 458  | 2030     | 927  | 331  | 0    | 290  | 161  | 0         | 310  |
| Upstream Filter(I)1.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 |
| Uniform Delay (d), s/veh 15.3 16.1 12.9 17.3 5.2 4.5 19.3 0.0 20.0 24.6 0.0 17.4<br>Incr Delay (d2), s/veh 0.1 3.9 0.2 0.7 0.1 0.0 0.5 0.0 35.8 1.2 0.0 0.6<br>Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Upstream Filter(I)           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00      | 1.00 |
| Incr Delay (d2), s/veh       0.1       3.9       0.2       0.7       0.1       0.0       0.5       0.0       35.8       1.2       0.0       0.6         Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       <                                                                                                                                                                                                                                                                                      | Uniform Delay (d), s/veh     | 15.3 | 16.1 | 12.9 | 17.3 | 5.2      | 4.5  | 19.3 | 0.0  | 20.0 | 24.6 | 0.0       | 17.4 |
| Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td>Incr Delay (d2), s/veh</td><td>0.1</td><td>3.9</td><td>0.2</td><td>0.7</td><td>0.1</td><td>0.0</td><td>0.5</td><td>0.0</td><td>35.8</td><td>1.2</td><td>0.0</td><td>0.6</td></t<>                                                                                                | Incr Delay (d2), s/veh       | 0.1  | 3.9  | 0.2  | 0.7  | 0.1      | 0.0  | 0.5  | 0.0  | 35.8 | 1.2  | 0.0       | 0.6  |
| %ile BackOfQ(50%),veh/In       0.1       3.5       0.4       1.7       0.6       0.0       0.7       0.0       5.7       0.5       0.0       0.8         Unsig. Movement Delay, s/veh       15.3       19.9       13.2       18.0       5.3       4.5       19.8       0.0       55.8       25.9       0.0       18.1         LnGrp Delay(d),s/veh       15.3       19.9       13.2       18.0       5.3       4.5       19.8       0.0       55.8       25.9       0.0       18.1         LnGrp LOS       B       B       B       A       A       B       A       E       C       A       B         Approach Vol, veh/h       891       728       342       124       124       124         Approach Delay, s/veh       19.3       9.0       48.3       20.8       0       C         Timer - Assigned Phs       1       2       4       6       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial Q Delav(d3).s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0       | 0.0  |
| Unsig. Movement Delay, s/veh         LnGrp Delay(d),s/veh       15.3       19.9       13.2       18.0       5.3       4.5       19.8       0.0       55.8       25.9       0.0       18.1         LnGrp LOS       B       B       B       B       A       A       B       A       E       C       A       B         Approach Vol, veh/h       891       728       342       124         Approach Delay, s/veh       19.3       9.0       48.3       20.8         Approach LOS       B       A       A       D       C         Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       *6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       *16       9.0       29.0       9.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0       10.5         Intersection Summary <t< td=""><td>%ile BackOfQ(50%).veh/ln</td><td>0.1</td><td>3.5</td><td>0.4</td><td>1.7</td><td>0.6</td><td>0.0</td><td>0.7</td><td>0.0</td><td>5.7</td><td>0.5</td><td>0.0</td><td>0.8</td></t<>                                                                                                     | %ile BackOfQ(50%).veh/ln     | 0.1  | 3.5  | 0.4  | 1.7  | 0.6      | 0.0  | 0.7  | 0.0  | 5.7  | 0.5  | 0.0       | 0.8  |
| LnGrp Delay(d),s/veh       15.3       19.9       13.2       18.0       5.3       4.5       19.8       0.0       55.8       25.9       0.0       18.1         LnGrp LOS       B       B       B       B       A       A       B       A       E       C       A       B         Approach Vol, veh/h       891       728       342       124         Approach Delay, s/veh       19.3       9.0       48.3       20.8         Approach LOS       B       A       A       D       C         Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3       Green Ext Time (p_c), s       0.3       2.0       0.0         Intersection Summary       4       4.2       0.0       0.0       4.2       0.0       0.0                                                                                                                                                                                                                                                                                                                 | Unsig. Movement Delay, s/veh |      |      |      |      |          |      |      |      |      |      |           |      |
| LnGrp LOS       B       B       B       B       B       A       A       B       A       E       C       A       B         Approach Vol, veh/h       891       728       342       124         Approach Delay, s/veh       19.3       9.0       48.3       20.8         Approach LOS       B       A       D       C         Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       *6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       *16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       HCM 6th Ctrl Delay       20.6       10.3       10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LnGrp Delav(d).s/veh         | 15.3 | 19.9 | 13.2 | 18.0 | 5.3      | 4.5  | 19.8 | 0.0  | 55.8 | 25.9 | 0.0       | 18.1 |
| Approach Vol, veh/h       891       728       342       124         Approach Delay, s/veh       19.3       9.0       48.3       20.8         Approach LOS       B       A       D       C         Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LnGrp LOS                    | В    | В    | В    | В    | A        | A    | В    | A    | E    | C    | A         | В    |
| Approach Delay, s/veh       19.3       9.0       48.3       20.8         Approach LOS       B       A       D       C         Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Approach Vol. veh/h          |      | 891  |      |      | 728      |      |      | 342  |      |      | 124       |      |
| Approach LOS       B       A       D       C         Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Approach Delay s/veh         |      | 19.3 |      |      | 9.0      |      |      | 48.3 |      |      | 20.8      |      |
| Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Approach LOS                 |      | B    |      |      | 0.0<br>A |      |      | D    |      |      | 20.0<br>C |      |
| Timer - Assigned Phs       1       2       4       6       8         Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |      | 2    |      |      |          |      |      |      |      |      | Ŭ         |      |
| Phs Duration (G+Y+Rc), s       14.0       20.6       15.0       34.6       15.0         Change Period (Y+Rc), s       6.0       * 6       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Timer - Assigned Phs         | 1    | 2    |      | 4    |          | 6    |      | 8    |      |      |           |      |
| Change Period (Y+Rc), s       6.0       * 6       6.0       6.0         Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       20.6       20.6       20.6       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phs Duration (G+Y+Rc), s     | 14.0 | 20.6 |      | 15.0 |          | 34.6 |      | 15.0 |      |      |           |      |
| Max Green Setting (Gmax), s       8.0       * 16       9.0       29.0       9.0         Max Q Clear Time (g_c+I1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       Provide the section Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Change Period (Y+Rc), s      | 6.0  | * 6  |      | 6.0  |          | 6.0  |      | 6.0  |      |      |           |      |
| Max Q Clear Time (g_c+l1), s       2.2       12.6       11.0       5.5       10.3         Green Ext Time (p_c), s       0.3       2.0       0.0       4.2       0.0         Intersection Summary       Provide the section Summary         HCM 6th Ctrl Delay       20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max Green Setting (Gmax), s  | 8.0  | * 16 |      | 9.0  |          | 29.0 |      | 9.0  |      |      |           |      |
| Green Ext Time (p_c), s         0.3         2.0         0.0         4.2         0.0           Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max Q Clear Time (g_c+I1), s | 2.2  | 12.6 |      | 11.0 |          | 5.5  |      | 10.3 |      |      |           |      |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Green Ext Time (p_c), s      | 0.3  | 2.0  |      | 0.0  |          | 4.2  |      | 0.0  |      |      |           |      |
| HCM 6th Ctrl Delay 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection Summary         |      |      |      |      |          |      |      |      |      |      |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HCM 6th Ctrl Delay           |      |      | 20.6 |      |          |      |      |      |      |      |           |      |
| HCM 6th LOS C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCM 6th LOS                  |      |      | С    |      |          |      |      |      |      |      |           |      |

### Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

SH 66 2040 Fully Implemented PEL with ACP AM Peak

Synchro 10 Report Page 1

| ٨                              | +          | 7    | •    | +        | •    | 1    | Ť            | 1    | 4    | ŧ    | ~    |  |
|--------------------------------|------------|------|------|----------|------|------|--------------|------|------|------|------|--|
| Movement EBL                   | EBT        | EBR  | WBL  | WBT      | WBR  | NBL  | NBT          | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations            | <b>†</b> † | 1    | 1    | <b>^</b> | 1    | 1    | <del>ا</del> | 1    | 1    | et.  |      |  |
| Traffic Volume (veh/h) 25      | 480        | 520  | 370  | 510      | 35   | 135  | 40           | 35   | 25   | 25   | 25   |  |
| Future Volume (veh/h) 25       | 480        | 520  | 370  | 510      | 35   | 135  | 40           | 35   | 25   | 25   | 25   |  |
| Initial Q (Qb), veh 0          | 0          | 0    | 0    | 0        | 0    | 0    | 0            | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00       |            | 1.00 | 1.00 |          | 1.00 | 1.00 |              | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj 1.00          | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach          | No         |      |      | No       |      |      | No           |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln 1710    | 1683       | 1683 | 1683 | 1657     | 1710 | 1617 | 1710         | 1617 | 1710 | 1710 | 1710 |  |
| Adj Flow Rate, veh/h 27        | 522        | 0    | 402  | 554      | 38   | 95   | 116          | 0    | 27   | 27   | 27   |  |
| Peak Hour Factor 0.92          | 0.92       | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92         | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, % 0         | 2          | 2    | 2    | 4        | 0    | 7    | 0            | 7    | 0    | 0    | 0    |  |
| Cap, veh/h 388                 | 660        |      | 489  | 785      | 361  | 184  | 204          |      | 153  | 74   | 74   |  |
| Arrive On Green 0.17           | 0.21       | 0.00 | 0.24 | 0.25     | 0.25 | 0.12 | 0.12         | 0.00 | 0.09 | 0.09 | 0.09 |  |
| Sat Flow, veh/h 1629           | 3198       | 1427 | 1603 | 3148     | 1449 | 1540 | 1710         | 1370 | 1629 | 784  | 784  |  |
| Grp Volume(v), veh/h 27        | 522        | 0    | 402  | 554      | 38   | 95   | 116          | 0    | 27   | 0    | 54   |  |
| Grp Sat Flow(s),veh/h/ln1629   | 1599       | 1427 | 1603 | 1574     | 1449 | 1540 | 1710         | 1370 | 1629 | 0    | 1569 |  |
| Q Serve(g_s), s 0.0            | 10.1       | 0.0  | 15.5 | 10.5     | 1.3  | 3.8  | 4.2          | 0.0  | 1.0  | 0.0  | 2.1  |  |
| Cycle Q Clear(g_c), s 0.0      | 10.1       | 0.0  | 15.5 | 10.5     | 1.3  | 3.8  | 4.2          | 0.0  | 1.0  | 0.0  | 2.1  |  |
| Prop In Lane 1.00              |            | 1.00 | 1.00 |          | 1.00 | 1.00 |              | 1.00 | 1.00 |      | 0.50 |  |
| Lane Grp Cap(c), veh/h 388     | 660        |      | 489  | 785      | 361  | 184  | 204          |      | 153  | 0    | 148  |  |
| V/C Ratio(X) 0.07              | 0.79       |      | 0.82 | 0.71     | 0.11 | 0.52 | 0.57         |      | 0.18 | 0.00 | 0.37 |  |
| Avail Cap(c_a), veh/h 388      | 781        |      | 489  | 1273     | 586  | 188  | 209          |      | 199  | 0    | 192  |  |
| HCM Platoon Ratio 1.00         | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I) 1.00        | 1.00       | 0.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00         | 0.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh 22.5  | 24.7       | 0.0  | 25.3 | 22.4     | 19.0 | 27.1 | 27.2         | 0.0  | 27.3 | 0.0  | 27.8 |  |
| Incr Delay (d2), s/veh 0.1     | 5.3        | 0.0  | 10.8 | 1.7      | 0.2  | 3.2  | 4.4          | 0.0  | 0.8  | 0.0  | 2.1  |  |
| Initial Q Delay(d3),s/veh 0.0  | 0.0        | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/lr0.3    | 3.7        | 0.0  | 6.7  | 3.4      | 0.4  | 1.4  | 1.8          | 0.0  | 0.4  | 0.0  | 0.9  |  |
| Unsig. Movement Delay, s/veh   |            |      |      |          |      |      |              |      |      |      |      |  |
| LnGrp Delay(d),s/veh 22.6      | 30.0       | 0.0  | 36.1 | 24.1     | 19.1 | 30.3 | 31.6         | 0.0  | 28.1 | 0.0  | 30.0 |  |
| LnGrp LOS C                    | С          |      | D    | С        | В    | С    | С            |      | С    | А    | С    |  |
| Approach Vol, veh/h            | 549        | А    |      | 994      |      |      | 211          | А    |      | 81   |      |  |
| Approach Delay, s/veh          | 29.6       |      |      | 28.8     |      |      | 31.0         |      |      | 29.4 |      |  |
| Approach LOS                   | С          |      |      | С        |      |      | С            |      |      | С    |      |  |
| Timer - Assigned Phs 1         | 2          |      | 4    | 5        | 6    |      | 8            |      |      |      |      |  |
| Phs Duration (G+Y+Rc) 30.0     | 19.5       |      | 13.8 | 17.2     | 22.3 |      | 12.2         |      |      |      |      |  |
| Change Period $(Y+Rc) \le 4.5$ | 6.0        |      | 6.0  | 6.0      | * 6  |      | 6.0          |      |      |      |      |  |
| Max Green Setting (Gmaths      | 16.0       |      | 8.0  | 5.0      | * 27 |      | 8.0          |      |      |      |      |  |
| Max O Clear Time (q. c+1117.5s | 12.1       |      | 6.2  | 2.0      | 12.5 |      | 4 1          |      |      |      |      |  |
| Green Ext Time (p_c), s 0.0    | 1.4        |      | 0.2  | 0.0      | 3.8  |      | 0.1          |      |      |      |      |  |
| Intersection Summary           |            |      |      |          |      |      |              |      |      |      |      |  |
| HCM 6th Ctrl Delay             |            | 29.3 |      |          |      |      |              |      |      |      |      |  |
| HCM 6th LOS                    |            | С    |      |          |      |      |              |      |      |      |      |  |

### Notes

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP AM Peak

Synchro 10 Report Page 2

|                                          | ٨         | -+   | •         | *    | 1    | 1       |
|------------------------------------------|-----------|------|-----------|------|------|---------|
| Movement                                 | EBL       | EBT  | WBT       | WBR  | SBL  | SBR     |
| Lane Configurations                      | 3         | **   | **        | 1    |      | 1       |
| Traffic Volume (veh/h)                   | 30        | 510  | 910       | 10   | 50   | 20      |
| Future Volume (veh/h)                    | 30        | 510  | 910       | 10   | 50   | 20      |
| Initial $\Omega$ ( $\Omega$ h) veh       | 00        | 010  | 0         | 0    | 0    | 0       |
| Pod_Rike $\Delta di(\Delta \text{ nbT})$ | 1 00      | U    | 0         | 1 00 | 1 00 | 1 00    |
| Parking Rus Adi                          | 1.00      | 1 00 | 1 00      | 1.00 | 1.00 | 1.00    |
| Work Zong On Approach                    | 1.00<br>h | No   | No        | 1.00 | No   | 1.00    |
| Adi Sat Elow, yoh/h/lo                   | 1070      | 1970 | 1970      | 1070 | 1970 | 1970    |
| Adj Sal Flow, ven/n/m                    | 10/0      | 10/0 | 10/0      | 10/0 | 10/0 | 1070    |
| Adj Flow Rate, ven/n                     | 33        | 554  | 989       | 11   | 54   | 22      |
| Peak Hour Factor                         | 0.92      | 0.92 | 0.92      | 0.92 | 0.92 | 0.92    |
| Percent Heavy Veh, %                     | 2         | 2    | 2         | 2    | 2    | 2       |
| Cap, veh/h                               | 239       | 1314 | 1314      | 586  | 749  | 666     |
| Arrive On Green                          | 0.37      | 0.37 | 0.37      | 0.37 | 0.42 | 0.42    |
| Sat Flow, veh/h                          | 563       | 3647 | 3647      | 1585 | 1781 | 1585    |
| Grp Volume(v), veh/h                     | 33        | 554  | 989       | 11   | 54   | 22      |
| Grp Sat Flow(s).veh/h/ln                 | 563       | 1777 | 1777      | 1585 | 1781 | 1585    |
| Q Serve( $q$ , $s$ ), $s$                | 23        | 5.0  | 10.4      | 0.2  | 0.8  | 0.3     |
| $C_{vcle} Q C_{lear}(q, c) s$            | 12.7      | 5.0  | 10.4      | 0.2  | 0.8  | 0.3     |
| Pron In Lane                             | 1 00      | 0.0  | 10.4      | 1.00 | 1 00 | 1 00    |
| Lano Gra Can(a) voh/h                    | 220       | 121/ | 131/      | 586  | 740  | 666     |
|                                          | 209       | 0.40 | 0.75      | 0.00 | 149  | 000     |
|                                          | 0.14      | 0.42 | 0.75      | 0.02 | 0.07 | 0.03    |
| Avail Cap(c_a), ven/n                    | 208       | 1493 | 1493      | 666  | 749  | 000     |
| HCM Platoon Ratio                        | 1.00      | 1.00 | 1.00      | 1.00 | 1.00 | 1.00    |
| Upstream Filter(I)                       | 1.00      | 1.00 | 1.00      | 1.00 | 1.00 | 1.00    |
| Uniform Delay (d), s/veh                 | 17.4      | 10.1 | 11.8      | 8.6  | 7.4  | 7.3     |
| Incr Delay (d2), s/veh                   | 0.3       | 0.2  | 1.9       | 0.0  | 0.2  | 0.1     |
| Initial Q Delay(d3),s/veh                | 0.0       | 0.0  | 0.0       | 0.0  | 0.0  | 0.0     |
| %ile BackOfQ(50%).veh                    | /lr0.2    | 1.2  | 2.7       | 0.0  | 0.3  | 0.1     |
| Unsig. Movement Delav                    | . s/veh   |      |           |      |      |         |
| LnGrp Delav(d) s/veh                     | 17.6      | 10.3 | 13.7      | 8.6  | 7.6  | 7.4     |
|                                          | R         | B    | R         | Δ    | Δ    | Δ       |
| Approach Vol. voh/h                      | 0         | 597  | 1000      |      | 76   | <u></u> |
|                                          |           | 10.7 | 1000      |      | 75   |         |
| Approach Delay, s/ven                    |           | IU./ | 13.7<br>P |      | C. 1 |         |
| Approach LOS                             |           | В    | В         |      | A    |         |
| Timer - Assigned Phs                     |           | 2    |           | 4    |      | 6       |
| Phs Duration (G+Y+Rc),                   | , S       | 20.3 |           | 22.5 |      | 20.3    |
| Change Period (Y+Rc).                    | S         | 4.5  |           | 4.5  |      | 4.5     |
| Max Green Setting (Gm                    | ax), s    | 18.0 |           | 18.0 |      | 18.0    |
| Max Q Clear Time (q. c.                  | +11) s    | 14 7 |           | 2.8  |      | 12.4    |
| Green Ext Time (n. c) e                  | , , 3     | 1 1  |           | 0.1  |      | 2.8     |
| οισοπ ελι τιπο (μ_σ), s                  |           | 1.1  |           | 0.1  |      | 2.0     |
| Intersection Summary                     |           |      |           |      |      |         |
| HCM 6th Ctrl Delay                       |           |      | 12.3      |      |      |         |
| HCM 6th LOS                              |           |      | В         |      |      |         |

#### ٩ 1 t ŧ 1 ٠ 5 1 WBL WBT WBR Movement EBL EBT EBR NBL NBT NBR SBL SBT SBR Lane Configurations ٦ ŧ ٢ ٦ ŧ ۴ ٦ Þ ٦ Þ Traffic Volume (veh/h) 30 510 20 25 890 10 5 20 5 15 15 15 Future Volume (veh/h) 30 510 20 25 890 10 15 5 15 20 5 15 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A\_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adi 1 00 1 00 1 00 100 100 1 00 1 00 1 00 1 00 1 00 1 00 1 00

| anning Dus, Auj          | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
|--------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|--|
| Nork Zone On Approach    | ۱       | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln   | 1870    | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate, veh/h     | 33      | 554  | 22   | 27   | 967  | 11   | 16   | 5    | 16   | 22   | 5    | 16   |  |
| Peak Hour Factor         | 0.92    | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %     | 2       | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Cap, veh/h               | 191     | 1032 | 875  | 451  | 1024 | 868  | 415  | 94   | 300  | 415  | 94   | 300  |  |
| Arrive On Green          | 0.03    | 0.55 | 0.55 | 0.03 | 0.55 | 0.55 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |  |
| Sat Flow, veh/h          | 1781    | 1870 | 1585 | 1781 | 1870 | 1585 | 1391 | 392  | 1253 | 1391 | 392  | 1253 |  |
| Grp Volume(v), veh/h     | 33      | 554  | 22   | 27   | 967  | 11   | 16   | 0    | 21   | 22   | 0    | 21   |  |
| Grp Sat Flow(s),veh/h/ln | 1781    | 1870 | 1585 | 1781 | 1870 | 1585 | 1391 | 0    | 1645 | 1391 | 0    | 1645 |  |
| Q Serve(g_s), s          | 0.6     | 14.2 | 0.5  | 0.5  | 36.4 | 0.2  | 0.7  | 0.0  | 0.7  | 0.9  | 0.0  | 0.7  |  |
| Cycle Q Clear(g_c), s    | 0.6     | 14.2 | 0.5  | 0.5  | 36.4 | 0.2  | 1.4  | 0.0  | 0.7  | 1.7  | 0.0  | 0.7  |  |
| Prop In Lane             | 1.00    |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.76 | 1.00 |      | 0.76 |  |
| ane Grp Cap(c), veh/h    | 191     | 1032 | 875  | 451  | 1024 | 868  | 415  | 0    | 394  | 415  | 0    | 394  |  |
| //C Ratio(X)             | 0.17    | 0.54 | 0.03 | 0.06 | 0.94 | 0.01 | 0.04 | 0.00 | 0.05 | 0.05 | 0.00 | 0.05 |  |
| Avail Cap(c_a), veh/h    | 251     | 1083 | 918  | 519  | 1083 | 918  | 415  | 0    | 394  | 415  | 0    | 394  |  |
| HCM Platoon Ratio        | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Jpstream Filter(I)       | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Jniform Delay (d), s/veh | 16.1    | 10.7 | 7.6  | 8.2  | 15.9 | 7.7  | 22.5 | 0.0  | 22.0 | 22.6 | 0.0  | 22.0 |  |
| ncr Delay (d2), s/veh    | 0.4     | 0.5  | 0.0  | 0.1  | 15.4 | 0.0  | 0.2  | 0.0  | 0.3  | 0.2  | 0.0  | 0.3  |  |
| nitial Q Delay(d3),s/veh | 0.0     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/   | /In0.2  | 4.3  | 0.1  | 0.1  | 15.2 | 0.1  | 0.2  | 0.0  | 0.3  | 0.3  | 0.0  | 0.3  |  |
| Jnsig. Movement Delay,   | s/veh   |      |      |      |      |      |      |      |      |      |      |      |  |
| _nGrp Delay(d),s/veh     | 16.5    | 11.2 | 7.7  | 8.2  | 31.3 | 7.7  | 22.7 | 0.0  | 22.3 | 22.9 | 0.0  | 22.3 |  |
| _nGrp LOS                | В       | В    | А    | А    | С    | А    | С    | А    | С    | С    | А    | С    |  |
| Approach Vol, veh/h      |         | 609  |      |      | 1005 |      |      | 37   |      |      | 43   |      |  |
| Approach Delay, s/veh    |         | 11.3 |      |      | 30.4 |      |      | 22.5 |      |      | 22.6 |      |  |
| Approach LOS             |         | В    |      |      | С    |      |      | С    |      |      | С    |      |  |
| Timer - Assigned Phs     | 1       | 2    |      | 4    | 5    | 6    |      | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc),   | s6.7    | 46.0 |      | 22.5 | 7.0  | 45.6 |      | 22.5 |      |      |      |      |  |
| Change Period (Y+Rc), s  | s 4.5   | 4.5  |      | 4.5  | 4.5  | 4.5  |      | 4.5  |      |      |      |      |  |
| Max Green Setting (Gma   | ax5,.63 | 43.5 |      | 18.0 | 5.0  | 43.5 |      | 18.0 |      |      |      |      |  |
| Max Q Clear Time (g_c+   | 112,5s  | 16.2 |      | 3.7  | 2.6  | 38.4 |      | 3.4  |      |      |      |      |  |
| Green Ext Time (p_c), s  | 0.0     | 3.2  |      | 0.1  | 0.0  | 2.7  |      | 0.1  |      |      |      |      |  |
|                          |         |      |      |      |      |      |      |      |      |      |      |      |  |
| Intersection Summary     |         |      | 00.0 |      |      |      |      |      |      |      |      |      |  |
| HCIM 6th Ctrl Delay      |         |      | 23.2 |      |      |      |      |      |      |      |      |      |  |

HCM 6th LOS

23.2 C

## HCM 6th Signalized Intersection Summary 5: N 75th St & SH 66

03/12/2020

|                           | ٨        |          | 7    | *    | +        | *    | 1    | Ť        | 1    | 1    | ŧ        | 1    |  |
|---------------------------|----------|----------|------|------|----------|------|------|----------|------|------|----------|------|--|
| Movement                  | EBL      | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
| Lane Configurations       | 5        | <b>≜</b> | 1    | 5    | <b>≜</b> | 1    | 5    | <b>≜</b> | 1    | 5    | <b>A</b> | 1    |  |
| Traffic Volume (veh/h)    | 10       | 380      | 145  | 270  | 765      | 5    | 85   | 10       | 40   | 5    | 195      | 75   |  |
| Future Volume (veh/h)     | 10       | 380      | 145  | 270  | 765      | 5    | 85   | 10       | 40   | 5    | 195      | 75   |  |
| Initial Q (Qb), veh       | 0        | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00     |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Parking Bus, Adj          | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Work Zone On Approac      | h        | No       |      |      | No       |      |      | No       |      |      | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1900     | 1841     | 1900 | 1900 | 1841     | 1900 | 1900 | 1900     | 1841 | 1900 | 1900     | 1900 |  |
| Adj Flow Rate, veh/h      | 11       | 413      | 158  | 293  | 832      | 5    | 92   | 11       | 43   | 5    | 212      | 82   |  |
| Peak Hour Factor          | 0.92     | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 |  |
| Percent Heavy Veh, %      | 0        | 4        | 0    | 0    | 4        | 0    | 0    | 0        | 4    | 0    | 0        | 0    |  |
| Cap, veh/h                | 190      | 736      | 644  | 506  | 920      | 804  | 236  | 360      | 481  | 298  | 261      | 221  |  |
| Arrive On Green           | 0.02     | 0.40     | 0.40 | 0.12 | 0.50     | 0.50 | 0.06 | 0.19     | 0.19 | 0.01 | 0.14     | 0.14 |  |
| Sat Flow, veh/h           | 1810     | 1841     | 1610 | 1810 | 1841     | 1610 | 1810 | 1900     | 1560 | 1810 | 1900     | 1610 |  |
| Grp Volume(v), veh/h      | 11       | 413      | 158  | 293  | 832      | 5    | 92   | 11       | 43   | 5    | 212      | 82   |  |
| Grp Sat Flow(s),veh/h/lr  | า1810    | 1841     | 1610 | 1810 | 1841     | 1610 | 1810 | 1900     | 1560 | 1810 | 1900     | 1610 |  |
| Q Serve(g_s), s           | 0.3      | 12.8     | 4.8  | 6.5  | 30.4     | 0.1  | 3.1  | 0.3      | 1.4  | 0.2  | 8.0      | 3.4  |  |
| Cycle Q Clear(g_c), s     | 0.3      | 12.8     | 4.8  | 6.5  | 30.4     | 0.1  | 3.1  | 0.3      | 1.4  | 0.2  | 8.0      | 3.4  |  |
| Prop In Lane              | 1.00     |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 190      | 736      | 644  | 506  | 920      | 804  | 236  | 360      | 481  | 298  | 261      | 221  |  |
| V/C Ratio(X)              | 0.06     | 0.56     | 0.25 | 0.58 | 0.90     | 0.01 | 0.39 | 0.03     | 0.09 | 0.02 | 0.81     | 0.37 |  |
| Avail Cap(c_a), veh/h     | 328      | 1008     | 881  | 603  | 1150     | 1006 | 253  | 360      | 481  | 409  | 284      | 241  |  |
| HCM Platoon Ratio         | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Uniform Delay (d), s/vel  | า 16.2   | 17.1     | 14.7 | 11.3 | 16.8     | 9.2  | 24.6 | 24.3     | 18.1 | 27.1 | 30.8     | 28.9 |  |
| Incr Delay (d2), s/veh    | 0.1      | 0.7      | 0.2  | 1.0  | 8.7      | 0.0  | 1.0  | 0.0      | 0.1  | 0.0  | 15.3     | 1.0  |  |
| Initial Q Delay(d3),s/veh | n 0.0    | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     | n/In0.1  | 4.5      | 1.7  | 2.0  | 11.7     | 0.0  | 1.3  | 0.2      | 0.5  | 0.1  | 4.5      | 1.3  |  |
| Unsig. Movement Delay     | /, s/veh |          |      |      |          |      |      |          |      |      |          |      |  |
| LnGrp Delay(d),s/veh      | 16.3     | 17.8     | 14.9 | 12.4 | 25.6     | 9.2  | 25.6 | 24.4     | 18.2 | 27.1 | 46.1     | 29.9 |  |
| LnGrp LOS                 | В        | В        | В    | В    | С        | А    | С    | С        | В    | С    | D        | С    |  |
| Approach Vol, veh/h       |          | 582      |      |      | 1130     |      |      | 146      |      |      | 299      |      |  |
| Approach Delay, s/veh     |          | 17.0     |      |      | 22.1     |      |      | 23.3     |      |      | 41.3     |      |  |
| Approach LOS              |          | В        |      |      | С        |      |      | С        |      |      | D        |      |  |
| Timer - Assigned Phs      | 1        | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |      |  |
| Phs Duration (G+Y+Rc)     | \$3.3    | 36.4     | 8.8  | 15.1 | 5.9      | 43.8 | 5.0  | 18.9     |      |      |          |      |  |
| Change Period (Y+Rc).     | s 4.5    | 7.0      | 4.5  | 5.0  | 4.5      | 7.0  | 4.5  | 5.0      |      |      |          |      |  |
| Max Green Setting (Gm     | a12.3    | 40.3     | 5.0  | 11.0 | 7.0      | 46.0 | 5.0  | 11.0     |      |      |          |      |  |
| Max Q Clear Time (g c     | + 18.5   | 14.8     | 5.1  | 10.0 | 2.3      | 32.4 | 2.2  | 3.4      |      |      |          |      |  |
| Green Ext Time (p_c)      | s 0.3    | 2.7      | 0.0  | 0.1  | 0.0      | 4.4  | 0.0  | 0.1      |      |      |          |      |  |
| Intersection Summary      | 0.0      |          | 5.0  | 5.1  | 5.0      |      | 5.0  | 5.1      |      |      |          |      |  |
| HCM 6th Ctrl Dolov        |          |          | 23.5 |      |          |      |      |          |      |      |          |      |  |
| HCM 6th LOS               |          |          | 23.5 |      |          |      |      |          |      |      |          |      |  |
|                           |          |          | U    |      |          |      |      |          |      |      |          |      |  |

#### Notes

User approved pedestrian interval to be less than phase max green.

## HCM 6th Signalized Intersection Summary 6: Airport Rd/87th St & SH 66

03/12/2020

| -                          | •     |      | 7    | *    | +         | *    | 1    | t    | 1    | 1    | ŧ    | 4    |  |
|----------------------------|-------|------|------|------|-----------|------|------|------|------|------|------|------|--|
| Movement E                 | EBL   | EBT  | EBR  | WBL  | WBT       | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations        | 3     | **   | 1    | 5    | <b>↑</b>  | 1    | 5    | ţ,   |      | 5    | 1.   |      |  |
| Traffic Volume (veh/h)     | 5     | 415  | 5    | 30   | 975       | 25   | 20   | 5    | 30   | 50   | 5    | 25   |  |
| Future Volume (veh/h)      | 5     | 415  | 5    | 30   | 975       | 25   | 20   | 5    | 30   | 50   | 5    | 25   |  |
| Initial Q (Qb), veh        | 0     | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1      | 00.1  |      | 1.00 | 1.00 |           | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj 1         | 00.1  | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach      |       | No   |      |      | No        |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln 19  | 900   | 1841 | 1900 | 1900 | 1841      | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |  |
| Adj Flow Rate, veh/h       | 5     | 451  | 5    | 33   | 1060      | 27   | 22   | 5    | 33   | 54   | 5    | 27   |  |
| Peak Hour Factor 0         | ).92  | 0.92 | 0.92 | 0.92 | 0.92      | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %       | 0     | 4    | 0    | 0    | 4         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Cap, veh/h 2               | 239   | 2191 | 1009 | 736  | 1207      | 1056 | 239  | 21   | 139  | 234  | 25   | 135  |  |
| Arrive On Green 0          | ).01  | 0.63 | 0.63 | 0.04 | 0.66      | 0.66 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |  |
| Sat Flow, veh/h 18         | 810   | 3497 | 1610 | 1810 | 1841      | 1610 | 1399 | 216  | 1427 | 1391 | 258  | 1392 |  |
| Grp Volume(v), veh/h       | 5     | 451  | 5    | 33   | 1060      | 27   | 22   | 0    | 38   | 54   | 0    | 32   |  |
| Grp Sat Flow(s),veh/h/ln18 | 810   | 1749 | 1610 | 1810 | 1841      | 1610 | 1399 | 0    | 1643 | 1391 | 0    | 1649 |  |
| Q Serve(g_s), s            | 0.1   | 3.1  | 0.1  | 0.4  | 26.3      | 0.3  | 0.8  | 0.0  | 1.2  | 2.1  | 0.0  | 1.0  |  |
| Cycle Q Clear(g_c), s      | 0.1   | 3.1  | 0.1  | 0.4  | 26.3      | 0.3  | 1.8  | 0.0  | 1.2  | 3.3  | 0.0  | 1.0  |  |
| Prop In Lane 1             | 00.1  |      | 1.00 | 1.00 |           | 1.00 | 1.00 |      | 0.87 | 1.00 |      | 0.84 |  |
| Lane Grp Cap(c), veh/h 2   | 239   | 2191 | 1009 | 736  | 1207      | 1056 | 239  | 0    | 160  | 234  | 0    | 161  |  |
| V/C Ratio(X) 0             | ).02  | 0.21 | 0.00 | 0.04 | 0.88      | 0.03 | 0.09 | 0.00 | 0.24 | 0.23 | 0.00 | 0.20 |  |
| Avail Cap(c_a), veh/h      | 388   | 3332 | 1534 | 832  | 1754      | 1534 | 552  | 0    | 527  | 544  | 0    | 529  |  |
| HCM Platoon Ratio 1        | 1.00  | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I) 1       | 1.00  | 1.00 | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh   | 9.2   | 4.5  | 3.9  | 3.4  | 7.9       | 3.4  | 24.2 | 0.0  | 23.4 | 24.9 | 0.0  | 23.3 |  |
| Incr Delay (d2), s/veh     | 0.0   | 0.0  | 0.0  | 0.0  | 3.8       | 0.0  | 0.2  | 0.0  | 0.8  | 0.5  | 0.0  | 0.6  |  |
| Initial Q Delay(d3),s/veh  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/ir   | n0.0  | 0.5  | 0.0  | 0.0  | 4.7       | 0.0  | 0.3  | 0.0  | 0.5  | 0.6  | 0.0  | 0.4  |  |
| Unsig. wovement Delay, s   | s/ven | A F  | 2.0  | 0.4  | 14 7      | 0.4  | 04.0 | 0.0  | 04.0 | 05 4 | 0.0  | 00.0 |  |
| LIGP Delay(d),s/ven        | 9.3   | 4.5  | 3.9  | 3.4  | TI./      | 3.4  | 24.3 | 0.0  | 24.2 | 25.4 | 0.0  | 23.9 |  |
|                            | А     | A    | А    | A    | 4400      | А    | U    | A    | U    | U    | A    | U    |  |
| Approach Vol, veh/h        |       | 461  |      |      | 1120      |      |      | 60   |      |      | 86   |      |  |
| Approach Delay, s/veh      |       | 4.6  |      |      | 11.2<br>P |      |      | 24.2 |      |      | 24.9 |      |  |
| Approach LUS               |       | A    |      |      | В         |      |      | C    |      |      | C    |      |  |
| Timer - Assigned Phs       |       | 2    | 3    | 4    |           | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc), s   | S     | 10.0 | 6.5  | 39.7 |           | 10.0 | 4.9  | 41.3 |      |      |      |      |  |
| Change Period (Y+Rc), s    |       | 4.5  | 4.5  | 4.5  |           | 4.5  | 4.5  | 4.5  |      |      |      |      |  |
| Max Green Setting (Gmax    | x), s | 18.0 | 5.0  | 53.5 |           | 18.0 | 5.0  | 53.5 |      |      |      |      |  |
| Max Q Clear Time (g_c+l1   | 1), s | 3.8  | 2.4  | 5.1  |           | 5.3  | 2.1  | 28.3 |      |      |      |      |  |
| Green Ext Time (p_c), s    |       | 0.1  | 0.0  | 2.8  |           | 0.2  | 0.0  | 8.6  |      |      |      |      |  |
| Intersection Summary       |       |      |      |      |           |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay         |       |      | 10.6 |      |           |      |      |      |      |      |      |      |  |
| HCM 6th LOS                |       |      | В    |      |           |      |      |      |      |      |      |      |  |

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

| Intersection           |          |      |      |          |      |      |
|------------------------|----------|------|------|----------|------|------|
| Int Delay, s/veh       | 0.7      |      |      |          |      |      |
| Movement               | EBT      | EBR  | WBL  | WBT      | NBL  | NBR  |
| Lane Configurations    | <b>^</b> | 1    | 5    | <b>^</b> |      | 1    |
| Traffic Vol, veh/h     | 490      | 5    | 25   | 1005     | 0    | 80   |
| Future Vol, veh/h      | 490      | 5    | 25   | 1005     | 0    | 80   |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0        | 0    | 0    |
| Sign Control           | Free     | Free | Free | Free     | Stop | Stop |
| RT Channelized         | -        | None | -    | None     | -    | None |
| Storage Length         | -        | 250  | 250  | -        | -    | 0    |
| Veh in Median Storage  | e,#0     | -    | -    | 0        | 0    | -    |
| Grade, %               | 0        | -    | -    | 0        | 0    | -    |
| Peak Hour Factor       | 92       | 92   | 92   | 92       | 92   | 92   |
| Heavy Vehicles, %      | 2        | 2    | 2    | 2        | 2    | 2    |
| Mvmt Flow              | 533      | 5    | 27   | 1092     | 0    | 87   |
|                        |          |      |      |          |      |      |

| Major/Minor          | Major | ·1    | Major2 | ľ   | /linor1   |      |
|----------------------|-------|-------|--------|-----|-----------|------|
| Conflicting Flow All |       | 0 0   | 538    | 0   | -         | 267  |
| Stage 1              |       |       | -      | -   | -         | -    |
| Stage 2              |       |       | -      | -   | -         | -    |
| Critical Hdwy        |       |       | 4.14   | -   | -         | 6.94 |
| Critical Hdwy Stg 1  |       |       | -      | -   | -         | -    |
| Critical Hdwy Stg 2  |       |       | -      | -   | -         | -    |
| Follow-up Hdwy       |       |       | 2.22   | -   | -         | 3.32 |
| Pot Cap-1 Maneuver   |       |       | 1026   | -   | 0         | 731  |
| Stage 1              |       |       | -      | -   | 0         | -    |
| Stage 2              |       |       | -      | -   | 0         | -    |
| Platoon blocked, %   |       |       |        | -   |           |      |
| Mov Cap-1 Maneuver   |       |       | 1026   | -   | -         | 731  |
| Mov Cap-2 Maneuver   |       |       | -      | -   | -         | -    |
| Stage 1              |       |       | -      | -   | -         | -    |
| Stage 2              |       |       | -      | -   | -         | -    |
|                      |       |       |        |     |           |      |
| Annroach             | F     | R     | W/R    |     | NR        |      |
| HCM Control Delay    |       | 0     | 0.2    |     | 10.6      |      |
| HCM LOS              |       | U     | 0.2    |     | 10.0<br>R |      |
|                      |       |       |        |     | U         |      |
|                      |       |       |        |     |           |      |
| Minor Lane/Maior Myr | nt    | NBLn1 | EBT    | EBR | WBL       | WBT  |

|                       | NDLITT | LDI | LDIV | VVDL  | VVDT |  |
|-----------------------|--------|-----|------|-------|------|--|
| Capacity (veh/h)      | 731    | -   | -    | 1026  | -    |  |
| HCM Lane V/C Ratio    | 0.119  | -   | -    | 0.026 | -    |  |
| HCM Control Delay (s) | 10.6   | -   | -    | 8.6   | -    |  |
| HCM Lane LOS          | В      | -   | -    | Α     | -    |  |
| HCM 95th %tile Q(veh) | 0.4    | -   | -    | 0.1   | -    |  |

| Intersection           |       |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Int Delay, s/veh       | 0.2   |      |      |      |      |      |
| Movement               | EBL   | EBT  | WBT  | WBR  | SBL  | SBR  |
| Lane Configurations    | 1     | 1    | 14   |      |      | 1    |
| Traffic Vol, veh/h     | 10    | 625  | 1060 | 15   | 0    | 15   |
| Future Vol, veh/h      | 10    | 625  | 1060 | 15   | 0    | 15   |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Stop | Stop |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | 100   | -    | -    | -    | -    | 0    |
| Veh in Median Storage  | , # - | 0    | 0    | -    | 0    | -    |
| Grade, %               | -     | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0     | 3    | 4    | 25   | 25   | 0    |
| Mvmt Flow              | 11    | 679  | 1152 | 16   | 0    | 16   |

| Major/Minor          | Major1 | Ν     | /lajor2 |     | Minor2 |       |
|----------------------|--------|-------|---------|-----|--------|-------|
| Conflicting Flow All | 1168   | 0     | -       | 0   | -      | 584   |
| Stage 1              | -      | -     | -       | -   | -      | -     |
| Stage 2              | -      | -     | -       | -   | -      | -     |
| Critical Hdwy        | 4.1    | -     | -       | -   | -      | 6.9   |
| Critical Hdwy Stg 1  | -      | -     | -       | -   | -      | -     |
| Critical Hdwy Stg 2  | -      | -     | -       | -   | -      | -     |
| Follow-up Hdwy       | 2.2    | -     | -       | -   | -      | 3.3   |
| Pot Cap-1 Maneuver   | 605    | -     | -       | -   | 0      | 460   |
| Stage 1              | -      | -     | -       | -   | 0      | -     |
| Stage 2              | -      | -     | -       | -   | 0      | -     |
| Platoon blocked, %   |        | -     | -       | -   |        |       |
| Mov Cap-1 Maneuver   | r 605  | -     | -       | -   | -      | 460   |
| Mov Cap-2 Maneuver   | r -    | -     | -       | -   | -      | -     |
| Stage 1              | -      | -     | -       | -   | -      | -     |
| Stage 2              | -      | -     | -       | -   | -      | -     |
|                      |        |       |         |     |        |       |
| Approach             | EB     |       | WB      |     | SB     |       |
| HCM Control Delay, s | s 0.2  |       | 0       |     | 13.1   |       |
| HCM LOS              |        |       |         |     | В      |       |
|                      |        |       |         |     |        |       |
| Minor Lane/Maior My  | mt     | EBL   | EBT     | WBT | WBR S  | BLn1  |
| Capacity (veh/h)     |        | 605   | _       | -   | -      | 460   |
| HCM Lane V/C Ratio   |        | 0.018 | -       | -   | -      | 0.035 |
| HCM Control Delay (s | 5)     | 11.1  | -       | -   | -      | 13.1  |
| HCM Lane LOS         | ,      | В     | -       | -   | -      | В     |
| HCM 95th %tile Q(vel | h)     | 0.1   | -       | -   | -      | 0.1   |

|     | •   |    |    |             |   |   |
|-----|-----|----|----|-------------|---|---|
| 101 | + ^ | ro | ~  | <b>A</b> ti | 0 | n |
|     |     |    | -  |             |   |   |
|     | ັ   | 10 | S. | υu          |   |   |
|     |     |    |    |             |   |   |

Int Delay, s/veh

|                        |      | FRT  |      |      | 14/DT |      | NIBI | NOT  |      | 0.01 | 0.D.T | 000  |
|------------------------|------|------|------|------|-------|------|------|------|------|------|-------|------|
| Movement               | EBL  | EBT  | EBR  | WBL  | WBI   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations    |      | 1    | 1    | 1    | 1     | 1    |      |      | 1    |      |       | 1    |
| Traffic Vol, veh/h     | 0    | 580  | 45   | 30   | 1030  | 25   | 0    | 0    | 15   | 0    | 0     | 35   |
| Future Vol, veh/h      | 0    | 580  | 45   | 30   | 1030  | 25   | 0    | 0    | 15   | 0    | 0     | 35   |
| Conflicting Peds, #/hr | 10   | 0    | 5    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0     | 0    |
| Sign Control           | Free | Free | Free | Free | Free  | Free | Stop | Stop | Stop | Stop | Stop  | Stop |
| RT Channelized         | -    | -    | None | -    | -     | None | -    | -    | None | -    | -     | None |
| Storage Length         | -    | -    | 250  | 250  | -     | 250  | -    | -    | 0    | -    | -     | 0    |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0     | -    | -    | 0    | -    | -    | 0     | -    |
| Grade, %               | -    | 0    | -    | -    | 0     | -    | -    | 0    | -    | -    | 0     | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92    | 92   | 92   | 92   | 92   | 92   | 92    | 92   |
| Heavy Vehicles, %      | 0    | 4    | 1    | 2    | 6     | 0    | 3    | 2    | 4    | 0    | 0     | 2    |
| M∨mt Flow              | 0    | 630  | 49   | 33   | 1120  | 27   | 0    | 0    | 16   | 0    | 0     | 38   |

| Major/Minor          | Major1 |   | N | lajor2 |   | Μ | inor1 |   | Ν    | /linor2 |   |      |  |
|----------------------|--------|---|---|--------|---|---|-------|---|------|---------|---|------|--|
| Conflicting Flow All | -      | 0 | 0 | 684    | 0 | 0 | -     | - | 320  | -       | - | 560  |  |
| Stage 1              | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
| Stage 2              | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
| Critical Hdwy        | -      | - | - | 4.14   | - | - | -     | - | 6.98 | -       | - | 6.94 |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
| Follow-up Hdwy       | -      | - | - | 2.22   | - | - | -     | - | 3.34 | -       | - | 3.32 |  |
| Pot Cap-1 Maneuver   | 0      | - | - | 905    | - | - | 0     | 0 | 670  | 0       | 0 | 472  |  |
| Stage 1              | 0      | - | - | -      | - | - | 0     | 0 | -    | 0       | 0 | -    |  |
| Stage 2              | 0      | - | - | -      | - | - | 0     | 0 | -    | 0       | 0 | -    |  |
| Platoon blocked, %   |        | - | - |        | - | - |       |   |      |         |   |      |  |
| Mov Cap-1 Maneuver   | -      | - | - | 901    | - | - | -     | - | 667  | -       | - | 472  |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
| Stage 1              | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
| Stage 2              | -      | - | - | -      | - | - | -     | - | -    | -       | - | -    |  |
|                      |        |   |   |        |   |   |       |   |      |         |   |      |  |
| Approach             | EB     |   |   | WB     |   |   | NB    |   |      | SB      |   |      |  |
| HCM Control Delay, s | 0      |   |   | 0.3    |   |   | 10.5  |   |      | 13.3    |   |      |  |
| HCM LOS              |        |   |   |        |   |   | В     |   |      | В       |   |      |  |
|                      |        |   |   |        |   |   |       |   |      |         |   |      |  |

| Minor Lane/Major Mvmt | NBLn1 | EBT | EBR | WBL   | WBT | WBR SBLr |  |  |  |
|-----------------------|-------|-----|-----|-------|-----|----------|--|--|--|
| Capacity (veh/h)      | 667   | -   | -   | 901   | -   | - 47     |  |  |  |
| HCM Lane V/C Ratio    | 0.024 | -   | -   | 0.036 | -   | - 0.08   |  |  |  |
| HCM Control Delay (s) | 10.5  | -   | -   | 9.1   | -   | - 13     |  |  |  |
| HCM Lane LOS          | В     | -   | -   | A     | -   | -        |  |  |  |
| HCM 95th %tile Q(veh) | 0.1   | -   | -   | 0.1   | -   | - 0      |  |  |  |
### HCM Signalized Intersection Capacity Analysis 10: 95th St/Hover Rd & SH 66

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

|                                   | ٠                        | -+        | $\mathbf{r}$ | -    | •         | 1          | Ť       | ۴     | 4     | ŧ    | 4    | r     |
|-----------------------------------|--------------------------|-----------|--------------|------|-----------|------------|---------|-------|-------|------|------|-------|
| Movement                          | EBL                      | EBT       | EBR2         | WBT  | WBR       | NBL        | NBT     | NBR2  | SBL2  | SBT  | SBR  | NWL2  |
| Lane Configurations               | 57                       | <b>††</b> | 1            | **   | 1         | 57         | 1       | 1     | ٦     | 1    | 1    | 57    |
| Traffic Volume (vph)              | 10                       | 335       | 250          | 595  | 50        | 420        | 40      | 695   | 55    | 280  | 50   | 1350  |
| Future Volume (vph)               | 10                       | 335       | 250          | 595  | 50        | 420        | 40      | 695   | 55    | 280  | 50   | 1350  |
| Ideal Flow (vphpl)                | 1900                     | 1900      | 1900         | 1900 | 1900      | 1900       | 1900    | 1900  | 1900  | 1900 | 1900 | 1900  |
| Total Lost time (s)               | 5.7                      | 5.7       | 4.0          | 5.7  | 5.7       | 4.5        | 6.4     | 4.0   | 4.5   | 6.4  | 6.4  | 4.5   |
| Lane Util. Factor                 | 0.97                     | 0.95      | 1.00         | 0.95 | 1.00      | 0.97       | 1.00    | 1.00  | 1.00  | 1.00 | 1.00 | 0.97  |
| Frt                               | 1.00                     | 1.00      | 0.85         | 1.00 | 0.85      | 1.00       | 1.00    | 0.85  | 1.00  | 1.00 | 0.85 | 1.00  |
| Flt Protected                     | 0.95                     | 1.00      | 1.00         | 1.00 | 1.00      | 0.95       | 1.00    | 1.00  | 0.95  | 1.00 | 1.00 | 0.95  |
| Satd. Flow (prot)                 | 3502                     | 3471      | 1599         | 3406 | 1615      | 3400       | 1863    | 1583  | 1805  | 1900 | 1583 | 3433  |
| Flt Permitted                     | 0.95                     | 1.00      | 1.00         | 1.00 | 1.00      | 0.44       | 1.00    | 1.00  | 0.65  | 1.00 | 1.00 | 0.95  |
| Satd. Flow (perm)                 | 3502                     | 3471      | 1599         | 3406 | 1615      | 1573       | 1863    | 1583  | 1240  | 1900 | 1583 | 3433  |
| Peak-hour factor, PHF             | 0.92                     | 0.92      | 0.92         | 0.92 | 0.92      | 0.92       | 0.92    | 0.92  | 0.92  | 0.92 | 0.92 | 0.92  |
| Adj. Flow (vph)                   | 11                       | 364       | 272          | 647  | 54        | 457        | 43      | 755   | 60    | 304  | 54   | 1467  |
| RTOR Reduction (vph)              | 0                        | 0         | 0            | 0    | 33        | 0          | 0       | 0     | 0     | 0    | 41   | 0     |
| Lane Group Flow (vph)             | 11                       | 364       | 272          | 647  | 21        | 457        | 43      | 755   | 60    | 304  | 13   | 1467  |
| Heavy Vehicles (%)                | 0%                       | 4%        | 1%           | 6%   | 0%        | 3%         | 2%      | 2%    | 0%    | 0%   | 2%   | 2%    |
| Turn Type                         | Prot                     | NA        | Free         | NA   | Perm      | pm+pt      | NA      | Free  | pm+pt | NA   | Perm | Prot  |
| Protected Phases                  | 5                        | 2         |              | 6    |           | 3          | 8       |       | 7     | 4    |      | 126   |
| Permitted Phases                  |                          |           | Free         |      | 6         | 8          |         | Free  | 4     |      | 4    |       |
| Actuated Green, G (s)             | 1.2                      | 15.5      | 77.7         | 30.6 | 30.6      | 21.7       | 16.2    | 77.7  | 25.5  | 18.1 | 18.1 | 37.5  |
| Effective Green, g (s)            | 1.2                      | 15.5      | 77.7         | 30.6 | 30.6      | 21.7       | 16.2    | 77.7  | 25.5  | 18.1 | 18.1 | 37.5  |
| Actuated g/C Ratio                | 0.02                     | 0.20      | 1.00         | 0.39 | 0.39      | 0.28       | 0.21    | 1.00  | 0.33  | 0.23 | 0.23 | 0.48  |
| Clearance Time (s)                | 5.7                      | 5.7       |              | 5.7  | 5.7       | 4.5        | 6.4     |       | 4.5   | 6.4  | 6.4  |       |
| Vehicle Extension (s)             | 3.0                      | 3.0       |              | 3.0  | 3.0       | 3.0        | 4.0     |       | 3.0   | 4.0  | 4.0  |       |
| Lane Grp Cap (vph)                | 54                       | 692       | 1599         | 1341 | 636       | 568        | 388     | 1583  | 460   | 442  | 368  | 1656  |
| v/s Ratio Prot                    | 0.00                     | 0.10      |              | 0.19 |           | 0.06       | 0.02    |       | 0.01  | 0.16 |      | c0.43 |
| v/s Ratio Perm                    |                          |           | 0.17         |      | 0.01      | c0.17      |         | c0.48 | 0.03  |      | 0.01 |       |
| v/c Ratio                         | 0.20                     | 0.53      | 0.17         | 0.48 | 0.03      | 0.80       | 0.11    | 0.48  | 0.13  | 0.69 | 0.03 | 0.89  |
| Uniform Delay, d1                 | 37.8                     | 27.8      | 0.0          | 17.6 | 14.5      | 25.1       | 24.9    | 0.0   | 18.2  | 27.2 | 23.0 | 18.2  |
| Progression Factor                | 1.00                     | 1.00      | 1.00         | 1.00 | 1.00      | 1.00       | 1.00    | 1.00  | 1.00  | 1.00 | 1.00 | 0.65  |
| Incremental Delay, d2             | 1.9                      | 0.7       | 0.2          | 0.3  | 0.0       | 8.1        | 0.2     | 1.0   | 0.1   | 4.8  | 0.1  | 4.9   |
| Delay (s)                         | 39.6                     | 28.5      | 0.2          | 17.9 | 14.5      | 33.2       | 25.1    | 1.0   | 18.3  | 32.0 | 23.1 | 16.7  |
| Level of Service                  | D                        | С         | А            | В    | В         | С          | С       | Α     | В     | С    | С    | В     |
| Approach Delay (s)                |                          | 16.8      |              | 17.6 |           |            | 13.6    |       |       | 28.9 |      |       |
| Approach LOS                      |                          | В         |              | В    |           |            | В       |       |       | С    |      |       |
| Intersection Summary              |                          |           |              |      |           |            |         |       |       |      |      |       |
| HCM 2000 Control Delay            |                          |           | 17.1         | Н    | CM 2000   | Level of   | Service |       | В     |      |      |       |
| HCM 2000 Volume to Capac          | city ratio               |           | 0.94         |      |           |            |         |       |       |      |      |       |
| Actuated Cycle Length (s)         | ed Cycle Length (s) 77.7 |           |              |      | um of los | t time (s) |         |       | 22.3  |      |      |       |
| Intersection Capacity Utilization | tion                     |           | 98.8%        | IC   | CU Level  | of Service | )       |       | F     |      |      |       |
| Analysis Period (min)             |                          |           | 15           |      |           |            |         |       |       |      |      |       |
| c Critical Lane Group             |                          |           |              |      |           |            |         |       |       |      |      |       |

|                              |             | $\mathbf{P}$ | F     | -    | 2          | 1                |    |    |
|------------------------------|-------------|--------------|-------|------|------------|------------------|----|----|
| Movement                     | EBT         | EBR          | WBL   | WBT  | NEL        | NER              |    |    |
| Lane Configurations          | 44          |              | 55    | 44   |            | 1                |    |    |
| Traffic Volume (vph)         | 355         | 0            | 1350  | 645  | 0          | 695              |    |    |
| Future Volume (vph)          | 355         | 0            | 1350  | 645  | 0          | 695              |    |    |
| Ideal Flow (vphpl)           | 1900        | 1900         | 1900  | 1900 | 1900       | 1900             |    |    |
| Total Lost time (s)          | 5.7         |              | 4.5   | 4.0  |            | 4.0              |    |    |
| Lane Util. Factor            | 0.95        |              | 0.97  | 0.95 |            | 1.00             |    |    |
| Frt                          | 1.00        |              | 1.00  | 1.00 |            | 0.86             |    |    |
| Flt Protected                | 1.00        |              | 0.95  | 1.00 |            | 1.00             |    |    |
| Satd. Flow (prot)            | 3539        |              | 3433  | 3539 |            | 1611             |    |    |
| Flt Permitted                | 1.00        |              | 0.95  | 1.00 |            | 1.00             |    |    |
| Satd. Flow (perm)            | 3539        |              | 3433  | 3539 |            | 1611             |    |    |
| Peak-hour factor, PHF        | 0.92        | 0.92         | 0.92  | 0.92 | 0.92       | 0.92             |    |    |
| Adj. Flow (vph)              | 386         | 0            | 1467  | 701  | 0          | 755              |    |    |
| RTOR Reduction (vph)         | 0           | 0            | 0     | 0    | 0          | 0                |    |    |
| Lane Group Flow (vph)        | 386         | 0            | 1467  | 701  | 0          | 755              |    |    |
| Turn Type                    | NA          |              | Prot  | NA   |            | Free             |    |    |
| Protected Phases             | 2           |              | 134   | Free |            |                  |    |    |
| Permitted Phases             |             |              |       |      |            | Free             |    |    |
| Actuated Green, G (s)        | 15.5        |              | 52.0  | 77.7 |            | 77.7             |    |    |
| Effective Green, g (s)       | 15.5        |              | 45.6  | 77.7 |            | 77.7             |    |    |
| Actuated g/C Ratio           | 0.20        |              | 0.59  | 1.00 |            | 1.00             |    |    |
| Clearance Time (s)           | 5.7         |              |       |      |            |                  |    |    |
| Vehicle Extension (s)        | 3.0         |              |       |      |            |                  |    |    |
| Lane Grp Cap (vph)           | 705         |              | 2014  | 3539 |            | 1611             |    |    |
| v/s Ratio Prot               | 0.11        |              | c0.43 | 0.20 |            |                  |    |    |
| v/s Ratio Perm               |             |              |       |      |            | c0.47            |    |    |
| v/c Ratio                    | 0.55        |              | 0.73  | 0.20 |            | 0.47             |    |    |
| Uniform Delay, d1            | 27.9        |              | 11.6  | 0.0  |            | 0.0              |    |    |
| Progression Factor           | 1.53        |              | 1.00  | 1.00 |            | 1.00             |    |    |
| Incremental Delay, d2        | 0.7         |              | 1.3   | 0.1  |            | 0.9              |    |    |
| Delay (s)                    | 43.4        |              | 12.9  | 0.1  |            | 0.9              |    |    |
| Level of Service             | D           |              | В     | Α    |            | А                |    |    |
| Approach Delay (s)           | 43.4        |              |       | 8.8  | 0.9        |                  |    |    |
| Approach LOS                 | D           |              |       | А    | А          |                  |    |    |
| Intersection Summary         |             |              |       |      |            |                  |    |    |
| HCM 2000 Control Delay       |             |              | 11.0  | H    | CM 2000    | Level of Service |    | В  |
| HCM 2000 Volume to Cap       | acity ratio |              | 0.78  |      |            |                  |    |    |
| Actuated Cycle Length (s)    |             |              | 77.7  | Sı   | um of lost | time (s)         | 22 | .3 |
| Intersection Capacity Utiliz | ation       |              | 56.4% | IC   | U Level o  | of Service       |    | В  |
| Analysis Period (min)        |             |              | 15    |      |            |                  |    |    |

#### Intersection Int Delay, s/veh 0.5 EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Movement Lane Configurations †† ۲ †† ۴ ۴ ۴ 1045 2020 Traffic Vol, veh/h 30 0 95 0 0 10 0 0 10 0 Future Vol, veh/h 0 1045 30 0 2020 10 0 0 95 0 0 10 0 0 0 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 Sign Control Stop Stop Stop Free Free Free Free Free Free Stop Stop Stop RT Channelized -None --None None None --\_ --Storage Length 250 0 0 --\_ ----\_ 0 Veh in Median Storage, # -0 -0 \_ 0 \_ 0 -\_ --Grade, % 0 0 0 0 --------Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 Heavy Vehicles, % 0 3 17 9 5 0 0 0 0 0 0 0 Mvmt Flow 0 1136 33 0 2196 11 0 0 103 0 0 11

| Major/Minor          | Major1 |       | N   | Major2 |     |     | Minor1 |   | N   | /linor2 |   |      |  |
|----------------------|--------|-------|-----|--------|-----|-----|--------|---|-----|---------|---|------|--|
| Conflicting Flow All | -      | 0     | 0   | -      | -   | 0   | -      | - | 568 | -       | - | 1098 |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
| Critical Hdwy        | -      | -     | -   | -      | -   | -   | -      | - | 6.9 | -       | - | 6.9  |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
| Follow-up Hdwy       | -      | -     | -   | -      | -   | -   | -      | - | 3.3 | -       | - | 3.3  |  |
| Pot Cap-1 Maneuver   | 0      | -     | -   | 0      | -   | -   | 0      | 0 | 471 | 0       | 0 | 211  |  |
| Stage 1              | 0      | -     | -   | 0      | -   | -   | 0      | 0 | -   | 0       | 0 | -    |  |
| Stage 2              | 0      | -     | -   | 0      | -   | -   | 0      | 0 | -   | 0       | 0 | -    |  |
| Platoon blocked, %   |        | -     | -   |        | -   | -   |        |   |     |         |   |      |  |
| Mov Cap-1 Maneuver   | -      | -     | -   | -      | -   | -   | -      | - | 471 | -       | - | 211  |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | -      | - | -   | -       | - | -    |  |
|                      |        |       |     |        |     |     |        |   |     |         |   |      |  |
| Approach             | EB     |       |     | WB     |     |     | NB     |   |     | SB      |   |      |  |
| HCM Control Delay, s | 0      |       |     | 0      |     |     | 14.8   |   |     | 23      |   |      |  |
| HCM LOS              |        |       |     |        |     |     | В      |   |     | С       |   |      |  |
|                      |        |       |     |        |     |     |        |   |     |         |   |      |  |
| Minor Lane/Major Mvr | nt     | NBLn1 | EBT | EBR    | WBT | WBR | SBLn1  |   |     |         |   |      |  |
| Capacity (veh/h)     |        | 471   | -   | -      | -   | -   | 211    |   |     |         |   |      |  |
| HCM Lane V/C Ratio   |        | 0.219 | -   | -      | -   | -   | 0.052  |   |     |         |   |      |  |
| HCM Control Delay (s | )      | 14.8  | -   | -      | -   | -   | 23     |   |     |         |   |      |  |
| HCM Lane LOS         |        | В     | -   | -      | -   | -   | С      |   |     |         |   |      |  |
| HCM 95th %tile Q(veh | ı)     | 0.8   | -   | -      | -   | -   | 0.2    |   |     |         |   |      |  |

### HCM 6th Signalized Intersection Summary 13: Francis St & SH 66

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

|                              | ٠    | -+   | $\mathbf{r}$ | 4    | +        | 4    | 1    | Ť    | 1    | 1    | ţ    | ~        |
|------------------------------|------|------|--------------|------|----------|------|------|------|------|------|------|----------|
| Movement                     | EBL  | EBT  | EBR          | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR      |
| Lane Configurations          | 1    | **   | 1            | 55   | <b>^</b> | 1    | 5    | Ť.   | 1    | 1    | •    | 7        |
| Traffic Volume (veh/h)       | 5    | 1080 | 60           | 200  | 1945     | 10   | 95   | 10   | 170  | 10   | 10   | 10       |
| Future Volume (veh/h)        | 5    | 1080 | 60           | 200  | 1945     | 10   | 95   | 10   | 170  | 10   | 10   | 10       |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00         | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No   |              |      | No       |      |      | No   |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1856 | 1900         | 1885 | 1856     | 1870 | 1900 | 1870 | 1885 | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 5    | 1174 | 65           | 217  | 2114     | 11   | 103  | 11   | 0    | 11   | 11   | 11       |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92         | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     |
| Percent Heavy Veh, %         | 2    | 3    | 0            | 1    | 3        | 2    | 0    | 2    | 1    | 2    | 2    | 2        |
| Cap, veh/h                   | 127  | 2207 | 1008         | 699  | 2385     | 1072 | 178  | 181  |      | 107  | 107  | 91       |
| Arrive On Green              | 0.01 | 0.63 | 0.63         | 0.06 | 0.68     | 0.68 | 0.05 | 0.10 | 0.00 | 0.01 | 0.06 | 0.06     |
| Sat Flow, veh/h              | 1781 | 3526 | 1610         | 3483 | 3526     | 1585 | 1810 | 1870 | 1598 | 1781 | 1870 | 1585     |
| Grp Volume(v), veh/h         | 5    | 1174 | 65           | 217  | 2114     | 11   | 103  | 11   | 0    | 11   | 11   | 11       |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1763 | 1610         | 1742 | 1763     | 1585 | 1810 | 1870 | 1598 | 1781 | 1870 | 1585     |
| Q Serve(g_s), s              | 0.0  | 16.3 | 0.8          | 2.0  | 42.2     | 0.1  | 0.8  | 0.5  | 0.0  | 0.5  | 0.5  | 0.6      |
| Cycle Q Clear(g_c), s        | 0.0  | 16.3 | 0.8          | 2.0  | 42.2     | 0.1  | 0.8  | 0.5  | 0.0  | 0.5  | 0.5  | 0.6      |
| Prop In Lane                 | 1.00 |      | 1.00         | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Lane Grp Cap(c), veh/h       | 127  | 2207 | 1008         | 699  | 2385     | 1072 | 178  | 181  |      | 107  | 107  | 91       |
| V/C Ratio(X)                 | 0.04 | 0.53 | 0.06         | 0.31 | 0.89     | 0.01 | 0.58 | 0.06 |      | 0.10 | 0.10 | 0.12     |
| Avail Cap(c_a), veh/h        | 217  | 2507 | 1145         | 784  | 2592     | 1165 | 187  | 387  |      | 185  | 387  | 328      |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00     |
| Uniform Delay (d), s/veh     | 30.4 | 9.1  | 2.2          | 8.3  | 11.4     | 1.9  | 39.1 | 35.7 | 0.0  | 41.3 | 38.9 | 38.9     |
| Incr Delay (d2), s/veh       | 0.1  | 0.2  | 0.0          | 0.3  | 3.9      | 0.0  | 4.0  | 0.1  | 0.0  | 0.4  | 0.4  | 0.6      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/In     | 0.1  | 4.5  | 0.3          | 0.5  | 11.4     | 0.0  | 2.2  | 0.2  | 0.0  | 0.2  | 0.2  | 0.2      |
| Unsig. Movement Delay, s/veh |      |      |              |      |          |      |      |      |      |      |      |          |
| LnGrp Delay(d),s/veh         | 30.5 | 9.3  | 2.2          | 8.5  | 15.3     | 1.9  | 43.2 | 35.9 | 0.0  | 41.7 | 39.3 | 39.5     |
| LnGrp LOS                    | С    | Α    | Α            | Α    | В        | Α    | D    | D    |      | D    | D    | <u> </u> |
| Approach Vol, veh/h          |      | 1244 |              |      | 2342     |      |      | 114  | А    |      | 33   |          |
| Approach Delay, s/veh        |      | 9.0  |              |      | 14.6     |      |      | 42.4 |      |      | 40.2 |          |
| Approach LOS                 |      | А    |              |      | В        |      |      | D    |      |      | D    |          |
| Timer - Assigned Phs         | 1    | 2    | 3            | 4    | 5        | 6    | 7    | 8    |      |      |      |          |
| Phs Duration (G+Y+Rc), s     | 5.7  | 12.9 | 9.5          | 59.0 | 9.1      | 9.5  | 5.1  | 63.4 |      |      |      |          |
| Change Period (Y+Rc), s      | 4.5  | 4.5  | 4.5          | 4.5  | 4.5      | 4.5  | 4.5  | 4.5  |      |      |      |          |
| Max Green Setting (Gmax), s  | 5.0  | 18.0 | 7.1          | 61.9 | 5.0      | 18.0 | 5.0  | 64.0 |      |      |      |          |
| Max Q Clear Time (g_c+I1), s | 2.5  | 2.5  | 4.0          | 18.3 | 2.8      | 2.6  | 2.0  | 44.2 |      |      |      |          |
| Green Ext Time (p_c), s      | 0.0  | 0.0  | 0.2          | 9.6  | 0.0      | 0.0  | 0.0  | 14.7 |      |      |      |          |
| Intersection Summary         |      |      |              |      |          |      |      |      |      |      |      |          |
| HCM 6th Ctrl Delay           |      |      | 13.8         |      |          |      |      |      |      |      |      |          |
| HCM 6th LOS                  |      |      | В            |      |          |      |      |      |      |      |      |          |

### Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

| Intersection           |      |      |      |      |      |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Int Delay, s/veh       | 2.9  |      |      |      |      |      |      |      |      |      |      |      |  |
| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | 1    | **   | 1    | 1    | **   | 1    |      |      | 1    |      |      | 1    |  |
| Traffic Vol, veh/h     | 20   | 1185 | 45   | 185  | 2055 | 35   | 0    | 0    | 170  | 0    | 0    | 100  |  |
| Future Vol, veh/h      | 20   | 1185 | 45   | 185  | 2055 | 35   | 0    | 0    | 170  | 0    | 0    | 100  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 250  | -    | 0    | 250  | -    | 250  | -    | -    | 0    | -    | -    | 0    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 22   | 1288 | 49   | 201  | 2234 | 38   | 0    | 0    | 185  | 0    | 0    | 109  |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Δ |                                                                         |   |                                                                                                                                                                                                                                                                                |      |                                                      |                                                      |                                                      |
|---|-------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0 | 0                                                                       | - | -                                                                                                                                                                                                                                                                              | 644  | -                                                    | -                                                    | 1117                                                 |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | 6.94 | -                                                    | -                                                    | 6.94                                                 |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | 3.32 | -                                                    | -                                                    | 3.32                                                 |
| - | -                                                                       | 0 | 0                                                                                                                                                                                                                                                                              | 416  | 0                                                    | 0                                                    | 202                                                  |
| - | -                                                                       | 0 | 0                                                                                                                                                                                                                                                                              | -    | 0                                                    | 0                                                    | -                                                    |
| - | -                                                                       | 0 | 0                                                                                                                                                                                                                                                                              | -    | 0                                                    | 0                                                    | -                                                    |
| - | -                                                                       |   |                                                                                                                                                                                                                                                                                |      |                                                      |                                                      |                                                      |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | 416  | -                                                    | -                                                    | 202                                                  |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
| - | -                                                                       | - | -                                                                                                                                                                                                                                                                              | -    | -                                                    | -                                                    | -                                                    |
|   |                                                                         |   |                                                                                                                                                                                                                                                                                |      |                                                      |                                                      |                                                      |
|   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |   | <br><br><br><br><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br> |      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| Approach             | EB  | WB  | NB   | SB   |  |
|----------------------|-----|-----|------|------|--|
| HCM Control Delay, s | 0.4 | 1.3 | 20.4 | 41.8 |  |
| HCM LOS              |     |     | С    | E    |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR \$ | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|--------|-------|
| Capacity (veh/h)      | 416   | 221   | -   | -   | 512   | -   | -      | 202   |
| HCM Lane V/C Ratio    | 0.444 | 0.098 | -   | -   | 0.393 | -   | -      | 0.538 |
| HCM Control Delay (s) | 20.4  | 23.1  | -   | -   | 16.5  | -   | -      | 41.8  |
| HCM Lane LOS          | С     | С     | -   | -   | С     | -   | -      | E     |
| HCM 95th %tile Q(veh) | 2.2   | 0.3   | -   | -   | 1.9   | -   | -      | 2.8   |



|                               |            | $\mathbf{r}$ | 1     | -     | 1          | 1                |      |  |
|-------------------------------|------------|--------------|-------|-------|------------|------------------|------|--|
| Movement                      | EBT        | EBR          | WBL   | WBT   | NBL        | NBR              |      |  |
| Lane Configurations           | **         | 1            |       | **    | 55         |                  |      |  |
| Traffic Volume (vph)          | 535        | 235          | 0     | 800   | 335        | 0                |      |  |
| Future Volume (vph)           | 535        | 235          | 0     | 800   | 335        | 0                |      |  |
| Ideal Flow (vphpl)            | 1900       | 1900         | 1900  | 1900  | 1900       | 1900             |      |  |
| Total Lost time (s)           | 4.0        | 4.0          |       | 4.0   | 4.0        |                  |      |  |
| Lane Util. Factor             | 0.95       | 1.00         |       | 0.95  | 0.97       |                  |      |  |
| Frt                           | 1.00       | 0.85         |       | 1.00  | 1.00       |                  |      |  |
| Flt Protected                 | 1.00       | 1.00         |       | 1.00  | 0.95       |                  |      |  |
| Satd. Flow (prot)             | 3539       | 1583         |       | 3539  | 3433       |                  |      |  |
| Flt Permitted                 | 1.00       | 1.00         |       | 1.00  | 0.95       |                  |      |  |
| Satd. Flow (perm)             | 3539       | 1583         |       | 3539  | 3433       |                  |      |  |
| Peak-hour factor, PHF         | 0.92       | 0.92         | 0.92  | 0.92  | 0.92       | 0.92             |      |  |
| Adj. Flow (vph)               | 582        | 255          | 0     | 870   | 364        | 0                |      |  |
| RTOR Reduction (vph)          | 0          | 0            | 0     | 0     | 0          | 0                |      |  |
| Lane Group Flow (vph)         | 582        | 255          | 0     | 870   | 364        | 0                |      |  |
| Turn Type                     | NA         | Free         |       | NA    | Prot       |                  |      |  |
| Protected Phases              | 12         |              |       | Free! | 4!         |                  |      |  |
| Permitted Phases              |            | Free         |       |       |            |                  |      |  |
| Actuated Green, G (s)         | 31.0       | 70.0         |       | 70.0  | 16.0       |                  |      |  |
| Effective Green, g (s)        | 31.0       | 70.0         |       | 70.0  | 16.0       |                  |      |  |
| Actuated g/C Ratio            | 0.44       | 1.00         |       | 1.00  | 0.23       |                  |      |  |
| Clearance Time (s)            |            |              |       |       | 4.0        |                  |      |  |
| Vehicle Extension (s)         |            |              |       |       | 3.0        |                  |      |  |
| Lane Grp Cap (vph)            | 1567       | 1583         |       | 3539  | 784        |                  |      |  |
| v/s Ratio Prot                | c0.16      |              |       | 0.25  | c0.11      |                  |      |  |
| v/s Ratio Perm                |            | 0.16         |       |       |            |                  |      |  |
| v/c Ratio                     | 0.37       | 0.16         |       | 0.25  | 0.46       |                  |      |  |
| Uniform Delay, d1             | 13.0       | 0.0          |       | 0.0   | 23.3       |                  |      |  |
| Progression Factor            | 1.00       | 1.00         |       | 1.00  | 0.00       |                  |      |  |
| Incremental Delay, d2         | 0.1        | 0.2          |       | 0.1   | 0.3        |                  |      |  |
| Delay (s)                     | 13.1       | 0.2          |       | 0.1   | 0.4        |                  |      |  |
| Level of Service              | В          | А            |       | А     | А          |                  |      |  |
| Approach Delay (s)            | 9.2        |              |       | 0.1   | 0.4        |                  |      |  |
| Approach LOS                  | А          |              |       | А     | А          |                  |      |  |
| Intersection Summary          |            |              |       |       |            |                  |      |  |
| HCM 2000 Control Delay        |            |              | 3.8   | Н     | CM 2000    | Level of Service | A    |  |
| HCM 2000 Volume to Capa       | city ratio |              | 0.42  |       |            |                  |      |  |
| Actuated Cycle Length (s)     |            |              | 70.0  | S     | um of lost | time (s)         | 16.0 |  |
| Intersection Capacity Utiliza | ition      |              | 38.3% | IC    | CU Level o | of Service       | A    |  |
| Analysis Period (min)         |            |              | 15    |       |            |                  |      |  |
| ! Phase conflict between I    | ane groups |              |       |       |            |                  |      |  |
| c Critical Lane Group         |            |              |       |       |            |                  |      |  |

|                                   | ٠      |       | -     | •    | 1          | 1                |      |  |
|-----------------------------------|--------|-------|-------|------|------------|------------------|------|--|
| Movement                          | EBL    | EBT   | WBT   | WBR  | SBL        | SBR              |      |  |
| Lane Configurations               |        | **    | 44    | 1    | 55         |                  |      |  |
| Traffic Volume (vph)              | 0      | 535   | 800   | 135  | 185        | 0                |      |  |
| Future Volume (vph)               | 0      | 535   | 800   | 135  | 185        | 0                |      |  |
| Ideal Flow (vphpl)                | 1900   | 1900  | 1900  | 1900 | 1900       | 1900             |      |  |
| Total Lost time (s)               |        | 4.0   | 4.0   | 4.0  | 4.0        |                  |      |  |
| Lane Util. Factor                 |        | 0.95  | 0.95  | 1.00 | 0.97       |                  |      |  |
| Frt                               |        | 1.00  | 1.00  | 0.85 | 1.00       |                  |      |  |
| Flt Protected                     |        | 1.00  | 1.00  | 1.00 | 0.95       |                  |      |  |
| Satd. Flow (prot)                 |        | 3282  | 3252  | 996  | 3099       |                  |      |  |
| Flt Permitted                     |        | 1.00  | 1.00  | 1.00 | 0.95       |                  |      |  |
| Satd. Flow (perm)                 |        | 3282  | 3252  | 996  | 3099       |                  |      |  |
| Peak-hour factor, PHF             | 0.92   | 0.92  | 0.92  | 0.92 | 0.92       | 0.92             |      |  |
| Adj. Flow (vph)                   | 0      | 582   | 870   | 147  | 201        | 0                |      |  |
| RTOR Reduction (vph)              | 0      | 0     | 0     | 0    | 0          | 0                |      |  |
| Lane Group Flow (vph)             | 0      | 582   | 870   | 147  | 201        | 0                |      |  |
| Heavy Vehicles (%)                | 0%     | 10%   | 11%   | 46%  | 13%        | 0%               |      |  |
| Parking (#/hr)                    |        |       |       | 0    |            |                  |      |  |
| Turn Type                         |        | NA    | NA    | Free | Prot       |                  |      |  |
| Protected Phases                  |        | Free! | 12    |      | 4!         |                  |      |  |
| Permitted Phases                  |        |       |       | Free |            |                  |      |  |
| Actuated Green, G (s)             |        | 70.0  | 31.0  | 70.0 | 16.0       |                  |      |  |
| Effective Green, g (s)            |        | 70.0  | 31.0  | 70.0 | 16.0       |                  |      |  |
| Actuated g/C Ratio                |        | 1.00  | 0.44  | 1.00 | 0.23       |                  |      |  |
| Clearance Time (s)                |        |       |       |      | 4.0        |                  |      |  |
| Vehicle Extension (s)             |        |       |       |      | 3.0        |                  |      |  |
| Lane Grp Cap (vph)                |        | 3282  | 1440  | 996  | 708        |                  |      |  |
| v/s Ratio Prot                    |        | 0.18  | c0.27 |      | c0.06      |                  |      |  |
| v/s Ratio Perm                    |        |       |       | 0.15 |            |                  |      |  |
| v/c Ratio                         |        | 0.18  | 0.60  | 0.15 | 0.28       |                  |      |  |
| Uniform Delay, d1                 |        | 0.0   | 14.8  | 0.0  | 22.3       |                  |      |  |
| Progression Factor                |        | 1.00  | 0.61  | 1.00 | 0.01       |                  |      |  |
| Incremental Delay, d2             |        | 0.1   | 0.7   | 0.3  | 0.2        |                  |      |  |
| Delay (s)                         |        | 0.1   | 9.7   | 0.3  | 0.5        |                  |      |  |
| Level of Service                  |        | А     | А     | А    | А          |                  |      |  |
| Approach Delay (s)                |        | 0.1   | 8.3   |      | 0.5        |                  |      |  |
| Approach LOS                      |        | А     | А     |      | А          |                  |      |  |
| Intersection Summary              |        |       |       |      |            |                  |      |  |
| HCM 2000 Control Delay            |        |       | 4.8   | H    | CM 2000    | Level of Service | A    |  |
| HCM 2000 Volume to Capacity       | ratio  |       | 0.48  |      |            |                  |      |  |
| Actuated Cycle Length (s)         |        |       | 70.0  | Si   | um of lost | time (s)         | 16.0 |  |
| Intersection Capacity Utilization |        |       | 34.1% | IC   | U Level o  | of Service       | A    |  |
| Analysis Period (min)             |        |       | 15    |      |            |                  |      |  |
| ! Phase conflict between lane     | groups |       |       |      |            |                  |      |  |
| c Critical Lane Group             |        |       |       |      |            |                  |      |  |

|                                    | ▲         | $\mathbf{r}$ | 1     | Ť     | ŧ          | ~                |      |  |
|------------------------------------|-----------|--------------|-------|-------|------------|------------------|------|--|
| Movement                           | EBL       | EBR          | NBL   | NBT   | SBT        | SBR              |      |  |
| Lane Configurations                | 55        |              |       | **    | **         | 1                |      |  |
| Traffic Volume (vph)               | 580       | 0            | 0     | 400   | 900        | 1140             |      |  |
| Future Volume (vph)                | 580       | 0            | 0     | 400   | 900        | 1140             |      |  |
| Ideal Flow (vphpl)                 | 1900      | 1900         | 1900  | 1900  | 1900       | 1900             |      |  |
| Total Lost time (s)                | 4.0       |              |       | 4.0   | 4.0        | 4.0              |      |  |
| Lane Util. Factor                  | 0.97      |              |       | 0.95  | 0.95       | 1.00             |      |  |
| Frt                                | 1.00      |              |       | 1.00  | 1.00       | 0.85             |      |  |
| Flt Protected                      | 0.95      |              |       | 1.00  | 1.00       | 1.00             |      |  |
| Satd. Flow (prot)                  | 3433      |              |       | 3539  | 3539       | 1583             |      |  |
| Flt Permitted                      | 0.95      |              |       | 1.00  | 1.00       | 1.00             |      |  |
| Satd. Flow (perm)                  | 3433      |              |       | 3539  | 3539       | 1583             |      |  |
| Peak-hour factor, PHF              | 0.92      | 0.92         | 0.92  | 0.92  | 0.92       | 0.92             |      |  |
| Adi, Flow (vph)                    | 630       | 0            | 0     | 435   | 978        | 1239             |      |  |
| RTOR Reduction (vph)               | 0         | 0            | 0     | 0     | 0          | 0                |      |  |
| Lane Group Flow (vph)              | 630       | 0            | 0     | 435   | 978        | 1239             |      |  |
| Turn Type                          | Prot      |              |       | NA    | NA         | Free             |      |  |
| Protected Phases                   | 1.21      |              |       | Freel | 3.4        | 1100             |      |  |
| Permitted Phases                   | 1 2.      |              |       | 1100. | 01         | Free             |      |  |
| Actuated Green G (s)               | 31.0      |              |       | 70 0  | 31.0       | 70.0             |      |  |
| Effective Green g (s)              | 31.0      |              |       | 70.0  | 31.0       | 70.0             |      |  |
| Actuated g/C Ratio                 | 0.44      |              |       | 1.00  | 0.44       | 1.00             |      |  |
| Clearance Time (s)                 | ••••      |              |       |       | ••••       |                  |      |  |
| Vehicle Extension (s)              |           |              |       |       |            |                  |      |  |
| Lane Grp Cap (vph)                 | 1520      |              |       | 3539  | 1567       | 1583             |      |  |
| v/s Ratio Prot                     | 0.18      |              |       | 0.12  | 0.28       | 1000             |      |  |
| v/s Ratio Perm                     | 0.10      |              |       | 0.12  | 0.20       | c0 78            |      |  |
| v/c Ratio                          | 0 41      |              |       | 0 12  | 0.62       | 0.78             |      |  |
| Uniform Delay, d1                  | 13.3      |              |       | 0.0   | 15.0       | 0.0              |      |  |
| Progression Factor                 | 0.54      |              |       | 1.00  | 1.00       | 1.00             |      |  |
| Incremental Delay, d2              | 0.2       |              |       | 0.1   | 0.6        | 3.1              |      |  |
| Delay (s)                          | 7.4       |              |       | 0.1   | 15.6       | 3.1              |      |  |
| Level of Service                   | A         |              |       | A     | В          | A                |      |  |
| Approach Delay (s)                 | 7.4       |              |       | 0.1   | 8.6        |                  |      |  |
| Approach LOS                       | A         |              |       | A     | A          |                  |      |  |
| Intersection Summary               |           |              |       |       |            |                  |      |  |
| HCM 2000 Control Delay             |           |              | 7 2   |       | CM 2000    | Level of Service | Δ    |  |
| HCM 2000 Volume to Canacity        | ( ratio   |              | 1.2   | חי    |            | Level of Service | A    |  |
| Actuated Cycle Length (c)          | ratio     |              | 70.0  | C,    | im of lost | time (s)         | 16.0 |  |
| Intersection Canacity Litilization | n         |              | /8 1% |       |            | of Service       | 10.0 |  |
|                                    | 11        |              | 40.1% | iC    | O Level (  |                  | A    |  |
| Dhase conflict between long        |           |              | 10    |       |            |                  |      |  |
| c Critical Lane Group              | s groups. |              |       |       |            |                  |      |  |

|                                | 1           | *    | Ť      | 1    | 1          | ↓                |    |  |
|--------------------------------|-------------|------|--------|------|------------|------------------|----|--|
| Movement                       | WBL         | WBR  | NBT    | NBR  | SBL        | SBT              |    |  |
| Lane Configurations            | 55          |      | 44     | 1    |            | <b>^</b>         |    |  |
| Traffic Volume (vph)           | 325         | 0    | 400    | 220  | 0          | 900              |    |  |
| Future Volume (vph)            | 325         | 0    | 400    | 220  | 0          | 900              |    |  |
| Ideal Flow (vphpl)             | 1900        | 1900 | 1900   | 1900 | 1900       | 1900             |    |  |
| Total Lost time (s)            | 4.0         |      | 4.0    | 4.0  |            | 4.0              |    |  |
| Lane Util. Factor              | 0.97        |      | 0.95   | 1.00 |            | 0.95             |    |  |
| Frt                            | 1.00        |      | 1.00   | 0.85 |            | 1.00             |    |  |
| Flt Protected                  | 0.95        |      | 1.00   | 1.00 |            | 1.00             |    |  |
| Satd. Flow (prot)              | 3433        |      | 3539   | 1583 |            | 3539             |    |  |
| Flt Permitted                  | 0.95        |      | 1.00   | 1.00 |            | 1.00             |    |  |
| Satd. Flow (perm)              | 3433        |      | 3539   | 1583 |            | 3539             |    |  |
| Peak-hour factor. PHF          | 0.92        | 0,92 | 0.92   | 0,92 | 0.92       | 0.92             |    |  |
| Adi, Flow (vph)                | 353         | 0    | 435    | 239  | 0          | 978              |    |  |
| RTOR Reduction (vph)           | 0           | 0    | 0      | 0    | Ū          | 0                |    |  |
| Lane Group Flow (vph)          | 353         | 0    | 435    | 239  | 0          | 978              |    |  |
| Turn Type                      | Prot        |      | NA     | Free |            | NA               |    |  |
| Protected Phases               | 21          |      | 3.4    | 1100 |            | Freel            |    |  |
| Permitted Phases               | <i>L</i> .  |      | 01     | Free |            | 1100.            |    |  |
| Actuated Green G (s)           | 17 0        |      | 31.0   | 70.0 |            | 70.0             |    |  |
| Effective Green a (s)          | 17.0        |      | 31.0   | 70.0 |            | 70.0             |    |  |
| Actuated g/C Ratio             | 0.24        |      | 0.44   | 1.00 |            | 1.00             |    |  |
| Clearance Time (s)             | 4.0         |      | ••••   |      |            |                  |    |  |
| Vehicle Extension (s)          | 3.0         |      |        |      |            |                  |    |  |
| Lane Grn Can (vnh)             | 833         |      | 1567   | 1583 |            | 3539             |    |  |
| v/s Ratio Prot                 | c0 10       |      | 0.12   | 1000 |            | 0.28             |    |  |
| v/s Ratio Perm                 | 00.10       |      | 0.12   | 0 15 |            | 0.20             |    |  |
| v/c Ratio                      | 0 42        |      | 0.28   | 0.15 |            | 0.28             |    |  |
| Uniform Delay d1               | 22.4        |      | 12.4   | 0.0  |            | 0.0              |    |  |
| Progression Factor             | 0.00        |      | 1.00   | 1.00 |            | 1.00             |    |  |
| Incremental Delay, d2          | 1.1         |      | 0.1    | 0.2  |            | 0.2              |    |  |
| Delay (s)                      | 1.2         |      | 12.5   | 0.2  |            | 0.2              |    |  |
| Level of Service               | A           |      | B      | A    |            | A                |    |  |
| Approach Delay (s)             | 1.2         |      | 8.1    |      |            | 0.2              |    |  |
| Approach LOS                   | A           |      | A      |      |            | A                |    |  |
| Intersection Summary           |             |      |        |      |            |                  |    |  |
| HCM 2000 Control Delay         |             |      | 3.0    | H    | CM 2000    | Level of Service | A  |  |
| HCM 2000 Volume to Cana        | acity ratio |      | 0.38   |      | 2000       |                  |    |  |
| Actuated Cycle Length (s)      |             |      | 70.0   | S    | im of lost | time (s)         | 60 |  |
| Intersection Canacity Litiliza | ation       |      | 40.8%  |      |            | of Service       | Α  |  |
| Analysis Period (min)          |             |      | 15.070 | 10   |            |                  | ~  |  |
| Phase conflict between         | lane groups |      | 10     |      |            |                  |    |  |
| c Critical Lane Group          |             |      |        |      |            |                  |    |  |

|                                | ٨          |      | +     | •    | 4          | 1                |      |
|--------------------------------|------------|------|-------|------|------------|------------------|------|
| Movement                       | EBL        | EBT  | WBT   | WBR  | SBL        | SBR              |      |
| Lane Configurations            | 55         | **   | **    |      |            | 1                |      |
| Traffic Volume (vph)           | 580        | 770  | 1135  | 0    | 0          | 1140             |      |
| Future Volume (vph)            | 580        | 770  | 1135  | 0    | 0          | 1140             |      |
| Ideal Flow (vphpl)             | 1900       | 1900 | 1900  | 1900 | 1900       | 1900             |      |
| Total Lost time (s)            | 4.0        | 4.0  | 4.0   |      |            | 4.0              |      |
| Lane Util. Factor              | 0.97       | 0.95 | 0.95  |      |            | 1.00             |      |
| Frt                            | 1.00       | 1.00 | 1.00  |      |            | 0.86             |      |
| Flt Protected                  | 0.95       | 1.00 | 1.00  |      |            | 1.00             |      |
| Satd. Flow (prot)              | 3433       | 3539 | 3539  |      |            | 1611             |      |
| Flt Permitted                  | 0.95       | 1.00 | 1.00  |      |            | 1.00             |      |
| Satd. Flow (perm)              | 3433       | 3539 | 3539  |      |            | 1611             |      |
| Peak-hour factor, PHF          | 0.92       | 0.92 | 0.92  | 0.92 | 0.92       | 0.92             |      |
| Adj. Flow (vph)                | 630        | 837  | 1234  | 0    | 0          | 1239             |      |
| RTOR Reduction (vph)           | 0          | 0    | 0     | 0    | 0          | 0                |      |
| Lane Group Flow (vph)          | 630        | 837  | 1234  | 0    | 0          | 1239             |      |
| Turn Type                      | Prot       | NA   | NA    |      |            | Free             |      |
| Protected Phases               | 12         | Free | 34    |      |            |                  |      |
| Permitted Phases               |            |      |       |      |            | Free             |      |
| Actuated Green, G (s)          | 31.0       | 70.0 | 31.0  |      |            | 70.0             |      |
| Effective Green, g (s)         | 31.0       | 70.0 | 31.0  |      |            | 70.0             |      |
| Actuated g/C Ratio             | 0.44       | 1.00 | 0.44  |      |            | 1.00             |      |
| Clearance Time (s)             |            |      |       |      |            |                  |      |
| Vehicle Extension (s)          |            |      |       |      |            |                  |      |
| Lane Grp Cap (vph)             | 1520       | 3539 | 1567  |      |            | 1611             |      |
| v/s Ratio Prot                 | 0.18       | 0.24 | 0.35  |      |            |                  |      |
| v/s Ratio Perm                 |            |      |       |      |            | c0.77            |      |
| v/c Ratio                      | 0.41       | 0.24 | 0.79  |      |            | 0.77             |      |
| Uniform Delay, d1              | 13.3       | 0.0  | 16.7  |      |            | 0.0              |      |
| Progression Factor             | 1.00       | 1.00 | 0.95  |      |            | 1.00             |      |
| Incremental Delay, d2          | 0.2        | 0.2  | 2.6   |      |            | 2.2              |      |
| Delay (s)                      | 13.5       | 0.2  | 18.5  |      |            | 2.2              |      |
| Level of Service               | В          | А    | В     |      |            | А                |      |
| Approach Delay (s)             |            | 5.9  | 18.5  |      | 2.2        |                  |      |
| Approach LOS                   |            | A    | В     |      | А          |                  |      |
| Intersection Summary           |            |      |       |      |            |                  |      |
| HCM 2000 Control Delay         |            |      | 8.7   | H    | CM 2000    | Level of Service | А    |
| HCM 2000 Volume to Capac       | city ratio |      | 1.00  |      |            |                  |      |
| Actuated Cycle Length (s)      |            |      | 70.0  | Si   | um of lost | time (s)         | 16.0 |
| Intersection Capacity Utilizat | tion       |      | 54.6% | IC   | U Level c  | of Service       | Α    |
| Analysis Period (min)          |            |      | 15    |      |            |                  |      |

|                                   |          | 7    | *     | -    | •         | 1                 |    |      |  |
|-----------------------------------|----------|------|-------|------|-----------|-------------------|----|------|--|
| Movement                          | EBT      | EBR  | WBL   | WBT  | NEL       | NER               |    |      |  |
| Lane Configurations               | **       |      | 55    | **   |           | 1                 |    |      |  |
| Traffic Volume (vph)              | 720      | 0    | 325   | 935  | 0         | 220               |    |      |  |
| Future Volume (vph)               | 720      | 0    | 325   | 935  | 0         | 220               |    |      |  |
| Ideal Flow (vphpl)                | 1900     | 1900 | 1900  | 1900 | 1900      | 1900              |    |      |  |
| Total Lost time (s)               | 4.0      |      | 4.0   | 4.0  |           | 4.0               |    |      |  |
| Lane Util. Factor                 | 0.95     |      | 0.97  | 0.95 |           | 1.00              |    |      |  |
| Frt                               | 1.00     |      | 1.00  | 1.00 |           | 0.86              |    |      |  |
| Flt Protected                     | 1.00     |      | 0.95  | 1.00 |           | 1.00              |    |      |  |
| Satd. Flow (prot)                 | 3539     |      | 3433  | 3539 |           | 1611              |    |      |  |
| Flt Permitted                     | 1.00     |      | 0.95  | 1.00 |           | 1.00              |    |      |  |
| Satd. Flow (perm)                 | 3539     |      | 3433  | 3539 |           | 1611              |    |      |  |
| Peak-hour factor. PHF             | 0.92     | 0.92 | 0.92  | 0,92 | 0.92      | 0.92              |    |      |  |
| Adi, Flow (vph)                   | 783      | 0    | 353   | 1016 | 0         | 239               |    |      |  |
| RTOR Reduction (vph)              | 0        | 0    | 0     | 0    | 0         | 0                 |    |      |  |
| Lane Group Flow (vph)             | 783      | 0    | 353   | 1016 | 0         | 239               |    |      |  |
| Turn Type                         | NA       | -    | Prot  | NA   | -         | pm+ov             |    |      |  |
| Protected Phases                  | 234      |      | 1     | Free |           | 1                 |    |      |  |
| Permitted Phases                  |          |      |       |      |           | 234               |    |      |  |
| Actuated Green, G (s)             | 52.0     |      | 10.0  | 70.0 |           | 62.0              |    |      |  |
| Effective Green, g (s)            | 52.0     |      | 10.0  | 70.0 |           | 62.0              |    |      |  |
| Actuated g/C Ratio                | 0.74     |      | 0.14  | 1.00 |           | 0.89              |    |      |  |
| Clearance Time (s)                |          |      | 4.0   |      |           | 4.0               |    |      |  |
| Vehicle Extension (s)             |          |      | 3.0   |      |           | 3.0               |    |      |  |
| Lane Grp Cap (vph)                | 2628     |      | 490   | 3539 |           | 1611              |    |      |  |
| v/s Ratio Prot                    | c0.22    |      | c0.10 | 0.29 |           | 0.02              |    |      |  |
| v/s Ratio Perm                    |          |      |       |      |           | 0.13              |    |      |  |
| v/c Ratio                         | 0.30     |      | 0.72  | 0.29 |           | 0.15              |    |      |  |
| Uniform Delay, d1                 | 3.0      |      | 28.7  | 0.0  |           | 0.5               |    |      |  |
| Progression Factor                | 0.65     |      | 1.11  | 1.00 |           | 1.00              |    |      |  |
| Incremental Delay, d2             | 0.1      |      | 4.5   | 0.2  |           | 0.0               |    |      |  |
| Delay (s)                         | 2.0      |      | 36.2  | 0.2  |           | 0.6               |    |      |  |
| Level of Service                  | А        |      | D     | А    |           | А                 |    |      |  |
| Approach Delay (s)                | 2.0      |      |       | 9.5  | 0.6       |                   |    |      |  |
| Approach LOS                      | А        |      |       | А    | А         |                   |    |      |  |
| Intersection Summary              |          |      |       |      |           |                   |    |      |  |
| HCM 2000 Control Delay            |          |      | 6.1   | Н    | CM 2000   | ) Level of Servio | ce | А    |  |
| HCM 2000 Volume to Capacit        | ty ratio |      | 0.43  |      |           |                   |    |      |  |
| Actuated Cycle Length (s)         |          |      | 70.0  | Sı   | um of los | st time (s)       |    | 16.0 |  |
| Intersection Capacity Utilization | on       |      | 40.2% | IC   | U Level   | of Service        |    | А    |  |
| Analysis Period (min)             |          |      | 15    |      |           |                   |    |      |  |

|                                   | •     | •     | Ť     | 1    | 4         | Ŧ                |    |      |  |
|-----------------------------------|-------|-------|-------|------|-----------|------------------|----|------|--|
| Movement                          | WBL   | WBR   | NBT   | NBR  | SBL       | SBT              |    |      |  |
| Lane Configurations               |       | 1     | **    |      | 55        | **               |    |      |  |
| Traffic Volume (vph)              | 0     | 135   | 980   | 0    | 185       | 2040             |    |      |  |
| Future Volume (vph)               | 0     | 135   | 980   | 0    | 185       | 2040             |    |      |  |
| Ideal Flow (vphpl)                | 1900  | 1900  | 1900  | 1900 | 1900      | 1900             |    |      |  |
| Total Lost time (s)               |       | 4.0   | 4.0   |      | 4.0       | 4.0              |    |      |  |
| Lane Util. Factor                 |       | 1.00  | 0.95  |      | 0.97      | 0.95             |    |      |  |
| Frt                               |       | 0.86  | 1.00  |      | 1.00      | 1.00             |    |      |  |
| Flt Protected                     |       | 1.00  | 1.00  |      | 0.95      | 1.00             |    |      |  |
| Satd. Flow (prot)                 |       | 1611  | 3539  |      | 3433      | 3539             |    |      |  |
| Flt Permitted                     |       | 1.00  | 1.00  |      | 0.95      | 1.00             |    |      |  |
| Satd. Flow (perm)                 |       | 1611  | 3539  |      | 3433      | 3539             |    |      |  |
| Peak-hour factor. PHF             | 0.92  | 0.92  | 0.92  | 0.92 | 0.92      | 0.92             |    |      |  |
| Adi, Flow (vph)                   | 0     | 147   | 1065  | 0    | 201       | 2217             |    |      |  |
| RTOR Reduction (vph)              | 0     | 0     | 0     | 0    | 0         | 0                |    |      |  |
| Lane Group Flow (vph)             | 0     | 147   | 1065  | 0    | 201       | 2217             |    |      |  |
| Turn Type                         |       | pm+ov | NA    | -    | Prot      | NA               |    |      |  |
| Protected Phases                  |       | 3     | 124   |      | 3         | Free             |    |      |  |
| Permitted Phases                  |       | 124   |       |      | Ű         | 1100             |    |      |  |
| Actuated Green, G (s)             |       | 62.0  | 51.0  |      | 11.0      | 70.0             |    |      |  |
| Effective Green, g (s)            |       | 62.0  | 51.0  |      | 11.0      | 70.0             |    |      |  |
| Actuated g/C Ratio                |       | 0.89  | 0.73  |      | 0.16      | 1.00             |    |      |  |
| Clearance Time (s)                |       | 4.0   | ••    |      | 4.0       |                  |    |      |  |
| Vehicle Extension (s)             |       | 3.0   |       |      | 3.0       |                  |    |      |  |
| ane Grp Cap (vph)                 |       | 1611  | 2578  |      | 539       | 3539             |    |      |  |
| /s Ratio Prot                     |       | 0.01  | 0.30  |      | 0.06      | 0.63             |    |      |  |
| /s Ratio Perm                     |       | 0.08  | 0.00  |      | 0.00      | 0.00             |    |      |  |
| v/c Ratio                         |       | 0.09  | 0.41  |      | 0.37      | 0.63             |    |      |  |
| Uniform Delay, d1                 |       | 0.5   | 3.7   |      | 26.4      | 0.0              |    |      |  |
| Progression Factor                |       | 1.00  | 0.89  |      | 1.00      | 1.00             |    |      |  |
| Incremental Delay, d2             |       | 0.0   | 0.1   |      | 0.4       | 0.8              |    |      |  |
| Delay (s)                         |       | 0.5   | 3.4   |      | 26.8      | 0.8              |    |      |  |
| Level of Service                  |       | A     | A     |      | C         | A                |    |      |  |
| Approach Delay (s)                | 0.5   |       | 3.4   |      |           | 3.0              |    |      |  |
| Approach LOS                      | A     |       | A     |      |           | A                |    |      |  |
| Intersection Summary              |       |       |       |      |           |                  |    |      |  |
| HCM 2000 Control Delay            |       |       | 3.0   | Н    | CM 2000   | Level of Service | ce | A    |  |
| HCM 2000 Volume to Capacity       | ratio |       | 0.81  |      |           |                  |    |      |  |
| Actuated Cycle Length (s)         |       |       | 70.0  | S    | um of los | t time (s)       |    | 16.0 |  |
| Intersection Capacity Utilization |       |       | 59.7% | IC   | CU Level  | of Service       |    | В    |  |
| Analysis Period (min)             |       |       | 15    |      |           |                  |    |      |  |
|                                   |       |       |       |      |           |                  |    |      |  |

|                                | ٦          | Ť    | ŧ     | ۶J   | ه         | <b>}</b>         |      |  |
|--------------------------------|------------|------|-------|------|-----------|------------------|------|--|
| Movement                       | NBL        | NBT  | SBT   | SBR  | SEL       | SER              |      |  |
| Lane Configurations            | 55         | **   | **    |      |           | 1                |      |  |
| Traffic Volume (vph)           | 335        | 620  | 1225  | 0    | 0         | 235              |      |  |
| Future Volume (vph)            | 335        | 620  | 1225  | 0    | 0         | 235              |      |  |
| Ideal Flow (vphpl)             | 1900       | 1900 | 1900  | 1900 | 1900      | 1900             |      |  |
| Total Lost time (s)            | 4.0        | 4.0  | 4.0   |      |           | 4.0              |      |  |
| Lane Util. Factor              | 0.97       | 0.95 | 0.95  |      |           | 1.00             |      |  |
| Frt                            | 1.00       | 1.00 | 1.00  |      |           | 0.86             |      |  |
| Flt Protected                  | 0.95       | 1.00 | 1.00  |      |           | 1.00             |      |  |
| Satd. Flow (prot)              | 3433       | 3539 | 3539  |      |           | 1611             |      |  |
| Flt Permitted                  | 0.95       | 1.00 | 1.00  |      |           | 1.00             |      |  |
| Satd. Flow (perm)              | 3433       | 3539 | 3539  |      |           | 1611             |      |  |
| Peak-hour factor, PHF          | 0.92       | 0.92 | 0.92  | 0.92 | 0.92      | 0.92             |      |  |
| Adj. Flow (vph)                | 364        | 674  | 1332  | 0    | 0         | 255              |      |  |
| RTOR Reduction (vph)           | 0          | 0    | 0     | 0    | 0         | 0                |      |  |
| Lane Group Flow (vph)          | 364        | 674  | 1332  | 0    | 0         | 255              |      |  |
| Turn Type                      | Prot       | NA   | NA    |      |           | pm+ov            |      |  |
| Protected Phases               | 3          | Free | 124   |      |           | 3                |      |  |
| Permitted Phases               | Ū          |      |       |      |           | 124              |      |  |
| Actuated Green, G (s)          | 11.0       | 70.0 | 51.0  |      |           | 62.0             |      |  |
| Effective Green, a (s)         | 11.0       | 70.0 | 51.0  |      |           | 62.0             |      |  |
| Actuated q/C Ratio             | 0.16       | 1.00 | 0.73  |      |           | 0.89             |      |  |
| Clearance Time (s)             | 4.0        |      |       |      |           | 4.0              |      |  |
| Vehicle Extension (s)          | 3.0        |      |       |      |           | 3.0              |      |  |
| Lane Grp Cap (vph)             | 539        | 3539 | 2578  |      |           | 1611             |      |  |
| v/s Ratio Prot                 | c0.11      | 0.19 | c0.38 |      |           | 0.02             |      |  |
| v/s Ratio Perm                 |            |      |       |      |           | 0.13             |      |  |
| v/c Ratio                      | 0.68       | 0.19 | 0.52  |      |           | 0.16             |      |  |
| Uniform Delay, d1              | 27.8       | 0.0  | 4.1   |      |           | 0.5              |      |  |
| Progression Factor             | 1.00       | 1.00 | 0.35  |      |           | 1.00             |      |  |
| Incremental Delay, d2          | 3.3        | 0.1  | 0.2   |      |           | 0.0              |      |  |
| Delay (s)                      | 31.2       | 0.1  | 1.6   |      |           | 0.6              |      |  |
| Level of Service               | С          | А    | A     |      |           | A                |      |  |
| Approach Delay (s)             |            | 11.0 | 1.6   |      | 0.6       |                  |      |  |
| Approach LOS                   |            | В    | A     |      | A         |                  |      |  |
| Intersection Summary           |            |      |       |      |           |                  |      |  |
| HCM 2000 Control Delay         |            |      | 5.2   | H    | CM 2000   | Level of Service | A    |  |
| HCM 2000 Volume to Capac       | city ratio |      | 0.63  |      |           |                  |      |  |
| Actuated Cycle Length (s)      |            |      | 70.0  | Si   | um of los | t time (s)       | 16.0 |  |
| Intersection Capacity Utilizat | ion        |      | 55.1% | IC   | U Level   | of Service       | В    |  |
| Analysis Period (min)          |            |      | 15    |      |           |                  |      |  |

| 03/12/2020 |
|------------|
|------------|

|                         | ٠                | -+        |           | *        | 1         | 4          |      |       |
|-------------------------|------------------|-----------|-----------|----------|-----------|------------|------|-------|
| Movement                | EBL              | EBT       | WBT       | WBR      | SBL       | SBR        |      |       |
| Lane Configurations     | 5                | ***       | **        | 1        | 5         | 1          |      |       |
| Traffic Volume (veh/h)  | 20               | 920       | 1250      | 35       | 15        | 10         |      |       |
| Future Volume (veh/h)   | 20               | 920       | 1250      | 35       | 15        | 10         |      |       |
| Initial Q (Qb), veh     | 0                | 0         | 0         | 0        | 0         | 0          |      |       |
| Ped-Bike Adj(A_pbT)     | 1.00             |           |           | 1.00     | 1.00      | 1.00       |      |       |
| Parking Bus, Adj        | 1.00             | 1.00      | 1.00      | 1.00     | 1.00      | 1.00       |      |       |
| Work Zone On Approac    | ch               | No        | No        |          | No        |            |      |       |
| Adj Sat Flow, veh/h/ln  | 1870             | 1870      | 1870      | 1870     | 1870      | 1870       |      |       |
| Adj Flow Rate, veh/h    | 22               | 1000      | 1359      | 38       | 16        | 11         |      |       |
| Peak Hour Factor        | 0.92             | 0.92      | 0.92      | 0.92     | 0.92      | 0.92       |      |       |
| Percent Heavy Veh, %    | 2                | 2         | 2         | 2        | 2         | 2          |      |       |
| Cap, veh/h              | 342              | 4030      | 2500      | 1115     | 261       | 232        |      |       |
| Arrive On Green         | 0.02             | 0.26      | 0.70      | 0.70     | 0.15      | 0.15       |      |       |
| Sat Flow, veh/h         | 1781             | 5274      | 3647      | 1585     | 1781      | 1585       |      |       |
| Grp Volume(v), veh/h    | 22               | 1000      | 1359      | 38       | 16        | 11         |      |       |
| Grp Sat Flow(s),veh/h/l | n1781            | 1702      | 1777      | 1585     | 1781      | 1585       |      |       |
| Q Serve(g_s), s         | 0.0              | 21.7      | 25.7      | 1.0      | 1.1       | 0.8        |      |       |
| Cycle Q Clear(g_c), s   | 0.0              | 21.7      | 25.7      | 1.0      | 1.1       | 0.8        |      |       |
| Prop In Lane            | 1.00             | 1000      | 0=00      | 1.00     | 1.00      | 1.00       |      |       |
| Lane Grp Cap(c), veh/h  | 1 342            | 4030      | 2500      | 1115     | 261       | 232        |      |       |
| V/C Ratio(X)            | 0.06             | 0.25      | 0.54      | 0.03     | 0.06      | 0.05       |      |       |
| Avail Cap(c_a), ven/h   | 342              | 4030      | 2500      | 1115     | 261       | 232        |      |       |
| HCIVI Platoon Ratio     | 0.33             | 0.33      | 1.00      | 1.00     | 1.00      | 1.00       |      |       |
| Upstream Fliter(I)      | 0.97             | 0.97      | 1.00      | 1.00     | 1.00      | 1.00       |      |       |
| Uniform Delay (d), s/ve | n 15.0           | 18.9      | 10.0      | 0.3      | 51.5      | 51.4       |      |       |
| Inci Delay (uz), s/ven  | U.I              | 0.1       | 0.9       | 0.1      | 0.0       | 0.4        |      |       |
| Vile PeekOfO(50%) vel   | 1 0.0            | 0.0       | 0.0       | 0.0      | 0.0       | 0.0        |      |       |
| June DaukolQ(30%),Vel   |                  | 9.0       | 0.0       | 0.5      | 0.5       | 0.0        |      |       |
| InGrn Delay(d) shuch    | y, 5/Ven<br>15.1 | 10.1      | 10.8      | 64       | 51 0      | 517        |      |       |
| InGrp Loay(u), s/ven    | R                | R         | 10.0<br>R | 0.4<br>Δ | 51.5<br>D |            |      |       |
| Approach Vol. veh/h     | U                | 1022      | 1307      | ~        | 27        | U          |      |       |
| Approach Delay, s/yeb   |                  | 1022      | 10.7      |          | 51.8      |            |      |       |
| Approach LOS            |                  | 19.0<br>B | 10.7<br>B |          | 51.0<br>D |            |      |       |
| Timer - Assigned Phs    |                  |           |           | 4        |           | 6          | 7    | 8     |
| Phs Duration (G+Y+Rc    | ) 5              |           |           | 115.0    |           | 25.0       | 12.0 | 103.0 |
| Change Period (Y+Rc)    | , J.<br>S        |           |           | 4 5      |           | <u>4</u> 5 | 4 5  | 4 5   |
| Max Green Setting (Gr   | nax) s           |           |           | 110.5    |           | 20.5       | 7.5  | 98.5  |
| Max Q Clear Time (q. c  | +11) s           |           |           | 23.7     |           | 31         | 2.0  | 27.7  |
| Green Ext Time (p_c),   | S                |           |           | 7.4      |           | 0.0        | 0.0  | 12.6  |
| Intersection Summary    |                  |           |           |          |           |            |      |       |
| HCM 6th Ctrl Delay      |                  |           | 14.6      |          |           |            |      |       |
| HCM 6th LOS             |                  |           | B         |          |           |            |      |       |

# HCM 6th Signalized Intersection Summary 25: Alpine St/115th St & SH 66

03/12/2020

| i                               | ٨                   | <b>→</b>    | 7    | 1    | +    | •    | 1    | t          | 1    | 1    | ţ    | 4    |
|---------------------------------|---------------------|-------------|------|------|------|------|------|------------|------|------|------|------|
| Movement                        | EBL                 | EBT         | EBR  | WBL  | WBT  | WBR  | NBL  | NBT        | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations             | 8                   | **          | 1    | 3    | **   | 1    | 5    | 1          |      |      | 1    | -    |
| Traffic Volume (veh/h)          | 10                  | 910         | 15   | 65   | 1230 | 25   | 20   | 5          | 65   | 55   | 5    | 35   |
| Future Volume (veh/h)           | 10                  | 910         | 15   | 65   | 1230 | 25   | 20   | 5          | 65   | 55   | 5    | 35   |
| Initial $\Omega$ (Ob) veh       | 0                   | 0           | 0    | 0    | 0    | 0    | 0    | 0          | 0    | 0    | 0    | 0    |
| Ped-Bike Adi(A_nhT)             | 1 00                | Ū           | 1 00 | 1 00 | Ŭ    | 1 00 | 1 00 | Ŭ          | 1 00 | 1 00 | Ŭ    | 1 00 |
| Parking Bus Adi                 | 1.00                | 1 00        | 1.00 | 1.00 | 1 00 | 1.00 | 1.00 | 1 00       | 1.00 | 1.00 | 1 00 | 1.00 |
| Work Zone On Approac            | ch                  | No          | 1.00 | 1.00 | No   | 1.00 | 1.00 | No         | 1.00 | 1.00 | No   | 1.00 |
| Adi Sat Flow, veh/h/ln          | 1900                | 1856        | 1900 | 1900 | 1826 | 1900 | 1900 | 1900       | 1900 | 1900 | 1900 | 1900 |
| Adi Flow Rate veh/h             | 11                  | 989         | 16   | 71   | 1337 | 27   | 22   | 5          | 71   | 60   | 5    | 38   |
| Peak Hour Factor                | 0.92                | 0.92        | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92       | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh %             | 0.02                | 3           | 0.02 | 0.02 | 5    | 0.02 | 0.02 | 0.02       | 0.02 | 0.02 | 0.02 | 0.02 |
| Cap, veh/h                      | 195                 | 1377        | 629  | 429  | 1737 | 806  | 311  | 9          | 127  | 291  | 17   | 129  |
| Arrive On Green                 | 0.01                | 0.39        | 0.39 | 0.12 | 0.50 | 0.50 | 0.05 | 0.08       | 0.08 | 0.06 | 0.09 | 0.09 |
| Sat Flow, veh/h                 | 1810                | 3526        | 1610 | 1810 | 3469 | 1610 | 1810 | 107        | 1519 | 1810 | 191  | 1449 |
| Grn Volume(v) veh/h             | 11                  | 989         | 16   | 71   | 1337 | 27   | 22   | 0          | 76   | 60   | 0    | 43   |
| Grn Sat Flow(s) veh/h/l         | n1810               | 1763        | 1610 | 1810 | 1735 | 1610 | 1810 | 0          | 1626 | 1810 | 0    | 1639 |
| O Serve(a, s) s                 | 0.0                 | 12.4        | 0.3  | 0.0  | 16.3 | 0.4  | 0.0  | 0.0        | 23   | 0.0  | 0.0  | 13   |
| $Cvcle \cap Clear(q, c) \leq 1$ | 0.0                 | 12.4        | 0.3  | 0.0  | 16.3 | 0.4  | 0.0  | 0.0        | 2.0  | 0.0  | 0.0  | 1.0  |
| Pron In Lane                    | 1 00                | 16.7        | 1 00 | 1 00 | 10.0 | 1 00 | 1 00 | 0.0        | 0.93 | 1 00 | 0.0  | 0.88 |
| Lane Gro Cap(c) veh/h           | 1.00                | 1377        | 629  | 429  | 1737 | 806  | 311  | 0          | 136  | 291  | 0    | 146  |
| V/C Ratio(X)                    | 0.06                | 0.72        | 0.03 | 0 17 | 0 77 | 0.03 | 0.07 | 0 00       | 0.56 | 0.21 | 0 00 | 0.30 |
| Avail Cap(c, a), veh/h          | 344                 | 2255        | 1030 | 429  | 2266 | 1052 | 394  | 0.00       | 562  | 364  | 0.00 | 567  |
| HCM Platoon Ratio               | 1.00                | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)              | 1.00                | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00       | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/ve         | h 22.1              | 13.4        | 9.8  | 17.2 | 10.6 | 6.6  | 21.0 | 0.0        | 22.9 | 22.3 | 0.0  | 22.2 |
| Incr Delay (d2), s/veh          | 0.1                 | 0.7         | 0.0  | 0.2  | 1.2  | 0.0  | 0.1  | 0.0        | 3.6  | 0.3  | 0.0  | 1.1  |
| Initial Q Delav(d3).s/vel       | h 0.0               | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0        | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%).vel           | h/ln0.1             | 3.4         | 0.1  | 0.6  | 3.8  | 0.1  | 0.2  | 0.0        | 0.9  | 0.6  | 0.0  | 0.5  |
| Unsig. Movement Delay           | y, s/veh            | 1           |      |      |      |      |      |            |      |      |      |      |
| LnGrp Delay(d),s/veh            | 22.2                | 14.1        | 9.8  | 17.4 | 11.8 | 6.6  | 21.1 | 0.0        | 26.5 | 22.7 | 0.0  | 23.3 |
| LnGrp LOS                       | С                   | В           | А    | В    | В    | А    | С    | А          | С    | С    | А    | С    |
| Approach Vol. veh/h             |                     | 1016        |      |      | 1435 |      |      | 98         |      |      | 103  |      |
| Approach Delay, s/veh           |                     | 14.2        |      |      | 12.0 |      |      | 25.3       |      |      | 22.9 |      |
| Approach LOS                    |                     | В           |      |      | В    |      |      | С          |      |      | С    |      |
| Timer - Assigned Phs            | 1                   | 2           | 3    | 4    | 5    | 6    | 7    | 8          |      |      |      |      |
| Phs Duration (G+V+Rc            | \ <b>&amp;</b> 1 () | 2/ 8        | 71   | Q 1  | 52   | 30.6 | 7 /  | 8.8        |      |      |      |      |
| Change Period (V+Rc)            | ), 10<br>€ 15       | 24.0<br>1.5 | 1.1  | 15   | 1.5  | 15   | 1.4  | 1.5        |      |      |      |      |
| Max Green Setting (Gr           | 1ax5 7              | 33.3        | 5.0  | 18.0 | 5.0  | 34.0 | 5.0  | 18.0       |      |      |      |      |
| Max O Clear Time (o             | + 12) (re           | 14 4        | 2.0  | 33   | 2.0  | 18.3 | 2.0  | 43         |      |      |      |      |
| Green Ext Time (n. c)           | s () ()             | 6.0         | 0.0  | 0.0  | 2.0  | 7.8  | 0.0  | ۰.5<br>0 2 |      |      |      |      |
|                                 | 0.0                 | 0.0         | 0.0  | 0.1  | 0.0  | 1.0  | 0.0  | 0.2        |      |      |      |      |
| Intersection Summary            |                     |             |      |      |      |      |      |            |      |      |      |      |

| HCM 6th Ctrl Delay | 13.7 |
|--------------------|------|
| HCM 6th LOS        | В    |
|                    |      |

|                                                    | -+             | 7     | •          |             | 1           | 1               |      |   |
|----------------------------------------------------|----------------|-------|------------|-------------|-------------|-----------------|------|---|
| Movement                                           | EBT            | EBR   | WBL        | WBT         | NBL         | NBR             |      |   |
| Lane Configurations                                | **             | 1     | 3          | **          | 5           | 1               |      |   |
| Traffic Volume (veh/h)                             | 800            | 230   | 270        | 1075        | 245         | 305             |      |   |
| Future Volume (veh/h)                              | 800            | 230   | 270        | 1075        | 245         | 305             |      |   |
| Initial Q (Qb), veh                                | 0              | 0     | 0          | 0           | 0           | 0               |      |   |
| Ped-Bike Adi(A pbT)                                |                | 1.00  | 1.00       |             | 1.00        | 1.00            |      |   |
| Parking Bus, Adj                                   | 1.00           | 1.00  | 1.00       | 1.00        | 1.00        | 1.00            |      |   |
| Work Zone On Approac                               | ch No          |       |            | No          | No          |                 |      |   |
| Adj Sat Flow, veh/h/ln                             | 1856           | 1885  | 1856       | 1811        | 1870        | 1885            |      |   |
| Adj Flow Rate, veh/h                               | 870            | 250   | 293        | 1168        | 266         | 332             |      |   |
| Peak Hour Factor                                   | 0.92           | 0.92  | 0.92       | 0.92        | 0.92        | 0.92            |      |   |
| Percent Heavy Veh. %                               | 3              | 1     | 3          | 6           | 2           | 1               |      |   |
| Cap. veh/h                                         | 1208           | 548   | 439        | 1936        | 463         | 416             |      |   |
| Arrive On Green                                    | 0.34           | 0.34  | 0.14       | 0.56        | 0.26        | 0.26            |      |   |
| Sat Flow, veh/h                                    | 3618           | 1598  | 1767       | 3532        | 1781        | 1598            |      |   |
| Grn Volume(v) veh/h                                | 870            | 250   | 203        | 1168        | 266         | 332             |      |   |
| Grp Sat Flow(s) veh/b/                             | n1762          | 1508  | 1767       | 1721        | 1791        | 1502            |      |   |
| O Serve(a, s) s                                    | 12 /           | 7 0   | 5.5        | 12 0        | 75          | 11.2            |      |   |
| $Q$ OCIVE( $Q_3$ ), S<br>Cycle O Clear( $q_2$ ), S | 12.4           | 7.0   | 5.5        | 12.9        | 7.5         | 11.2            |      |   |
| Prop ln l ane                                      | 12.4           | 1 00  | 1 00       | 12.3        | 1 00        | 1.00            |      |   |
| Lane Grn Can(c) veh/h                              | 1208           | 5/18  | 1.00       | 1036        | 463         | 416             |      |   |
| V/C Ratio(X)                                       | 0 72           | 0.40  | 0.67       | 0.60        | 0.57        | 0.80            |      |   |
| Avail $Can(c, a)$ veh/h                            | 2060           | 13/1  | 0.07       | 1755        | 0.57        | 875             |      |   |
| HCM Platoon Patio                                  | 1 00           | 1 00  | 1 00       | 4755        | 1 00        | 1.00            |      |   |
| Linetroam Filtor(I)                                | 1.00           | 1.00  | 1.00       | 1.00        | 1.00        | 1.00            |      |   |
| Uniform Doloy (d) of the                           | 1.00<br>h 16 5 | 1/1 7 | 11.00      | 1.00<br>0 0 | 100         | 10.0            |      |   |
| Inor Doloy (d2), sive                              | C.01 11        | 0.4   | 11.3       | 0.J         | 10.0<br>1 1 | 19.9            |      |   |
| Incl Delay (02), S/Ven                             | U.0            | 0.4   | 1.0        | 0.3         | 1.1         | 3.0             |      |   |
|                                                    | 1 U.U          | 0.0   | 0.0<br>1 E | 0.0         | 0.0         | 2.0             |      |   |
| Movement Date                                      | 11/110.0       | Z. I  | 1.5        | Z.1         | 2.1         | 3.9             |      |   |
| Le Cre Dolou(d) of ush                             | y, s/ven       | 15.0  | 12.0       | 0.0         | 10.6        | <u></u><br>)2 ⊑ |      |   |
| LIGIP Delay(d),s/ven                               | 17.1           | 10.2  | 13.0       | 0.0         | 19.0        | 23.5            |      |   |
|                                                    | B              | В     | В          | A           | B           | U               |      | _ |
| Approach Vol, veh/h                                | 1120           |       |            | 1461        | 598         |                 |      |   |
| Approach Delay, s/veh                              | 16.7           |       |            | 9.5         | 21.8        |                 |      |   |
| Approach LOS                                       | В              |       |            | A           | С           |                 |      |   |
| Timer - Assigned Phs                               | 1              | 2     |            |             |             | 6               | 8    |   |
| Phs Duration (G+Y+Rc                               | ). \$2.7       | 25.4  |            |             |             | 38.1            | 19.5 |   |
| Change Period (Y+Rc)                               | s 4 5          | 57    |            |             |             | * 5 7           | 4.5  |   |
| Max Green Setting (Gr                              | 1a25.5         | 48.3  |            |             |             | * 80            | 31.5 |   |
| Max O Clear Time (o                                | +117 5         | 14.4  |            |             |             | 14 9            | 13.2 |   |
| Green Ext Time (n. c)                              | s (17          | 53    |            |             |             | 9.6             | 1.2  |   |
|                                                    | 0.1            | 0.0   |            |             |             | 5.0             | 1.0  |   |
| Intersection Summary                               |                |       |            |             |             |                 |      |   |
| HCM 6th Ctrl Delay                                 |                |       | 14.3       |             |             |                 |      |   |
| HCM 6th LOS                                        |                |       | В          |             |             |                 |      |   |
|                                                    |                |       |            |             |             |                 |      |   |

#### Notes

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

# HCM 6th Signalized Intersection Summary 27: Sundance Dr & SH 66

03/12/2020

|                                      | ٨                  | -+          | $\mathbf{i}$ | 1          |      | *             | 1    | Ť          | 1    | 1    | ŧ        | 1    |  |
|--------------------------------------|--------------------|-------------|--------------|------------|------|---------------|------|------------|------|------|----------|------|--|
| Movement                             | EBL                | EBT         | EBR          | WBL        | WBT  | WBR           | NBL  | NBT        | NBR  | SBL  | SBT      | SBR  |  |
| Lane Configurations                  | 5                  | **          | 1            | 5          | **   | 1             | 5    | <b>≜</b>   | 1    | 5    | <b>≜</b> | 1    |  |
| Traffic Volume (veh/h)               | 5                  | 1045        | 55           | 55         | 1255 | 25            | 75   | 20         | 55   | 5    | 20       | 15   |  |
| Future Volume (veh/h)                | 5                  | 1045        | 55           | 55         | 1255 | 25            | 75   | 20         | 55   | 5    | 20       | 15   |  |
| Initial Q (Qb), veh                  | 0                  | 0           | 0            | 0          | 0    | 0             | 0    | 0          | 0    | 0    | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)                  | 1.00               |             | 1.00         | 1.00       |      | 1.00          | 1.00 |            | 1.00 | 1.00 |          | 1.00 |  |
| Parking Bus, Adj                     | 1.00               | 1.00        | 1.00         | 1.00       | 1.00 | 1.00          | 1.00 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Work Zone On Approach                | h                  | No          |              |            | No   |               |      | No         |      |      | No       |      |  |
| Adj Sat Flow, veh/h/ln               | 1870               | 1752        | 1796         | 1856       | 1781 | 1870          | 1796 | 1870       | 1856 | 1870 | 1870     | 1870 |  |
| Adj Flow Rate, veh/h                 | 5                  | 1136        | 60           | 60         | 1364 | 27            | 82   | 22         | 60   | 5    | 22       | 16   |  |
| Peak Hour Factor                     | 0.92               | 0.92        | 0.92         | 0.92       | 0.92 | 0.92          | 0.92 | 0.92       | 0.92 | 0.92 | 0.92     | 0.92 |  |
| Percent Heavy Veh, %                 | 2                  | 10          | 7            | 3          | 8    | 2             | 7    | 2          | 3    | 2    | 2        | 2    |  |
| Cap, veh/h                           | 206                | 1590        | 727          | 367        | 1821 | 853           | 329  | 239        | 201  | 329  | 239      | 202  |  |
| Arrive On Green                      | 0.01               | 0.48        | 0.48         | 0.07       | 0.54 | 0.54          | 0.13 | 0.13       | 0.13 | 0.13 | 0.13     | 0.13 |  |
| Sat Flow, veh/h                      | 1781               | 3328        | 1522         | 1767       | 3385 | 1585          | 1315 | 1870       | 1572 | 1316 | 1870     | 1585 |  |
| Grp Volume(v), veh/h                 | 5                  | 1136        | 60           | 60         | 1364 | 27            | 82   | 22         | 60   | 5    | 22       | 16   |  |
| Grp Sat Flow(s),veh/h/ln             | 1781               | 1664        | 1522         | 1767       | 1692 | 1585          | 1315 | 1870       | 1572 | 1316 | 1870     | 1585 |  |
| Q Serve(q s), s                      | 0.1                | 11.1        | 0.9          | 0.0        | 12.8 | 0.3           | 2.4  | 0.4        | 1.4  | 0.1  | 0.4      | 0.4  |  |
| Cycle Q Clear(q c), s                | 0.1                | 11.1        | 0.9          | 0.0        | 12.8 | 0.3           | 2.8  | 0.4        | 1.4  | 0.6  | 0.4      | 0.4  |  |
| Prop In Lane                         | 1.00               |             | 1.00         | 1.00       |      | 1.00          | 1.00 |            | 1.00 | 1.00 |          | 1.00 |  |
| Lane Grp Cap(c), veh/h               | 206                | 1590        | 727          | 367        | 1821 | 853           | 329  | 239        | 201  | 329  | 239      | 202  |  |
| V/C Ratio(X)                         | 0.02               | 0.71        | 0.08         | 0.16       | 0.75 | 0.03          | 0.25 | 0.09       | 0.30 | 0.02 | 0.09     | 0.08 |  |
| Avail Cap(c a), veh/h                | 410                | 2303        | 1053         | 463        | 2342 | 1097          | 736  | 817        | 687  | 736  | 817      | 693  |  |
| HCM Platoon Ratio                    | 1.00               | 1.00        | 1.00         | 1.00       | 1.00 | 1.00          | 1.00 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Upstream Filter(I)                   | 1.00               | 1.00        | 1.00         | 1.00       | 1.00 | 1.00          | 1.00 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh             | 9.7 o              | 8.5         | 5.8          | 14.2       | 7.4  | 4.5           | 17.1 | 15.9       | 16.3 | 16.1 | 15.9     | 15.8 |  |
| Incr Delay (d2), s/veh               | 0.0                | 0.6         | 0.0          | 0.2        | 1.0  | 0.0           | 0.4  | 0.2        | 0.8  | 0.0  | 0.2      | 0.2  |  |
| Initial Q Delay(d3),s/veh            | 0.0                | 0.0         | 0.0          | 0.0        | 0.0  | 0.0           | 0.0  | 0.0        | 0.0  | 0.0  | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh                | /In0.0             | 1.9         | 0.1          | 0.4        | 1.7  | 0.0           | 0.7  | 0.2        | 0.5  | 0.0  | 0.2      | 0.1  |  |
| Unsig. Movement Delay                | , s/veh            |             |              |            |      |               |      |            |      |      |          |      |  |
| LnGrp Delay(d),s/veh                 | 9.8                | 9.1         | 5.9          | 14.4       | 8.4  | 4.5           | 17.5 | 16.0       | 17.1 | 16.1 | 16.0     | 16.0 |  |
| LnGrp LOS                            | А                  | А           | А            | В          | А    | А             | В    | В          | В    | В    | В        | В    |  |
| Approach Vol. veh/h                  |                    | 1201        |              |            | 1451 |               |      | 164        |      |      | 43       |      |  |
| Approach Delay, s/veh                |                    | 9.0         |              |            | 8.6  |               |      | 17.2       |      |      | 16.0     |      |  |
| Approach LOS                         |                    | A           |              |            | A    |               |      | В          |      |      | В        |      |  |
| Timer - Assigned Phe                 | 1                  | 2           |              | Λ          | 5    | 6             |      | 8          |      |      |          |      |  |
| Phe Duration $(C_{\pm}V_{\pm}P_{0})$ | c7 3               | 2/ 2        |              | 0.8        | 1.8  | 26.7          |      | 0.8        |      |      |          |      |  |
| Change Period (V+Po)                 | , 51.5<br>c / 5    | 24.Z        |              | 9.0<br>/ 5 | 4.0  | 20.7          |      | 9.0<br>/ 5 |      |      |          |      |  |
| Max Green Setting (Cm                | 3 4.0<br>av& A     | 4.0<br>28 5 |              | 18.0       | 4.0  | 28.5          |      | 18.0       |      |      |          |      |  |
| Max O Clear Time (c. o               | د ∧پا, ט<br>⊾11) Ռ | 12.0        |              | 2.6        | 2.0  | 20.0<br>1/1 Q |      | / 2        |      |      |          |      |  |
| Green Ext Time (n. c)                | n 14,06            | 6.5         |              | 2.0<br>0.1 | 2.1  | 14.0<br>7 3   |      | 4.0<br>0.4 |      |      |          |      |  |
|                                      | 0.0                | 0.0         |              | 0.1        | 0.0  | 1.5           |      | 0.4        |      |      |          |      |  |
| Intersection Summary                 |                    |             |              |            |      |               |      |            |      |      |          |      |  |
| HCM 6th Ctrl Delay                   |                    |             | 9.3          |            |      |               |      |            |      |      |          |      |  |
| HCM 6th LOS                          |                    |             | Α            |            |      |               |      |            |      |      |          |      |  |

# HCM 6th Signalized Intersection Summary 28: County Line Rd/CR 1 & SH 66

03/12/2020

|                           | ٠       | -+   | $\mathbf{i}$ | 1    | •    | *    | 1    | Ť    | 1    | 1    | ŧ    | 1    |  |
|---------------------------|---------|------|--------------|------|------|------|------|------|------|------|------|------|--|
| Movement                  | EBL     | EBT  | EBR          | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 57      | **   | 1            | 57   | 11   | 1    | 57   | 11   | 1    | 1    | 11   | 1    |  |
| Traffic Volume (veh/h)    | 85      | 520  | 500          | 725  | 760  | 20   | 400  | 80   | 590  | 55   | 275  | 175  |  |
| Future Volume (veh/h)     | 85      | 520  | 500          | 725  | 760  | 20   | 400  | 80   | 590  | 55   | 275  | 175  |  |
| Initial Q (Qb), veh       | 0       | 0    | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |      | 1.00         | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00    | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approac      | h       | No   |              |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1633    | 1781 | 1870         | 1688 | 1796 | 1633 | 1633 | 1826 | 1663 | 1307 | 1841 | 1663 |  |
| Adj Flow Rate, veh/h      | 92      | 565  | 0            | 788  | 826  | 0    | 435  | 87   | 0    | 60   | 299  | 0    |  |
| Peak Hour Factor          | 0.92    | 0.92 | 0.92         | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 18      | 8    | 2            | 8    | 7    | 18   | 18   | 5    | 16   | 40   | 4    | 16   |  |
| Cap, veh/h                | 199     | 696  |              | 849  | 1494 |      | 492  | 798  |      | 244  | 410  |      |  |
| Arrive On Green           | 0.07    | 0.21 | 0.00         | 0.27 | 0.44 | 0.00 | 0.16 | 0.23 | 0.00 | 0.05 | 0.12 | 0.00 |  |
| Sat Flow, veh/h           | 3018    | 3385 | 1585         | 3118 | 3413 | 1384 | 3018 | 3469 | 1409 | 1245 | 3497 | 1409 |  |
| Grp Volume(v), veh/h      | 92      | 565  | 0            | 788  | 826  | 0    | 435  | 87   | 0    | 60   | 299  | 0    |  |
| Grp Sat Flow(s).veh/h/li  | n1509   | 1692 | 1585         | 1559 | 1706 | 1384 | 1509 | 1735 | 1409 | 1245 | 1749 | 1409 |  |
| Q Serve(q s), s           | 2.9     | 15.5 | 0.0          | 23.9 | 17.5 | 0.0  | 13.7 | 1.9  | 0.0  | 4.1  | 8.0  | 0.0  |  |
| Cvcle Q Clear(q c), s     | 2.9     | 15.5 | 0.0          | 23.9 | 17.5 | 0.0  | 13.7 | 1.9  | 0.0  | 4.1  | 8.0  | 0.0  |  |
| Prop In Lane              | 1.00    |      | 1.00         | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 199     | 696  |              | 849  | 1494 |      | 492  | 798  |      | 244  | 410  |      |  |
| V/C Ratio(X)              | 0.46    | 0.81 |              | 0.93 | 0.55 |      | 0.88 | 0.11 |      | 0.25 | 0.73 |      |  |
| Avail Cap(c a), veh/h     | 239     | 720  |              | 891  | 1494 |      | 512  | 1227 |      | 260  | 863  |      |  |
| HCM Platoon Ratio         | 1.00    | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00    | 1.00 | 0.00         | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |  |
| Uniform Delay (d), s/vel  | h 43.8  | 36.8 | 0.0          | 34.5 | 20.3 | 0.0  | 39.8 | 29.6 | 0.0  | 35.4 | 41.4 | 0.0  |  |
| Incr Delay (d2), s/veh    | 1.2     | 7.8  | 0.0          | 15.0 | 0.8  | 0.0  | 16.2 | 0.1  | 0.0  | 0.5  | 2.5  | 0.0  |  |
| Initial Q Delay(d3),s/vel | n 0.0   | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),vel     | n/In1.0 | 6.7  | 0.0          | 10.0 | 6.2  | 0.0  | 5.9  | 0.8  | 0.0  | 1.2  | 3.5  | 0.0  |  |
| Unsig. Movement Delay     | , s/veh | 1    |              |      |      |      |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh      | 45.0    | 44.7 | 0.0          | 49.5 | 21.1 | 0.0  | 56.0 | 29.6 | 0.0  | 35.9 | 43.9 | 0.0  |  |
| LnGrp LOS                 | D       | D    |              | D    | С    |      | Е    | С    |      | D    | D    |      |  |
| Approach Vol. veh/h       |         | 657  | А            |      | 1614 | А    |      | 522  | А    |      | 359  | А    |  |
| Approach Delay, s/veh     |         | 44.7 |              |      | 34.9 |      |      | 51.6 |      |      | 42.6 |      |  |
| Approach LOS              |         | D    |              |      | С    |      |      | D    |      |      | D    |      |  |
| Timer - Assigned Phe      | 1       | 2    | 2            | Δ    | 5    | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc)     | ). 33.5 | 27.0 | 20.4         | 16.4 | 10.9 | 49.6 | 94   | 27.4 |      |      |      |      |  |
| Change Period (Y+Rc)      | s 7.0   | * 7  | 4.5          | 5.0  | 4.5  | 7.0  | 4.5  | 5.0  |      |      |      |      |  |
| Max Green Setting (Gr     | 1227 8  | * 21 | 16.5         | 24.0 | 7.7  | 40.8 | 61   | 34.4 |      |      |      |      |  |
| Max Q Clear Time (q. c    | +215.9  | 17.5 | 15.7         | 10.0 | 49   | 19.5 | 61   | 3.9  |      |      |      |      |  |
| Green Ext Time (p_c)      | s 0.5   | 1.5  | 0.2          | 1.4  | 0.0  | 9.1  | 0.0  | 0.4  |      |      |      |      |  |
| Intersection Summary      | 5.0     |      |              |      | 2.5  | 2    | 2.0  |      |      |      |      |      |  |
|                           |         |      | 40.6         |      |      |      |      |      |      |      |      |      |  |
|                           |         |      | 40.0         |      |      |      |      |      |      |      |      |      |  |
|                           |         |      | D            |      |      |      |      |      |      |      |      |      |  |

#### Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP AM Peak

Synchro 10 Report Page 27

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

| Intersection           |      |      |      |          |      |      |
|------------------------|------|------|------|----------|------|------|
| Int Delay, s/veh       | 0.1  |      |      |          |      |      |
| Movement               | EBT  | EBR  | WBL  | WBT      | NBL  | NBR  |
| Lane Configurations    | 11-  |      |      | <b>^</b> |      | 1    |
| Traffic Vol, veh/h     | 1160 | 10   | 0    | 1500     | 0    | 10   |
| Future Vol, veh/h      | 1160 | 10   | 0    | 1500     | 0    | 10   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0        | 0    | 0    |
| Sign Control           | Free | Free | Free | Free     | Stop | Stop |
| RT Channelized         | -    | None | -    | None     | -    | None |
| Storage Length         | -    | -    | -    | -        | -    | 0    |
| Veh in Median Storage  | ,# 0 | -    | -    | 0        | 0    | -    |
| Grade, %               | 0    | -    | -    | 0        | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92       | 92   | 92   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2        | 2    | 2    |
| Mvmt Flow              | 1261 | 11   | 0    | 1630     | 0    | 11   |
|                        |      |      |      |          |      |      |

| Major/Minor          | Majo | r1 | N    | lajor2 | 1   | /linor1   |      |
|----------------------|------|----|------|--------|-----|-----------|------|
| Conflicting Flow All |      | 0  | 0    | -      | -   | -         | 636  |
| Stage 1              |      | -  | -    | -      | -   | -         | -    |
| Stage 2              |      | -  | -    | -      | -   | -         | -    |
| Critical Hdwy        |      | -  | -    | -      | -   | -         | 6.94 |
| Critical Hdwy Stg 1  |      | -  | -    | -      | -   | -         | -    |
| Critical Hdwy Stg 2  |      | -  | -    | -      | -   | -         | -    |
| Follow-up Hdwy       |      | -  | -    | -      | -   | -         | 3.32 |
| Pot Cap-1 Maneuver   |      | -  | -    | 0      | -   | 0         | 421  |
| Stage 1              |      | -  | -    | 0      | -   | 0         | -    |
| Stage 2              |      | -  | -    | 0      | -   | 0         | -    |
| Platoon blocked, %   |      | -  | -    |        | -   |           |      |
| Mov Cap-1 Maneuver   |      | -  | -    | -      | -   | -         | 421  |
| Mov Cap-2 Maneuver   |      | -  | -    | -      | -   | -         | -    |
| Stage 1              |      | -  | -    | -      | -   | -         | -    |
| Stage 2              |      | -  | -    | -      | -   | -         | -    |
|                      |      |    |      |        |     |           |      |
| Approach             | F    | B  |      | WR     |     | NB        |      |
| HCM Control Delay    |      | 0  |      | 0      |     | 13.8      |      |
| HCM LOS              |      | U  |      | U      |     | 10.0<br>R |      |
|                      |      |    |      |        |     | D         |      |
|                      |      |    |      |        |     |           |      |
| Minor Lane/Major Mvr | nt   | N  | 3Ln1 | EBT    | EBR | WBT       |      |
| Capacity (veh/h)     |      |    | 421  | -      | -   | -         |      |
| HCM Lane V/C Ratio   |      | 0  | .026 | -      | -   | -         |      |
| HCM Control Delay (s | )    |    | 13.8 | -      | -   | -         |      |
| HCM Lane LOS         |      |    | В    | -      | -   | -         |      |
| HCM 95th %tile Q(veh | 1)   |    | 0.1  | -      | -   | -         |      |

# HCM 6th Signalized Intersection Summary 30: CR 3 & SH 66

|                              | ٠    |          | $\mathbf{\hat{v}}$ | 1    | +    | •    | 1    | Ť    | 1    | 1    | ŧ        | ~    |
|------------------------------|------|----------|--------------------|------|------|------|------|------|------|------|----------|------|
| Movement                     | EBL  | EBT      | EBR                | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations          | 5    | <b>^</b> | 1                  | 5    | **   | 1    | 5    | Ť    | 1    | 5    | <b>†</b> | 1    |
| Traffic Volume (veh/h)       | 140  | 1020     | 5                  | 10   | 1410 | 85   | 20   | 10   | 5    | 65   | 25       | 70   |
| Future Volume (veh/h)        | 140  | 1020     | 5                  | 10   | 1410 | 85   | 20   | 10   | 5    | 65   | 25       | 70   |
| Initial Q (Qb), veh          | 0    | 0        | 0                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00               | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |                    |      | No   |      |      | No   |      |      | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870               | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 152  | 1109     | 5                  | 11   | 1533 | 92   | 22   | 11   | 5    | 71   | 27       | 76   |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92               | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2                  | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2        | 2    |
| Cap, veh/h                   | 287  | 2092     | 933                | 335  | 1892 | 844  | 248  | 139  | 118  | 301  | 195      | 165  |
| Arrive On Green              | 0.07 | 0.59     | 0.59               | 0.01 | 0.53 | 0.53 | 0.03 | 0.07 | 0.07 | 0.05 | 0.10     | 0.10 |
| Sat Flow, veh/h              | 1781 | 3554     | 1585               | 1781 | 3554 | 1585 | 1781 | 1870 | 1585 | 1781 | 1870     | 1585 |
| Grp Volume(v), veh/h         | 152  | 1109     | 5                  | 11   | 1533 | 92   | 22   | 11   | 5    | 71   | 27       | 76   |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1777     | 1585               | 1781 | 1777 | 1585 | 1781 | 1870 | 1585 | 1781 | 1870     | 1585 |
| Q Serve(g_s), s              | 2.4  | 12.5     | 0.1                | 0.2  | 23.8 | 1.9  | 0.8  | 0.4  | 0.2  | 2.4  | 0.9      | 3.0  |
| Cycle Q Clear(g_c), s        | 2.4  | 12.5     | 0.1                | 0.2  | 23.8 | 1.9  | 0.8  | 0.4  | 0.2  | 2.4  | 0.9      | 3.0  |
| Prop In Lane                 | 1.00 |          | 1.00               | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 287  | 2092     | 933                | 335  | 1892 | 844  | 248  | 139  | 118  | 301  | 195      | 165  |
| V/C Ratio(X)                 | 0.53 | 0.53     | 0.01               | 0.03 | 0.81 | 0.11 | 0.09 | 0.08 | 0.04 | 0.24 | 0.14     | 0.46 |
| Avail Cap(c_a), veh/h        | 308  | 2331     | 1040               | 443  | 2305 | 1028 | 336  | 502  | 425  | 337  | 502      | 425  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 13.3 | 8.3      | 5.7                | 7.5  | 12.9 | 7.8  | 27.5 | 28.9 | 28.8 | 26.5 | 27.3     | 28.3 |
| Incr Delay (d2), s/veh       | 1.5  | 0.2      | 0.0                | 0.0  | 1.9  | 0.1  | 0.2  | 0.2  | 0.1  | 0.4  | 0.3      | 2.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0                | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/In     | 1.0  | 3.0      | 0.0                | 0.1  | 6.8  | 0.5  | 0.3  | 0.2  | 0.1  | 1.0  | 0.4      | 1.1  |
| Unsig. Movement Delay, s/veh |      |          |                    |      |      |      |      |      |      |      |          |      |
| LnGrp Delay(d),s/veh         | 14.8 | 8.5      | 5.7                | 7.6  | 14.8 | 7.8  | 27.7 | 29.1 | 29.0 | 26.9 | 27.6     | 30.3 |
| LnGrp LOS                    | В    | A        | A                  | A    | В    | A    | С    | C    | C    | С    | C        | C    |
| Approach Vol, veh/h          |      | 1266     |                    |      | 1636 |      |      | 38   |      |      | 174      |      |
| Approach Delay, s/veh        |      | 9.2      |                    |      | 14.4 |      |      | 28.3 |      |      | 28.5     |      |
| Approach LOS                 |      | A        |                    |      | В    |      |      | С    |      |      | С        |      |
| Timer - Assigned Phs         | 1    | 2        | 3                  | 4    | 5    | 6    | 7    | 8    |      |      |          |      |
| Phs Duration (G+Y+Rc), s     | 5.4  | 44.0     | 6.2                | 11.5 | 9.2  | 40.2 | 8.2  | 9.5  |      |      |          |      |
| Change Period (Y+Rc), s      | 4.5  | 4.5      | 4.5                | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |          |      |
| Max Green Setting (Gmax), s  | 5.0  | 44.0     | 5.0                | 18.0 | 5.5  | 43.5 | 5.0  | 18.0 |      |      |          |      |
| Max Q Clear Time (g c+l1), s | 2.2  | 14.5     | 2.8                | 5.0  | 4.4  | 25.8 | 4.4  | 2.4  |      |      |          |      |
| Green Ext Time (p_c), s      | 0.0  | 7.9      | 0.0                | 0.2  | 0.0  | 9.9  | 0.0  | 0.0  |      |      |          |      |
| Intersection Summary         |      |          |                    |      |      |      |      |      |      |      |          |      |
| HCM 6th Ctrl Delay           |      |          | 13.2               |      |      |      |      |      |      |      |          |      |
| HCM 6th LOS                  |      |          | В                  |      |      |      |      |      |      |      |          |      |

| -                         | ٨                       |          | $\mathbf{r}$ | •    | +        | *    | ▲    | Ť        | 1    | 1    | ŧ        | 1     |  |
|---------------------------|-------------------------|----------|--------------|------|----------|------|------|----------|------|------|----------|-------|--|
| Movement                  | EBL                     | EBT      | EBR          | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR   |  |
| Lane Configurations       | 5                       | <b>^</b> | 1            | 5    | <b>^</b> | 1    | 5    | <b>†</b> | 1    | 5    | <b>†</b> | 1     |  |
| Traffic Volume (veh/h)    | 65                      | 980      | 45           | 30   | 1300     | 65   | 70   | 100      | 30   | 150  | 100      | 135   |  |
| Future Volume (veh/h)     | 65                      | 980      | 45           | 30   | 1300     | 65   | 70   | 100      | 30   | 150  | 100      | 135   |  |
| Initial Q (Qb), veh       | 0                       | 0        | 0            | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0     |  |
| Ped-Bike Adj(A_pbT)       | 1.00                    |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00  |  |
| Parking Bus, Adj          | 1.00                    | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  |  |
| Work Zone On Approach     | ו                       | No       |              |      | No       |      |      | No       |      |      | No       |       |  |
| Adj Sat Flow, veh/h/ln    | 1604                    | 1752     | 1781         | 1900 | 1767     | 1485 | 1811 | 1811     | 1870 | 1574 | 1900     | 1885  |  |
| Adj Flow Rate, veh/h      | 71                      | 1065     | 49           | 33   | 1413     | 71   | 76   | 109      | 33   | 163  | 109      | 147   |  |
| Peak Hour Factor          | 0.92                    | 0.92     | 0.92         | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92  |  |
| Percent Heavy Veh, %      | 20                      | 10       | 8            | 0    | 9        | 28   | 6    | 6        | 2    | 22   | 0        | 1     |  |
| Cap, veh/h                | 227                     | 1674     | 759          | 311  | 1618     | 606  | 292  | 196      | 172  | 281  | 246      | 207   |  |
| Arrive On Green           | 0.06                    | 0.50     | 0.50         | 0.03 | 0.48     | 0.48 | 0.06 | 0.11     | 0.11 | 0.08 | 0.13     | 0.13  |  |
| Sat Flow, veh/h           | 1527                    | 3328     | 1510         | 1810 | 3357     | 1259 | 1725 | 1811     | 1585 | 1499 | 1900     | 1598  |  |
| Grp Volume(v), veh/h      | 71                      | 1065     | 49           | 33   | 1413     | 71   | 76   | 109      | 33   | 163  | 109      | 147   |  |
| Grp Sat Flow(s),veh/h/ln  | 1527                    | 1664     | 1510         | 1810 | 1678     | 1259 | 1725 | 1811     | 1585 | 1499 | 1900     | 1598  |  |
| Q Serve(g_s), s           | 1.5                     | 15.3     | 1.1          | 0.6  | 24.6     | 2.0  | 2.5  | 3.7      | 1.2  | 5.1  | 3.5      | 5.8   |  |
| Cycle Q Clear(g_c), s     | 1.5                     | 15.3     | 1.1          | 0.6  | 24.6     | 2.0  | 2.5  | 3.7      | 1.2  | 5.1  | 3.5      | 5.8   |  |
| Prop In Lane              | 1.00                    |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00  |  |
| Lane Grp Cap(c), veh/h    | 227                     | 1674     | 759          | 311  | 1618     | 606  | 292  | 196      | 172  | 281  | 246      | 207   |  |
| V/C Ratio(X)              | 0.31                    | 0.64     | 0.06         | 0.11 | 0.87     | 0.12 | 0.26 | 0.56     | 0.19 | 0.58 | 0.44     | 0.71  |  |
| Avail Cap(c_a), veh/h     | 260                     | 1730     | 785          | 387  | 1745     | 654  | 326  | 500      | 437  | 281  | 527      | 443   |  |
| HCM Platoon Ratio         | 1.00                    | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  |  |
| Upstream Filter(I)        | 1.00                    | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  |  |
| Uniform Delay (d), s/veh  | 13.3                    | 11.9     | 8.3          | 9.3  | 15.1     | 9.3  | 23.8 | 27.6     | 26.5 | 25.2 | 26.2     | 27.2  |  |
| Incr Delay (d2), s/veh    | 0.8                     | 0.7      | 0.0          | 0.1  | 5.0      | 0.1  | 0.5  | 2.4      | 0.5  | 2.9  | 1.3      | 4.5   |  |
| Initial Q Delay(d3),s/veh | 0.0                     | 0.0      | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   |  |
| %ile BackOfQ(50%),veh/    | /In0.4                  | 4.1      | 0.3          | 0.2  | 7.7      | 0.5  | 1.0  | 1.6      | 0.4  | 2.3  | 1.5      | 2.2   |  |
| Unsig. Movement Delay,    | s/veh                   |          |              | • -  | /        |      |      |          |      |      |          | • • - |  |
| LnGrp Delay(d),s/veh      | 14.1                    | 12.6     | 8.4          | 9.5  | 20.1     | 9.4  | 24.2 | 30.0     | 27.0 | 28.1 | 27.5     | 31.7  |  |
| LnGrp LOS                 | В                       | В        | A            | A    | С        | A    | С    | С        | С    | С    | С        | С     |  |
| Approach Vol, veh/h       |                         | 1185     |              |      | 1517     |      |      | 218      |      |      | 419      |       |  |
| Approach Delay, s/veh     |                         | 12.5     |              |      | 19.3     |      |      | 27.6     |      |      | 29.2     |       |  |
| Approach LOS              |                         | В        |              |      | В        |      |      | С        |      |      | С        |       |  |
| Timer - Assigned Phs      | 1                       | 2        | 3            | 4    | 5        | 6    | 7    | 8        |      |      |          |       |  |
| Phs Duration (G+Y+Rc),    | s6.8                    | 37.3     | 8.2          | 12.9 | 8.1      | 35.9 | 9.6  | 11.6     |      |      |          |       |  |
| Change Period (Y+Rc), s   | s 4.5                   | 4.5      | 4.5          | 4.5  | 4.5      | 4.5  | 4.5  | 4.5      |      |      |          |       |  |
| Max Green Setting (Gma    | ax <b>5</b> ,. <b>G</b> | 33.9     | 5.0          | 18.1 | 5.0      | 33.9 | 5.1  | 18.0     |      |      |          |       |  |
| Max Q Clear Time (g_c+    | 112,6s                  | 17.3     | 4.5          | 7.8  | 3.5      | 26.6 | 7.1  | 5.7      |      |      |          |       |  |
| Green Ext Time (p_c), s   | 0.0                     | 6.3      | 0.0          | 0.7  | 0.0      | 4.9  | 0.0  | 0.4      |      |      |          |       |  |
| Intersection Summary      |                         |          |              |      |          |      |      |          |      |      |          |       |  |
| HCM 6th Ctrl Delay        |                         |          | 18.7         |      |          |      |      |          |      |      |          |       |  |
| HCM 6th LOS               |                         |          | В            |      |          |      |      |          |      |      |          |       |  |

|                           | ٨               | -+   | 7    | 1    | +    | *    | 1    | Ť    | ۲    | 1    | ţ    | 4    |  |
|---------------------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Movement                  | EBL             | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 57              | **   | 1    | 57   | **   | 1    | 57   |      | 1    | 57   |      | 1    |  |
| Traffic Volume (veh/h)    | 85              | 960  | 115  | 270  | 990  | 200  | 255  | 190  | 480  | 160  | 315  | 150  |  |
| Future Volume (veh/h)     | 85              | 960  | 115  | 270  | 990  | 200  | 255  | 190  | 480  | 160  | 315  | 150  |  |
| Initial Q (Qb), veh       | 0               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00            |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approac      | h               | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1826            | 1856 | 1900 | 1900 | 1811 | 1737 | 1811 | 1856 | 1826 | 1900 | 1900 | 1885 |  |
| Adj Flow Rate, veh/h      | 92              | 1043 | 125  | 293  | 1076 | 217  | 277  | 207  | 0    | 174  | 342  | 163  |  |
| Peak Hour Factor          | 0.92            | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 5               | 3    | 0    | 0    | 6    | 11   | 6    | 3    | 5    | 0    | 0    | 1    |  |
| Cap, veh/h                | 522             | 1270 | 580  | 590  | 1277 | 546  | 441  | 262  |      | 676  | 398  | 335  |  |
| Arrive On Green           | 0.08            | 0.36 | 0.36 | 0.09 | 0.37 | 0.37 | 0.08 | 0.14 | 0.00 | 0.14 | 0.21 | 0.21 |  |
| Sat Flow, veh/h           | 3374            | 3526 | 1610 | 3510 | 3441 | 1472 | 3346 | 1856 | 1547 | 3510 | 1900 | 1598 |  |
| Grp Volume(v), veh/h      | 92              | 1043 | 125  | 293  | 1076 | 217  | 277  | 207  | 0    | 174  | 342  | 163  |  |
| Grp Sat Flow(s),veh/h/lr  | า1687           | 1763 | 1610 | 1755 | 1721 | 1472 | 1673 | 1856 | 1547 | 1755 | 1900 | 1598 |  |
| Q Serve(g_s), s           | 1.3             | 22.7 | 4.5  | 4.2  | 24.1 | 5.0  | 6.8  | 9.1  | 0.0  | 0.0  | 14.6 | 7.6  |  |
| Cycle Q Clear(g_c), s     | 1.3             | 22.7 | 4.5  | 4.2  | 24.1 | 5.0  | 6.8  | 9.1  | 0.0  | 0.0  | 14.6 | 7.6  |  |
| Prop In Lane              | 1.00            |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 522             | 1270 | 580  | 590  | 1277 | 546  | 441  | 262  |      | 676  | 398  | 335  |  |
| V/C Ratio(X)              | 0.18            | 0.82 | 0.22 | 0.50 | 0.84 | 0.40 | 0.63 | 0.79 |      | 0.26 | 0.86 | 0.49 |  |
| Avail Cap(c_a), veh/h     | 560             | 1359 | 621  | 590  | 1326 | 567  | 441  | 506  |      | 676  | 478  | 402  |  |
| HCM Platoon Ratio         | 1.00            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 |  |
| Uniform Delay (d), s/vel  | n 17.0          | 24.5 | 18.7 | 18.0 | 24.3 | 5.8  | 36.3 | 35.0 | 0.0  | 31.0 | 32.1 | 29.4 |  |
| Incr Delay (d2), s/veh    | 0.2             | 4.6  | 0.4  | 0.6  | 5.6  | 1.0  | 2.8  | 5.3  | 0.0  | 0.2  | 12.8 | 1.1  |  |
| Initial Q Delay(d3),s/veh | n 0.0           | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh     | n/ln0.4         | 8.9  | 1.7  | 1.4  | 9.4  | 2.8  | 2.8  | 4.3  | 0.0  | 1.5  | 7.6  | 2.9  |  |
| Unsig. Movement Delay     | /, s/veh        | 00.4 | 10.1 | 40.0 | 00.0 | 0.0  | 00.0 | 40.4 | 0.0  | 04.0 | 44.0 | 00 5 |  |
| LnGrp Delay(d),s/veh      | 17.2            | 29.1 | 19.1 | 18.6 | 29.8 | 6.8  | 39.2 | 40.4 | 0.0  | 31.2 | 44.9 | 30.5 |  |
| LnGrp LOS                 | В               | C    | В    | В    | C    | A    | D    | D    |      | C    | D    | C    |  |
| Approach Vol, veh/h       |                 | 1260 |      |      | 1586 |      |      | 484  | A    |      | 679  |      |  |
| Approach Delay, s/veh     |                 | 27.3 |      |      | 24.6 |      |      | 39.7 |      |      | 37.9 |      |  |
| Approach LOS              |                 | С    |      |      | С    |      |      | D    |      |      | D    |      |  |
| Timer - Assigned Phs      | 1               | 2    | 3    | 4    | 5    | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc)     | , <b>\$</b> 3.0 | 37.4 | 11.3 | 22.7 | 12.1 | 38.3 | 17.1 | 16.9 |      |      |      |      |  |
| Change Period (Y+Rc),     | s 5.0           | 7.0  | 4.5  | 5.0  | 5.0  | 7.0  | 5.0  | * 5  |      |      |      |      |  |
| Max Green Setting (Gm     | ax\$,.6         | 32.5 | 6.8  | 21.2 | 8.0  | 32.5 | 5.0  | * 23 |      |      |      |      |  |
| Max Q Clear Time (g_c-    | +116),2s        | 24.7 | 8.8  | 16.6 | 3.3  | 26.1 | 2.0  | 11.1 |      |      |      |      |  |
| Green Ext Time (p_c), s   | s 0.2           | 5.7  | 0.0  | 1.0  | 0.1  | 5.0  | 0.1  | 0.8  |      |      |      |      |  |
| Intersection Summary      |                 |      |      |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |                 |      | 29.5 |      |      |      |      |      |      |      |      |      |  |
| HCM 6th LOS               |                 |      | С    |      |      |      |      |      |      |      |      |      |  |
|                           |                 |      |      |      |      |      |      |      |      |      |      |      |  |

#### Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP AM Peak

Synchro 10 Report Page 31

### HCM 6th Signalized Intersection Summary 33: Foster Ridge Dr & SH 66

03/12/2020

## ショップ ディート・ イントナイ

| Movement                  | EBL         | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|---------------------------|-------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations       | 1           | A41- |      | 1    | ***  |      | 1    | ţ,   |      | 1    | ţ,   |      |  |
| Traffic Volume (veh/h)    | 15          | 1615 | 30   | 60   | 1830 | 15   | 30   | 10   | 30   | 15   | 20   | 15   |  |
| Future Volume (veh/h)     | 15          | 1615 | 30   | 60   | 1830 | 15   | 30   | 10   | 30   | 15   | 20   | 15   |  |
| Initial Q (Qb), veh       | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00        |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach     | h           | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1870        | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate, veh/h      | 16          | 1755 | 33   | 65   | 1989 | 16   | 33   | 11   | 33   | 16   | 22   | 16   |  |
| Peak Hour Factor          | 0.92        | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 2           | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Cap, veh/h                | 191         | 2877 | 54   | 159  | 2913 | 23   | 456  | 109  | 327  | 421  | 234  | 170  |  |
| Arrive On Green           | 0.56        | 0.56 | 0.56 | 1.00 | 1.00 | 1.00 | 0.05 | 0.26 | 0.26 | 0.02 | 0.23 | 0.23 |  |
| Sat Flow, veh/h           | 214         | 5160 | 97   | 265  | 5225 | 42   | 1781 | 412  | 1236 | 1781 | 1007 | 732  |  |
| Grp Volume(v), veh/h      | 16          | 1158 | 630  | 65   | 1296 | 709  | 33   | 0    | 44   | 16   | 0    | 38   |  |
| Grp Sat Flow(s),veh/h/ln  | 214         | 1702 | 1853 | 265  | 1702 | 1863 | 1781 | 0    | 1648 | 1781 | 0    | 1739 |  |
| Q Serve(g_s), s           | 3.6         | 22.8 | 22.8 | 17.9 | 0.0  | 0.0  | 1.4  | 0.0  | 2.0  | 0.7  | 0.0  | 1.7  |  |
| Cycle Q Clear(g_c), s     | 3.6         | 22.8 | 22.8 | 40.8 | 0.0  | 0.0  | 1.4  | 0.0  | 2.0  | 0.7  | 0.0  | 1.7  |  |
| Prop In Lane              | 1.00        |      | 0.05 | 1.00 |      | 0.02 | 1.00 |      | 0.75 | 1.00 |      | 0.42 |  |
| Lane Grp Cap(c), veh/h    | 191         | 1898 | 1033 | 159  | 1898 | 1038 | 456  | 0    | 436  | 421  | 0    | 404  |  |
| V/C Ratio(X)              | 0.08        | 0.61 | 0.61 | 0.41 | 0.68 | 0.68 | 0.07 | 0.00 | 0.10 | 0.04 | 0.00 | 0.09 |  |
| Avail Cap(c_a), veh/h     | 203         | 2076 | 1130 | 173  | 2076 | 1136 | 456  | 0    | 436  | 478  | 0    | 404  |  |
| HCM Platoon Ratio         | 1.00        | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 0.49        | 0.49 | 0.49 | 0.91 | 0.91 | 0.91 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh  | n 10.6      | 14.8 | 14.8 | 8.3  | 0.0  | 0.0  | 26.1 | 0.0  | 27.8 | 28.3 | 0.0  | 30.1 |  |
| Incr Delay (d2), s/veh    | 0.1         | 0.2  | 0.4  | 1.5  | 0.8  | 1.4  | 0.3  | 0.0  | 0.5  | 0.0  | 0.0  | 0.5  |  |
| Initial Q Delay(d3),s/veh | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh     | /In0.1      | 7.3  | 8.0  | 0.6  | 0.2  | 0.4  | 0.6  | 0.0  | 0.8  | 0.3  | 0.0  | 0.8  |  |
| Unsig. Movement Delay     | , s/veh     | า    |      |      |      |      |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh      | 10.7        | 15.1 | 15.2 | 9.9  | 0.8  | 1.4  | 26.4 | 0.0  | 28.2 | 28.4 | 0.0  | 30.6 |  |
| LnGrp LOS                 | В           | В    | В    | Α    | Α    | Α    | С    | Α    | С    | С    | Α    | С    |  |
| Approach Vol, veh/h       |             | 1804 |      |      | 2070 |      |      | 77   |      |      | 54   |      |  |
| Approach Delay, s/veh     |             | 15.1 |      |      | 1.3  |      |      | 27.5 |      |      | 29.9 |      |  |
| Approach LOS              |             | В    |      |      | А    |      |      | С    |      |      | С    |      |  |
| Timer - Assigned Phs      |             | 2    | 3    | 4    |      | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc)     | . s         | 61.7 | 10.0 | 28.3 |      | 61.7 | 6.8  | 31.5 |      |      |      |      |  |
| Change Period (Y+Rc).     | , -<br>S    | 6.0  | 5.0  | 5.0  |      | 6.0  | 5.0  | 5.0  |      |      |      |      |  |
| Max Green Setting (Gm     | ax), s      | 61.0 | 5.0  | 18.0 |      | 61.0 | 5.0  | 18.0 |      |      |      |      |  |
| Max Q Clear Time (g c+    | ⊦l1). s     | 24.8 | 3.4  | 3.7  |      | 42.8 | 2.7  | 4.0  |      |      |      |      |  |
| Green Ext Time (p_c), s   | <i>,, •</i> | 15.8 | 0.0  | 0.1  |      | 13.0 | 0.0  | 0.1  |      |      |      |      |  |
| Intersection Summary      |             |      |      |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |             |      | 8.4  |      |      |      |      |      |      |      |      |      |  |
| HCM 6th LOS               |             |      | А    |      |      |      |      |      |      |      |      |      |  |

03/12/2020

## 1-2-4

| Movement   EBL   EBT   EBR   WBL   WBL   NBL   NBT   NBR   SBL   SBT   SBR     Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations 1 1 1 1 1 1   Traffic Volume (veh/h) 0 995 605 535 1105 0 0 0 215 10 355   Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0   Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Traffic Volume (veh/h) 0 995 605 535 1105 0 0 0 215 10 355   Future Volume (veh/h) 0 995 605 535 1105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Future (volume (veh/h)   0   995   605   535   1105   0   0   0   215   10   355     initial Q (Qb), veh   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Initial Q (0b), veh   0   0   0   0   0   0   0   0     Ped-Bike Adj (A_pbT)   1.00   1.00   1.00   1.00   1.00   1.00   1.00     Parking Bus, Adj   1.00   1.00   1.00   1.00   1.00   1.00   1.00     Mork Zone On Approach   No   No   No   No   No     Adj Sat Flow, veh/h/In   0   1856   1668   1796   0   1737   1411   1856     Adj Flow Rate, veh/h   0   1826   1628   1201   0   242   0   0     Percent Heavy Veh, %   0   3   8   7   0   11   33   3     Cap, veh/h   0   1925   1009   2641   0   319   0     Arrive On Green   0.00   0.65   1.00   0.00   0.10   0.00   1572     Grp Volume(v), veh/h   0   1682   0   0   0   1572     Q Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00   Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00   Vork Zone On Approach No No No No No   Adj Sat Flow, veh/h/n 0 1856 1856 1688 1796 0 1737 1411 1856   Adj Sat Flow, veh/h/n 0 1082 0 582 1201 0 242 0 0   Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Work Zone On Approach   No   No   No   No     Adj Sat Flow, veh/h/lin   0   1856   1856   1688   1796   0   1737   1411   1856     Adj Flow Rate, veh/h   0   1082   0   582   1201   0   242   0   0     Peak Hour Factor   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Adj Sat Flow, veh/h/ln 0 1856 1856 1688 1796 0 1737 1411 1856   Adj Flow Rate, veh/h 0 1082 0 582 1201 0 242 0 0   Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92   Percent Heavy Veh,% 0 3 3 8 7 0 11 33 3   Cap, veh/h 0 1925 1009 2641 0 0.00 0.00 0.00   Sat Flow, veh/h 0 5233 1572 3118 3503 0 3309 0 1572   Grp Volume(v), veh/h 0 1689 1572 1559 1706 0 1654 0 1572   Q Serve(g_s), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Q Serve(g_s), se 0.0 8.9 0.0 10.5 0.0 0.0 1.00 1.00 1.00   V/C Ratio(X) 0.00 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Adj Flow Rate, veh/h 0 1082 0 582 1201 0 2442 0 0   Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peak Hour Factor   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.92   0.00   0.00   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Percent Heavy Veh, % 0 3 3 8 7 0 11 33 3   Cap, veh/h 0 1925 1009 2641 0 319 0   Arrive On Green 0.00 0.76 0.00 0.65 1.00 0.00 0.10 0.00 0.00   Sat Flow, veh/h 0 5233 1572 3118 3503 0 3309 0 1572   Grp Volume(v), veh/h 0 1682 1201 0 242 0 0   Grp Sat Flow(s), veh/h 0 1689 1572 1559 1706 0 1654 0 1572   Q Serve(g.s), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Cycle Q Clear(g.c), s 0.0 1.00 1.00 0.00 1.00 1.00 1.00   Lane Grp Cap(c), veh/h 0 1925 1009 2641 0 319 0 0   V/C Ratio(X) 0.00 0.53 0.53 0.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cap, veh/h   0   1925   1009   2641   0   319   0     Arrive On Green   0.00   0.76   0.00   0.65   1.00   0.00   0.10   0.00   0.00     Sat Flow, veh/h   0   523   1572   3118   3503   0   3309   0   1572     Grp Volume(v), veh/h   0   1082   0   582   1201   0   242   0   0     Grp Volume(v), veh/h   0   1689   1572   1559   706   0   1654   0   1572     Q Serve(g_s), s   0.0   8.9   0.0   10.5   0.0   0.0   7.1   0.0   0.0     Cycle Q Clear(g_c), s   0.0   1.00   1.00   0.00   1.00   1.00   1.00     Lane Grp Cap(c), veh/h   0   1925   1009   2641   0   100   1.00     V/C Ratio(X)   0.00   0.56   0.58   0.45   0.00   0.76   0.00     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Arrive On Green 0.00 0.76 0.00 0.65 1.00 0.00 0.10 0.00 0.00   Sat Flow, veh/h 0 5233 1572 3118 3503 0 3309 0 1572   Grp Volume(v), veh/h 0 1082 0 582 1201 0 242 0 0   Grp Sat Flow(s), veh/h/ln 0 1689 1572 1559 1706 0 1654 0 1572   Q Serve(g_s), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Cycle Q Clear(g_c), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Prop In Lane 0.00 1.00 1.00 0.00 1.00 1.00 1.00   Lane Grp Cap(c), veh/h 1925 1009 2641 0 319 0 V/C Ratio(X) 0.00 0.53 0.53 0.00 1.00 1.00 1.00   Lane Grp Cap(c), veh/h 0 1925 1009 2641 0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sat Flow, veh/h   0   5233   1572   3118   3503   0   3309   0   1572     Grp Volume(v), veh/h   0   1082   0   582   1201   0   242   0   0     Grp Sat Flow(s), veh/h/ln   0   1689   1572   1559   1706   0   1654   0   1572     Q Serve(g_s), s   0.0   8.9   0.0   10.5   0.0   0.0   7.1   0.0   0.0     Cycle Q Clear(g_c), s   0.0   1.00   1.00   0.00   1.00   1.00     Lane Grp Cap(c), veh/h   1925   1009   2641   0   319   0     V/C Ratio(X)   0.00   0.56   0.58   0.45   0.00   0.76   0.00     Avail Cap(c_a), veh/h   1925   1009   2641   0   596   0     HCM Platoon Ratio   1.00   2.00   2.00   1.00   1.00   1.00   1.00     Unstream Filter(I)   0.00   0.75   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Grp Volume(v), veh/h 0 1082 0 582 1201 0 242 0 0   Grp Sat Flow(s), veh/h/ln 0 1689 1572 1559 1706 0 1654 0 1572   Q Serve(g_s), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Cycle Q Clear(g_c), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Prop In Lane 0.00 1.00 1.00 0.00 1.00 1.00 1.00   Lane Grp Cap(c), veh/h 0 1925 1009 2641 0 319 0   V/C Ratio(X) 0.00 0.56 0.58 0.45 0.00 0.76 0.00   Avail Cap(c_a), veh/h 0 1925 1009 2641 0 596 0   HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00   Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Grp Sat Flow(s),veh/h/n 0 1689 1572 1559 1706 0 1654 0 1572   Q Serve(g_s), s 0.0 8.9 0.0 10.5 0.0 0.0 7.1 0.0 0.0   Cycle Q Clear(g_c), s 0.0 1.00 1.00 0.0 7.1 0.0 0.0   Prop In Lane 0.00 1.00 1.00 0.00 1.00 1.00   Lane Grp Cap(c), veh/h 0 1925 1009 2641 0 319 0   V/C Ratio(X) 0.00 0.56 0.58 0.45 0.00 0.76 0.00   Avail Cap(c_a), veh/h 0 1925 1009 2641 0 596 0   HCM Platoon Ratio 1.00 2.00 2.00 1.00 1.00 1.00 1.00   Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 144.1 0.0 0.0   Incr Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0   Initial Q Dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q Serve(g_s), s   0.0   8.9   0.0   10.5   0.0   0.0   7.1   0.0   0.0     Cycle Q Clear(g_c), s   0.0   8.9   0.0   10.5   0.0   0.0   7.1   0.0   0.0     Prop In Lane   0.00   1.00   1.00   0.00   1.00   1.00   1.00     Lane Grp Cap(c), veh/h   0   1925   1009   2641   0   319   0     V/C Ratio(X)   0.00   0.56   0.58   0.45   0.00   0.76   0.00     Avail Cap(c_a), veh/h   0   1925   1009   2641   0   596   0     HCM Platoon Ratio   1.00   2.00   2.00   2.00   1.00   1.00   1.00   1.00     Upstream Filter(I)   0.00   0.75   0.00   0.53   0.53   0.00   1.00   1.00   1.00     Uniform Delay (d), s/veh   0.0   9.0   0.4   0.3   0.0   0.0   0.0   0.0   0.0   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cycle Q Clear(g_c), s   0.0   8.9   0.0   10.5   0.0   0.0   7.1   0.0   0.0     Prop In Lane   0.00   1.00   1.00   0.00   1.00   1.00     Lane Grp Cap(c), veh/h   0   1925   1009   2641   0   319   0     V/C Ratio(X)   0.00   0.56   0.58   0.45   0.00   0.76   0.00     Avail Cap(c_a), veh/h   0   1925   1009   2641   0   596   0     HCM Platoon Ratio   1.00   2.00   2.00   2.00   1.00   1.00   1.00     Upstream Filter(I)   0.00   0.75   0.00   0.53   0.53   0.00   1.00   0.00     Uniform Delay (d), s/veh   0.0   8.5   0.0   13.8   0.0   0.0   3.7   0.0   0.0     Incr Delay (d2), s/veh   0.0   0.0   0.0   0.0   0.0   0.0   0.0     Wile BackOfQ(50%), veh/Irol.0   2.2   0.0   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Prop In Lane   0.00   1.00   1.00   0.00   1.00   1.00     Lane Grp Cap(c), veh/h   0   1925   1009   2641   0   319   0     V/C Ratio(X)   0.00   0.56   0.58   0.45   0.00   0.76   0.00     Avail Cap(c_a), veh/h   0   1925   1009   2641   0   596   0     HCM Platoon Ratio   1.00   2.00   2.00   2.00   1.00   1.00   1.00   1.00     Upstream Filter(I)   0.00   0.75   0.00   0.53   0.53   0.00   1.00   0.00   0.00     Uniform Delay (d), s/veh   0.0   8.5   0.0   13.8   0.0   0.0   44.1   0.0   0.0     Incr Delay (d2), s/veh   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lane Grp Cap(c), veh/h 0 1925 1009 2641 0 319 0   V/C Ratio(X) 0.00 0.56 0.58 0.45 0.00 0.76 0.00   Avail Cap(c_a), veh/h 0 1925 1009 2641 0 596 0   HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00   Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 1.00 0.00 0.00   Uniform Delay (d), s/veh 0.0 8.5 0.0 13.8 0.0 0.0 44.1 0.0 0.0   Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0   Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0   Unsig. Movement Delay, s/veh 0.0 9.4 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp Delay(d),s/veh 0.0 9.4 0.3 0.0 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V/C Ratio(X) 0.00 0.56 0.58 0.45 0.00 0.76 0.00   Avail Cap(c_a), veh/h 0 1925 1009 2641 0 596 0   HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00   Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 1.00 0.00 0.00   Uniform Delay (d), s/veh 0.0 8.5 0.0 13.8 0.0 0.0 44.1 0.0 0.0   Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0   Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Avail Cap(c_a), veh/h 0 1925 1009 2641 0 596 0   HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00   Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 1.00 1.00 0.00 0.00   Uniform Delay (d), s/veh 0.0 8.5 0.0 13.8 0.0 0.0 44.1 0.0 0.0   Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0   Intial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0   Ville BackOfQ(50%),veh/InD.0 2.2 0.0 2.5 0.1 0.0 3.0 0.0 0.0   Unsig. Movement Delay, s/veh 0.2 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp Delay(d),s/veh 0.0 9.4 0.0 14.2 0.3 0.0 A A   Approach Vol, veh/h 1082 A<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00   Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 1.00 0.00 0.00   Uniform Delay (d), s/veh 0.0 8.5 0.0 13.8 0.0 0.0 44.1 0.0 0.0   Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0   Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0   Wile BackOfQ(50%), veh/InD.0 2.2 0.0 2.5 0.1 0.0 3.0 0.0 0.0   Unsig. Movement Delay, s/veh U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Upstream Filter(I) 0.00 0.75 0.00 0.53 0.53 0.00 1.00 0.00 0.00   Uniform Delay (d), s/veh 0.0 8.5 0.0 13.8 0.0 0.0 44.1 0.0 0.0   Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0   Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0   %ile BackOfQ(50%),veh/Ir0.0 2.2 0.0 2.5 0.1 0.0 3.0 0.0 0.0   Unsig. Movement Delay, s/veh Union 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp Delay(d),s/veh 0.0 9.4 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp LOS A A B A A D A A   Approach Vol, veh/h 1082 A 1783 242 A A   Approach LOS A A A D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Uniform Delay (d), s/veh 0.0 8.5 0.0 13.8 0.0 0.0 44.1 0.0 0.0   Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0   Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0   %ile BackOfQ(50%),veh/Ir0.0 2.2 0.0 2.5 0.1 0.0 3.0 0.0 0.0   Unsig. Movement Delay, s/veh 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp Delay(d),s/veh 0.0 9.4 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp LOS A A B A A D A   Approach Vol, veh/h 1082 A 1783 242 A   Approach LOS A A A D A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Incr Delay (d2), s/veh 0.0 0.9 0.0 0.4 0.3 0.0 3.7 0.0 0.0 0.0   Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| %ile BackOfQ(50%),veh/Ir0.0 2.2 0.0 2.5 0.1 0.0 3.0 0.0 0.0   Unsig. Movement Delay, s/veh 0.0 9.4 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp Delay(d),s/veh 0.0 9.4 0.0 14.2 0.3 0.0 47.8 0.0 0.0   LnGrp LOS A A B A A D A   Approach Vol, veh/h 1082 A 1783 242 A   Approach Delay, s/veh 9.4 4.8 47.8 47.8   Approach LOS A A D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unsig. Movement Delay, s/veh   0.0   9.4   0.0   14.2   0.3   0.0   47.8   0.0   0.0     LnGrp Delay(d),s/veh   0.0   9.4   0.0   14.2   0.3   0.0   47.8   0.0   0.0     LnGrp LOS   A   A   B   A   A   D   A     Approach Vol, veh/h   1082   A   1783   242   A     Approach Delay, s/veh   9.4   4.8   47.8   47.8     Approach LOS   A   A   D   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LnGrp Delay(d),s/veh   0.0   9.4   0.0   14.2   0.3   0.0   47.8   0.0   0.0     LnGrp LOS   A   A   B   A   A   D   A     Approach Vol, veh/h   1082   A   1783   242   A     Approach Delay, s/veh   9.4   4.8   47.8   47.8     Approach LOS   A   A   D   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LnGrp LOS   A   A   B   A   A   D   A     Approach Vol, veh/h   1082   A   1783   242   A     Approach Delay, s/veh   9.4   4.8   47.8   47.8     Approach LOS   A   A   D   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Approach Vol, veh/h   1082   A   1783   242   A     Approach Delay, s/veh   9.4   4.8   47.8   47.8   Approach LOS   A   A   D   A   D   A   D   A   A   D   A   A   A   D   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Approach Delay, s/veh9.44.847.8Approach LOSAAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Approach LOS A A D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Timer - Assigned Phs 1 2 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Physical Hole $(G+Y+Bc) = 2$ $(G+Y+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Change Pariod ( $V_{\pm}R_{c}$ ) s 7.0 7.0 6.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Max Green Setting (Green) = 38.0 		 18.0 		 60.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0 		 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $Max \cap Clear Time (a \leftarrow 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{100} = \frac{1}{100} = \frac{1}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HCM 6th Ctrl Delay 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Notes

User approved volume balancing among the lanes for turning movement. Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP AM Peak

03/12/2020

## メッシュー くく イントレイ

| Movement                  | EBL      | EBT        | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL | SBT | SBR |  |
|---------------------------|----------|------------|------|------|------|------|------|------|------|-----|-----|-----|--|
| Lane Configurations       | 77       | <b>†</b> † |      |      | ***  | 1    | 1    | र्भ  | 1    |     |     |     |  |
| Traffic Volume (veh/h)    | 205      | 1005       | 0    | 0    | 1325 | 305  | 815  | 5    | 520  | 0   | 0   | 0   |  |
| Future Volume (veh/h)     | 205      | 1005       | 0    | 0    | 1325 | 305  | 815  | 5    | 520  | 0   | 0   | 0   |  |
| Initial Q (Qb), veh       | 0        | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |     |     |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00     |            | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |     |     |     |  |
| Parking Bus, Adj          | 1.00     | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |     |     |  |
| Work Zone On Approac      | h        | No         |      |      | No   |      |      | No   |      |     |     |     |  |
| Adj Sat Flow, veh/h/ln    | 1758     | 1826       | 0    | 0    | 1781 | 1693 | 1716 | 1900 | 1737 |     |     |     |  |
| Adj Flow Rate, veh/h      | 223      | 1092       | 0    | 0    | 1440 | 0    | 890  | 0    | 0    |     |     |     |  |
| Peak Hour Factor          | 0.92     | 0.92       | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |     |     |     |  |
| Percent Heavy Veh, %      | 3        | 5          | 0    | 0    | 8    | 14   | 6    | 0    | 11   |     |     |     |  |
| Cap, veh/h                | 439      | 1961       | 0    | 0    | 1751 |      | 996  | 0    |      |     |     |     |  |
| Arrive On Green           | 0.27     | 1.00       | 0.00 | 0.00 | 0.36 | 0.00 | 0.30 | 0.00 | 0.00 |     |     |     |  |
| Sat Flow, veh/h           | 3248     | 3561       | 0    | 0    | 5024 | 1434 | 3268 | 0    | 1472 |     |     |     |  |
| Grp Volume(v), veh/h      | 223      | 1092       | 0    | 0    | 1440 | 0    | 890  | 0    | 0    |     |     |     |  |
| Grp Sat Flow(s),veh/h/lr  | า1624    | 1735       | 0    | 0    | 1621 | 1434 | 1634 | 0    | 1472 |     |     |     |  |
| Q Serve(g_s), s           | 5.8      | 0.0        | 0.0  | 0.0  | 26.9 | 0.0  | 26.0 | 0.0  | 0.0  |     |     |     |  |
| Cycle Q Clear(g_c), s     | 5.8      | 0.0        | 0.0  | 0.0  | 26.9 | 0.0  | 26.0 | 0.0  | 0.0  |     |     |     |  |
| Prop In Lane              | 1.00     |            | 0.00 | 0.00 |      | 1.00 | 1.00 |      | 1.00 |     |     |     |  |
| Lane Grp Cap(c), veh/h    | 439      | 1961       | 0    | 0    | 1751 |      | 996  | 0    |      |     |     |     |  |
| V/C Ratio(X)              | 0.51     | 0.56       | 0.00 | 0.00 | 0.82 |      | 0.89 | 0.00 |      |     |     |     |  |
| Avail Cap(c_a), veh/h     | 439      | 1961       | 0    | 0    | 1751 |      | 1209 | 0    |      |     |     |     |  |
| HCM Platoon Ratio         | 2.00     | 2.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |     |     |  |
| Upstream Filter(I)        | 0.85     | 0.85       | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 |     |     |     |  |
| Uniform Delay (d), s/vel  | า 33.7   | 0.0        | 0.0  | 0.0  | 29.1 | 0.0  | 33.2 | 0.0  | 0.0  |     |     |     |  |
| Incr Delay (d2), s/veh    | 0.8      | 1.0        | 0.0  | 0.0  | 4.5  | 0.0  | 7.7  | 0.0  | 0.0  |     |     |     |  |
| Initial Q Delay(d3),s/veh | n 0.0    | 0.0        | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |     |     |     |  |
| %ile BackOfQ(50%),veh     | n/In2.0  | 0.3        | 0.0  | 0.0  | 10.1 | 0.0  | 10.7 | 0.0  | 0.0  |     |     |     |  |
| Unsig. Movement Delay     | /, s/veh |            |      |      |      |      |      |      |      |     |     |     |  |
| LnGrp Delay(d),s/veh      | 34.5     | 1.0        | 0.0  | 0.0  | 33.6 | 0.0  | 40.9 | 0.0  | 0.0  |     |     |     |  |
| LnGrp LOS                 | С        | A          | A    | A    | С    |      | D    | Α    |      |     |     |     |  |
| Approach Vol, veh/h       |          | 1315       |      |      | 1440 | А    |      | 890  | А    |     |     |     |  |
| Approach Delay, s/veh     |          | 6.7        |      |      | 33.6 |      |      | 40.9 |      |     |     |     |  |
| Approach LOS              |          | А          |      |      | С    |      |      | D    |      |     |     |     |  |
| Timer - Assigned Phs      |          | 2          |      |      | 5    | 6    |      | 8    |      |     |     |     |  |
| Phs Duration (G+Y+Rc)     | , S      | 63.5       |      |      | 20.5 | 43.0 |      | 36.5 |      |     |     |     |  |
| Change Period (Y+Rc),     | S        | 7.0        |      |      | 7.0  | * 7  |      | 6.0  |      |     |     |     |  |
| Max Green Setting (Gm     | iax), s  | 50.0       |      |      | 9.0  | * 36 |      | 37.0 |      |     |     |     |  |
| Max Q Clear Time (g_c     | +l1), s  | 2.0        |      |      | 7.8  | 28.9 |      | 28.0 |      |     |     |     |  |
| Green Ext Time (p_c), s   | 6        | 8.4        |      |      | 0.1  | 4.6  |      | 2.5  |      |     |     |     |  |
| Intersection Summary      |          |            |      |      |      |      |      |      |      |     |     |     |  |
| HCM 6th Ctrl Delay        |          |            | 25.7 |      |      |      |      |      |      |     |     |     |  |
| HCM 6th LOS               |          |            | С    |      |      |      |      |      |      |     |     |     |  |

#### Notes

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP AM Peak

Synchro 10 Report Page 34

| Intersection           |      |           |      |      |      |      |      |      |      |      |      |      |  |
|------------------------|------|-----------|------|------|------|------|------|------|------|------|------|------|--|
| Int Delay, s/veh       | 24.1 |           |      |      |      |      |      |      |      |      |      |      |  |
| Movement               | EBL  | EBT       | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | 1    | <b>**</b> |      | 1    | ***  |      |      |      | 1    |      |      | 1    |  |
| Traffic Vol, veh/h     | 245  | 1170      | 110  | 40   | 1420 | 75   | 0    | 0    | 125  | 0    | 0    | 235  |  |
| Future Vol, veh/h      | 245  | 1170      | 110  | 40   | 1420 | 75   | 0    | 0    | 125  | 0    | 0    | 235  |  |
| Conflicting Peds, #/hr | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free      | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -         | None | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 275  | -         | -    | 225  | -    | -    | -    | -    | 0    | -    | -    | 0    |  |
| Veh in Median Storage, | ,# - | 0         | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0         | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92        | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 10        | 7    | 3    | 8    | 2    | 7    | 2    | 3    | 2    | 2    | 2    |  |
| Mvmt Flow              | 266  | 1272      | 120  | 43   | 1543 | 82   | 0    | 0    | 136  | 0    | 0    | 255  |  |
|                        |      |           |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Major1 |       | I     | Major2 |     | I     | Minor1 |     | Ν     | /linor2 |   |      |  |
|----------------------|--------|-------|-------|--------|-----|-------|--------|-----|-------|---------|---|------|--|
| Conflicting Flow All | 1625   | 0     | 0     | 1392   | 0   | 0     | -      | -   | 696   | -       | - | 813  |  |
| Stage 1              | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
| Stage 2              | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
| Critical Hdwy        | 5.34   | -     | -     | 5.36   | -   | -     | -      | -   | 7.16  | -       | - | 7.14 |  |
| Critical Hdwy Stg 1  | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
| Critical Hdwy Stg 2  | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
| Follow-up Hdwy       | 3.12   | -     | -     | 3.13   | -   | -     | -      | -   | 3.93  | -       | - | 3.92 |  |
| Pot Cap-1 Maneuver   | ~ 193  | -     | -     | 250    | -   | -     | 0      | 0   | 328   | 0       | 0 | 276  |  |
| Stage 1              | -      | -     | -     | -      | -   | -     | 0      | 0   | -     | 0       | 0 | -    |  |
| Stage 2              | -      | -     | -     | -      | -   | -     | 0      | 0   | -     | 0       | 0 | -    |  |
| Platoon blocked, %   |        | -     | -     |        | -   | -     |        |     |       |         |   |      |  |
| Mov Cap-1 Maneuver   | ~ 193  | -     | -     | 250    | -   | -     | -      | -   | 328   | -       | - | 276  |  |
| Mov Cap-2 Maneuver   | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
| Stage 1              | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
| Stage 2              | -      | -     | -     | -      | -   | -     | -      | -   | -     | -       | - | -    |  |
|                      |        |       |       |        |     |       |        |     |       |         |   |      |  |
| Approach             | EB     |       |       | WB     |     |       | NB     |     |       | SB      |   |      |  |
| HCM Control Delay, s | 39.6   |       |       | 0.6    |     |       | 23.5   |     |       | 76.9    |   |      |  |
| HCM LOS              |        |       |       |        |     |       | С      |     |       | F       |   |      |  |
|                      |        |       |       |        |     |       |        |     |       |         |   |      |  |
| Minor Lane/Major Mvr | nt     | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR | SBLn1 |         |   |      |  |
| Capacity (veh/h)     |        | 328   | ~ 193 | -      | -   | 250   | -      | -   | 276   |         |   |      |  |
| HCM Lane V/C Ratio   |        | 0.414 | 1.38  | -      | -   | 0.174 | -      | -   | 0.925 |         |   |      |  |
| HCM Control Delay (s | )      | 23.5  | 246.5 | -      | -   | 22.4  | -      | -   | 76.9  |         |   |      |  |
| HCM Lane LOS         | /      | С     | F     | -      | -   | С     | -      | -   | F     |         |   |      |  |
| HCM 95th %tile Q(veh | I)     | 2     | 15.6  | -      | -   | 0.6   | -      | -   | 8.6   |         |   |      |  |
| Notes                |        |       |       |        |     |       |        |     |       |         |   |      |  |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

\*: All major volume in platoon

### HCM Signalized Intersection Capacity Analysis 37: CR 9 1/2 & SH 66 EB off-ramp

|                                | ٨          | <b>→</b> | $\mathbf{i}$ | 1    | •          | *          | 1       | Ť     | 1    | 1     | ŧ     | ~    |
|--------------------------------|------------|----------|--------------|------|------------|------------|---------|-------|------|-------|-------|------|
| Movement                       | EBL        | EBT      | EBR          | WBL  | WBT        | WBR        | NBL     | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations            | 57         |          | 1            |      |            |            |         | **    | 1    | 1     | **    |      |
| Traffic Volume (vph)           | 395        | 0        | 420          | 0    | 0          | 0          | 0       | 660   | 115  | 30    | 610   | 0    |
| Future Volume (vph)            | 395        | 0        | 420          | 0    | 0          | 0          | 0       | 660   | 115  | 30    | 610   | 0    |
| Ideal Flow (vphpl)             | 1900       | 1900     | 1900         | 1900 | 1900       | 1900       | 1900    | 1900  | 1900 | 1900  | 1900  | 1900 |
| Total Lost time (s)            | 4.5        |          | 4.5          |      |            |            |         | 4.5   | 4.5  | 4.5   | 4.5   |      |
| Lane Util. Factor              | 0.97       |          | 1.00         |      |            |            |         | 0.95  | 1.00 | 1.00  | 0.95  |      |
| Frt                            | 1.00       |          | 0.85         |      |            |            |         | 1.00  | 0.85 | 1.00  | 1.00  |      |
| Flt Protected                  | 0.95       |          | 1.00         |      |            |            |         | 1.00  | 1.00 | 0.95  | 1.00  |      |
| Satd. Flow (prot)              | 3433       |          | 1583         |      |            |            |         | 3539  | 1583 | 1770  | 3539  |      |
| Flt Permitted                  | 0.95       |          | 1.00         |      |            |            |         | 1.00  | 1.00 | 0.17  | 1.00  |      |
| Satd. Flow (perm)              | 3433       |          | 1583         |      |            |            |         | 3539  | 1583 | 312   | 3539  |      |
| Peak-hour factor, PHF          | 0.92       | 0.92     | 0.92         | 0.92 | 0.92       | 0.92       | 0.92    | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 |
| Adj. Flow (vph)                | 429        | 0        | 457          | 0    | 0          | 0          | 0       | 717   | 125  | 33    | 663   | 0    |
| RTOR Reduction (vph)           | 0          | 0        | 77           | 0    | 0          | 0          | 0       | 0     | 90   | 0     | 0     | 0    |
| Lane Group Flow (vph)          | 429        | 0        | 380          | 0    | 0          | 0          | 0       | 717   | 35   | 33    | 663   | 0    |
| Turn Type                      | Perm       |          | Perm         |      |            |            |         | NA    | Perm | pm+pt | NA    |      |
| Protected Phases               |            |          |              |      |            |            |         | 8     |      | 7     | 4     |      |
| Permitted Phases               | 2          |          | 2            |      |            |            |         |       | 8    | 4     |       |      |
| Actuated Green, G (s)          | 35.1       |          | 35.1         |      |            |            |         | 19.4  | 19.4 | 25.9  | 25.9  |      |
| Effective Green, g (s)         | 35.1       |          | 35.1         |      |            |            |         | 19.4  | 19.4 | 25.9  | 25.9  |      |
| Actuated g/C Ratio             | 0.50       |          | 0.50         |      |            |            |         | 0.28  | 0.28 | 0.37  | 0.37  |      |
| Clearance Time (s)             | 4.5        |          | 4.5          |      |            |            |         | 4.5   | 4.5  | 4.5   | 4.5   |      |
| Vehicle Extension (s)          | 3.0        |          | 3.0          |      |            |            |         | 3.0   | 3.0  | 3.0   | 3.0   |      |
| Lane Grp Cap (vph)             | 1721       |          | 793          |      |            |            |         | 980   | 438  | 157   | 1309  |      |
| v/s Ratio Prot                 |            |          |              |      |            |            |         | c0.20 |      | 0.01  | c0.19 |      |
| v/s Ratio Perm                 | 0.12       |          | c0.24        |      |            |            |         |       | 0.02 | 0.07  |       |      |
| v/c Ratio                      | 0.25       |          | 0.48         |      |            |            |         | 0.73  | 0.08 | 0.21  | 0.51  |      |
| Uniform Delay, d1              | 9.9        |          | 11.4         |      |            |            |         | 22.9  | 18.7 | 15.5  | 17.1  |      |
| Progression Factor             | 1.00       |          | 1.00         |      |            |            |         | 1.00  | 1.00 | 0.36  | 0.59  |      |
| Incremental Delay, d2          | 0.3        |          | 2.1          |      |            |            |         | 2.8   | 0.1  | 0.6   | 0.3   |      |
| Delay (s)                      | 10.3       |          | 13.5         |      |            |            |         | 25.8  | 18.8 | 6.2   | 10.3  |      |
| Level of Service               | В          |          | В            |      |            |            |         | С     | В    | А     | В     |      |
| Approach Delay (s)             |            | 12.0     |              |      | 0.0        |            |         | 24.7  |      |       | 10.1  |      |
| Approach LOS                   |            | В        |              |      | А          |            |         | С     |      |       | В     |      |
| Intersection Summary           |            |          |              |      |            |            |         |       |      |       |       |      |
| HCM 2000 Control Delay         |            |          | 15.9         | Н    | CM 2000    | Level of S | Service |       | В    |       |       |      |
| HCM 2000 Volume to Capac       | city ratio |          | 0.58         |      |            |            |         |       |      |       |       |      |
| Actuated Cycle Length (s)      |            |          | 70.0         | S    | um of lost | time (s)   |         |       | 13.5 |       |       |      |
| Intersection Capacity Utilizat | ion        |          | 91.4%        | IC   | U Level o  | of Service |         |       | F    |       |       |      |
| Analysis Period (min)          |            |          | 15           |      |            |            |         |       |      |       |       |      |

## \* + > \* \* \* \* \* \* \* \* \* \*

| Movement                  | EBL         | EBT | EBR  | WBL      | WBT        | WBR      | NBL       | NBT  | NBR      | SBL      | SBT            | SBR  |
|---------------------------|-------------|-----|------|----------|------------|----------|-----------|------|----------|----------|----------------|------|
| Lane Configurations       |             |     |      | 3        | ***        |          | 55        | **   |          |          | **             | 1    |
| Traffic Volume (veh/h)    | 0           | 0   | 0    | 400      | 835        | 90       | 455       | 600  | 0        | 0        | 240            | 245  |
| Future Volume (veh/h)     | 0           | 0   | 0    | 400      | 835        | 90       | 455       | 600  | 0        | 0        | 240            | 245  |
| Initial Q (Qb), veh       |             |     | -    | 0        | 0          | 0        | 0         | 0    | 0        | 0        | 0              | 0    |
| Ped-Bike Adi(A pbT)       |             |     |      | 1.00     | -          | 1.00     | 1.00      | -    | 1.00     | 1.00     | -              | 1.00 |
| Parking Bus, Adi          |             |     |      | 1.00     | 1.00       | 1.00     | 1.00      | 1.00 | 1.00     | 1.00     | 1.00           | 1.00 |
| Work Zone On Approac      | h           |     |      |          | No         |          |           | No   |          |          | No             |      |
| Adi Sat Flow, veh/h/ln    |             |     |      | 1870     | 1870       | 1870     | 1870      | 1870 | 0        | 0        | 1870           | 1870 |
| Adi Flow Rate, veh/h      |             |     |      | 435      | 908        | 98       | 495       | 652  | 0        | 0        | 261            | 266  |
| Peak Hour Factor          |             |     |      | 0.92     | 0.92       | 0.92     | 0.92      | 0.92 | 0.92     | 0.92     | 0.92           | 0.92 |
| Percent Heavy Veh. %      |             |     |      | 2        | 2          | 2        | 2         | 2    | 0        | 0        | 2              | 2    |
| Cap. veh/h                |             |     |      | 765      | 2011       | 216      | 600       | 1570 | 0        | 0        | 725            | 323  |
| Arrive On Green           |             |     |      | 0.86     | 0.86       | 0.86     | 0.12      | 0.30 | 0.00     | 0.00     | 0.20           | 0.20 |
| Sat Flow, veh/h           |             |     |      | 1781     | 4680       | 503      | 3456      | 3647 | 0        | 0        | 3647           | 1585 |
| Grp Volume(v) veh/h       |             |     |      | 435      | 660        | 346      | 495       | 652  | 0        | 0        | 261            | 266  |
| Grn Sat Flow(s) veh/h/lr  | n           |     |      | 1781     | 1702       | 1780     | 1728      | 1777 | 0        | 0        | 1777           | 1585 |
| O Serve( $a$ s) s         | •           |     |      | 4 7      | 31         | 31       | 9.8       | 10.3 | 0.0      | 0.0      | 44             | 11 2 |
| Cvcle Q Clear(q, c)       |             |     |      | 47       | 3.1        | 3.1      | 9.8       | 10.3 | 0.0      | 0.0      | 4.4            | 11.2 |
| Prop In Lane              |             |     |      | 1.00     | 0.1        | 0.28     | 1.00      | 10.0 | 0.00     | 0.00     | - 1.T          | 1.00 |
| Lane Gro Can(c) veh/h     | 1           |     |      | 765      | 1463       | 765      | 600       | 1570 | 0.00     | 0.00     | 725            | 323  |
| V/C Ratio(X)              |             |     |      | 0.57     | 0 45       | 0.45     | 0.83      | 0.42 | 0.00     | 0.00     | 0.36           | 0.82 |
| Avail Cap(c, a) veh/h     |             |     |      | 765      | 1463       | 765      | 666       | 1828 | 0.00     | 0.00     | 914            | 408  |
| HCM Platoon Ratio         |             |     |      | 2 00     | 2 00       | 2 00     | 0.67      | 0.67 | 1 00     | 1 00     | 1 00           | 1 00 |
| Unstream Filter(I)        |             |     |      | 1.00     | 1.00       | 1.00     | 0.82      | 0.82 | 0.00     | 0.00     | 1.00           | 1.00 |
| Uniform Delay (d) s/vet   | h           |     |      | 3.1      | 3.0        | 3.0      | 29.9      | 17.4 | 0.0      | 0.00     | 23.9           | 26.7 |
| Incr Delay (d2) s/veh     |             |     |      | 3.0      | 1.0        | 1.9      | 64        | 0.1  | 0.0      | 0.0      | 0.3            | 10.4 |
| Initial Q Delav(d3) s/vet | 1           |     |      | 0.0      | 0.0        | 0.0      | 0.0       | 0.0  | 0.0      | 0.0      | 0.0            | 0.0  |
| %ile BackOfQ(50%) vet     | n/ln        |     |      | 1.5      | 0.8        | 1.0      | 4.3       | 37   | 0.0      | 0.0      | 1.6            | 4.6  |
| Unsig. Movement Delay     | , s/veh     |     |      | 1.0      | 0.0        | 1.0      | 1.0       | 0.1  | 0.0      | 0.0      | 1.0            | 1.0  |
| LnGrp Delav(d) s/veh      | , , , , , , |     |      | 62       | 40         | 50       | 36.3      | 17.5 | 0.0      | 0.0      | 24.2           | 37 1 |
| LnGrp LOS                 |             |     |      | <u>А</u> | 4.5<br>A   | 0.0<br>A | 00.0<br>D | B    | 0.0<br>A | 0.0<br>A | <u>с</u> , г.2 | D    |
| Approach Vol. veh/h       |             |     |      |          | 1441       |          |           | 1147 |          |          | 527            |      |
| Annroach Delay sluch      |             |     |      |          | <u>1</u> 0 |          |           | 25.6 |          |          | 30.7           |      |
| Approach I OS             |             |     |      |          | 5<br>Δ     |          |           | 20.0 |          |          | 50.7           |      |
|                           |             |     |      |          | А          |          |           | U    |          |          | U              |      |
| Timer - Assigned Phs      |             |     | 3    | 4        |            | 6        |           | 8    |          |          |                |      |
| Phs Duration (G+Y+Rc)     | ), S        |     | 16.6 | 18.8     |            | 34.6     |           | 35.4 |          |          |                |      |
| Change Period (Y+Rc),     | S           |     | 4.5  | 4.5      |            | 4.5      |           | 4.5  |          |          |                |      |
| Max Green Setting (Gm     | nax), s     |     | 13.5 | 18.0     |            | 25.0     |           | 36.0 |          |          |                |      |
| Max Q Clear Time (g_c     | +l1), s     |     | 11.8 | 13.2     |            | 6.7      |           | 12.3 |          |          |                |      |
| Green Ext Time (p_c), s   | S           |     | 0.3  | 1.0      |            | 6.9      |           | 3.8  |          |          |                |      |
| Intersection Summary      |             |     |      |          |            |          |           |      |          |          |                |      |
| HCM 6th Ctrl Delav        |             |     | 16.9 |          |            |          |           |      |          |          |                |      |
| HCM 6th LOS               |             |     | В    |          |            |          |           |      |          |          |                |      |

# HCM 6th Signalized Intersection Summary 39: CR 11 & SH 66

03/12/2020

|                           | ٠                |      | 7    | 4    | -    | *    | 1    | Ť        | 1    | 1    | ŧ    | 4    |
|---------------------------|------------------|------|------|------|------|------|------|----------|------|------|------|------|
| Movement                  | EBL              | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       | 5                | **   | 1    | 3    | **   | 1    | 5    | <b>†</b> | 1    | 5    |      | 1    |
| Traffic Volume (veh/h)    | 75               | 485  | 85   | 150  | 1090 | 20   | 135  | 10       | 105  | 125  | 10   | 100  |
| Future Volume (veh/h)     | 75               | 485  | 85   | 150  | 1090 | 20   | 135  | 10       | 105  | 125  | 10   | 100  |
| Initial Q (Qb), veh       | 0                | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00             |      | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj          | 1.00             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approac      | ch               | No   |      |      | No   |      |      | No       |      |      | No   |      |
| Adj Sat Flow, veh/h/ln    | 1900             | 1737 | 1530 | 1900 | 1781 | 1900 | 1900 | 1900     | 1900 | 1900 | 1900 | 1900 |
| Adj Flow Rate, veh/h      | 82               | 527  | 92   | 163  | 1185 | 22   | 147  | 11       | 114  | 136  | 11   | 0    |
| Peak Hour Factor          | 0.92             | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %      | 0                | 11   | 25   | 0    | 8    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Cap, veh/h                | 206              | 981  | 385  | 310  | 1136 | 541  | 624  | 530      | 449  | 585  | 530  |      |
| Arrive On Green           | 0.06             | 0.30 | 0.30 | 0.03 | 0.11 | 0.11 | 0.07 | 0.28     | 0.28 | 0.07 | 0.28 | 0.00 |
| Sat Flow, veh/h           | 1810             | 3300 | 1296 | 1810 | 3385 | 1610 | 1810 | 1900     | 1610 | 1810 | 1900 | 1610 |
| Grp Volume(v), veh/h      | 82               | 527  | 92   | 163  | 1185 | 22   | 147  | 11       | 114  | 136  | 11   | 0    |
| Grp Sat Flow(s),veh/h/lr  | n1810            | 1650 | 1296 | 1810 | 1692 | 1610 | 1810 | 1900     | 1610 | 1810 | 1900 | 1610 |
| Q Serve(g_s), s           | 0.0              | 9.3  | 3.8  | 4.9  | 23.5 | 0.6  | 4.0  | 0.3      | 3.8  | 3.7  | 0.3  | 0.0  |
| Cycle Q Clear(g_c), s     | 0.0              | 9.3  | 3.8  | 4.9  | 23.5 | 0.6  | 4.0  | 0.3      | 3.8  | 3.7  | 0.3  | 0.0  |
| Prop In Lane              | 1.00             |      | 1.00 | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 |
| Lane Grp Cap(c), veh/h    | 1 206            | 981  | 385  | 310  | 1136 | 541  | 624  | 530      | 449  | 585  | 530  |      |
| V/C Ratio(X)              | 0.40             | 0.54 | 0.24 | 0.53 | 1.04 | 0.04 | 0.24 | 0.02     | 0.25 | 0.23 | 0.02 |      |
| Avail Cap(c_a), veh/h     | 232              | 981  | 385  | 388  | 1136 | 541  | 624  | 530      | 449  | 585  | 530  |      |
| HCM Platoon Ratio         | 1.00             | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)        | 1.00             | 1.00 | 1.00 | 0.72 | 0.72 | 0.72 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 0.00 |
| Uniform Delay (d), s/vel  | h 31.1           | 20.6 | 18.6 | 21.4 | 31.1 | 10.3 | 16.1 | 18.3     | 19.6 | 16.0 | 18.3 | 0.0  |
| Incr Delay (d2), s/veh    | 1.2              | 0.6  | 0.3  | 1.0  | 34.7 | 0.0  | 0.2  | 0.1      | 1.4  | 0.2  | 0.1  | 0.0  |
| Initial Q Delay(d3),s/vel | n 0.0            | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),vel     | h/ln1.2          | 3.1  | 1.1  | 1.9  | 15.7 | 0.3  | 1.6  | 0.1      | 1.5  | 1.5  | 0.1  | 0.0  |
| Unsig. Movement Delay     | y, s/veh         | 1    |      |      |      |      |      |          |      |      |      |      |
| LnGrp Delay(d),s/veh      | 32.4             | 21.2 | 18.9 | 22.4 | 65.8 | 10.3 | 16.3 | 18.4     | 21.0 | 16.2 | 18.4 | 0.0  |
| LnGrp LOS                 | С                | C    | В    | С    | F    | В    | В    | В        | С    | В    | В    |      |
| Approach Vol, veh/h       |                  | 701  |      |      | 1370 |      |      | 272      |      |      | 147  | A    |
| Approach Delay, s/veh     |                  | 22.2 |      |      | 59.8 |      |      | 18.3     |      |      | 16.3 |      |
| Approach LOS              |                  | С    |      |      | E    |      |      | В        |      |      | В    |      |
| Timer - Assigned Phs      | 1                | 2    | 3    | 4    | 5    | 6    | 7    | 8        |      |      |      |      |
| Phs Duration (G+Y+Rc)     | ), <b>\$</b> 1.2 | 25.3 | 9.5  | 24.0 | 8.5  | 28.0 | 9.5  | 24.0     |      |      |      |      |
| Change Period (Y+Rc),     | s 4.5            | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5      |      |      |      |      |
| Max Green Setting (Gm     | 1ax9,.75         | 18.8 | 5.0  | 18.5 | 5.0  | 23.5 | 5.0  | 18.5     |      |      |      |      |
| Max Q Clear Time (g_c     | +116),9s         | 11.3 | 6.0  | 2.3  | 2.0  | 25.5 | 5.7  | 5.8      |      |      |      |      |
| Green Ext Time (p_c), s   | s 0.1            | 2.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.3      |      |      |      |      |
| Intersection Summary      |                  |      |      |      |      |      |      |          |      |      |      |      |
| HCM 6th Ctrl Delay        |                  |      | 42.1 |      |      |      |      |          |      |      |      |      |
| HCM 6th LOS               |                  |      | D    |      |      |      |      |          |      |      |      |      |
|                           |                  |      |      |      |      |      |      |          |      |      |      |      |

### Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

### HCM 6th Signalized Intersection Summary 40: CR 11.5 & SH 66

03/12/2020

| -                          | •     |      | 7    | 1    | +    | *    | 1    | Ť    | 1    | 1    | ŧ    | 4    |  |
|----------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Movement E                 | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations        | 1     | 11   | 1    | 1    |      | 1    | 57   | Þ    |      | 1    | Þ    |      |  |
| Traffic Volume (veh/h)     | 50    | 510  | 155  | 125  | 960  | 55   | 280  | 5    | 255  | 20   | 5    | 20   |  |
| Future Volume (veh/h)      | 50    | 510  | 155  | 125  | 960  | 55   | 280  | 5    | 255  | 20   | 5    | 20   |  |
| Initial Q (Qb), veh        | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1      | 00.1  |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj 1         | 00.1  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach      |       | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln 18  | 870   | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate, veh/h       | 54    | 554  | 168  | 136  | 1043 | 60   | 304  | 5    | 277  | 22   | 5    | 22   |  |
| Peak Hour Factor 0         | ).92  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %       | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Cap, veh/h                 | 186   | 1132 | 505  | 404  | 1307 | 583  | 1109 | 9    | 474  | 316  | 78   | 342  |  |
| Arrive On Green 0          | 0.09  | 0.64 | 0.64 | 0.03 | 0.12 | 0.12 | 0.07 | 0.30 | 0.30 | 0.02 | 0.26 | 0.26 |  |
| Sat Flow, veh/h 17         | 781   | 3554 | 1585 | 1781 | 3554 | 1585 | 3456 | 28   | 1561 | 1781 | 302  | 1329 |  |
| Grp Volume(v), veh/h       | 54    | 554  | 168  | 136  | 1043 | 60   | 304  | 0    | 282  | 22   | 0    | 27   |  |
| Grp Sat Flow(s),veh/h/ln17 | 781   | 1777 | 1585 | 1781 | 1777 | 1585 | 1728 | 0    | 1589 | 1781 | 0    | 1631 |  |
| Q Serve(g s), s            | 1.5   | 5.8  | 2.4  | 0.0  | 20.0 | 2.4  | 4.5  | 0.0  | 10.5 | 0.6  | 0.0  | 0.9  |  |
| Cycle Q Clear(g c), s      | 1.5   | 5.8  | 2.4  | 0.0  | 20.0 | 2.4  | 4.5  | 0.0  | 10.5 | 0.6  | 0.0  | 0.9  |  |
| Prop In Lane 1             | 1.00  |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.98 | 1.00 |      | 0.81 |  |
| Lane Grp Cap(c), veh/h     | 186   | 1132 | 505  | 404  | 1307 | 583  | 1109 | 0    | 483  | 316  | 0    | 419  |  |
| V/C Ratio(X) 0             | ).29  | 0.49 | 0.33 | 0.34 | 0.80 | 0.10 | 0.27 | 0.00 | 0.58 | 0.07 | 0.00 | 0.06 |  |
| Avail Cap(c a), veh/h      | 230   | 1132 | 505  | 404  | 1307 | 583  | 1109 | 0    | 483  | 399  | 0    | 419  |  |
| HCM Platoon Ratio 2        | 2.00  | 2.00 | 2.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I) 0       | ).94  | 0.94 | 0.94 | 0.83 | 0.83 | 0.83 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh 1 | 19.5  | 9.7  | 4.6  | 24.6 | 28.2 | 20.5 | 16.8 | 0.0  | 20.6 | 18.7 | 0.0  | 19.6 |  |
| Incr Delay (d2), s/veh     | 0.8   | 1.4  | 1.7  | 0.4  | 4.3  | 0.3  | 0.1  | 0.0  | 5.1  | 0.1  | 0.0  | 0.3  |  |
| Initial Q Delay(d3),s/veh  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/Ir   | n0.6  | 1.7  | 1.2  | 1.9  | 9.9  | 0.9  | 1.7  | 0.0  | 4.3  | 0.3  | 0.0  | 0.4  |  |
| Unsig. Movement Delay, s   | s/veh |      |      |      |      |      |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh 2     | 20.3  | 11.1 | 6.3  | 25.0 | 32.5 | 20.8 | 16.9 | 0.0  | 25.7 | 18.7 | 0.0  | 19.9 |  |
| LnGrp LOS                  | С     | В    | А    | С    | С    | С    | В    | А    | С    | В    | А    | В    |  |
| Approach Vol. veh/h        |       | 776  |      |      | 1239 |      |      | 586  |      |      | 49   |      |  |
| Approach Delay, s/veh      |       | 10.7 |      |      | 31.1 |      |      | 21.1 |      |      | 19.4 |      |  |
| Approach LOS               |       | В    |      |      | С    |      |      | С    |      |      | В    |      |  |
| Timer - Assigned Phs       | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc). \$  | \$1.2 | 26.8 | 9.5  | 22.5 | 7.8  | 30.2 | 6.2  | 25.8 |      |      |      |      |  |
| Change Period (Y+Rc) s     | 4.5   | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |      |      |  |
| Max Green Setting (Gmax    | x6. Z | 22.3 | 5.0  | 18.0 | 5.0  | 24.0 | 5.0  | 18.0 |      |      |      |      |  |
| Max Q Clear Time (g c+11   | 12.05 | 7.8  | 6.5  | 2.9  | 3.5  | 22.0 | 2.6  | 12.5 |      |      |      |      |  |
| Green Ext Time (p_c), s    | 0.1   | 3.2  | 0.0  | 0.1  | 0.0  | 1.2  | 0.0  | 0.8  |      |      |      |      |  |
| Intersection Summary       |       |      |      |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay         |       |      | 22.7 |      |      |      |      |      |      |      |      |      |  |
| HCM 6th LOS                |       |      | С    |      |      |      |      |      |      |      |      |      |  |

### HCM 6th Signalized Intersection Summary 41: CR 13 & SH 66

03/12/2020

| Novement   EBL   EBT   EBR   WBL   WBT   WBL   NBT   NBT   NBT   SBL   SBT   SBR     a.ne Configurations   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <t< th=""><th>و</th><th>9 <sub>2</sub></th><th>٠</th><th>7</th><th>4</th><th>-</th><th>*</th><th>1</th><th>Ť</th><th>1</th><th>1</th><th>Ļ</th><th>1</th><th></th></t<>                                                                                                                            | و                           | 9 <sub>2</sub> | ٠          | 7    | 4    | -    | *    | 1    | Ť    | 1    | 1    | Ļ    | 1    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|------------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Movement EE                 | BL E           | BT         | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Traffic Volume (vehrlh) 45 \$75 165 85 640 40 220 165 90 45 325 280   Future Volume (vehrlh) 45 575 165 85 640 40 220 165 90 45 325 280   Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00   Vork Zone On Approach No No No No No No No No   Adj Sta Flow, vehr/h 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1871 1871 1871 1871 <td>Lane Configurations</td> <td>٦ (</td> <td><b>†</b>†</td> <td>1</td> <td>1</td> <td>**</td> <td>1</td> <td>1</td> <td>**</td> <td>1</td> <td>1</td> <td>**</td> <td>1</td> <td></td>                                                | Lane Configurations         | ٦ (            | <b>†</b> † | 1    | 1    | **   | 1    | 1    | **   | 1    | 1    | **   | 1    |  |
| Future Volume (veh/n) 45 575 165 85 640 40 220 165 90 45 325 280   initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Traffic Volume (veh/h) 4    | 5 5            | 575        | 165  | 85   | 640  | 40   | 220  | 165  | 90   | 45   | 325  | 280  |  |
| Initial Q(b), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Future Volume (veh/h) 4     | 5 !            | 575        | 165  | 85   | 640  | 40   | 220  | 165  | 90   | 45   | 325  | 280  |  |
| Pad-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initial Q (Qb), veh         | 0              | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                             | Ped-Bike Adj(A_pbT) 1.0     | )0             |            | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Work Zone On Approach No No No No No No   Adj Sat Flow, vehrh/in 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870                                                                                                                                                                                                                                         | Parking Bus, Adj 1.0        | 0 1            | .00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Adj Sat Flow, vehr/hn 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 <t< td=""><td>Work Zone On Approach</td><td></td><td>No</td><td></td><td></td><td>No</td><td></td><td></td><td>No</td><td></td><td></td><td>No</td><td></td><td></td></t<>                                                                 | Work Zone On Approach       |                | No         |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Flow Rate, veh/h 49 625 179 92 696 43 239 179 98 49 353 304   Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92<                                                                                                                                                                                                                                               | Adj Sat Flow, veh/h/ln 187  | 70 18          | 870        | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adj Flow Rate, veh/h 4      | 9 (            | 625        | 179  | 92   | 696  | 43   | 239  | 179  | 98   | 49   | 353  | 304  |  |
| Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak Hour Factor 0.9        | )2 0           | .92        | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Cap, veh/h 300 1090 486 252 1041 464 452 1183 528 464 914 408   Arrive On Green 0.15 0.61 0.61 0.06 0.29 0.29 0.20 0.33 0.33 0.34 0.40 0.26 0.26   Sat Flow, veh/h 1781 3554 1585 1781 3554 1585 1781 3554 1585 1781 3554 1585 1781 3544 1585 1781 3544 1585 1781 1777 1585 3.04 49 353 304   Grp Sat Flow(s), veh/h 100 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                           | Percent Heavy Veh, %        | 2              | 2          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Arrive On Green 0.15 0.61 0.61 0.06 0.29 0.29 0.12 0.33 0.33 0.34 0.26 0.26   Sat Flow, yeh/h 1781 3554 1585 1781 3554 1585 1781 3554 1585 1585 1585   Grp Volume(v), yeh/h 49 625 179 92 696 43 239 179 98 49 353 304   Grp Sat Flow(s), yeh/h 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 100                                                                                                                                                                                                                                     | Cap, veh/h 30               | 0 10           | 090        | 486  | 252  | 1041 | 464  | 452  | 1183 | 528  | 464  | 914  | 408  |  |
| Sat Flow, veh/h 1781 3554 1585 1781 3554 1585 1781 3554 1585   Grp Volume(v), veh/h 49 625 179 92 696 43 239 179 98 49 353 304   Grp Sat Flow(s), veh/h/In1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585 304   Q Serve(g_s), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Cycle Q Clear(g_c), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Cycle Q Clear(g_c), veh/h 300 1090 486 286 1041 464 452 1183 528 514 914 408   V/C Ratio(X) 0.16 0.57 0.37 0.36 0.67 0.9 0.53 0.16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                           | Arrive On Green 0.1         | 5 0            | ).61       | 0.61 | 0.06 | 0.29 | 0.29 | 0.12 | 0.33 | 0.33 | 0.04 | 0.26 | 0.26 |  |
| Grp Volume(v), veh/h 49 625 179 92 696 43 239 179 98 49 353 304   Grp Sat Flow(s), veh/h/in1781 1777 1585 1781 1777 1585 1781 1777 1585 304   Q Serve(g_s), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Oycle Q. Clear(g_c), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Oycle Q. Clear(g_c), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Oycle Q. Clear(g_c), veh/h 300 1090 486 252 1041 464 452 1183 528 514 914 408   HCM Platon Ratio 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td< td=""><td>Sat Flow, veh/h 178</td><td><u>31 3</u>5</td><td>554</td><td>1585</td><td>1781</td><td>3554</td><td>1585</td><td>1781</td><td>3554</td><td>1585</td><td>1781</td><td>3554</td><td>1585</td><td></td></td<> | Sat Flow, veh/h 178         | <u>31 3</u> 5  | 554        | 1585 | 1781 | 3554 | 1585 | 1781 | 3554 | 1585 | 1781 | 3554 | 1585 |  |
| Grp Sat Flow(s),veh/h/ln1781 1777 1585 1781 1777 1585 1781 1777 1585 1781 1777 1585   Q Serve(g_s), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Cycle Q Clear(g_c), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00   Ane Gr Cap(c), veh/h 300 1090 486 286 1041 464 452 1183 528 514 914 408   HCM Platoon Ratio 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                         | Grp Volume(v), veh/h 4      | 9 (            | 625        | 179  | 92   | 696  | 43   | 239  | 179  | 98   | 49   | 353  | 304  |  |
| Q Serve(g.s), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Cycle Q Clear(g_c), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00   Lane Grp Cap(c), veh/h 300 1090 486 252 1041 464 452 1183 528 464 914 408   V/C Ratio(X) 0.16 0.57 0.37 0.36 0.67 0.09 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>Grp Sat Flow(s),veh/h/ln178</td> <td>81 17</td> <td>777</td> <td>1585</td> <td>1781</td> <td>1777</td> <td>1585</td> <td>1781</td> <td>1777</td> <td>1585</td> <td>1781</td> <td>1777</td> <td>1585</td> <td></td>                   | Grp Sat Flow(s),veh/h/ln178 | 81 17          | 777        | 1585 | 1781 | 1777 | 1585 | 1781 | 1777 | 1585 | 1781 | 1777 | 1585 |  |
| Cycle Q Clear(g_c), s 0.0 7.3 3.9 2.8 12.1 1.0 6.5 2.5 3.1 1.4 5.7 9.0   Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                                               | Q Serve(g_s), s 0           | .0             | 7.3        | 3.9  | 2.8  | 12.1 | 1.0  | 6.5  | 2.5  | 3.1  | 1.4  | 5.7  | 9.0  |  |
| Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>Cycle Q Clear(g_c), s 0</td> <td>.0</td> <td>7.3</td> <td>3.9</td> <td>2.8</td> <td>12.1</td> <td>1.0</td> <td>6.5</td> <td>2.5</td> <td>3.1</td> <td>1.4</td> <td>5.7</td> <td>9.0</td> <td></td>                                         | Cycle Q Clear(g_c), s 0     | .0             | 7.3        | 3.9  | 2.8  | 12.1 | 1.0  | 6.5  | 2.5  | 3.1  | 1.4  | 5.7  | 9.0  |  |
| Lane Grp Cap(c), veh/h 300 1090 486 252 1041 464 452 1183 528 464 914 408<br>//C Ratio(X) 0.16 0.57 0.37 0.36 0.67 0.09 0.53 0.15 0.19 0.11 0.39 0.75<br>Avail Cap(c_a), veh/h 300 1090 486 286 1041 464 455 1183 528 514 914 408<br>HCM Platoon Ratio 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prop In Lane 1.0            | )0             |            | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| V/C Ratio(X) 0.16 0.57 0.37 0.36 0.67 0.09 0.53 0.15 0.19 0.11 0.39 0.75   Avail Cap(c_a), veh/h 300 1090 486 286 1041 464 455 1183 528 514 914 408   HCM Platoon Ratio 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>Lane Grp Cap(c), veh/h 30</td> <td>0 10</td> <td>090</td> <td>486</td> <td>252</td> <td>1041</td> <td>464</td> <td>452</td> <td>1183</td> <td>528</td> <td>464</td> <td>914</td> <td>408</td> <td></td>                          | Lane Grp Cap(c), veh/h 30   | 0 10           | 090        | 486  | 252  | 1041 | 464  | 452  | 1183 | 528  | 464  | 914  | 408  |  |
| Avail Cap(c_a), veh/h 300 1090 486 286 1041 464 455 1183 528 514 914 408   HCM Platoon Ratio 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                           | V/C Ratio(X) 0.1            | 6 0            | ).57       | 0.37 | 0.36 | 0.67 | 0.09 | 0.53 | 0.15 | 0.19 | 0.11 | 0.39 | 0.75 |  |
| HCM Platoon Ratio 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                                             | Avail Cap(c_a), veh/h 30    | 0 10           | 090        | 486  | 286  | 1041 | 464  | 455  | 1183 | 528  | 514  | 914  | 408  |  |
| Upstream Filter(I) 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                             | HCM Platoon Ratio 2.0       | 0 2            | 2.00       | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Uniform Delay (d), s/veh 24.0 10.8 10.2 21.1 21.8 10.3 14.9 16.4 16.6 17.6 21.4 12.7<br>Incr Delay (d2), s/veh 0.2 2.0 1.9 0.9 3.4 0.4 1.1 0.3 0.8 0.1 1.2 11.8<br>Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Upstream Filter(I) 0.9      | 0 0            | .90        | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Incr Delay (d2), s/veh 0.2 2.0 1.9 0.9 3.4 0.4 1.1 0.3 0.8 0.1 1.2 11.8   Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                       | Uniform Delay (d), s/veh 24 | .0 1           | 0.8        | 10.2 | 21.1 | 21.8 | 10.3 | 14.9 | 16.4 | 16.6 | 17.6 | 21.4 | 12.7 |  |
| Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Incr Delay (d2), s/veh 0    | .2             | 2.0        | 1.9  | 0.9  | 3.4  | 0.4  | 1.1  | 0.3  | 0.8  | 0.1  | 1.2  | 11.8 |  |
| Wile BackOfQ(50%),veh/lr0.6 2.1 1.4 1.1 4.7 0.5 2.5 1.0 1.2 0.6 2.4 4.2   Unsig. Movement Delay, s/veh 24.2 12.8 12.1 22.0 25.2 10.7 16.0 16.7 17.4 17.7 22.7 24.4   LnGrp LOS C B B C C B B C C   Approach Vol, veh/h 853 831 516 706   Approach Delay, s/veh 13.3 24.1 16.5 23.1   Approach LOS B C B C B C   Timer - Assigned Phs 1 2 3 4 5 6 7 8   Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8 12.1   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$,\$ 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ex                                                                                                                                                                                                                  | Initial Q Delay(d3),s/veh 0 | .0             | 0.0        | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Unsig. Movement Delay, s/veh<br>LnGrp Delay(d),s/veh 24.2 12.8 12.1 22.0 25.2 10.7 16.0 16.7 17.4 17.7 22.7 24.4<br>LnGrp LOS C B B C C B B B C C C<br>Approach Vol, veh/h 853 831 516 706<br>Approach Delay, s/veh 13.3 24.1 16.5 23.1<br>Approach LOS B C B C B C<br>Timer - Assigned Phs 1 2 3 4 5 6 7 8<br>Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8<br>Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5<br>Max Green Setting (Gmax\$,\$\$ 20.0 8.5 18.0 5.0 20.5 5.0 21.5<br>Max Q Clear Time (g_c+114),\$\$ 9.3 8.5 11.0 2.0 14.1 3.4 5.1<br>Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 2.3 0.0 1.2                                                                                                                                        | %ile BackOfQ(50%),veh/Ir0   | .6             | 2.1        | 1.4  | 1.1  | 4.7  | 0.5  | 2.5  | 1.0  | 1.2  | 0.6  | 2.4  | 4.2  |  |
| LnGrp Delay(d),s/veh 24.2 12.8 12.1 22.0 25.2 10.7 16.0 16.7 17.4 17.7 22.7 24.4   LnGrp LOS C B B C C B B C C   Approach Vol, veh/h 853 831 516 706   Approach Delay, s/veh 13.3 24.1 16.5 23.1   Approach LOS B C B C B C   Timer - Assigned Phs 1 2 3 4 5 6 7 8   Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$,\$\$ 20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+14,\$\$ 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2                                                                                                                                                                                                        | Unsig. Movement Delay, s/v  | /eh            |            |      |      |      |      |      |      |      |      |      |      |  |
| LnGrp LOS C B B C C B B B B C C   Approach Vol, veh/h 853 831 516 706   Approach Delay, s/veh 13.3 24.1 16.5 23.1   Approach LOS B C B C B C   Timer - Assigned Phs 1 2 3 4 5 6 7 8 C   Timer - Assigned Phs 1 2 3 4 5 6 7 8 C   Timer - Assigned Phs 1 2 3 4 5 6 7 8 C C   Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8 C   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                    | LnGrp Delay(d),s/veh 24     | .2 1           | 2.8        | 12.1 | 22.0 | 25.2 | 10.7 | 16.0 | 16.7 | 17.4 | 17.7 | 22.7 | 24.4 |  |
| Approach Vol, veh/h 853 831 516 706   Approach Delay, s/veh 13.3 24.1 16.5 23.1   Approach LOS B C B C   Timer - Assigned Phs 1 2 3 4 5 6 7 8   Change Period (Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$,\$\$ 20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+114), & 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 10.0 2.0 0.0 2.3 0.0 1.2                                                                                                                                                                                                                                                                              | LnGrp LOS                   | С              | В          | В    | С    | С    | В    | В    | В    | В    | В    | С    | С    |  |
| Approach Delay, s/veh 13.3 24.1 16.5 23.1   Approach LOS B C B C   Timer - Assigned Phs 1 2 3 4 5 6 7 8   Change Period (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$, \$20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+I14), \$8 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 40.2                                                                                                                                                                                                                                                                                                                                      | Approach Vol, veh/h         | 8              | 853        |      |      | 831  |      |      | 516  |      |      | 706  |      |  |
| Approach LOS B C B C   Timer - Assigned Phs 1 2 3 4 5 6 7 8   Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$, \$\$ 20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+I14), \$\$ 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 40.2 40.2 40.2 40.2 40.2                                                                                                                                                                                                                                                                                                                                                               | Approach Delay, s/veh       | 1              | 3.3        |      |      | 24.1 |      |      | 16.5 |      |      | 23.1 |      |  |
| Timer - Assigned Phs 1 2 3 4 5 6 7 8   Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$, \$\$ 20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+114), \$\$ 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 40.2 40.2 40.2 40.2                                                                                                                                                                                                                                                                                                                                                                                           | Approach LOS                |                | В          |      |      | С    |      |      | В    |      |      | С    |      |  |
| Phs Duration (G+Y+Rc), s8.7 26.0 12.9 22.5 9.6 25.0 7.6 27.8   Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$, \$20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+I14), & 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 40.2 40.2 40.2 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                        | Timer - Assigned Phs        | 1              | 2          | 3    | 4    | 5    | 6    | 7    | 8    |      |      |      |      |  |
| Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5   Max Green Setting (Gmax\$, \$20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+I14), & 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 40.2 40.2 40.2 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phs Duration (G+Y+Rc) s8    | .7 2           | 26.0       | 12.9 | 22.5 | 9.6  | 25.0 | 7.6  | 27.8 |      |      |      |      |  |
| Max Green Setting (Gmax\$,\$ 20.0 8.5 18.0 5.0 20.5 5.0 21.5   Max Q Clear Time (g_c+114),8 9.3 8.5 11.0 2.0 14.1 3.4 5.1   Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 1.2   Intersection Summary 10.0 10.0 10.0 10.0 10.0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Change Period (Y+Rc) s 4    | .5             | 4.5        | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |      |      |  |
| Max Q Clear Time (g_c+1/4),& 9.3 8.5 11.0 2.0 14.1 3.4 5.1<br>Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 2.3 0.0 1.2<br>Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max Green Setting (Gmax5    | <b>.</b> 5 2   | 20.0       | 8.5  | 18.0 | 5.0  | 20.5 | 5.0  | 21.5 |      |      |      |      |  |
| Green Ext Time (p_c), s 0.0 3.1 0.0 2.0 0.0 2.3 0.0 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max Q Clear Time (g. c+114  | .8             | 9.3        | 8.5  | 11.0 | 2.0  | 14.1 | 3.4  | 5.1  |      |      |      |      |  |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Green Ext Time (p_c), s 0   | .0             | 3.1        | 0.0  | 2.0  | 0.0  | 2.3  | 0.0  | 1.2  |      |      |      |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intersection Summarv        |                |            |      |      |      |      |      |      |      |      |      |      |  |
| HUM OTH LUEIAV 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HCM 6th Ctrl Delay          |                |            | 19.3 |      |      |      |      |      |      |      |      |      |  |
| HCM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCM 6th LOS                 |                |            | B    |      |      |      |      |      |      |      |      |      |  |

| 03/12/2 | 020 |
|---------|-----|
|---------|-----|

|                           | ٠             | -+   | +           | *    | 1     | 1           |
|---------------------------|---------------|------|-------------|------|-------|-------------|
| Movement                  | EBL           | EBT  | WBT         | WBR  | SBL   | SBR         |
| Lane Configurations       | 5             | **   | **          | 1    | 5     | 1           |
| Traffic Volume (veh/h)    | 50            | 660  | 605         | 20   | 20    | 160         |
| Future Volume (veh/h)     | 50            | 660  | 605         | 20   | 20    | 160         |
| Initial Q (Qb), veh       | 0             | 0    | 0           | 0    | 0     | 0           |
| Ped-Bike Adi(A pbT)       | 1.00          |      |             | 1.00 | 1.00  | 1.00        |
| Parking Bus. Adi          | 1.00          | 1.00 | 1.00        | 0.90 | 1.00  | 1.00        |
| Work Zone On Approac      | h             | No   | No          |      | No    |             |
| Adi Sat Flow, veh/h/ln    | 1900          | 1752 | 1737        | 1218 | 1707  | 1900        |
| Adi Flow Rate veh/h       |               | 717  | 658         | 22   | 22    | 174         |
| Peak Hour Factor          | 0.92          | 0.92 | 0.92        | 0.92 | 0.92  | 0.92        |
| Percent Heavy Veh %       | 0.02          | 10   | 11          | 46   | 13    | 0.02        |
| Can yeh/h                 | 160           | 1800 | 112/        | 316  | 280   | 286         |
| Arrivo On Groon           | 409           | 0.54 | 0.24        | 0.24 | 209   | 200<br>0 10 |
| Arrive On Green           | 0.00          | 0.54 | 0.34        | 0.34 | U. IÕ | U. IÕ       |
| Sat Flow, ven/n           | 1810          | 3416 | 3387        | 929  | 1626  | 1610        |
| Grp Volume(v), veh/h      | 54            | 717  | 658         | 22   | 22    | 174         |
| Grp Sat Flow(s),veh/h/lr  | n1810         | 1664 | 1650        | 929  | 1626  | 1610        |
| Q Serve(g_s), s           | 0.5           | 4.0  | 5.3         | 0.5  | 0.4   | 3.2         |
| Cycle Q Clear(g_c), s     | 0.5           | 4.0  | 5.3         | 0.5  | 0.4   | 3.2         |
| Prop In Lane              | 1.00          |      |             | 1.00 | 1.00  | 1.00        |
| Lane Grp Cap(c), veh/h    | 469           | 1800 | 1124        | 316  | 289   | 286         |
| V/C Ratio(X)              | 0.12          | 0.40 | 0.59        | 0.07 | 0.08  | 0.61        |
| Avail Cap(c, a) veh/h     | 673           | 3591 | 2528        | 712  | 1093  | 1083        |
| HCM Platoon Ratio         | 1.00          | 1 00 | 1 00        | 1 00 | 1 00  | 1 00        |
| Instream Filter/I)        | 1.00          | 1.00 | 1.00        | 1.00 | 1.00  | 1.00        |
| Uniform Delay (d) alvel   | 1.00<br>h 5.6 | 1.00 | 1.00<br>Q 7 | 7.1  | 11.00 | 100         |
| Inor Doloy (d2), s/ver    | 0.0           | 4.3  | 0.1         | 1.1  | 0.1   | 12.1        |
| Incr Delay (d2), s/veh    | 0.1           | 0.1  | 0.5         | 0.1  | 0.1   | 2.1         |
| Initial Q Delay(d3),s/veh | 1 U.U         | 0.0  | 0.0         | 0.0  | 0.0   | 0.0         |
| %ile BackOfQ(50%),veh     | 1/In().1      | 0.1  | 0.8         | 0.0  | 0.1   | 3.0         |
| Unsig. Movement Delay     | /, s/veh      |      |             |      |       |             |
| LnGrp Delay(d),s/veh      | 5.8           | 4.4  | 9.2         | 7.2  | 11.1  | 14.2        |
| LnGrp LOS                 | A             | Α    | Α           | Α    | В     | В           |
| Approach Vol. veh/h       |               | 771  | 680         |      | 196   |             |
| Approach Delay, s/veh     |               | 4.5  | 9.1         |      | 13.9  |             |
| Approach LOS              |               | A    | A           |      | B     |             |
|                           |               |      |             |      |       |             |
| Timer - Assigned Phs      |               | 2    |             | 4    | 5     | 6           |
| Phs Duration (G+Y+Rc)     | ), S          | 21.8 |             | 10.2 | 6.4   | 15.4        |
| Change Period (Y+Rc),     | S             | 4.5  |             | 4.5  | 4.5   | 4.5         |
| Max Green Setting (Gm     | nax), s       | 34.5 |             | 21.5 | 5.5   | 24.5        |
| Max Q Clear Time (a c     | +l1). s       | 6.0  |             | 5.2  | 2.5   | 7.3         |
| Green Ext Time (p c) s    | 3             | 4.5  |             | 0.5  | 0.0   | 3.6         |
| Interpretion Oursers      |               |      |             |      |       |             |
| Intersection Summary      |               |      |             |      |       |             |
| HCM 6th Ctrl Delay        |               |      | 7.5         |      |       |             |
| HCM 6th LOS               |               |      | А           |      |       |             |

### Notes

User approved pedestrian interval to be less than phase max green.

| 03/12 | /2020 |
|-------|-------|
|-------|-------|

|                              |                  | 7         | *         | -     | 1    | 1           |
|------------------------------|------------------|-----------|-----------|-------|------|-------------|
| Movement                     | EBT              | EBR       | WBL       | WBT   | NBL  | NBR         |
| Lane Configurations          | **               | 1         | 3         | **    | 5    | 1           |
| Traffic Volume (veh/h)       | 655              | 25        | 5         | 550   | 75   | 5           |
| Future Volume (veh/h)        | 655              | 25        | 5         | 550   | 75   | 5           |
| Initial Q (Qb), veh          | 0                | 0         | 0         | 0     | 0    | Ū           |
| Ped-Bike Adi(A pbT)          | -                | 1.00      | 1.00      |       | 1.00 | 1.00        |
| Parking Bus, Adj             | 1.00             | 1.00      | 1.00      | 1.00  | 1.00 | 1.00        |
| Work Zone On Approac         | h No             |           |           | No    | No   |             |
| Adj Sat Flow, veh/h/ln       | 1752             | 1900      | 1900      | 1693  | 1900 | 1900        |
| Adj Flow Rate, veh/h         | 712              | 27        | 5         | 598   | 82   | 5           |
| Peak Hour Factor             | 0.92             | 0.92      | 0.92      | 0.92  | 0.92 | 0.92        |
| Percent Heavy Veh. %         | 10               | 0         | 0         | 14    | 0    | 0           |
| Cap, veh/h                   | 1044             | 505       | 253       | 1328  | 727  | 647         |
| Arrive On Green              | 0.31             | 0.31      | 0.01      | 0.41  | 0.40 | 0.40        |
| Sat Flow, veh/h              | 3416             | 1610      | 1810      | 3300  | 1810 | 1610        |
| Grp Volume(v) veh/h          | 712              | 27        | 5         | 598   | 82   | 5           |
| Grn Sat Flow(s) veh/h/lr     | 1664             | 1610      | 1810      | 1608  | 1810 | 1610        |
| O Serve(a s) s               | 91               | 0.6       | 0.1       | 6.5   | 14   | 0.1         |
| Cvcle O Clear(a, c) s        | 9.1              | 0.0       | 0.1       | 6.5   | 1.4  | 0.1         |
| Pron In Lane                 | 0.1              | 1 00      | 1 00      | 0.0   | 1 00 | 1 00        |
| Lane Grn Can(c) veh/h        | 1044             | 505       | 253       | 1328  | 727  | 647         |
| V/C Ratio(X)                 | 0.68             | 0.05      | 0.02      | 0.45  | 0 11 | 0.01        |
| Avail Can(c_a) veh/h         | 2001             | 1011      | 0.0Z      | 27/10 | 727  | 6/7         |
| HCM Platoon Ratio            | 1 00             | 1 00      | 1 00      | 1 00  | 1 00 | 1 00        |
| Linstream Filter(I)          | 1.00             | 1.00      | 1.00      | 1.00  | 1.00 | 1.00        |
| Uniform Delay (d) sheet      | n 14 5           | 11.6      | 11.00     | 10.3  | Q 1  | 8.7         |
| Incr Delay (d2) s/veb        | 0.8              | 0.0       | 0.0       | 0.0   | 0.3  | 0.7         |
| Initial () Delay(d2), s/vell |                  | 0.0       | 0.0       | 0.2   | 0.0  | 0.0         |
| %ile BackOfO(50%) vot        | 1 0.0<br>n/ln2 5 | 0.0       | 0.0       | 1.5   | 0.0  | 0.0         |
| Unsig Movement Delay         | 1/11 K.U         | 0.2       | 0.0       | 1.5   | 0.4  | 0.0         |
| LinGra Dolov(d) of the       | 1.5/Ven          | 117       | 11.0      | 10 5  | 0.4  | Q 7         |
| LIGIP Delay(0),s/ven         | 10.3             | וו./<br>ח | П.2       | 10.5  | 9.4  | 0. <i>1</i> |
|                              | B                | В         | В         | B     | A    | A           |
| Approach Vol, veh/h          | 739              |           |           | 603   | 87   |             |
| Approach Delay, s/veh        | 15.2             |           |           | 10.5  | 9.4  |             |
| Approach LOS                 | В                |           |           | В     | A    |             |
| Timer - Assigned Phs         | 1                | 2         |           |       |      | 6           |
| Phs Duration (G+Y+Rc)        | , s4.8           | 19.7      |           |       |      | 24.6        |
| Change Period (Y+Rc),        | s 4.5            | 4.5       |           |       |      | 4.5         |
| Max Green Setting (Gm        | ax∳,. <b>5</b>   | 30.5      |           |       |      | 41.5        |
| Max Q Clear Time (q c        | +112,15          | 11.1      |           |       |      | 8.5         |
| Green Ext Time (p c), s      | s 0.0            | 4.2       |           |       |      | 3.7         |
| Intersection Summary         |                  |           |           |       |      |             |
| HCM 6th Ctrl Delay           |                  |           | 12.0      |       |      |             |
| HCM 6th LOS                  |                  |           | 12.9<br>D |       |      |             |
|                              |                  |           | D         |       |      |             |

|                           | ٨              | +    | 7    | 1    | +-   | ٩    | 1    | t    | 1    | 1    | ŧ    | 4    |  |
|---------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Movement                  | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 1              | 11   | 1    | 1    | 11   | 1    | 1    | ţ,   |      | 1    | ţ,   |      |  |
| Traffic Volume (veh/h)    | 10             | 610  | 40   | 60   | 500  | 5    | 45   | 30   | 90   | 5    | 30   | 10   |  |
| Future Volume (veh/h)     | 10             | 610  | 40   | 60   | 500  | 5    | 45   | 30   | 90   | 5    | 30   | 10   |  |
| Initial Q (Qb), veh       | 0              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00           |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approac      | h              | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1900           | 1752 | 1500 | 1841 | 1722 | 1900 | 1500 | 1811 | 1811 | 1900 | 1559 | 1559 |  |
| Adj Flow Rate, veh/h      | 11             | 663  | 43   | 65   | 543  | 5    | 49   | 33   | 98   | 5    | 33   | 11   |  |
| Peak Hour Factor          | 0.92           | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 0              | 10   | 27   | 4    | 12   | 0    | 27   | 6    | 6    | 0    | 23   | 23   |  |
| Cap, veh/h                | 414            | 1057 | 404  | 397  | 1202 | 591  | 357  | 68   | 201  | 310  | 138  | 46   |  |
| Arrive On Green           | 0.01           | 0.32 | 0.32 | 0.06 | 0.37 | 0.37 | 0.05 | 0.17 | 0.17 | 0.01 | 0.12 | 0.12 |  |
| Sat Flow, veh/h           | 1810           | 3328 | 1271 | 1753 | 3272 | 1610 | 1428 | 402  | 1194 | 1810 | 1119 | 373  |  |
| Grp Volume(v), veh/h      | 11             | 663  | 43   | 65   | 543  | 5    | 49   | 0    | 131  | 5    | 0    | 44   |  |
| Grp Sat Flow(s),veh/h/lr  | า1810          | 1664 | 1271 | 1753 | 1636 | 1610 | 1428 | 0    | 1596 | 1810 | 0    | 1492 |  |
| Q Serve(g_s), s           | 0.2            | 6.9  | 1.0  | 1.0  | 5.1  | 0.1  | 1.2  | 0.0  | 3.0  | 0.1  | 0.0  | 1.1  |  |
| Cycle Q Clear(g_c), s     | 0.2            | 6.9  | 1.0  | 1.0  | 5.1  | 0.1  | 1.2  | 0.0  | 3.0  | 0.1  | 0.0  | 1.1  |  |
| Prop In Lane              | 1.00           |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.75 | 1.00 |      | 0.25 |  |
| Lane Grp Cap(c), veh/h    | 414            | 1057 | 404  | 397  | 1202 | 591  | 357  | 0    | 269  | 310  | 0    | 184  |  |
| V/C Ratio(X)              | 0.03           | 0.63 | 0.11 | 0.16 | 0.45 | 0.01 | 0.14 | 0.00 | 0.49 | 0.02 | 0.00 | 0.24 |  |
| Avail Cap(c_a), veh/h     | 633            | 2498 | 954  | 566  | 2537 | 1248 | 476  | 0    | 766  | 543  | 0    | 716  |  |
| HCM Platoon Ratio         | 1.00           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/vel  | n 9.2          | 11.8 | 9.8  | 8.7  | 9.8  | 8.2  | 14.3 | 0.0  | 15.3 | 15.4 | 0.0  | 16.1 |  |
| Incr Delay (d2), s/veh    | 0.0            | 0.6  | 0.1  | 0.2  | 0.3  | 0.0  | 0.2  | 0.0  | 1.4  | 0.0  | 0.0  | 0.7  |  |
| Initial Q Delay(d3),s/veh | n 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh     | n/In0.0        | 1.6  | 0.2  | 0.2  | 1.1  | 0.0  | 0.3  | 0.0  | 0.9  | 0.0  | 0.0  | 0.3  |  |
| Unsig. Movement Delay     | , s/veh        | l    |      |      |      |      |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh      | 9.3            | 12.4 | 9.9  | 8.9  | 10.0 | 8.2  | 14.5 | 0.0  | 16.7 | 15.5 | 0.0  | 16.8 |  |
| LnGrp LOS                 | А              | В    | А    | А    | В    | А    | В    | А    | В    | В    | А    | В    |  |
| Approach Vol, veh/h       |                | 717  |      |      | 613  |      |      | 180  |      |      | 49   |      |  |
| Approach Delay, s/veh     |                | 12.2 |      |      | 9.9  |      |      | 16.1 |      |      | 16.6 |      |  |
| Approach LOS              |                | В    |      |      | А    |      |      | В    |      |      | В    |      |  |
| Timer - Assigned Phs      | 1              | 2    | 3    | 4    | 5    | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc)     | , s7.1         | 17.4 | 6.6  | 9.5  | 5.1  | 19.4 | 4.8  | 11.3 |      |      |      |      |  |
| Change Period (Y+Rc),     | s 4.5          | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |      |      |  |
| Max Green Setting (Gm     | ax6,. <b>5</b> | 30.5 | 5.5  | 19.5 | 5.5  | 31.5 | 5.5  | 19.5 |      |      |      |      |  |
| Max Q Clear Time (q c     | +113,0s        | 8.9  | 3.2  | 3.1  | 2.2  | 7.1  | 2.1  | 5.0  |      |      |      |      |  |
| Green Ext Time (p_c), s   | s 0.0          | 4.0  | 0.0  | 0.1  | 0.0  | 3.2  | 0.0  | 0.5  |      |      |      |      |  |
| Intersection Summary      |                |      |      |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |                |      | 11.9 |      |      |      |      |      |      |      |      |      |  |

HCM 6th LOS

В



# F.4. 2040 PM with Recommended PEL Laneage and ACP Implemented
### HCM 6th Signalized Intersection Summary 1: McConnell Dr/Stone Canyon Dr & SH 66

03/12/2020

|                              | 4    | ×    | 2         | 5    | ×        | ۲    | 3    | *    | ~    | 6    | ×    | *        |
|------------------------------|------|------|-----------|------|----------|------|------|------|------|------|------|----------|
| Movement                     | SEL  | SET  | SER       | NWL  | NWT      | NWR  | NEL  | NET  | NER  | SWL  | SWT  | SWR      |
| Lane Configurations          | 1    | **   | 1         | 5    | <b>^</b> | 1    | 7    | 1ª   |      | 7    | ħ    |          |
| Traffic Volume (veh/h)       | 30   | 990  | 15        | 110  | 885      | 40   | 15   | 10   | 95   | 30   | 10   | 30       |
| Future Volume (veh/h)        | 30   | 990  | 15        | 110  | 885      | 40   | 15   | 10   | 95   | 30   | 10   | 30       |
| Initial Q (Qb), veh          | 0    | 0    | 0         | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00      | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No   |           |      | No       |      |      | No   |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1826 | 1870      | 1870 | 1826     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 33   | 1076 | 16        | 120  | 962      | 43   | 16   | 11   | 103  | 33   | 11   | 33       |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92      | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     |
| Percent Heavy Veh, %         | 2    | 5    | 2         | 2    | 5        | 2    | 2    | 2    | 2    | 2    | 2    | 2        |
| Cap, veh/h                   | 267  | 1313 | 600       | 428  | 2210     | 1010 | 293  | 22   | 205  | 230  | 58   | 175      |
| Arrive On Green              | 0.38 | 0.38 | 0.38      | 0.15 | 0.64     | 0.64 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14     |
| Sat Flow, veh/h              | 561  | 3469 | 1585      | 1781 | 3469     | 1585 | 1362 | 155  | 1454 | 1279 | 412  | 1236     |
| Grp Volume(v), veh/h         | 33   | 1076 | 16        | 120  | 962      | 43   | 16   | 0    | 114  | 33   | 0    | 44       |
| Grp Sat Flow(s),veh/h/ln     | 561  | 1735 | 1585      | 1781 | 1735     | 1585 | 1362 | 0    | 1609 | 1279 | 0    | 1648     |
| Q Serve(g_s), s              | 2.6  | 15.1 | 0.3       | 0.0  | 7.5      | 0.5  | 0.6  | 0.0  | 3.5  | 1.3  | 0.0  | 1.3      |
| Cycle Q Clear(g_c), s        | 10.1 | 15.1 | 0.3       | 0.0  | 7.5      | 0.5  | 1.8  | 0.0  | 3.5  | 4.9  | 0.0  | 1.3      |
| Prop In Lane                 | 1.00 |      | 1.00      | 1.00 |          | 1.00 | 1.00 |      | 0.90 | 1.00 |      | 0.75     |
| Lane Grp Cap(c), veh/h       | 267  | 1313 | 600       | 428  | 2210     | 1010 | 293  | 0    | 227  | 230  | 0    | 233      |
| V/C Ratio(X)                 | 0.12 | 0.82 | 0.03      | 0.28 | 0.44     | 0.04 | 0.05 | 0.00 | 0.50 | 0.14 | 0.00 | 0.19     |
| Avail Cap(c_a), veh/h        | 283  | 1410 | 644       | 428  | 2244     | 1025 | 302  | 0    | 238  | 238  | 0    | 244      |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00     |
| Uniform Delay (d), s/veh     | 16.6 | 15.2 | 10.6      | 19.2 | 4.9      | 3.7  | 21.3 | 0.0  | 21.5 | 23.7 | 0.0  | 20.5     |
| Incr Delay (d2), s/veh       | 0.3  | 4.0  | 0.0       | 0.4  | 0.2      | 0.0  | 0.1  | 0.0  | 2.4  | 0.4  | 0.0  | 0.6      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0       | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 0.3  | 4.9  | 0.1       | 1.1  | 1.0      | 0.1  | 0.2  | 0.0  | 1.4  | 0.4  | 0.0  | 0.5      |
| Unsig. Movement Delay, s/veh |      |      |           |      |          |      |      |      |      |      |      |          |
| LnGrp Delay(d),s/veh         | 16.9 | 19.2 | 10.6      | 19.6 | 5.1      | 3.7  | 21.4 | 0.0  | 23.9 | 24.1 | 0.0  | 21.1     |
| LnGrp LOS                    | В    | В    | В         | В    | Α        | Α    | С    | Α    | С    | С    | Α    | <u> </u> |
| Approach Vol, veh/h          |      | 1125 |           |      | 1125     |      |      | 130  |      |      | 77   |          |
| Approach Delay, s/veh        |      | 19.0 |           |      | 6.6      |      |      | 23.6 |      |      | 22.4 |          |
| Approach LOS                 |      | В    |           |      | А        |      |      | С    |      |      | С    |          |
| Timer - Assianed Phs         | 1    | 2    |           | 4    |          | 6    |      | 8    |      |      |      |          |
| Phs Duration (G+Y+Rc), s     | 14.0 | 26.5 |           | 13.6 |          | 40.5 |      | 13.6 |      |      |      |          |
| Change Period (Y+Rc), s      | 6.0  | * 6  |           | 6.0  |          | 6.0  |      | 6.0  |      |      |      |          |
| Max Green Setting (Gmax), s  | 8.0  | * 22 |           | 8.0  |          | 35.0 |      | 8.0  |      |      |      |          |
| Max Q Clear Time (q c+l1), s | 2.0  | 17.1 |           | 6.9  |          | 9.5  |      | 5.5  |      |      |      |          |
| Green Ext Time (p c). s      | 0.1  | 3.3  |           | 0.0  |          | 9.3  |      | 0.2  |      |      |      |          |
| Intersection Summary         |      |      |           |      |          |      |      |      |      |      |      |          |
|                              |      |      | 10 7      |      |          |      |      |      |      |      |      |          |
|                              |      |      | 13.1<br>D |      |          |      |      |      |      |      |      |          |
|                              |      |      | В         |      |          |      |      |      |      |      |      |          |

### Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

SH 66 2040 Fully Implemented PEL with ACP PM Peak

Synchro 10 Report Page 1

|                                                     | ٠                  |            | 7    | 4    | •         | ٩         | 1          | t        | ۲    | 1    | ŧ        | 1          |  |
|-----------------------------------------------------|--------------------|------------|------|------|-----------|-----------|------------|----------|------|------|----------|------------|--|
| Movement                                            | EBL                | EBT        | EBR  | WBL  | WBT       | WBR       | NBL        | NBT      | NBR  | SBL  | SBT      | SBR        |  |
| Lane Configurations                                 | 5                  | <b>^</b>   | 1    | 5    | **        | 1         | 5          | ्य       | 1    | 5    | 1.       |            |  |
| Traffic Volume (veh/h)                              | 25                 | 340        | 360  | 60   | 490       | 30        | 490        | 35       | 365  | 40   | 50       | 60         |  |
| Future Volume (veh/h)                               | 25                 | 340        | 360  | 60   | 490       | 30        | 490        | 35       | 365  | 40   | 50       | 60         |  |
| Initial Q (Qb), veh                                 | 0                  | 0          | 0    | 0    | 0         | 0         | 0          | 0        | 0    | 0    | 0        | 0          |  |
| Ped-Bike Adi(A pbT)                                 | 1.00               | -          | 1.00 | 1.00 |           | 1.00      | 1.00       |          | 1.00 | 1.00 |          | 1.00       |  |
| Parking Bus. Adi                                    | 1.00               | 1.00       | 1.00 | 1.00 | 1.00      | 1.00      | 1.00       | 1.00     | 1.00 | 1.00 | 1.00     | 1.00       |  |
| Work Zone On Approac                                | ch                 | No         |      |      | No        |           |            | No       |      |      | No       |            |  |
| Adi Sat Flow, veh/h/ln                              | 1710               | 1683       | 1683 | 1683 | 1657      | 1710      | 1617       | 1710     | 1617 | 1710 | 1710     | 1710       |  |
| Adi Flow Rate, veh/h                                | 27                 | 370        | 0    | 65   | 533       | 33        | 560        | 0        | 0    | 43   | 54       | 65         |  |
| Peak Hour Factor                                    | 0.92               | 0.92       | 0.92 | 0.92 | 0.92      | 0.92      | 0.92       | 0.92     | 0.92 | 0.92 | 0.92     | 0.92       |  |
| Percent Heavy Veh. %                                | 0                  | 2          | 2    | 2    | 4         | 0         | 7          | 0        | 7    | 0    | 0        | 0          |  |
| Cap. veh/h                                          | 178                | 642        | _    | 217  | 630       | 290       | 666        | 0        |      | 212  | 92       | 111        |  |
| Arrive On Green                                     | 0.03               | 0.20       | 0.00 | 0.06 | 0.20      | 0.20      | 0.22       | 0.00     | 0.00 | 0.13 | 0.13     | 0.13       |  |
| Sat Flow, veh/h                                     | 1629               | 3198       | 1427 | 1603 | 3148      | 1449      | 3079       | 0        | 1370 | 1629 | 707      | 850        |  |
| Grn Volume(v) veh/h                                 | 27                 | 370        | 0    | 65   | 533       | 33        | 560        | 0        | 0    | 43   | 0        | 119        |  |
| Grn Sat Flow(s) veh/h/li                            | n1620              | 1500       | 1427 | 1603 | 1574      | 1449      | 1540       | 0        | 1370 | 1629 | 0        | 1557       |  |
| O Serve(a s) s                                      | 0.0                | 5 9        | 0.0  | 2.0  | 92        | 1 1       | 9.0        | 0.0      | 0.0  | 13   | 0.0      | <u>4</u> 1 |  |
| $Cycle \cap Clear(a, c) \in Cycle \cap Clear(a, c)$ | 0.0                | 5.0        | 0.0  | 2.0  | 9.2       | 1.1       | 9.9<br>Q Q | 0.0      | 0.0  | 1.3  | 0.0      | 4.1        |  |
| Pron In Lane                                        | 1.00               | 0.0        | 1 00 | 1.00 | J.Z       | 1.0       | 1 00       | 0.0      | 1 00 | 1 00 | 0.0      | 0.55       |  |
| Lane Grn Can(c) veh/h                               | 178                | 642        | 1.00 | 217  | 630       | 200       | 666        | ٥        | 1.00 | 212  | ٥        | 202        |  |
| V/C Ratio(X)                                        | 0 15               | 0.58       |      | 0.30 | 0.85      | 0.11      | 0.84       | 0 00     |      | 0.20 | 0 00     | 0.50       |  |
|                                                     | 0.15               | 6/8        |      | 268  | 638       | 20/       | 706        | 0.00     |      | 230  | 0.00     | 220        |  |
| HCM Platoon Ratio                                   | 1 00               | 1 00       | 1 00 | 1 00 | 1.00      | 1 00      | 1 00       | 1 00     | 1 00 | 1 00 | 1 00     | 1 00       |  |
| Linstream Filter(I)                                 | 1.00               | 1.00       | 0.00 | 1.00 | 1.00      | 1.00      | 1.00       | 0.00     | 0.00 | 1.00 | 0.00     | 1.00       |  |
| Uniform Delay (d) s/vel                             | h 26 7             | 20.5       | 0.00 | 21.3 | 21.8      | 18.6      | 21.3       | 0.00     | 0.00 | 22.1 | 0.00     | 23.2       |  |
| Incr Delay (d2) s/veh                               | 0.1                | 20.5       | 0.0  | 0.8  | 10.5      | 0.2       | 21.5       | 0.0      | 0.0  | 0.7  | 0.0      | 25.2       |  |
| Initial $\cap$ Delay(d2), siven                     | 0. <del>4</del>    | 0.0        | 0.0  | 0.0  | 0.0       | 0.2       | 9.1        | 0.0      | 0.0  | 0.7  | 0.0      | 4.5        |  |
| %ile BackOfO(50%) vel                               | n/lm0.3            | 1.0        | 0.0  | 0.0  | 3.7       | 0.0       | 3.8        | 0.0      | 0.0  | 0.0  | 0.0      | 1.7        |  |
| Unsig Movement Dolo                                 | 1/110.0<br>1 c/uch | 1.9        | 0.0  | 0.7  | 5.1       | 0.5       | 5.0        | 0.0      | 0.0  | 0.5  | 0.0      | 1.1        |  |
| InGro Delay(d) shuch                                | 7, 5/VEII<br>27 0  | 22.0       | 0.0  | 22.1 | 30.5      | 18.8      | 30.4       | 0.0      | 0.0  | 22.2 | 0.0      | 27 Q       |  |
| LinGrp Delay(u), s/vell                             | 21.0               | 22.0       | 0.0  | 22.1 | JZ.J<br>C | 10.0<br>R | 00.4<br>C  | 0.0<br>A | 0.0  | 22.1 | 0.0<br>A | 21.0       |  |
| Approach Val. uch/k                                 | U                  | 207        | ٨    | U    | 624       | D         | U          | 560      | ۸    | U    | 160      | U          |  |
| Approach Vol, ven/n                                 |                    | 291<br>224 | A    |      | 20 6      |           |            | 20 4     | A    |      | 102      |            |  |
| Approach LOS                                        |                    | 22.4       |      |      | 30.0      |           |            | 30.4     |      |      | 20.4     |            |  |
| Approach LOS                                        |                    | U          |      |      | U         |           |            | U        |      |      | U        |            |  |
| Timer - Assigned Phs                                | 1                  | 2          |      | 4    | 5         | 6         |            | 8        |      |      |          |            |  |
| Phs Duration (G+Y+Rc)                               | ), s7.7            | 17.4       |      | 18.3 | 7.7       | 17.4      |            | 13.4     |      |      |          |            |  |
| Change Period (Y+Rc),                               | s 4.5              | 6.0        |      | 6.0  | 6.0       | * 6       |            | 6.0      |      |      |          |            |  |
| Max Green Setting (Gm                               | nax <b>5,.6</b>    | 11.5       |      | 13.0 | 5.0       | * 12      |            | 8.0      |      |      |          |            |  |
| Max Q Clear Time (g_c                               | +114),0s           | 7.9        |      | 11.9 | 2.0       | 11.2      |            | 6.1      |      |      |          |            |  |
| Green Ext Time (p_c), s                             | s 0.0              | 0.9        |      | 0.4  | 0.0       | 0.1       |            | 0.2      |      |      |          |            |  |
| Intersection Summary                                |                    |            |      |      |           |           |            |          |      |      |          |            |  |
| HCM 6th Ctrl Delav                                  |                    |            | 28.3 |      |           |           |            |          |      |      |          |            |  |
| HCM 6th LOS                                         |                    |            | C    |      |           |           |            |          |      |      |          |            |  |
|                                                     |                    |            | 0    |      |           |           |            |          |      |      |          |            |  |

### Notes

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP PM Peak

Synchro 10 Report Page 2

| 03/12/2020 |
|------------|
|------------|

|                           | ٨      |      | -    | •    | 1    | ~    |
|---------------------------|--------|------|------|------|------|------|
| Movement                  | EBL    | EBT  | WBT  | WBR  | SBL  | SBR  |
| Lane Configurations       | 3      | **   | **   | 1    | 5    | 1    |
| Traffic Volume (veh/h)    | 30     | 715  | 570  | 10   | 50   | 20   |
| Future Volume (veh/h)     | 30     | 715  | 570  | 10   | 50   | 20   |
| Initial Q (Qb), veh       | 0      | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adi(A pbT)       | 1.00   | -    |      | 1.00 | 1.00 | 1.00 |
| Parking Bus. Adi          | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach     | h      | No   | No   |      | No   |      |
| Adj Sat Flow, veh/h/ln    | 1870   | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adi Flow Rate, veh/h      | 33     | 777  | 620  | 11   | 54   | 22   |
| Peak Hour Factor          | 0.92   | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh %       | 2      | 2    | 2    | 2    | 2.02 | 2.02 |
| Can veh/h                 | 321    | 1132 | 1132 | 505  | 809  | 720  |
| Arrive On Green           | 0 32   | 0 32 | 0.32 | 0 32 | 0.45 | 0.45 |
|                           | 706    | 3647 | 3647 | 1595 | 1791 | 1595 |
|                           | 190    | 3047 | 3047 | 1000 | 1/01 | 1000 |
| Grp Volume(v), veh/h      | 33     | 177  | 620  | 11   | 54   | 22   |
| Grp Sat Flow(s),veh/h/In  | 796    | 1777 | 1777 | 1585 | 1781 | 1585 |
| Q Serve(g_s), s           | 1.4    | 7.6  | 5.7  | 0.2  | 0.7  | 0.3  |
| Cycle Q Clear(g_c), s     | 7.1    | 7.6  | 5.7  | 0.2  | 0.7  | 0.3  |
| Prop In Lane              | 1.00   |      |      | 1.00 | 1.00 | 1.00 |
| Lane Grp Cap(c), veh/h    | 321    | 1132 | 1132 | 505  | 809  | 720  |
| V/C Ratio(X)              | 0.10   | 0.69 | 0.55 | 0.02 | 0.07 | 0.03 |
| Avail Cap(c_a), veh/h     | 429    | 1614 | 1614 | 720  | 809  | 720  |
| HCM Platoon Ratio         | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)        | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh  | 14.1   | 11.8 | 11.1 | 9.3  | 6.1  | 6.0  |
| Incr Delay (d2) s/veh     | 0.1    | 0.7  | 0.4  | 0.0  | 0.2  | 0.1  |
| Initial O Delay(d3) s/veh | 0.0    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfO(50%) veh     | /In0 2 | 1.8  | 1 /  | 0.0  | 0.0  | 0.0  |
| Unsig Movement Delay      | niu.z  | 1.0  | 1.4  | 0.0  | 0.2  | 0.1  |
| In Cro Dolou(d) of ush    |        | 10 5 | 11.0 | 0.2  | 60   | 61   |
| Lingrp Delay(d),s/ven     | 14.Z   | 12.5 | 11.0 | 9.3  | 0.2  | 0.1  |
| LINGIP LOS                | В      | В    | В    | A    | A    | A    |
| Approach Vol, veh/h       |        | 810  | 631  |      | 76   |      |
| Approach Delay, s/veh     |        | 12.6 | 11.5 |      | 6.2  |      |
| Approach LOS              |        | В    | В    |      | А    |      |
| Timer - Assigned Phs      |        | 2    |      | 4    |      | 6    |
| Phs Duration (G+Y+Rc)     | , S    | 17.1 |      | 22.5 |      | 17.1 |
| Change Period (Y+Rc)      | S      | 4.5  |      | 4.5  |      | 4.5  |
| Max Green Setting (Gm     | ax) s  | 18.0 |      | 18.0 |      | 18.0 |
| Max O Clear Time (o. c.   | ⊢l1) e | 9.6  |      | 27   |      | 77   |
| Green Ext Time (n. c) c   | 11), 3 | 3.0  |      | 0.1  |      | 2.6  |
|                           |        | J. I |      | 0.1  |      | 2.0  |
| Intersection Summary      |        |      |      |      |      |      |
| HCM 6th Ctrl Delay        |        |      | 11.8 |      |      |      |
| HCM 6th LOS               |        |      | В    |      |      |      |

#### t ŧ 1 1 NBT NBR SBT Movement EBL EBT EBR WBL WBT WBR NBL SBL SBR Lane Configurations ٦ ŧ ۴ ٦ ŧ ٦ Þ ٦ ۴ Þ Traffic Volume (veh/h) 30 900 25 540 5 20 0 20 10 15 15 15 Future Volume (veh/h) 30 900 20 25 540 10 5 15 20 0 15 15 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A\_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 33 978 22 27 587 11 16 5 16 22 0 16 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 1067 904 1058 897 401 90 397 364 Cap, veh/h 451 198 287 0 Arrive On Green 0.23 0.23 0.23 0.03 0.57 0.57 0.03 0.57 0.57 0.23 0.23 0.00 Sat Flow, veh/h 1781 1870 1585 1781 1870 1585 1397 392 1253 1391 0 1585 Grp Volume(v), veh/h 33 978 22 27 587 11 16 0 21 22 0 16 Grp Sat Flow(s),veh/h/ln1781 1585 1781 1870 1585 1397 1645 1391 1585 1870 0 0 Q Serve(g s), s 0.6 37.0 0.5 0.5 15.6 0.2 0.7 0.0 0.8 1.0 0.0 0.6 Cycle Q Clear(g\_c), s 0.6 37.0 0.5 0.5 15.6 0.2 1.3 0.0 0.8 1.8 0.0 0.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 0.76 1.00 1.00 397 Lane Grp Cap(c), veh/h 451 1067 904 198 1058 897 401 0 377 0 364 V/C Ratio(X) 0.07 0.92 0.02 0.14 0.55 0.01 0.04 0.00 0.06 0.06 0.00 0.04 Avail Cap(c\_a), veh/h 507 1275 1081 261 1275 1081 401 0 377 397 0 364 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 Uniform Delay (d), s/veh 8.1 15.2 7.3 15.5 10.8 7.4 24.1 0.0 23.6 24.3 0.0 23.5 Incr Delay (d2), s/veh 0.0 0.2 0.3 0.2 0.1 9.4 0.0 0.3 0.5 0.0 0.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/Ir0.2 13.8 0.1 0.2 4.8 0.1 0.2 0.0 0.3 0.3 0.0 0.2 Unsig. Movement Delay, s/veh LnGrp Delav(d).s/veh 7.4 15.8 11.2 7.5 24.2 0.0 23.9 24.6 0.0 23.8 8.1 24.6

| LnGrp LOS                | А           | С    | А    | В    | В    | А    | С | А    | С | С | А    | С |  |  |
|--------------------------|-------------|------|------|------|------|------|---|------|---|---|------|---|--|--|
| Approach Vol, veh/h      |             | 1033 |      |      | 625  |      |   | 37   |   |   | 38   |   |  |  |
| Approach Delay, s/veh    |             | 23.7 |      |      | 11.4 |      |   | 24.0 |   |   | 24.2 |   |  |  |
| Approach LOS             |             | С    |      |      | В    |      |   | С    |   |   | С    |   |  |  |
| Timer - Assigned Phs     | 1           | 2    |      | 4    | 5    | 6    |   | 8    |   |   |      |   |  |  |
| Phs Duration (G+Y+Rc), s | 6.7         | 49.2 |      | 22.5 | 7.1  | 48.9 |   | 22.5 |   |   |      |   |  |  |
| Change Period (Y+Rc), s  | 4.5         | 4.5  |      | 4.5  | 4.5  | 4.5  |   | 4.5  |   |   |      |   |  |  |
| Max Green Setting (Gmax  | 5, <b>G</b> | 53.5 |      | 18.0 | 5.0  | 53.5 |   | 18.0 |   |   |      |   |  |  |
| Max Q Clear Time (g_c+l1 | 2),5s       | 39.0 |      | 3.8  | 2.6  | 17.6 |   | 3.3  |   |   |      |   |  |  |
| Green Ext Time (p_c), s  | 0.0         | 5.8  |      | 0.1  | 0.0  | 3.5  |   | 0.1  |   |   |      |   |  |  |
| Internetion Common       |             |      |      |      |      |      |   |      |   |   |      |   |  |  |
| Intersection Summary     |             |      |      |      |      |      |   |      |   |   |      |   |  |  |
| HCM 6th Ctrl Delav       |             |      | 19.3 |      |      |      |   |      |   |   |      |   |  |  |

HCM 6th LOS

В

## HCM 6th Signalized Intersection Summary 5: N 75th St & SH 66

03/12/2020

|                           | ٠        |          | 7        | 1    | +        | *    | 1    | Ť        | 1    | 1    | ŧ        | 1    |  |
|---------------------------|----------|----------|----------|------|----------|------|------|----------|------|------|----------|------|--|
| Movement                  | EBL      | EBT      | EBR      | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
| Lane Configurations       | 5        | <b>↑</b> | 1        | 5    | <b>↑</b> | 1    | 5    | <b>†</b> | 1    | 5    | <b>↑</b> | 1    |  |
| Traffic Volume (veh/h)    | 80       | 960      | 95       | 55   | 425      | 10   | 135  | 175      | 285  | 5    | 15       | 15   |  |
| Future Volume (veh/h)     | 80       | 960      | 95       | 55   | 425      | 10   | 135  | 175      | 285  | 5    | 15       | 15   |  |
| Initial Q (Qb), veh       | 0        | 0        | 0        | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00     |          | 1.00     | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Parking Bus, Adj          | 1.00     | 1.00     | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Work Zone On Approac      | h        | No       |          |      | No       |      |      | No       |      |      | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1737     | 1856     | 1900     | 1870 | 1826     | 1900 | 1900 | 1900     | 1811 | 1693 | 1900     | 1900 |  |
| Adj Flow Rate, veh/h      | 87       | 1043     | 103      | 60   | 462      | 11   | 147  | 190      | 310  | 5    | 16       | 16   |  |
| Peak Hour Factor          | 0.92     | 0.92     | 0.92     | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 |  |
| Percent Heavy Veh, %      | 11       | 3        | 0        | 2    | 5        | 0    | 0    | 0        | 6    | 14   | 0        | 0    |  |
| Cap, veh/h                | 529      | 1021     | 886      | 192  | 988      | 871  | 311  | 268      | 311  | 130  | 131      | 111  |  |
| Arrive On Green           | 0.07     | 0.55     | 0.55     | 0.06 | 0.54     | 0.54 | 0.08 | 0.14     | 0.14 | 0.01 | 0.07     | 0.07 |  |
| Sat Flow, veh/h           | 1654     | 1856     | 1610     | 1781 | 1826     | 1610 | 1810 | 1900     | 1535 | 1612 | 1900     | 1610 |  |
| Grp Volume(v), veh/h      | 87       | 1043     | 103      | 60   | 462      | 11   | 147  | 190      | 310  | 5    | 16       | 16   |  |
| Grp Sat Flow(s),veh/h/lr  | า1654    | 1856     | 1610     | 1781 | 1826     | 1610 | 1810 | 1900     | 1535 | 1612 | 1900     | 1610 |  |
| Q Serve(g_s), s           | 1.9      | 48.0     | 2.7      | 1.2  | 13.6     | 0.3  | 6.4  | 8.3      | 12.3 | 0.3  | 0.7      | 0.8  |  |
| Cycle Q Clear(g_c), s     | 1.9      | 48.0     | 2.7      | 1.2  | 13.6     | 0.3  | 6.4  | 8.3      | 12.3 | 0.3  | 0.7      | 0.8  |  |
| Prop In Lane              | 1.00     |          | 1.00     | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 529      | 1021     | 886      | 192  | 988      | 871  | 311  | 268      | 311  | 130  | 131      | 111  |  |
| V/C Ratio(X)              | 0.16     | 1.02     | 0.12     | 0.31 | 0.47     | 0.01 | 0.47 | 0.71     | 1.00 | 0.04 | 0.12     | 0.14 |  |
| Avail Cap(c_a), veh/h     | 545      | 1021     | 886      | 225  | 1004     | 886  | 311  | 268      | 311  | 212  | 155      | 131  |  |
| HCM Platoon Ratio         | 1.00     | 1.00     | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00     | 1.00     | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh  | n 8.1    | 19.6     | 9.4      | 19.9 | 12.3     | 9.3  | 32.7 | 35.7     | 34.8 | 37.4 | 38.2     | 38.2 |  |
| Incr Delay (d2), s/veh    | 0.1      | 33.8     | 0.1      | 0.9  | 0.3      | 0.0  | 1.1  | 8.3      | 49.9 | 0.1  | 0.4      | 0.6  |  |
| Initial Q Delay(d3),s/veh | n 0.0    | 0.0      | 0.0      | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     | n/In0.5  | 25.2     | 0.9      | 0.6  | 4.5      | 0.1  | 2.8  | 4.4      | 10.7 | 0.1  | 0.3      | 0.3  |  |
| Unsig. Movement Delay     | /, s/veh |          |          |      |          |      |      |          |      |      |          |      |  |
| LnGrp Delay(d),s/veh      | 8.3      | 53.5     | 9.5      | 20.8 | 12.6     | 9.3  | 33.8 | 44.0     | 84.6 | 37.6 | 38.6     | 38.8 |  |
| LnGrp LOS                 | Α        | F        | Α        | С    | В        | Α    | С    | D        | F    | D    | D        | D    |  |
| Approach Vol, veh/h       |          | 1233     |          |      | 533      |      |      | 647      |      |      | 37       |      |  |
| Approach Delay, s/veh     |          | 46.6     |          |      | 13.5     |      |      | 61.2     |      |      | 38.5     |      |  |
| Approach LOS              |          | D        |          |      | В        |      |      | Е        |      |      | D        |      |  |
| Timer - Assigned Phs      | 1        | 2        | 3        | 4    | 5        | 6    | 7    | 8        |      |      |          |      |  |
| Phs Duration (G+Y+Rc)     | . s9.9   | 55.0     | 11.4     | 11.0 | 10.7     | 54.2 | 5.1  | 17.3     |      |      |          |      |  |
| Change Period (Y+Rc)      | s 4 5    | 7.0      | 4 5      | 5.0  | 4 5      | 7.0  | 4.5  | 5.0      |      |      |          |      |  |
| Max Green Setting (Gm     | ax7 @    | 48.0     | 6.9      | 7 1  | 7.0      | 48.0 | 5.0  | 9.0      |      |      |          |      |  |
| Max Q Clear Time (q. c.   | + 13 2   | 50.0     | 84       | 2.8  | 3.9      | 15.6 | 2.3  | 14.3     |      |      |          |      |  |
| Green Ext Time (p_c), s   | s 0.0    | 0.0      | 0.0      | 0.0  | 0.0      | 2.6  | 0.0  | 0.0      |      |      |          |      |  |
| Intersection Summary      |          |          |          |      |          |      |      |          |      |      |          |      |  |
| HCM 6th Ctrl Delay        |          |          | 43.1     |      |          |      |      |          |      |      |          |      |  |
| HCM 6th LOS               |          |          | י .<br>ח |      |          |      |      |          |      |      |          |      |  |
|                           |          |          | U        |      |          |      |      |          |      |      |          |      |  |

### Notes

User approved pedestrian interval to be less than phase max green.

### HCM 6th Signalized Intersection Summary 6: Airport Rd/87th St & SH 66

03/12/2020

|                           | ٠      | -    | 7    | 1    | +    | *    | ٩.   | Ť    | 1    | 1    | ŧ    | 1    |  |
|---------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Movement                  | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 1      | **   | 1    | 1    | ↑    | 1    | 1    | 1.   |      | 1    | 1.   |      |  |
| Traffic Volume (veh/h)    | 35     | 1165 | 30   | 20   | 480  | 65   | 15   | 5    | 10   | 20   | 5    | 5    |  |
| Future Volume (veh/h)     | 35     | 1165 | 30   | 20   | 480  | 65   | 15   | 5    | 10   | 20   | 5    | 5    |  |
| Initial Q (Qb), veh       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00   |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach     | ו      | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1900   | 1841 | 1900 | 1900 | 1841 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |  |
| Adj Flow Rate, veh/h      | 38     | 1266 | 33   | 22   | 522  | 71   | 16   | 5    | 11   | 22   | 5    | 5    |  |
| Peak Hour Factor          | 0.92   | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 0      | 4    | 0    | 0    | 4    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Cap, veh/h                | 488    | 1712 | 788  | 324  | 871  | 762  | 367  | 69   | 152  | 362  | 114  | 114  |  |
| Arrive On Green           | 0.04   | 0.49 | 0.49 | 0.03 | 0.47 | 0.47 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |  |
| Sat Flow, veh/h           | 1810   | 3497 | 1610 | 1810 | 1841 | 1610 | 1427 | 528  | 1162 | 1419 | 872  | 872  |  |
| Grp Volume(v), veh/h      | 38     | 1266 | 33   | 22   | 522  | 71   | 16   | 0    | 16   | 22   | 0    | 10   |  |
| Grp Sat Flow(s),veh/h/ln  | 1810   | 1749 | 1610 | 1810 | 1841 | 1610 | 1427 | 0    | 1691 | 1419 | 0    | 1743 |  |
| Q Serve(g_s), s           | 0.4    | 11.1 | 0.4  | 0.2  | 8.0  | 0.9  | 0.4  | 0.0  | 0.3  | 0.5  | 0.0  | 0.2  |  |
| Cycle Q Clear(g_c), s     | 0.4    | 11.1 | 0.4  | 0.2  | 8.0  | 0.9  | 0.6  | 0.0  | 0.3  | 0.8  | 0.0  | 0.2  |  |
| Prop In Lane              | 1.00   |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.69 | 1.00 |      | 0.50 |  |
| Lane Grp Cap(c), veh/h    | 488    | 1712 | 788  | 324  | 871  | 762  | 367  | 0    | 221  | 362  | 0    | 228  |  |
| V/C Ratio(X)              | 0.08   | 0.74 | 0.04 | 0.07 | 0.60 | 0.09 | 0.04 | 0.00 | 0.07 | 0.06 | 0.00 | 0.04 |  |
| Avail Cap(c_a), veh/h     | 646    | 2147 | 988  | 511  | 1130 | 988  | 852  | 0    | 795  | 844  | 0    | 819  |  |
| HCM Platoon Ratio         | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh  | 5.4    | 7.8  | 5.1  | 6.3  | 7.4  | 5.6  | 14.8 | 0.0  | 14.6 | 15.0 | 0.0  | 14.6 |  |
| Incr Delay (d2), s/veh    | 0.1    | 1.1  | 0.0  | 0.1  | 0.7  | 0.1  | 0.0  | 0.0  | 0.1  | 0.1  | 0.0  | 0.1  |  |
| Initial Q Delay(d3),s/veh | 0.0    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/    | /In0.1 | 1.7  | 0.1  | 0.0  | 1.3  | 0.1  | 0.1  | 0.0  | 0.1  | 0.1  | 0.0  | 0.1  |  |
| Unsig. Movement Delay,    | s/veh  | 1    |      |      |      |      |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh      | 5.5    | 8.9  | 5.1  | 6.4  | 8.1  | 5.6  | 14.9 | 0.0  | 14.7 | 15.1 | 0.0  | 14.6 |  |
| LnGrp LOS                 | А      | А    | А    | А    | А    | А    | В    | А    | В    | В    | А    | В    |  |
| Approach Vol. veh/h       |        | 1337 |      |      | 615  |      |      | 32   |      |      | 32   |      |  |
| Approach Delay, s/veh     |        | 8.7  |      |      | 7.7  |      |      | 14.8 |      |      | 14.9 |      |  |
| Approach LOS              |        | A    |      |      | A    |      |      | В    |      |      | В    |      |  |
| Timer - Assigned Phs      |        | 2    | 3    | 4    |      | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc)     | S      | 9.5  | 5.5  | 23.2 |      | 9.5  | 6.2  | 22.6 |      |      |      |      |  |
| Change Period (Y+Rc)      | S      | 4.5  | 4.5  | 4.5  |      | 4.5  | 4.5  | 4.5  |      |      |      |      |  |
| Max Green Setting (Gma    | ax), s | 18.0 | 5.0  | 23.5 |      | 18.0 | 5.0  | 23.5 |      |      |      |      |  |
| Max Q Clear Time (q. c+   | (1), s | 2.6  | 2.2  | 13.1 |      | 2.8  | 2.4  | 10.0 |      |      |      |      |  |
| Green Ext Time (p_c), s   | ,, J   | 0.1  | 0.0  | 5.7  |      | 0.0  | 0.0  | 2.6  |      |      |      |      |  |
| Intersection Summary      |        |      |      |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |        |      | 8.6  |      |      |      |      |      |      |      |      |      |  |
| HCM 6th LOS               |        |      | А    |      |      |      |      |      |      |      |      |      |  |

| 03/12/2020 | ) |
|------------|---|
|------------|---|

| Intersection           |       |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
|                        |       |      |      |      |      |      |
| Int Delay, s/veh       | 0.6   |      |      |      |      |      |
| N /                    | гот   |      |      |      |      |      |
| Novement               | ERI   | EBK  | WBL  | WRI  | NRL  | NRK  |
| Lane Configurations    | **    | 1    | 1    | ††   |      | 1    |
| Traffic Vol, veh/h     | 1175  | 20   | 60   | 565  | 0    | 30   |
| Future Vol, veh/h      | 1175  | 20   | 60   | 565  | 0    | 30   |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free  | Free | Free | Free | Stop | Stop |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | -     | 250  | 250  | -    | -    | 0    |
| Veh in Median Storag   | e,# 0 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0     | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    |
| Mymt Flow              | 1277  | 22   | 65   | 614  | 0    | 33   |

| Major/Minor          | Major1 | N     | Major2 |     | Minor1 |      |  |  |  |  |
|----------------------|--------|-------|--------|-----|--------|------|--|--|--|--|
| Conflicting Flow All | 0      | 0     | 1299   | 0   | -      | 639  |  |  |  |  |
| Stage 1              | -      | -     | -      | -   | -      | -    |  |  |  |  |
| Stage 2              | -      | -     | -      | -   | -      | -    |  |  |  |  |
| Critical Hdwy        | -      | -     | 4.14   | -   | -      | 6.94 |  |  |  |  |
| Critical Hdwy Stg 1  | -      | -     | -      | -   | -      | -    |  |  |  |  |
| Critical Hdwy Stg 2  | -      | -     | -      | -   | -      | -    |  |  |  |  |
| Follow-up Hdwy       | -      | -     | 2.22   | -   | -      | 3.32 |  |  |  |  |
| Pot Cap-1 Maneuver   | -      | -     | 529    | -   | 0      | 419  |  |  |  |  |
| Stage 1              | -      | -     | -      | -   | 0      | -    |  |  |  |  |
| Stage 2              | -      | -     | -      | -   | 0      | -    |  |  |  |  |
| Platoon blocked, %   | -      | -     |        | -   |        |      |  |  |  |  |
| Mov Cap-1 Maneuver   | -      | -     | 529    | -   | -      | 419  |  |  |  |  |
| Mov Cap-2 Maneuver   | -      | -     | -      | -   | -      | -    |  |  |  |  |
| Stage 1              | -      | -     | -      | -   | -      | -    |  |  |  |  |
| Stage 2              | -      | -     | -      | -   | -      | -    |  |  |  |  |
|                      |        |       |        |     |        |      |  |  |  |  |
| Approach             | FB     |       | WR     |     | NB     |      |  |  |  |  |
| HCM Control Delay    | 0      |       | 12     |     | 14.3   |      |  |  |  |  |
| HCM LOS              | Ū      |       | 1.2    |     | R      |      |  |  |  |  |
|                      |        |       |        |     | D      |      |  |  |  |  |
|                      |        |       |        |     |        |      |  |  |  |  |
| Minor Lane/Major Mvr | nt     | NBLn1 | EBT    | EBR | WBL    | WBT  |  |  |  |  |
| Capacity (veh/h)     |        | 419   | -      | -   | 529    | -    |  |  |  |  |
| HCM Lane V/C Ratio   |        | 0.078 | -      | -   | 0.123  | -    |  |  |  |  |
| HCM Control Delay (s | )      | 14.3  | -      | -   | 12.8   | -    |  |  |  |  |
| HCM Lane LOS         |        | В     | -      | -   | В      | -    |  |  |  |  |

0.3

-

0.4

-

-

HCM 95th %tile Q(veh)

| Intersection           |               |      |      |      |      |      |
|------------------------|---------------|------|------|------|------|------|
| Int Delay, s/veh       | 0.1           |      |      |      |      |      |
| Movement               | EBL           | EBT  | WBT  | WBR  | SBL  | SBR  |
| Lane Configurations    | 1             | **   | 14   |      |      | 1    |
| Traffic Vol, veh/h     | 10            | 1275 | 650  | 30   | 0    | 10   |
| Future Vol, veh/h      | 10            | 1275 | 650  | 30   | 0    | 10   |
| Conflicting Peds, #/hr | 0             | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free          | Free | Free | Free | Stop | Stop |
| RT Channelized         | -             | None | -    | None | -    | None |
| Storage Length         | 100           | -    | -    | -    | -    | 0    |
| Veh in Median Storage  | e, <b>#</b> - | 0    | 0    | -    | 0    | -    |
| Grade, %               | -             | 0    | 0    | -    | 0    | -    |
| Peak Hour Factor       | 92            | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 0             | 3    | 4    | 25   | 25   | 0    |
| Mvmt Flow              | 11            | 1386 | 707  | 33   | 0    | 11   |

| Major/Minor          | Major1 | Ν     | /lajor2 | ľ   | Minor2    |       |  |
|----------------------|--------|-------|---------|-----|-----------|-------|--|
| Conflicting Flow All | 740    | 0     | -       | 0   | -         | 370   |  |
| Stage 1              | -      | -     | -       | -   | -         | -     |  |
| Stage 2              | -      | -     | -       | -   | -         | -     |  |
| Critical Hdwy        | 4.1    | -     | -       | -   | -         | 6.9   |  |
| Critical Hdwy Stg 1  | -      | -     | -       | -   | -         | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -       | -   | -         | -     |  |
| Follow-up Hdwy       | 2.2    | -     | -       | -   | -         | 3.3   |  |
| Pot Cap-1 Maneuver   | 876    | -     | -       | -   | 0         | 633   |  |
| Stage 1              | -      | -     | -       | -   | 0         | -     |  |
| Stage 2              | -      | -     | -       | -   | 0         | -     |  |
| Platoon blocked, %   |        | -     | -       | -   |           |       |  |
| Mov Cap-1 Maneuver   | r 876  | -     | -       | -   | -         | 633   |  |
| Mov Cap-2 Maneuver   | r –    | -     | -       | -   | -         | -     |  |
| Stage 1              | -      | -     | -       | -   | -         | -     |  |
| Stage 2              | -      | -     | -       | -   | -         | -     |  |
|                      |        |       |         |     |           |       |  |
| Approach             | FB     |       | WR      |     | SB        |       |  |
| HCM Control Delay    | 201    |       | 0       |     | 10.8      |       |  |
| HCM LOS              | 0.1    |       | v       |     | 10.0<br>R |       |  |
|                      |        |       |         |     | D         |       |  |
|                      |        |       |         |     |           |       |  |
| Minor Lane/Major Mv  | mt     | EBL   | EBT     | WBT | WBR S     | BLn1  |  |
| Capacity (veh/h)     |        | 876   | -       | -   | -         | 633   |  |
| HCM Lane V/C Ratio   |        | 0.012 | -       | -   | -         | 0.017 |  |
| HCM Control Delay (s | 6)     | 9.2   | -       | -   | -         | 10.8  |  |
| HCM Lane LOS         |        | Α     | -       | -   | -         | В     |  |
| HCM 95th %tile Q(vel | h)     | 0     | -       | -   | -         | 0.1   |  |

0.5

### Intersection

Int Delay, s/veh

| -                        |     |      |      |      |      |      |      |      |      |      |      |      |
|--------------------------|-----|------|------|------|------|------|------|------|------|------|------|------|
| Movement E               | EBL | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations      |     | **   | 1    | 1    | 11   | 1    |      |      | 1    |      |      | 1    |
| Traffic Vol, veh/h       | 0   | 1235 | 35   | 25   | 660  | 30   | 0    | 0    | 30   | 0    | 0    | 35   |
| Future Vol, veh/h        | 0   | 1235 | 35   | 25   | 660  | 30   | 0    | 0    | 30   | 0    | 0    | 35   |
| Conflicting Peds, #/hr   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control F           | ree | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -   | -    | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length           | -   | -    | 250  | 250  | -    | 250  | -    | -    | 0    | -    | -    | 0    |
| Veh in Median Storage, # | -   | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -   | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 92  | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %        | 2   | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0   | 1342 | 38   | 27   | 717  | 33   | 0    | 0    | 33   | 0    | 0    | 38   |

| Major/Minor          | Major1 |      | 1   | Major2 |     | 1   | Minor1 |       | Ν    | /linor2 |   |      |  |
|----------------------|--------|------|-----|--------|-----|-----|--------|-------|------|---------|---|------|--|
| Conflicting Flow All | -      | 0    | 0   | 1380   | 0   | 0   | -      | -     | 671  | -       | - | 359  |  |
| Stage 1              | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
| Stage 2              | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
| Critical Hdwy        | -      | -    | -   | 4.14   | -   | -   | -      | -     | 6.94 | -       | - | 6.94 |  |
| Critical Hdwy Stg 1  | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
| Critical Hdwy Stg 2  | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
| Follow-up Hdwy       | -      | -    | -   | 2.22   | -   | -   | -      | -     | 3.32 | -       | - | 3.32 |  |
| Pot Cap-1 Maneuver   | 0      | -    | -   | 493    | -   | -   | 0      | 0     | 399  | 0       | 0 | 638  |  |
| Stage 1              | 0      | -    | -   | -      | -   | -   | 0      | 0     | -    | 0       | 0 | -    |  |
| Stage 2              | 0      | -    | -   | -      | -   | -   | 0      | 0     | -    | 0       | 0 | -    |  |
| Platoon blocked, %   |        | -    | -   |        | -   | -   |        |       |      |         |   |      |  |
| Mov Cap-1 Maneuver   | -      | -    | -   | 493    | -   | -   | -      | -     | 399  | -       | - | 638  |  |
| Mov Cap-2 Maneuver   | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
| Stage 1              | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
| Stage 2              | -      | -    | -   | -      | -   | -   | -      | -     | -    | -       | - | -    |  |
|                      |        |      |     |        |     |     |        |       |      |         |   |      |  |
| Approach             | EB     |      |     | \//R   |     |     | NR     |       |      | SB      |   |      |  |
| HCM Control Dolov o  |        |      |     | 0.4    |     |     | 14.0   |       |      | 11      |   |      |  |
| HOM CONTROL Delay, S | U      |      |     | 0.4    |     |     | 14.0   |       |      |         |   |      |  |
| HUM LUS              |        |      |     |        |     |     | В      |       |      | В       |   |      |  |
|                      |        |      |     |        |     |     |        |       |      |         |   |      |  |
| Minor Lane/Maior Mvn | nt Ni  | BLn1 | EBT | EBR    | WBL | WBT | WBR    | SBLn1 |      |         |   |      |  |
|                      |        |      |     |        |     |     |        |       |      |         |   |      |  |

| Capacity (veh/h)      | 399   | - | - 493   | - | - | 638  |  |
|-----------------------|-------|---|---------|---|---|------|--|
| HCM Lane V/C Ratio    | 0.082 | - | - 0.055 | - | - | 0.06 |  |
| HCM Control Delay (s) | 14.8  | - | - 12.7  | - | - | 11   |  |
| HCM Lane LOS          | В     | - | - B     | - | - | В    |  |
| HCM 95th %tile Q(veh) | 0.3   | - | - 0.2   | - | - | 0.2  |  |

### HCM Signalized Intersection Capacity Analysis 10: 95th St/Hover Rd & SH 66

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

|                                | ٠          | -+   | $\mathbf{\hat{v}}$ | +    | •         | 1            | Ť       | ۴     | 4     | ŧ    | ~    | r    |
|--------------------------------|------------|------|--------------------|------|-----------|--------------|---------|-------|-------|------|------|------|
| Movement                       | EBL        | EBT  | EBR2               | WBT  | WBR       | NBL          | NBT     | NBR2  | SBL2  | SBT  | SBR  | NWL2 |
| Lane Configurations            | 57         | **   | 1                  | **   | 1         | 57           | •       | 1     | 1     | •    | 1    | 57   |
| Traffic Volume (vph)           | 40         | 775  | 445                | 350  | 35        | 330          | 250     | 1585  | 75    | 130  | 10   | 920  |
| Future Volume (vph)            | 40         | 775  | 445                | 350  | 35        | 330          | 250     | 1585  | 75    | 130  | 10   | 920  |
| Ideal Flow (vphpl)             | 1900       | 1900 | 1900               | 1900 | 1900      | 1900         | 1900    | 1900  | 1900  | 1900 | 1900 | 1900 |
| Total Lost time (s)            | 5.7        | 5.7  | 5.7                | 5.7  | 5.7       | 4.5          | 6.4     | 4.0   | 4.5   | 6.4  | 6.4  | 4.5  |
| Lane Util. Factor              | 0.97       | 0.95 | 1.00               | 0.95 | 1.00      | 0.97         | 1.00    | 1.00  | 1.00  | 1.00 | 1.00 | 0.97 |
| Frt                            | 1.00       | 1.00 | 0.85               | 1.00 | 0.85      | 1.00         | 1.00    | 0.85  | 1.00  | 1.00 | 0.85 | 1.00 |
| Flt Protected                  | 0.95       | 1.00 | 1.00               | 1.00 | 1.00      | 0.95         | 1.00    | 1.00  | 0.95  | 1.00 | 1.00 | 0.95 |
| Satd. Flow (prot)              | 3502       | 3471 | 1599               | 3406 | 1615      | 3400         | 1863    | 1583  | 1805  | 1900 | 1583 | 3433 |
| Flt Permitted                  | 0.95       | 1.00 | 1.00               | 1.00 | 1.00      | 0.61         | 1.00    | 1.00  | 0.47  | 1.00 | 1.00 | 0.95 |
| Satd. Flow (perm)              | 3502       | 3471 | 1599               | 3406 | 1615      | 2167         | 1863    | 1583  | 895   | 1900 | 1583 | 3433 |
| Peak-hour factor, PHF          | 0.92       | 0.92 | 0.92               | 0.92 | 0.92      | 0.92         | 0.92    | 0.92  | 0.92  | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)                | 43         | 842  | 484                | 380  | 38        | 359          | 272     | 1723  | 82    | 141  | 11   | 1000 |
| RTOR Reduction (vph)           | 0          | 0    | 280                | 0    | 22        | 0            | 0       | 0     | 0     | 0    | 9    | 0    |
| Lane Group Flow (vph)          | 43         | 842  | 204                | 380  | 16        | 359          | 272     | 1723  | 82    | 141  | 2    | 1000 |
| Heavy Vehicles (%)             | 0%         | 4%   | 1%                 | 6%   | 0%        | 3%           | 2%      | 2%    | 0%    | 0%   | 2%   | 2%   |
| Turn Type                      | Prot       | NA   | Perm               | NA   | Perm      | pm+pt        | NA      | Free  | pm+pt | NA   | Perm | Prot |
| Protected Phases               | 5          | 2    |                    | 6    |           | 3            | 8       |       | 7     | 4    |      | 126  |
| Permitted Phases               |            |      | 2                  |      | 6         | 8            |         | Free  | 4     |      | 4    |      |
| Actuated Green, G (s)          | 4.3        | 31.1 | 31.1               | 34.1 | 34.1      | 24.1         | 18.4    | 83.1  | 20.7  | 16.7 | 16.7 | 44.1 |
| Effective Green, g (s)         | 4.3        | 31.1 | 31.1               | 34.1 | 34.1      | 24.1         | 18.4    | 83.1  | 20.7  | 16.7 | 16.7 | 44.1 |
| Actuated g/C Ratio             | 0.05       | 0.37 | 0.37               | 0.41 | 0.41      | 0.29         | 0.22    | 1.00  | 0.25  | 0.20 | 0.20 | 0.53 |
| Clearance Time (s)             | 5.7        | 5.7  | 5.7                | 5.7  | 5.7       | 4.5          | 6.4     |       | 4.5   | 6.4  | 6.4  |      |
| Vehicle Extension (s)          | 3.0        | 3.0  | 3.0                | 3.0  | 3.0       | 3.0          | 4.0     |       | 3.0   | 4.0  | 4.0  |      |
| Lane Grp Cap (vph)             | 181        | 1299 | 598                | 1397 | 662       | 713          | 412     | 1583  | 266   | 381  | 318  | 1821 |
| v/s Ratio Prot                 | 0.01       | 0.24 |                    | 0.11 |           | 0.03         | 0.15    |       | 0.01  | 0.07 |      | 0.29 |
| v/s Ratio Perm                 |            |      | 0.13               |      | 0.01      | 0.11         |         | c1.09 | 0.06  |      | 0.00 |      |
| v/c Ratio                      | 0.24       | 0.65 | 0.34               | 0.27 | 0.02      | 0.50         | 0.66    | 1.09  | 0.31  | 0.37 | 0.01 | 0.55 |
| Uniform Delay, d1              | 37.8       | 21.5 | 18.6               | 16.3 | 14.6      | 23.7         | 29.5    | 41.5  | 24.6  | 28.7 | 26.6 | 12.9 |
| Progression Factor             | 1.00       | 1.00 | 1.00               | 1.00 | 1.00      | 1.00         | 1.00    | 1.00  | 1.00  | 1.00 | 1.00 | 0.99 |
| Incremental Delay, d2          | 0.7        | 1.1  | 0.3                | 0.1  | 0.0       | 0.6          | 4.3     | 50.8  | 0.7   | 0.8  | 0.0  | 0.3  |
| Delay (s)                      | 38.5       | 22.6 | 19.0               | 16.4 | 14.6      | 24.3         | 33.8    | 92.3  | 25.3  | 29.5 | 26.6 | 13.1 |
| Level of Service               | D          | С    | В                  | В    | В         | С            | С       | F     | С     | С    | С    | В    |
| Approach Delay (s)             |            | 21.8 |                    | 16.2 |           |              | 75.2    |       |       | 27.9 |      |      |
| Approach LOS                   |            | С    |                    | В    |           |              | Е       |       |       | С    |      |      |
| Intersection Summary           |            |      |                    |      |           |              |         |       |       |      |      |      |
| HCM 2000 Control Delay         |            |      | 43.4               | Н    | CM 2000   | ) Level of S | Service |       | D     |      |      |      |
| HCM 2000 Volume to Capac       | city ratio |      | 1.49               |      |           |              |         |       |       |      |      |      |
| Actuated Cycle Length (s)      |            |      | 83.1               | S    | um of los | st time (s)  |         |       | 22.3  |      |      |      |
| Intersection Capacity Utilizat | tion       |      | 86.7%              | IC   | CU Level  | of Service   |         |       | E     |      |      |      |
| Analysis Period (min)          |            |      | 15                 |      |           |              |         |       |       |      |      |      |
| c Critical Lane Group          |            |      |                    |      |           |              |         |       |       |      |      |      |

|                             |              | P    | *     | +    | 3          | 1                |   |     |
|-----------------------------|--------------|------|-------|------|------------|------------------|---|-----|
| Movement                    | EBT          | EBR  | WBL   | WBT  | NEL        | NER              |   |     |
| Lane Configurations         | **           |      | 55    | 44   |            | 1                |   |     |
| Traffic Volume (vph)        | 810          | 0    | 920   | 385  | 0          | 1585             |   |     |
| Future Volume (vph)         | 810          | 0    | 920   | 385  | 0          | 1585             |   |     |
| Ideal Flow (vphpl)          | 1900         | 1900 | 1900  | 1900 | 1900       | 1900             |   |     |
| Total Lost time (s)         | 5.7          |      | 4.5   | 4.0  |            | 4.0              |   |     |
| Lane Util. Factor           | 0.95         |      | 0.97  | 0.95 |            | 1.00             |   |     |
| Frt                         | 1.00         |      | 1.00  | 1.00 |            | 0.86             |   |     |
| Flt Protected               | 1.00         |      | 0.95  | 1.00 |            | 1.00             |   |     |
| Satd. Flow (prot)           | 3539         |      | 3433  | 3539 |            | 1611             |   |     |
| Flt Permitted               | 1.00         |      | 0.95  | 1.00 |            | 1.00             |   |     |
| Satd. Flow (perm)           | 3539         |      | 3433  | 3539 |            | 1611             |   |     |
| Peak-hour factor, PHF       | 0.92         | 0.92 | 0.92  | 0.92 | 0.92       | 0.92             |   |     |
| Adj. Flow (vph)             | 880          | 0    | 1000  | 418  | 0          | 1723             |   |     |
| RTOR Reduction (vph)        | 0            | 0    | 0     | 0    | 0          | 0                |   |     |
| Lane Group Flow (vph)       | 880          | 0    | 1000  | 418  | 0          | 1723             |   |     |
| Turn Type                   | NA           |      | Prot  | NA   |            | Free             |   |     |
| Protected Phases            | 2            |      | 134   | Free |            |                  |   |     |
| Permitted Phases            |              |      |       |      |            | Free             |   |     |
| Actuated Green, G (s)       | 31.1         |      | 41.8  | 83.1 |            | 83.1             |   |     |
| Effective Green, g (s)      | 31.1         |      | 35.4  | 83.1 |            | 83.1             |   |     |
| Actuated g/C Ratio          | 0.37         |      | 0.43  | 1.00 |            | 1.00             |   |     |
| Clearance Time (s)          | 5.7          |      |       |      |            |                  |   |     |
| Vehicle Extension (s)       | 3.0          |      |       |      |            |                  |   |     |
| Lane Grp Cap (vph)          | 1324         |      | 1462  | 3539 |            | 1611             |   |     |
| v/s Ratio Prot              | 0.25         |      | 0.29  | 0.12 |            |                  |   |     |
| v/s Ratio Perm              |              |      |       |      |            | c1.07            |   |     |
| v/c Ratio                   | 0.66         |      | 0.68  | 0.12 |            | 1.07             |   |     |
| Uniform Delay, d1           | 21.7         |      | 19.3  | 0.0  |            | 41.5             |   |     |
| Progression Factor          | 0.42         |      | 1.00  | 1.00 |            | 1.00             |   |     |
| Incremental Delay, d2       | 1.0          |      | 1.3   | 0.1  |            | 32.8             |   |     |
| Delay (s)                   | 10.0         |      | 20.7  | 0.1  |            | 74.3             |   |     |
| Level of Service            | В            |      | С     | А    |            | E                |   |     |
| Approach Delay (s)          | 10.0         |      |       | 14.6 | 74.3       |                  |   |     |
| Approach LOS                | В            |      |       | В    | E          |                  |   |     |
| Intersection Summary        |              |      |       |      |            |                  |   |     |
| HCM 2000 Control Delay      |              |      | 39.2  | Н    | CM 2000    | Level of Service |   | D   |
| HCM 2000 Volume to Ca       | pacity ratio |      | 1.46  |      |            |                  |   |     |
| Actuated Cycle Length (s    | )            |      | 83.1  | Su   | um of lost | time (s)         | 2 | 2.3 |
| Intersection Capacity Utili | ization      |      | 56.7% | IC   | U Level o  | of Service       |   | В   |
| Analysis Period (min)       |              |      | 15    |      |            |                  |   |     |

0.5

| Into | rco | Oth | nn – |
|------|-----|-----|------|
| ппе  | 150 | UII |      |
|      |     |     |      |

Int Delay, s/veh

| Movement El              | BL | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|----|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations      |    | ††   | 1    |      | **   | 1    |      |      | 1    |      |      | 1    |
| Traffic Vol, veh/h       | 0  | 2390 | 115  | 0    | 1385 | 5    | 0    | 0    | 50   | 0    | 0    | 5    |
| Future Vol, veh/h        | 0  | 2390 | 115  | 0    | 1385 | 5    | 0    | 0    | 50   | 0    | 0    | 5    |
| Conflicting Peds, #/hr   | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control Fre         | ee | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -  | -    | None | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length           | -  | -    | 0    | -    | -    | 250  | -    | -    | 0    | -    | -    | 0    |
| Veh in Median Storage, # | -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 92 | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %        | 2  | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0  | 2598 | 125  | 0    | 1505 | 5    | 0    | 0    | 54   | 0    | 0    | 5    |

| Major/Minor I         | Major1 |       | Ν   | /lajor2 |     | Ν     | 1inor1 |   | Ν    | /linor2 |   |      |  |
|-----------------------|--------|-------|-----|---------|-----|-------|--------|---|------|---------|---|------|--|
| Conflicting Flow All  | -      | 0     | 0   | -       | -   | 0     | -      | - | 1299 | -       | - | 753  |  |
| Stage 1               | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
| Stage 2               | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
| Critical Hdwy         | -      | -     | -   | -       | -   | -     | -      | - | 6.94 | -       | - | 6.94 |  |
| Critical Hdwy Stg 1   | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
| Critical Hdwy Stg 2   | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
| Follow-up Hdwy        | -      | -     | -   | -       | -   | -     | -      | - | 3.32 | -       | - | 3.32 |  |
| Pot Cap-1 Maneuver    | 0      | -     | -   | 0       | -   | -     | 0      | 0 | 152  | 0       | 0 | 352  |  |
| Stage 1               | 0      | -     | -   | 0       | -   | -     | 0      | 0 | -    | 0       | 0 | -    |  |
| Stage 2               | 0      | -     | -   | 0       | -   | -     | 0      | 0 | -    | 0       | 0 | -    |  |
| Platoon blocked, %    |        | -     | -   |         | -   | -     |        |   |      |         |   |      |  |
| Mov Cap-1 Maneuver    | -      | -     | -   | -       | -   | -     | -      | - | 152  | -       | - | 352  |  |
| Mov Cap-2 Maneuver    | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
| Stage 1               | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
| Stage 2               | -      | -     | -   | -       | -   | -     | -      | - | -    | -       | - | -    |  |
|                       |        |       |     |         |     |       |        |   |      |         |   |      |  |
| Approach              | EB     |       |     | WB      |     |       | NB     |   |      | SB      |   |      |  |
| HCM Control Delay, s  | 0      |       |     | 0       |     |       | 41.3   |   |      | 15.4    |   |      |  |
| HCM LOS               |        |       |     |         |     |       | Е      |   |      | С       |   |      |  |
|                       |        |       |     |         |     |       |        |   |      |         |   |      |  |
| Minor Lane/Major Mvm  | nt NI  | BLn1  | EBT | EBR     | WBT | WBR S | BLn1   |   |      |         |   |      |  |
| Capacity (veh/h)      |        | 152   | -   | -       | -   | -     | 352    |   |      |         |   |      |  |
| HCM Lane V/C Ratio    | C      | ).358 | -   | -       | -   | -     | 0.015  |   |      |         |   |      |  |
| HCM Control Delay (s) |        | 41.3  | -   | -       | -   | -     | 15.4   |   |      |         |   |      |  |
| HCM Lane LOS          |        | Е     | -   | -       | -   | -     | С      |   |      |         |   |      |  |
| HCM 95th %tile Q(veh) | )      | 1.5   | -   | -       | -   | -     | 0      |   |      |         |   |      |  |

HCM 95th %tile Q(veh)

### HCM 6th Signalized Intersection Summary 13: Francis St & SH 66

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

|                              | ٠    | -    | $\mathbf{\hat{v}}$ | 1     | +    | *    | 1    | Ť     | 1    | 4    | ŧ    | ~    |
|------------------------------|------|------|--------------------|-------|------|------|------|-------|------|------|------|------|
| Movement                     | EBL  | EBT  | EBR                | WBL   | WBT  | WBR  | NBL  | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | 5    | **   | 1                  | 55    | **   | 1    | 5    | •     | 1    | 5    | Ť.   | 1    |
| Traffic Volume (veh/h)       | 5    | 2355 | 80                 | 255   | 1350 | 15   | 55   | 15    | 205  | 25   | 20   | 10   |
| Future Volume (veh/h)        | 5    | 2355 | 80                 | 255   | 1350 | 15   | 55   | 15    | 205  | 25   | 20   | 10   |
| Initial Q (Qb), veh          | 0    | 0    | 0                  | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00               | 1.00  |      | 1.00 | 1.00 |       | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00               | 1.00  | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No   |                    |       | No   |      |      | No    |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1856 | 1900               | 1885  | 1856 | 1870 | 1900 | 1870  | 1885 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 5    | 2560 | 87                 | 277   | 1467 | 16   | 60   | 16    | 0    | 27   | 22   | 11   |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92               | 0.92  | 0.92 | 0.92 | 0.92 | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %         | 2    | 3    | 0                  | 1     | 3    | 2    | 0    | 2     | 1    | 2    | 2    | 2    |
| Cap, veh/h                   | 650  | 2613 | 1193               | 301   | 1696 | 763  | 157  | 100   |      | 139  | 65   | 55   |
| Arrive On Green              | 0.32 | 0.74 | 0.74               | 0.06  | 0.48 | 0.48 | 0.04 | 0.05  | 0.00 | 0.02 | 0.03 | 0.03 |
| Sat Flow, veh/h              | 1781 | 3526 | 1610               | 3483  | 3526 | 1585 | 1810 | 1870  | 1598 | 1781 | 1870 | 1585 |
| Grp Volume(v), veh/h         | 5    | 2560 | 87                 | 277   | 1467 | 16   | 60   | 16    | 0    | 27   | 22   | 11   |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1763 | 1610               | 1742  | 1763 | 1585 | 1810 | 1870  | 1598 | 1781 | 1870 | 1585 |
| Q Serve(g_s), s              | 0.0  | 98.8 | 2.1                | 7.2   | 53.2 | 0.6  | 4.6  | 1.2   | 0.0  | 2.1  | 1.7  | 0.6  |
| Cycle Q Clear(g_c), s        | 0.0  | 98.8 | 2.1                | 7.2   | 53.2 | 0.6  | 4.6  | 1.2   | 0.0  | 2.1  | 1.7  | 0.6  |
| Prop In Lane                 | 1.00 |      | 1.00               | 1.00  |      | 1.00 | 1.00 |       | 1.00 | 1.00 |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 650  | 2613 | 1193               | 301   | 1696 | 763  | 157  | 100   |      | 139  | 65   | 55   |
| V/C Ratio(X)                 | 0.01 | 0.98 | 0.07               | 0.92  | 0.86 | 0.02 | 0.38 | 0.16  |      | 0.19 | 0.34 | 0.20 |
| Avail Cap(c_a), veh/h        | 650  | 2621 | 1197               | 301   | 2702 | 1215 | 163  | 152   |      | 160  | 134  | 113  |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00               | 1.00  | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00               | 1.00  | 1.00 | 1.00 | 1.00 | 1.00  | 0.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh     | 25.0 | 17.6 | 5.1                | 38.1  | 33.2 | 13.6 | 63.4 | 65.1  | 0.0  | 64.9 | 67.8 | 24.8 |
| Incr Delay (d2), s/veh       | 0.0  | 13.2 | 0.0                | 32.0  | 1.9  | 0.0  | 1.5  | 0.7   | 0.0  | 0.7  | 3.0  | 1.8  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0                | 0.0   | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 0.1  | 34.5 | 0.6                | 4.2   | 21.4 | 0.3  | 2.2  | 0.6   | 0.0  | 1.0  | 0.8  | 0.4  |
| Unsig. Movement Delay, s/veh |      |      |                    |       |      |      |      |       |      |      |      |      |
| LnGrp Delay(d),s/veh         | 25.0 | 30.8 | 5.1                | 70.1  | 35.0 | 13.7 | 64.9 | 65.8  | 0.0  | 65.5 | 70.9 | 26.6 |
| LnGrp LOS                    | С    | С    | А                  | Е     | D    | В    | E    | Е     |      | E    | E    | С    |
| Approach Vol, veh/h          |      | 2652 |                    |       | 1760 |      |      | 76    | А    |      | 60   |      |
| Approach Delay, s/veh        |      | 29.9 |                    |       | 40.4 |      |      | 65.1  |      |      | 60.3 |      |
| Approach LOS                 |      | С    |                    |       | D    |      |      | Е     |      |      | Е    |      |
| Timer - Assigned Phs         | 1    | 2    | 3                  | 4     | 5    | 6    | 7    | 8     |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 7.8  | 12.2 | 12.8               | 111.1 | 10.5 | 9.5  | 50.2 | 73.7  |      |      |      |      |
| Change Period (Y+Rc), s      | 4.5  | 4.5  | 4.5                | 4.5   | 4.5  | 4.5  | 4.5  | 4.5   |      |      |      |      |
| Max Green Setting (Gmax), s  | 5.0  | 11.7 | 8.3                | 107.0 | 6.4  | 10.3 | 5.0  | 110.3 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 4.1  | 3.2  | 9.2                | 100.8 | 6.6  | 3.7  | 2.0  | 55.2  |      |      |      |      |
| Green Ext Time (p_c), s      | 0.0  | 0.0  | 0.0                | 5.9   | 0.0  | 0.0  | 0.0  | 14.0  |      |      |      |      |
| Intersection Summary         |      |      |                    |       |      |      |      |       |      |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 34.9               |       |      |      |      |       |      |      |      |      |
| HCM 6th LOS                  |      |      | С                  |       |      |      |      |       |      |      |      |      |

### Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

| Intersection           |      |      |      |      |      |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Int Delay, s/veh       | 16.5 |      |      |      |      |      |      |      |      |      |      |      |  |
| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | 1    | **   | 1    | 1    | **   | 1    |      |      | 1    |      |      | 1    |  |
| Traffic Vol, veh/h     | 20   | 2505 | 60   | 35   | 1450 | 55   | 0    | 0    | 200  | 0    | 0    | 80   |  |
| Future Vol, veh/h      | 20   | 2505 | 60   | 35   | 1450 | 55   | 0    | 0    | 200  | 0    | 0    | 80   |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 250  | -    | 0    | 250  | -    | 250  | -    | -    | 0    | -    | -    | 0    |  |
| Veh in Median Storage, | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 22   | 2723 | 65   | 38   | 1576 | 60   | 0    | 0    | 217  | 0    | 0    | 87   |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor           | Major1 |        | Ν    | /lajor2 |     | I     | Minor1     |     | Ν     | /linor2 |   |      |  |
|-----------------------|--------|--------|------|---------|-----|-------|------------|-----|-------|---------|---|------|--|
| Conflicting Flow All  | 1636   | 0      | 0    | 2788    | 0   | 0     | -          | -   | 1362  | -       | - | 788  |  |
| Stage 1               | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
| Stage 2               | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
| Critical Hdwy         | 4.14   | -      | -    | 4.14    | -   | -     | -          | -   | 6.94  | -       | - | 6.94 |  |
| Critical Hdwy Stg 1   | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
| Critical Hdwy Stg 2   | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
| Follow-up Hdwy        | 2.22   | -      | -    | 2.22    | -   | -     | -          | -   | 3.32  | -       | - | 3.32 |  |
| Pot Cap-1 Maneuver    | 392    | -      | -    | 138     | -   | -     | 0          | 0   | ~ 138 | 0       | 0 | 334  |  |
| Stage 1               | -      | -      | -    | -       | -   | -     | 0          | 0   | -     | 0       | 0 | -    |  |
| Stage 2               | -      | -      | -    | -       | -   | -     | 0          | 0   | -     | 0       | 0 | -    |  |
| Platoon blocked, %    |        | -      | -    |         | -   | -     |            |     |       |         |   |      |  |
| Mov Cap-1 Maneuver    | 392    | -      | -    | 138     | -   | -     | -          | -   | ~ 138 | -       | - | 334  |  |
| Mov Cap-2 Maneuver    | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
| Stage 1               | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
| Stage 2               | -      | -      | -    | -       | -   | -     | -          | -   | -     | -       | - | -    |  |
|                       |        |        |      |         |     |       |            |     |       |         |   |      |  |
| Approach              | FB     |        |      | WB      |     |       | NB         |     |       | SB      |   |      |  |
| HCM Control Delay s   | 0.1    |        |      | 0.9     |     | \$    | 348.3      |     |       | 19.5    |   |      |  |
| HCM LOS               | 0.1    |        |      | 0.0     |     | Ψ     | F          |     |       | C       |   |      |  |
|                       |        |        |      |         |     |       |            |     |       | Ŭ       |   |      |  |
| N                     |        |        | וח־  | CDT     |     |       |            |     | 0014  |         |   |      |  |
| Minor Lane/Major Mvm  | nt NBL | .n1 E  | EBL  | ERI     | EBK | WBL   | <b>WRI</b> | WBR | SBLN1 |         |   |      |  |
| Capacity (veh/h)      | . 1    | 38     | 392  | -       | -   | 138   | -          | -   | 334   |         |   |      |  |
| HCM Lane V/C Ratio    | 1.5    | 75 0.0 | 055  | -       | -   | 0.276 | -          | -   | 0.26  |         |   |      |  |
| HCM Control Delay (s) | \$ 34  | 8.3 1  | 14.7 | -       | -   | 40.7  | -          | -   | 19.5  |         |   |      |  |
| HCM Lane LOS          |        | F      | В    | -       | -   | E     | -          | -   | С     |         |   |      |  |

### Notes ~: Volume exceeds capacity

HCM 95th %tile Q(veh)

\$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

1

1.1

0.2

15.3



|                               |            | $\mathbf{r}$ | 1     | -        | 1          | 1                |      |  |
|-------------------------------|------------|--------------|-------|----------|------------|------------------|------|--|
| Movement                      | EBT        | EBR          | WBL   | WBT      | NBL        | NBR              |      |  |
| Lane Configurations           | **         | 1            |       | <b>^</b> | 57         |                  |      |  |
| Traffic Volume (vph)          | 1015       | 400          | 0     | 500      | 415        | 0                |      |  |
| Future Volume (vph)           | 1015       | 400          | 0     | 500      | 415        | 0                |      |  |
| Ideal Flow (vphpl)            | 1900       | 1900         | 1900  | 1900     | 1900       | 1900             |      |  |
| Total Lost time (s)           | 4.0        | 4.0          |       | 4.0      | 4.0        |                  |      |  |
| Lane Util. Factor             | 0.95       | 1.00         |       | 0.95     | 0.97       |                  |      |  |
| Frt                           | 1.00       | 0.85         |       | 1.00     | 1.00       |                  |      |  |
| Flt Protected                 | 1.00       | 1.00         |       | 1.00     | 0.95       |                  |      |  |
| Satd. Flow (prot)             | 3539       | 1583         |       | 3539     | 3433       |                  |      |  |
| Flt Permitted                 | 1.00       | 1.00         |       | 1.00     | 0.95       |                  |      |  |
| Satd. Flow (perm)             | 3539       | 1583         |       | 3539     | 3433       |                  |      |  |
| Peak-hour factor, PHF         | 0.92       | 0.92         | 0.92  | 0.92     | 0.92       | 0.92             |      |  |
| Adj. Flow (vph)               | 1103       | 435          | 0     | 543      | 451        | 0                |      |  |
| RTOR Reduction (vph)          | 0          | 0            | 0     | 0        | 0          | 0                |      |  |
| Lane Group Flow (vph)         | 1103       | 435          | 0     | 543      | 451        | 0                |      |  |
| Turn Type                     | NA         | Free         |       | NA       | Prot       |                  |      |  |
| Protected Phases              | 12         |              |       | Free!    | 4!         |                  |      |  |
| Permitted Phases              |            | Free         |       |          |            |                  |      |  |
| Actuated Green, G (s)         | 42.0       | 80.0         |       | 80.0     | 16.0       |                  |      |  |
| Effective Green, g (s)        | 42.0       | 80.0         |       | 80.0     | 16.0       |                  |      |  |
| Actuated g/C Ratio            | 0.52       | 1.00         |       | 1.00     | 0.20       |                  |      |  |
| Clearance Time (s)            |            |              |       |          | 4.0        |                  |      |  |
| Vehicle Extension (s)         |            |              |       |          | 3.0        |                  |      |  |
| Lane Grp Cap (vph)            | 1857       | 1583         |       | 3539     | 686        |                  |      |  |
| v/s Ratio Prot                | c0.31      |              |       | 0.15     | c0.13      |                  |      |  |
| v/s Ratio Perm                |            | c0.27        |       |          |            |                  |      |  |
| v/c Ratio                     | 0.59       | 0.27         |       | 0.15     | 0.66       |                  |      |  |
| Uniform Delay, d1             | 13.1       | 0.0          |       | 0.0      | 29.5       |                  |      |  |
| Progression Factor            | 1.00       | 1.00         |       | 1.00     | 0.40       |                  |      |  |
| Incremental Delay, d2         | 0.5        | 0.4          |       | 0.1      | 2.2        |                  |      |  |
| Delay (s)                     | 13.6       | 0.4          |       | 0.1      | 13.9       |                  |      |  |
| Level of Service              | В          | А            |       | А        | В          |                  |      |  |
| Approach Delay (s)            | 9.9        |              |       | 0.1      | 13.9       |                  |      |  |
| Approach LOS                  | А          |              |       | А        | В          |                  |      |  |
| Intersection Summary          |            |              |       |          |            |                  |      |  |
| HCM 2000 Control Delay        |            |              | 8.5   | Н        | CM 2000    | Level of Service | A    |  |
| HCM 2000 Volume to Capa       | city ratio |              | 0.61  |          |            |                  |      |  |
| Actuated Cycle Length (s)     |            |              | 80.0  | S        | um of lost | time (s)         | 16.0 |  |
| Intersection Capacity Utiliza | tion       |              | 46.6% | IC       | CU Level c | of Service       | A    |  |
| Analysis Period (min)         |            |              | 15    |          |            |                  |      |  |
| ! Phase conflict between la   | ane groups |              |       |          |            |                  |      |  |
| c Critical Lane Group         |            |              |       |          |            |                  |      |  |

|                                   | ٠      | -+    | +     | •    | 4          | 1                |      |   |
|-----------------------------------|--------|-------|-------|------|------------|------------------|------|---|
| Movement                          | EBL    | EBT   | WBT   | WBR  | SBL        | SBR              |      |   |
| Lane Configurations               |        | **    | **    | 1    | 55         |                  |      |   |
| Traffic Volume (vph)              | 0      | 1015  | 500   | 260  | 185        | 0                |      |   |
| Future Volume (vph)               | 0      | 1015  | 500   | 260  | 185        | 0                |      |   |
| Ideal Flow (vphpl)                | 1900   | 1900  | 1900  | 1900 | 1900       | 1900             |      |   |
| Total Lost time (s)               |        | 4.0   | 4.0   | 4.0  | 4.0        |                  |      |   |
| Lane Util. Factor                 |        | 0.95  | 0.95  | 1.00 | 0.97       |                  |      |   |
| Frt                               |        | 1.00  | 1.00  | 0.85 | 1.00       |                  |      |   |
| Flt Protected                     |        | 1.00  | 1.00  | 1.00 | 0.95       |                  |      |   |
| Satd. Flow (prot)                 |        | 3539  | 3539  | 1583 | 3433       |                  |      |   |
| Flt Permitted                     |        | 1.00  | 1.00  | 1.00 | 0.95       |                  |      |   |
| Satd. Flow (perm)                 |        | 3539  | 3539  | 1583 | 3433       |                  |      |   |
| Peak-hour factor, PHF             | 0.92   | 0.92  | 0.92  | 0.92 | 0.92       | 0.92             |      |   |
| Adj. Flow (vph)                   | 0      | 1103  | 543   | 283  | 201        | 0                |      |   |
| RTOR Reduction (vph)              | 0      | 0     | 0     | 0    | 0          | 0                |      |   |
| Lane Group Flow (vph)             | 0      | 1103  | 543   | 283  | 201        | 0                |      |   |
| Turn Type                         |        | NA    | NA    | Free | Prot       |                  |      |   |
| Protected Phases                  |        | Free! | 12    |      | 4!         |                  |      |   |
| Permitted Phases                  |        |       |       | Free |            |                  |      |   |
| Actuated Green, G (s)             |        | 80.0  | 42.0  | 80.0 | 16.0       |                  |      |   |
| Effective Green, g (s)            |        | 80.0  | 42.0  | 80.0 | 16.0       |                  |      |   |
| Actuated g/C Ratio                |        | 1.00  | 0.52  | 1.00 | 0.20       |                  |      |   |
| Clearance Time (s)                |        |       |       |      | 4.0        |                  |      |   |
| Vehicle Extension (s)             |        |       |       |      | 3.0        |                  |      |   |
| Lane Grp Cap (vph)                |        | 3539  | 1857  | 1583 | 686        |                  |      |   |
| v/s Ratio Prot                    |        | 0.31  | 0.15  |      | 0.06       |                  |      |   |
| v/s Ratio Perm                    |        |       |       | 0.18 |            |                  |      |   |
| v/c Ratio                         |        | 0.31  | 0.29  | 0.18 | 0.29       |                  |      |   |
| Uniform Delay, d1                 |        | 0.0   | 10.7  | 0.0  | 27.2       |                  |      |   |
| Progression Factor                |        | 1.00  | 0.32  | 1.00 | 0.00       |                  |      |   |
| Incremental Delay, d2             |        | 0.2   | 0.1   | 0.2  | 0.2        |                  |      |   |
| Delay (s)                         |        | 0.2   | 3.5   | 0.2  | 0.2        |                  |      |   |
| Level of Service                  |        | А     | А     | А    | А          |                  |      |   |
| Approach Delay (s)                |        | 0.2   | 2.4   |      | 0.2        |                  |      |   |
| Approach LOS                      |        | A     | A     |      | A          |                  |      |   |
| Intersection Summary              |        |       |       |      |            |                  |      |   |
| HCM 2000 Control Delay            |        |       | 1.0   | H    | CM 2000    | Level of Service | A    | • |
| HCM 2000 Volume to Capacity       | ratio  |       | 0.39  |      |            |                  |      |   |
| Actuated Cycle Length (s)         |        |       | 80.0  | Sı   | um of lost | time (s)         | 16.0 |   |
| Intersection Capacity Utilization |        |       | 40.0% | IC   | U Level o  | of Service       | A    | · |
| Analysis Period (min)             |        |       | 15    |      |            |                  |      |   |
| ! Phase conflict between lane     | groups |       |       |      |            |                  |      |   |
| c Critical Lane Group             |        |       |       |      |            |                  |      |   |

|                                   | ٭            | $\mathbf{r}$ | 1     | Ť        | ŧ          | ~                |      |   |  |
|-----------------------------------|--------------|--------------|-------|----------|------------|------------------|------|---|--|
| Movement                          | EBL          | EBR          | NBL   | NBT      | SBT        | SBR              |      |   |  |
| Lane Configurations               | 55           |              |       | <b>^</b> | **         | 1                |      |   |  |
| Traffic Volume (vph)              | 1265         | 0            | 0     | 1100     | 750        | 600              |      |   |  |
| Future Volume (vph)               | 1265         | 0            | 0     | 1100     | 750        | 600              |      |   |  |
| Ideal Flow (vphpl)                | 1900         | 1900         | 1900  | 1900     | 1900       | 1900             |      |   |  |
| Total Lost time (s)               | 4.0          |              |       | 4.0      | 4.0        | 4.0              |      |   |  |
| Lane Util. Factor                 | 0.97         |              |       | 0.95     | 0.95       | 1.00             |      |   |  |
| Frt                               | 1.00         |              |       | 1.00     | 1.00       | 0.85             |      |   |  |
| Flt Protected                     | 0.95         |              |       | 1.00     | 1.00       | 1.00             |      |   |  |
| Satd. Flow (prot)                 | 3433         |              |       | 3539     | 3539       | 1583             |      |   |  |
| Flt Permitted                     | 0.95         |              |       | 1.00     | 1.00       | 1.00             |      |   |  |
| Satd. Flow (perm)                 | 3433         |              |       | 3539     | 3539       | 1583             |      |   |  |
| Peak-hour factor, PHF             | 0.92         | 0.92         | 0.92  | 0.92     | 0.92       | 0.92             |      |   |  |
| Adi, Flow (vph)                   | 1375         | 0            | 0     | 1196     | 815        | 652              |      |   |  |
| RTOR Reduction (vph)              | 0            | 0            | 0     | 0        | 0          | 0                |      |   |  |
| Lane Group Flow (vph)             | 1375         | 0            | 0     | 1196     | 815        | 652              |      |   |  |
| Turn Type                         | Prot         |              |       | NA       | NA         | Free             |      |   |  |
| Protected Phases                  | 1 2          |              |       | Free!    | 34         | 1100             |      |   |  |
| Permitted Phases                  |              |              |       |          | •          | Free             |      |   |  |
| Actuated Green, G (s)             | 42.0         |              |       | 80.0     | 30.0       | 80.0             |      |   |  |
| Effective Green, g (s)            | 42.0         |              |       | 80.0     | 30.0       | 80.0             |      |   |  |
| Actuated q/C Ratio                | 0.52         |              |       | 1.00     | 0.38       | 1.00             |      |   |  |
| Clearance Time (s)                |              |              |       |          |            |                  |      |   |  |
| Vehicle Extension (s)             |              |              |       |          |            |                  |      |   |  |
| Lane Grp Cap (vph)                | 1802         |              |       | 3539     | 1327       | 1583             |      |   |  |
| v/s Ratio Prot                    | c0.40        |              |       | 0.34     | c0.23      |                  |      |   |  |
| v/s Ratio Perm                    |              |              |       |          |            | 0.41             |      |   |  |
| v/c Ratio                         | 0.76         |              |       | 0.34     | 0.61       | 0.41             |      |   |  |
| Uniform Delay, d1                 | 15.1         |              |       | 0.0      | 20.3       | 0.0              |      |   |  |
| Progression Factor                | 0.55         |              |       | 1.00     | 1.00       | 1.00             |      |   |  |
| Incremental Delay, d2             | 1.2          |              |       | 0.1      | 0.8        | 0.7              |      |   |  |
| Delay (s)                         | 9.5          |              |       | 0.1      | 21.1       | 0.7              |      |   |  |
| Level of Service                  | А            |              |       | А        | С          | А                |      |   |  |
| Approach Delay (s)                | 9.5          |              |       | 0.1      | 12.0       |                  |      |   |  |
| Approach LOS                      | А            |              |       | А        | В          |                  |      |   |  |
| Intersection Summary              |              |              |       |          |            |                  |      |   |  |
| HCM 2000 Control Delay            |              |              | 7.6   | Н        | CM 2000    | Level of Service | Α    |   |  |
| HCM 2000 Volume to Capa           | acity ratio  |              | 0.79  |          |            |                  |      |   |  |
| Actuated Cycle Length (s)         | ,            |              | 80.0  | S        | um of lost | time (s)         | 16.0 | ) |  |
| Intersection Capacity Utilization | ation        |              | 73.2% | IC       | U Level o  | of Service       | D    | ) |  |
| Analysis Period (min)             |              |              | 15    |          |            |                  |      |   |  |
| ! Phase conflict between          | lane groups. |              |       |          |            |                  |      |   |  |
| c Critical Lane Group             |              |              |       |          |            |                  |      |   |  |

|                                | 1                                        | *    | Ť     | 1     | 1          | ŧ                |    |   |  |
|--------------------------------|------------------------------------------|------|-------|-------|------------|------------------|----|---|--|
| Movement                       | WBL                                      | WBR  | NBT   | NBR   | SBL        | SBT              |    |   |  |
| Lane Configurations            | 55                                       |      | **    | 1     |            | <b>^</b>         |    |   |  |
| Traffic Volume (vph)           | 370                                      | 0    | 1100  | 380   | 0          | 750              |    |   |  |
| Future Volume (vph)            | 370                                      | 0    | 1100  | 380   | 0          | 750              |    |   |  |
| Ideal Flow (vphpl)             | 1900                                     | 1900 | 1900  | 1900  | 1900       | 1900             |    |   |  |
| Total Lost time (s)            | 4.0                                      |      | 4.0   | 4.0   |            | 4.0              |    |   |  |
| Lane Util. Factor              | 0.97                                     |      | 0.95  | 1.00  |            | 0.95             |    |   |  |
| Frt                            | 1.00                                     |      | 1.00  | 0.85  |            | 1.00             |    |   |  |
| Flt Protected                  | 0.95                                     |      | 1.00  | 1.00  |            | 1.00             |    |   |  |
| Satd. Flow (prot)              | 3433                                     |      | 3539  | 1583  |            | 3539             |    |   |  |
| Flt Permitted                  | 0.95                                     |      | 1.00  | 1.00  |            | 1.00             |    |   |  |
| Satd. Flow (perm)              | 3433                                     |      | 3539  | 1583  |            | 3539             |    |   |  |
| Peak-hour factor, PHF          | 0.92                                     | 0.92 | 0.92  | 0.92  | 0.92       | 0.92             |    |   |  |
| Adj. Flow (vph)                | 402                                      | 0    | 1196  | 413   | 0          | 815              |    |   |  |
| RTOR Reduction (vph)           | 0                                        | 0    | 0     | 0     | 0          | 0                |    |   |  |
| Lane Group Flow (vph)          | 402                                      | 0    | 1196  | 413   | 0          | 815              |    |   |  |
| Turn Type                      | Prot                                     |      | NA    | Free  |            | NA               |    |   |  |
| Protected Phases               | 21                                       |      | 3.4   | 1100  |            | Freel            |    |   |  |
| Permitted Phases               | <i>L</i> .                               |      | U I   | Free  |            | 1100.            |    |   |  |
| Actuated Green G (s)           | 16.0                                     |      | 30.0  | 80.0  |            | 80.0             |    |   |  |
| Effective Green a (s)          | 16.0                                     |      | 30.0  | 80.0  |            | 80.0             |    |   |  |
| Actuated g/C Ratio             | 0.20                                     |      | 0.38  | 1.00  |            | 1.00             |    |   |  |
| Clearance Time (s)             | 4.0                                      |      | 0.00  |       |            |                  |    |   |  |
| Vehicle Extension (s)          | 3.0                                      |      |       |       |            |                  |    |   |  |
| Lane Grn Can (vnh)             | 686                                      |      | 1327  | 1583  |            | 3539             |    |   |  |
| v/s Ratio Prot                 | c0 12                                    |      | c0.34 | 1000  |            | 0.23             |    |   |  |
| v/s Ratio Perm                 | 00.12                                    |      | 00.01 | c0 26 |            | 0.20             |    |   |  |
| v/c Ratio                      | 0.59                                     |      | 0 90  | 0.26  |            | 0.23             |    |   |  |
| Uniform Delay, d1              | 29.0                                     |      | 23.6  | 0.0   |            | 0.0              |    |   |  |
| Progression Factor             | 0.37                                     |      | 1 00  | 1 00  |            | 1 00             |    |   |  |
| Incremental Delay d2           | 34                                       |      | 8.0   | 0.4   |            | 0.1              |    |   |  |
| Delay (s)                      | 14 1                                     |      | 31.6  | 0.1   |            | 0.1              |    |   |  |
| Level of Service               | B                                        |      | C     | A     |            | A                |    |   |  |
| Approach Delay (s)             | 14 1                                     |      | 23.6  |       |            | 0.1              |    |   |  |
| Approach LOS                   | В                                        |      | C     |       |            | A                |    |   |  |
| Intersection Summary           |                                          |      |       |       |            |                  |    |   |  |
| HCM 2000 Control Delay         |                                          |      | 15.5  | H     | CM 2000    | Level of Service |    | B |  |
| HCM 2000 Volume to Cana        | acity ratio                              |      | 0.67  |       | 2000       |                  |    | 2 |  |
| Actuated Cycle Length (s)      |                                          |      | 80.0  | S     | im of lost | time (s)         | 16 | 0 |  |
| Intersection Canacity Litiliza | ation                                    |      | 47.6% |       |            | of Service       | 10 | A |  |
| Analysis Period (min)          |                                          |      | 15    | 10    |            |                  |    |   |  |
| Phase conflict between         | lane groups                              |      | 10    |       |            |                  |    |   |  |
| c Critical Lane Group          | Si S | •    |       |       |            |                  |    |   |  |

|                              | •           | -+   | +     | *    | 1          | ~                |      |  |
|------------------------------|-------------|------|-------|------|------------|------------------|------|--|
| Movement                     | EBL         | EBT  | WBT   | WBR  | SBL        | SBR              |      |  |
| Lane Configurations          | 55          | **   | **    |      |            | 1                |      |  |
| Traffic Volume (vph)         | 1265        | 1415 | 915   | 0    | 0          | 600              |      |  |
| Future Volume (vph)          | 1265        | 1415 | 915   | 0    | 0          | 600              |      |  |
| Ideal Flow (vphpl)           | 1900        | 1900 | 1900  | 1900 | 1900       | 1900             |      |  |
| Total Lost time (s)          | 4.0         | 4.0  | 4.0   |      |            | 4.0              |      |  |
| Lane Util. Factor            | 0.97        | 0.95 | 0.95  |      |            | 1.00             |      |  |
| Frt                          | 1.00        | 1.00 | 1.00  |      |            | 0.86             |      |  |
| Flt Protected                | 0.95        | 1.00 | 1.00  |      |            | 1.00             |      |  |
| Satd, Flow (prot)            | 3433        | 3539 | 3539  |      |            | 1611             |      |  |
| Flt Permitted                | 0.95        | 1.00 | 1.00  |      |            | 1.00             |      |  |
| Satd. Flow (perm)            | 3433        | 3539 | 3539  |      |            | 1611             |      |  |
| Peak-hour factor. PHF        | 0.92        | 0.92 | 0.92  | 0,92 | 0,92       | 0.92             |      |  |
| Adi, Flow (vph)              | 1375        | 1538 | 995   | 0    | 0          | 652              |      |  |
| RTOR Reduction (vph)         | 0           | 0    | 0     | 0    | 0<br>0     | 0                |      |  |
| Lane Group Flow (vph)        | 1375        | 1538 | 995   | 0    | 0          | 652              |      |  |
| Turn Type                    | Prot        | NA   | NA    |      |            | Free             |      |  |
| Protected Phases             | 12          | Free | 3.4   |      |            | 1100             |      |  |
| Permitted Phases             |             | 1100 | 01    |      |            | Free             |      |  |
| Actuated Green, G (s)        | 42.0        | 80.0 | 30.0  |      |            | 80.0             |      |  |
| Effective Green, a (s)       | 42.0        | 80.0 | 30.0  |      |            | 80.0             |      |  |
| Actuated g/C Ratio           | 0.52        | 1.00 | 0.38  |      |            | 1.00             |      |  |
| Clearance Time (s)           |             |      |       |      |            |                  |      |  |
| Vehicle Extension (s)        |             |      |       |      |            |                  |      |  |
| Lane Gro Cap (vph)           | 1802        | 3539 | 1327  |      |            | 1611             |      |  |
| /s Ratio Prot                | c0.40       | 0.43 | c0.28 |      |            |                  |      |  |
| /s Ratio Perm                |             |      |       |      |            | 0.40             |      |  |
| v/c Ratio                    | 0.76        | 0.43 | 0.75  |      |            | 0.40             |      |  |
| Uniform Delay, d1            | 15.1        | 0.0  | 21.7  |      |            | 0.0              |      |  |
| Progression Factor           | 1.00        | 1.00 | 1.27  |      |            | 1.00             |      |  |
| Incremental Delay, d2        | 2.0         | 0.4  | 2.2   |      |            | 0.7              |      |  |
| Delay (s)                    | 17.0        | 0.4  | 29.9  |      |            | 0.7              |      |  |
| Level of Service             | В           | А    | С     |      |            | А                |      |  |
| Approach Delay (s)           |             | 8.2  | 29.9  |      | 0.7        |                  |      |  |
| Approach LOS                 |             | А    | С     |      | А          |                  |      |  |
| Intersection Summary         |             |      |       |      |            |                  |      |  |
| HCM 2000 Control Delay       |             |      | 11.9  | H    | CM 2000    | Level of Service | В    |  |
| HCM 2000 Volume to Capa      | acity ratio |      | 0.85  |      |            |                  |      |  |
| Actuated Cycle Length (s)    |             |      | 80.0  | S    | um of lost | time (s)         | 16.0 |  |
| Intersection Capacity Utiliz | ation       |      | 68.0% | IC   | U Level o  | of Service       | С    |  |
| Analysis Period (min)        |             |      | 15    |      |            |                  |      |  |

|                                |           | P    | *          | -    | 3         | 1                |   |      |   |
|--------------------------------|-----------|------|------------|------|-----------|------------------|---|------|---|
| Movement                       | EBT       | EBR  | WBL        | WBT  | NEL       | NER              |   |      |   |
| Lane Configurations            | **        |      | 55         | 44   |           | 1                |   |      |   |
| Traffic Volume (vph)           | 1200      | 0    | 370        | 760  | 0         | 380              |   |      |   |
| Future Volume (vph)            | 1200      | 0    | 370        | 760  | 0         | 380              |   |      |   |
| Ideal Flow (vphpl)             | 1900      | 1900 | 1900       | 1900 | 1900      | 1900             |   |      |   |
| Total Lost time (s)            | 4.0       |      | 4.0        | 4.0  |           | 4.0              |   |      |   |
| Lane Util. Factor              | 0.95      |      | 0.97       | 0.95 |           | 1.00             |   |      |   |
| Frt                            | 1.00      |      | 1.00       | 1.00 |           | 0.86             |   |      |   |
| Flt Protected                  | 1.00      |      | 0.95       | 1.00 |           | 1.00             |   |      |   |
| Satd. Flow (prot)              | 3539      |      | 3433       | 3539 |           | 1611             |   |      |   |
| Flt Permitted                  | 1.00      |      | 0.95       | 1.00 |           | 1.00             |   |      |   |
| Satd. Flow (perm)              | 3539      |      | 3433       | 3539 |           | 1611             |   |      |   |
| Peak-hour factor PHF           | 0.92      | 0.92 | 0.92       | 0.92 | 0.92      | 0.92             |   |      |   |
| Adi Flow (vph)                 | 1304      | 0.02 | 402        | 826  | 0.02      | 413              |   |      |   |
| RTOR Reduction (vph)           | 0         | 0    | 0          | 0    | 0         | 0                |   |      |   |
| Lane Group Flow (vph)          | 1304      | 0    | 402        | 826  | 0         | 413              |   |      |   |
|                                | NA        | 0    | Prot       | NΔ   | 0         | nm+0V            |   |      |   |
| Protected Phases               | 23/       |      | 1          | Free |           | 1                |   |      |   |
| Permitted Phases               | 234       |      | 1          | TICC |           | 23/              |   |      |   |
| Actuated Green G (s)           | 50.0      |      | 22.0       | 80.0 |           | 72 0             |   |      |   |
| Effective Green, a (s)         | 50.0      |      | 22.0       | 80.0 |           | 72.0             |   |      |   |
| Actuated a/C Ratio             | 0.62      |      | 0.28       | 1 00 |           | 0.90             |   |      |   |
| Clearance Time (s)             | 0.02      |      | 4.0        | 1.00 |           | 4.0              |   |      |   |
| Vehicle Extension (s)          |           |      | 4.0<br>3.0 |      |           | 3.0              |   |      |   |
| Lano Gra Can (unh)             | 2211      |      | 011        | 3530 |           | 1611             |   |      | _ |
| Larie Gip Cap (vpri)           | 2211      |      | 944        | 0.03 |           | 0.07             |   |      |   |
| V/S Ralio Fiol                 | 0.57      |      | CO. 12     | 0.23 |           | 0.07             |   |      |   |
| v/s Ralio Ferri                | 0.50      |      | 0.42       | 0.22 |           | 0.19             |   |      |   |
| V/C Kallo<br>Uniform Dolov, d1 | 0.59      |      | 0.43       | 0.23 |           | 0.20             |   |      |   |
| Dregrossion Easter             | 0.9       |      | 23.0       | 1.00 |           | 1.00             |   |      |   |
| FIUGIESSIULI FACIUL            | 0.00      |      | 0.44       | 0.1  |           | 0.1              |   |      |   |
| Delev (a)                      | 0.4       |      | 0.Z        | 0.1  |           | 0.1              |   |      |   |
| Delay (S)                      | 7.5       |      | IU.7       | 0.1  |           | 0.0              |   |      |   |
| Approach Dolou (a)             | 7 F       |      | D          | 26   | 0.6       | A                |   |      |   |
| Approach Delay (S)             | C. 1      |      |            | 3.0  | 0.0       |                  |   |      |   |
| Approach LOS                   | А         |      |            | A    | A         |                  |   |      |   |
| Intersection Summary           |           |      |            |      |           |                  |   |      |   |
| HCM 2000 Control Delay         |           |      | 4.9        | HC   | CM 2000   | Level of Service | ) | А    |   |
| HCM 2000 Volume to Capac       | ity ratio |      | 0.61       |      |           |                  |   |      |   |
| Actuated Cycle Length (s)      | •         |      | 80.0       | Sı   | um of los | t time (s)       |   | 16.0 |   |
| Intersection Capacity Utilizat | ion       |      | 63.4%      | IC   | U Level   | of Service       |   | В    |   |
| Analysis Period (min)          |           |      | 15         |      |           |                  |   |      |   |

|                                   | 1    | •     | Ť     | 1    | 1         | ŧ               |    |     |  |
|-----------------------------------|------|-------|-------|------|-----------|-----------------|----|-----|--|
| Movement                          | WBL  | WBR   | NBT   | NBR  | SBL       | SBT             |    |     |  |
| Lane Configurations               |      | 1     | **    |      | 55        | **              |    |     |  |
| Traffic Volume (vph)              | 0    | 260   | 2365  | 0    | 185       | 1350            |    |     |  |
| Future Volume (vph)               | 0    | 260   | 2365  | 0    | 185       | 1350            |    |     |  |
| Ideal Flow (vphpl)                | 1900 | 1900  | 1900  | 1900 | 1900      | 1900            |    |     |  |
| Total Lost time (s)               |      | 4.0   | 4.0   |      | 4.0       | 4.0             |    |     |  |
| Lane Util. Factor                 |      | 1.00  | 0.95  |      | 0.97      | 0.95            |    |     |  |
| Frt                               |      | 0.86  | 1.00  |      | 1.00      | 1.00            |    |     |  |
| Flt Protected                     |      | 1.00  | 1.00  |      | 0.95      | 1.00            |    |     |  |
| Satd. Flow (prot)                 |      | 1611  | 3539  |      | 3433      | 3539            |    |     |  |
| Flt Permitted                     |      | 1.00  | 1.00  |      | 0.95      | 1.00            |    |     |  |
| Satd. Flow (perm)                 |      | 1611  | 3539  |      | 3433      | 3539            |    |     |  |
| Peak-hour factor, PHF             | 0.92 | 0.92  | 0.92  | 0.92 | 0.92      | 0.92            |    |     |  |
| Adj. Flow (vph)                   | 0    | 283   | 2571  | 0    | 201       | 1467            |    |     |  |
| RTOR Reduction (vph)              | 0    | 0     | 0     | 0    | 0         | 0               |    |     |  |
| Lane Group Flow (vph)             | 0    | 283   | 2571  | 0    | 201       | 1467            |    |     |  |
|                                   |      | pm+ov | NA    |      | Prot      | NA              |    |     |  |
| Protected Phases                  |      | 3     | 124   |      | 3         | Free            |    |     |  |
| Permitted Phases                  |      | 124   |       |      | U U       |                 |    |     |  |
| Actuated Green, G (s)             |      | 72.0  | 62.0  |      | 10.0      | 80.0            |    |     |  |
| Effective Green, g (s)            |      | 72.0  | 62.0  |      | 10.0      | 80.0            |    |     |  |
| Actuated g/C Ratio                |      | 0.90  | 0.78  |      | 0.12      | 1.00            |    |     |  |
| Clearance Time (s)                |      | 4.0   |       |      | 4.0       |                 |    |     |  |
| Vehicle Extension (s)             |      | 3.0   |       |      | 3.0       |                 |    |     |  |
| Lane Grp Cap (vph)                |      | 1611  | 2742  |      | 429       | 3539            |    |     |  |
| v/s Ratio Prot                    |      | 0.02  | c0.73 |      | 0.06      | 0.41            |    |     |  |
| v/s Ratio Perm                    |      | 0.15  |       |      |           |                 |    |     |  |
| v/c Ratio                         |      | 0.18  | 0.94  |      | 0.47      | 0.41            |    |     |  |
| Uniform Delay, d1                 |      | 0.5   | 7.4   |      | 32.5      | 0.0             |    |     |  |
| Progression Factor                |      | 1.00  | 0.56  |      | 1.00      | 1.00            |    |     |  |
| Incremental Delay, d2             |      | 0.1   | 6.0   |      | 0.8       | 0.4             |    |     |  |
| Delay (s)                         |      | 0.5   | 10.2  |      | 33.3      | 0.4             |    |     |  |
| Level of Service                  |      | А     | В     |      | С         | А               |    |     |  |
| Approach Delay (s)                | 0.5  |       | 10.2  |      |           | 4.3             |    |     |  |
| Approach LOS                      | Α    |       | В     |      |           | А               |    |     |  |
| Intersection Summary              |      |       |       |      |           |                 |    |     |  |
| HCM 2000 Control Delay            |      |       | 7.4   | H    | ICM 2000  | Level of Servic | ce | A   |  |
| HCM 2000 Volume to Capacity       | atio |       | 1.00  |      |           |                 |    |     |  |
| Actuated Cycle Length (s)         |      |       | 80.0  | S    | um of los | t time (s)      | 1  | 6.0 |  |
| Intersection Capacity Utilization |      |       | 88.1% | IC   | CU Level  | of Service      |    | Е   |  |
| Analysis Period (min)             |      |       | 15    |      |           |                 |    |     |  |

|                                | ٦          | Ť    | ŧ     | N.   | ه          | 7                |   |      |  |
|--------------------------------|------------|------|-------|------|------------|------------------|---|------|--|
| Movement                       | NBL        | NBT  | SBT   | SBR  | SEL        | SER              |   |      |  |
| Lane Configurations            | 55         | **   | **    |      |            | 1                |   |      |  |
| Traffic Volume (vph)           | 415        | 1480 | 1120  | 0    | 0          | 400              |   |      |  |
| Future Volume (vph)            | 415        | 1480 | 1120  | 0    | 0          | 400              |   |      |  |
| Ideal Flow (vphpl)             | 1900       | 1900 | 1900  | 1900 | 1900       | 1900             |   |      |  |
| Total Lost time (s)            | 4.0        | 4.0  | 4.0   |      |            | 4.0              |   |      |  |
| Lane Util. Factor              | 0.97       | 0.95 | 0.95  |      |            | 1.00             |   |      |  |
| Frt                            | 1.00       | 1.00 | 1.00  |      |            | 0.86             |   |      |  |
| Flt Protected                  | 0.95       | 1.00 | 1.00  |      |            | 1.00             |   |      |  |
| Satd. Flow (prot)              | 3433       | 3539 | 3539  |      |            | 1611             |   |      |  |
| Flt Permitted                  | 0.95       | 1.00 | 1.00  |      |            | 1.00             |   |      |  |
| Satd. Flow (perm)              | 3433       | 3539 | 3539  |      |            | 1611             |   |      |  |
| Peak-hour factor. PHF          | 0.92       | 0.92 | 0.92  | 0,92 | 0.92       | 0.92             |   |      |  |
| Adi, Flow (vph)                | 451        | 1609 | 1217  | 0    | 0          | 435              |   |      |  |
| RTOR Reduction (vph)           | 0          | 0    | 0     | 0    | 0          | 0                |   |      |  |
| Lane Group Flow (vph)          | 451        | 1609 | 1217  | 0    | 0          | 435              |   |      |  |
| Turn Type                      | Prot       | NA   | NA    |      |            | pm+ov            |   |      |  |
| Protected Phases               | 34         | Free | 12    |      |            | 3                |   |      |  |
| Permitted Phases               | 01         | 1100 |       |      |            | 124              |   |      |  |
| Actuated Green, G (s)          | 30.0       | 80.0 | 42.0  |      |            | 72.0             |   |      |  |
| Effective Green, a (s)         | 30.0       | 80.0 | 42.0  |      |            | 72.0             |   |      |  |
| Actuated q/C Ratio             | 0.38       | 1.00 | 0.52  |      |            | 0.90             |   |      |  |
| Clearance Time (s)             |            |      |       |      |            | 4.0              |   |      |  |
| Vehicle Extension (s)          |            |      |       |      |            | 3.0              |   |      |  |
| Lane Grp Cap (vph)             | 1287       | 3539 | 1857  |      |            | 1611             |   |      |  |
| v/s Ratio Prot                 | 0.13       | 0.45 | c0.34 |      |            | 0.03             |   |      |  |
| v/s Ratio Perm                 |            |      |       |      |            | 0.24             |   |      |  |
| v/c Ratio                      | 0.35       | 0.45 | 0.66  |      |            | 0.27             |   |      |  |
| Uniform Delay, d1              | 18.0       | 0.0  | 13.8  |      |            | 0.5              |   |      |  |
| Progression Factor             | 1.00       | 1.00 | 1.27  |      |            | 1.00             |   |      |  |
| Incremental Delay, d2          | 0.2        | 0.4  | 0.8   |      |            | 0.1              |   |      |  |
| Delay (s)                      | 18.2       | 0.4  | 18.2  |      |            | 0.6              |   |      |  |
| Level of Service               | В          | А    | В     |      |            | А                |   |      |  |
| Approach Delay (s)             |            | 4.3  | 18.2  |      | 0.6        |                  |   |      |  |
| Approach LOS                   |            | А    | В     |      | А          |                  |   |      |  |
| Intersection Summary           |            |      |       |      |            |                  |   |      |  |
| HCM 2000 Control Delay         |            |      | 8.4   | H    | CM 2000    | Level of Service | ) | A    |  |
| HCM 2000 Volume to Capac       | city ratio |      | 0.67  |      |            |                  |   |      |  |
| Actuated Cycle Length (s)      |            |      | 80.0  | S    | um of lost | t time (s)       |   | 16.0 |  |
| Intersection Capacity Utilizat | tion       |      | 62.4% | IC   | U Level o  | of Service       |   | В    |  |
| Analysis Period (min)          |            |      | 15    |      |            |                  |   |      |  |

| 03/12/2020 |
|------------|
|------------|

|                                                          | ٠              | -+    |            | *           | 1         | 4         |     |      |  |
|----------------------------------------------------------|----------------|-------|------------|-------------|-----------|-----------|-----|------|--|
| Movement                                                 | EBL            | EBT   | WBT        | WBR         | SBL       | SBR       |     |      |  |
| Lane Configurations                                      | 5              | ***   | **         | 1           | 5         | 1         |     |      |  |
| Traffic Volume (veh/h)                                   | 125            | 1455  | 1090       | 80          | 190       | 40        |     |      |  |
| Future Volume (veh/h)                                    | 125            | 1455  | 1090       | 80          | 190       | 40        |     |      |  |
| Initial Q (Qb), veh                                      | 0              | 0     | 0          | 0           | 0         | 0         |     |      |  |
| Ped-Bike Adj(A_pbT)                                      | 1.00           |       |            | 1.00        | 1.00      | 1.00      |     |      |  |
| Parking Bus, Adj                                         | 1.00           | 1.00  | 1.00       | 1.00        | 1.00      | 1.00      |     |      |  |
| Work Zone On Approac                                     | ch             | No    | No         |             | No        |           |     |      |  |
| Adj Sat Flow, veh/h/ln                                   | 1870           | 1870  | 1870       | 1870        | 1870      | 1870      |     |      |  |
| Adj Flow Rate, veh/h                                     | 136            | 1582  | 1185       | 87          | 207       | 43        |     |      |  |
| Peak Hour Factor                                         | 0.92           | 0.92  | 0.92       | 0.92        | 0.92      | 0.92      |     |      |  |
| Percent Heavy Veh, %                                     | 2              | 2     | 2          | 2           | 2         | 2         |     |      |  |
| Cap, veh/h                                               | 331            | 3351  | 1921       | 857         | 412       | 367       |     |      |  |
| Arrive On Green                                          | 0.02           | 0.22  | 0.54       | 0.54        | 0.23      | 0.23      |     |      |  |
| Sat Flow, veh/h                                          | 1/81           | 5274  | 3647       | 1585        | 1/81      | 1585      |     |      |  |
| Grp Volume(v), veh/h                                     | 136            | 1582  | 1185       | 87          | 207       | 43        |     |      |  |
| Grp Sat Flow(s),veh/h/li                                 | n1781          | 1702  | 1777       | 1585        | 1781      | 1585      |     |      |  |
| Q Serve(g_s), s                                          | 2.4            | 21.6  | 18.4       | 2.1         | 8.1       | 1.7       |     |      |  |
| Cycle Q Clear(g_c), s                                    | 2.4            | 21.6  | 18.4       | 2.1         | 8.1       | 1.7       |     |      |  |
| Prop In Lane                                             | 1.00           | 0054  | 4004       | 1.00        | 1.00      | 1.00      |     |      |  |
| Lane Grp Cap(c), ven/n                                   | 0.44           | 3351  | 1921       | 857         | 412       | 367       |     |      |  |
| V/C Ratio(X)                                             | 0.41           | 0.47  | 0.62       | 0.10        | 0.50      | 0.12      |     |      |  |
| Avail Cap(c_a), ven/n                                    | 437            | 3351  | 1921       | 857<br>1.00 | 412       | 367       |     |      |  |
|                                                          | 0.33           | 0.33  | 1.00       | 1.00        | 1.00      | 1.00      |     |      |  |
| Upstream Filter(I)                                       | 0.00<br>h 10 4 | 10.00 | 10.7       | 1.00        | 1.00      | 1.00      |     |      |  |
| Uniform Delay (d), s/vei                                 | 0.7            | 19.2  | 12.7       | 0.9         | 20.7      | 24.3      |     |      |  |
| Inci Delay (uz), siven<br>Initial $\cap$ Delay(d3) siven | 0.7            | 0.4   | 0.0        | 0.2         | 4.5       | 0.7       |     |      |  |
| %ile BackOfO(50%) vet                                    | h/lm0.7        | 0.0   | 5.0        | 0.0         | 3.8       | 1.8       |     |      |  |
| Unsig Movement Delay                                     | y s/voh        | 9.0   | 0.9        | 0.0         | 0.0       | 1.0       |     |      |  |
| I nGrn Delav(d) s/veh                                    | 11 1           | 19.7  | 14.2       | 92          | 31.1      | 24 9      |     |      |  |
| InGrp LOS                                                | B              | R     | R          | Δ           | С.        | 24.5<br>C |     |      |  |
| Approach Vol. veh/h                                      | U              | 1718  | 1272       | Π           | 250       | 0         |     |      |  |
| Approach Delay s/yeh                                     |                | 19.0  | 13.8       |             | 30.0      |           |     |      |  |
| Approach LOS                                             |                | - B   | -10.0<br>B |             | 0.00<br>C |           |     |      |  |
|                                                          |                | 5     | 5          |             | J         | •         | -   | •    |  |
| Timer - Assigned Phs                                     |                |       |            | 4           |           | 6         | 7   | 8    |  |
| Phs Duration (G+Y+Rc)                                    | ), S           |       |            | 57.0        |           | 23.0      | 9.3 | 47.7 |  |
| Change Period (Y+Rc),                                    | S              |       |            | 4.5         |           | 4.5       | 4.5 | 4.5  |  |
| Max Green Setting (Gr                                    | nax), s        |       |            | 52.5        |           | 18.5      | 9.5 | 38.5 |  |
| Max Q Clear Time (g_c                                    | +I1), s        |       |            | 23.6        |           | 10.1      | 4.4 | 20.4 |  |
| Green Ext Time (p_c), s                                  | S              |       |            | 12.3        |           | 0.5       | 0.1 | 7.5  |  |
| Intersection Summary                                     |                |       |            |             |           |           |     |      |  |
| HCM 6th Ctrl Delay                                       |                |       | 17.8       |             |           |           |     |      |  |
| HCM 6th LOS                                              |                |       | В          |             |           |           |     |      |  |

## HCM 6th Signalized Intersection Summary 25: Alpine St/115th St & SH 66

03/12/2020

| 25: Alpine St/11          | 5th 5                    | 51 & 5 | SH 66 | )    |      |      |      |      |      |      |      |      | 03/12/2020 |
|---------------------------|--------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------------|
|                           | ٨                        | +      | 7     | 4    | ŧ    | •    | 1    | t    | ۲    | 1    | ţ    | 4    |            |
| Movement                  | EBL                      | EBT    | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |            |
| Lane Configurations       | 1                        | 11     | 1     | 1    | 11   | 1    | 1    | 1.   |      | 1    | 1.   |      |            |
| Traffic Volume (veh/h)    | 25                       | 1565   | 55    | 90   | 1145 | 60   | 5    | 5    | 45   | 40   | 5    | 20   |            |
| Future Volume (veh/h)     | 25                       | 1565   | 55    | 90   | 1145 | 60   | 5    | 5    | 45   | 40   | 5    | 20   |            |
| Initial Q (Qb), veh       | 0                        | 0      | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |            |
| Ped-Bike Adj(A_pbT)       | 1.00                     |        | 1.00  | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |            |
| Parking Bus, Adj          | 1.00                     | 1.00   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |            |
| Work Zone On Approad      | ch                       | No     |       |      | No   |      |      | No   |      |      | No   |      |            |
| Adj Sat Flow, veh/h/ln    | 1900                     | 1856   | 1648  | 1767 | 1826 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |            |
| Adj Flow Rate, veh/h      | 27                       | 1701   | 60    | 98   | 1245 | 65   | 5    | 5    | 49   | 43   | 5    | 22   |            |
| Peak Hour Factor          | 0.92                     | 0.92   | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |            |
| Percent Heavy Veh, %      | 0                        | 3      | 17    | 9    | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |            |
| Cap, veh/h                | 478                      | 2018   | 799   | 211  | 1590 | 738  | 201  | 9    | 88   | 217  | 29   | 126  |            |
| Arrive On Green           | 0.18                     | 0.57   | 0.57  | 0.06 | 0.46 | 0.46 | 0.01 | 0.06 | 0.06 | 0.04 | 0.09 | 0.09 |            |
| Sat Flow, veh/h           | 1810                     | 3526   | 1397  | 1682 | 3469 | 1610 | 1810 | 151  | 1482 | 1810 | 307  | 1350 |            |
| Grp Volume(v), veh/h      | 27                       | 1701   | 60    | 98   | 1245 | 65   | 5    | 0    | 54   | 43   | 0    | 27   |            |
| Grp Sat Flow(s),veh/h/l   | n1810                    | 1763   | 1397  | 1682 | 1735 | 1610 | 1810 | 0    | 1633 | 1810 | 0    | 1657 |            |
| Q Serve(g_s), s           | 0.0                      | 27.0   | 1.3   | 2.4  | 20.6 | 1.0  | 0.2  | 0.0  | 2.2  | 1.5  | 0.0  | 1.0  |            |
| Cycle Q Clear(g_c), s     | 0.0                      | 27.0   | 1.3   | 2.4  | 20.6 | 1.0  | 0.2  | 0.0  | 2.2  | 1.5  | 0.0  | 1.0  |            |
| Prop In Lane              | 1.00                     |        | 1.00  | 1.00 |      | 1.00 | 1.00 |      | 0.91 | 1.00 |      | 0.81 |            |
| Lane Grp Cap(c), veh/h    | a 478                    | 2018   | 799   | 211  | 1590 | 738  | 201  | 0    | 97   | 217  | 0    | 155  |            |
| V/C Ratio(X)              | 0.06                     | 0.84   | 0.08  | 0.47 | 0.78 | 0.09 | 0.02 | 0.00 | 0.56 | 0.20 | 0.00 | 0.17 |            |
| Avail Cap(c_a), veh/h     | 478                      | 2288   | 906   | 230  | 2251 | 1045 | 323  | 0    | 434  | 277  | 0    | 440  |            |
| HCM Platoon Ratio         | 1.00                     | 1.00   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |            |
| Upstream Filter(I)        | 1.00                     | 1.00   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |            |
| Uniform Delay (d), s/ve   | h 17.6                   | 12.0   | 6.5   | 16.4 | 15.5 | 4.8  | 29.7 | 0.0  | 31.0 | 28.2 | 0.0  | 28.3 |            |
| Incr Delay (d2), s/veh    | 0.0                      | 2.8    | 0.0   | 1.6  | 1.2  | 0.1  | 0.0  | 0.0  | 5.0  | 0.4  | 0.0  | 0.5  |            |
| Initial Q Delay(d3),s/vel | n 0.0                    | 0.0    | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |            |
| %ile BackOfQ(50%),vel     | h/ln0.3                  | 7.4    | 0.3   | 0.8  | 6.3  | 0.5  | 0.1  | 0.0  | 0.9  | 0.6  | 0.0  | 0.4  |            |
| Unsig. Movement Delay     | y, s/veh                 | 1      |       |      |      |      |      |      |      |      |      |      |            |
| LnGrp Delay(d),s/veh      | 17.7                     | 14.7   | 6.5   | 18.0 | 16.7 | 4.8  | 29.7 | 0.0  | 36.0 | 28.6 | 0.0  | 28.9 |            |
| LnGrp LOS                 | B                        | B      | A     | B    | B    | A    | С    | A    | D    | С    | A    | C    |            |
| Approach Vol, veh/h       |                          | 1788   |       |      | 1408 |      |      | 59   |      |      | 70   |      |            |
| Approach Delay, s/veh     |                          | 14.5   |       |      | 16.3 |      |      | 35.5 |      |      | 28.7 |      |            |
| Approach LOS              |                          | В      |       |      | В    |      |      | D    |      |      | С    |      |            |
| Timer - Assigned Phs      | 1                        | 2      | 3     | 4    | 5    | 6    | 7    | 8    |      |      |      |      |            |
| Phs Duration (G+Y+Rc)     | ), s8.7                  | 43.3   | 4.9   | 10.8 | 16.4 | 35.6 | 7.3  | 8.5  |      |      |      |      |            |
| Change Period (Y+Rc),     | s 4.5                    | 4.5    | 4.5   | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |      |      |            |
| Max Green Setting (Gr     | 1ax <b>5</b> ,. <b>6</b> | 44.0   | 5.0   | 18.0 | 5.0  | 44.0 | 5.0  | 18.0 |      |      |      |      |            |
| Max Q Clear Time (g_c     | +114),46                 | 29.0   | 2.2   | 3.0  | 2.0  | 22.6 | 3.5  | 4.2  |      |      |      |      |            |
| Green Ext Time (p_c), s   | s 0.0                    | 9.8    | 0.0   | 0.1  | 0.0  | 8.5  | 0.0  | 0.1  |      |      |      |      |            |
|                           |                          |        |       |      |      |      |      |      |      |      |      |      |            |

| Intersection Summary |      |  |
|----------------------|------|--|
| HCM 6th Ctrl Delay   | 15.9 |  |
| HCM 6th LOS          | В    |  |

| Movement                  | EBT                   | EBR  | WBL  | WBT  | NBL  | NBR  |      |
|---------------------------|-----------------------|------|------|------|------|------|------|
| Lane Configurations       | **                    | 1    | 1    | ††   | 5    | 1    |      |
| Traffic Volume (veh/h)    | 1395                  | 255  | 320  | 1045 | 250  | 290  |      |
| Future Volume (veh/h)     | 1395                  | 255  | 320  | 1045 | 250  | 290  |      |
| Initial Q (Qb), veh       | 0                     | 0    | 0    | 0    | 0    | 0    |      |
| Ped-Bike Adj(A_pbT)       |                       | 1.00 | 1.00 |      | 1.00 | 1.00 |      |
| Parking Bus, Adj          | 1.00                  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Work Zone On Approac      | ch No                 |      |      | No   | No   |      |      |
| Adj Sat Flow, veh/h/ln    | 1856                  | 1885 | 1856 | 1811 | 1870 | 1885 |      |
| Adj Flow Rate, veh/h      | 1516                  | 277  | 348  | 1136 | 272  | 315  |      |
| Peak Hour Factor          | 0.92                  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |      |
| Percent Heavy Veh, %      | 3                     | 1    | 3    | 6    | 2    | 1    |      |
| Cap, veh/h                | 1604                  | 727  | 364  | 2328 | 393  | 352  |      |
| Arrive On Green           | 0.46                  | 0.46 | 0.16 | 0.68 | 0.22 | 0.22 |      |
| Sat Flow, veh/h           | 3618                  | 1598 | 1767 | 3532 | 1781 | 1598 |      |
| Grp Volume(v), veh/h      | 1516                  | 277  | 348  | 1136 | 272  | 315  |      |
| Grp Sat Flow(s).veh/h/li  | n1763                 | 1598 | 1767 | 1721 | 1781 | 1598 |      |
| Q Serve(g s), s           | 36.0                  | 3.8  | 12.7 | 14.0 | 12.3 | 16.8 |      |
| Cycle Q Clear(q c), s     | 36.0                  | 3.8  | 12.7 | 14.0 | 12.3 | 16.8 |      |
| Prop In Lane              |                       | 1.00 | 1.00 |      | 1.00 | 1.00 |      |
| Lane Grp Cap(c), veh/h    | 1604                  | 727  | 364  | 2328 | 393  | 352  |      |
| V/C Ratio(X)              | 0.95                  | 0.38 | 0.96 | 0.49 | 0.69 | 0.89 |      |
| Avail Cap(c a), veh/h     | 1627                  | 737  | 364  | 2351 | 431  | 387  |      |
| HCM Platoon Ratio         | 1.00                  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Upstream Filter(I)        | 1.00                  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |
| Uniform Delay (d), s/vel  | h 22.8                | 2.3  | 34.9 | 6.8  | 31.4 | 33.1 |      |
| Incr Delay (d2), s/veh    | 11.6                  | 0.2  | 35.5 | 0.2  | 4.2  | 21.1 |      |
| Initial Q Delay(d3),s/vel | n 0.0                 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |      |
| %ile BackOfQ(50%),vel     | h/11 <del>1</del> 4.9 | 2.8  | 10.2 | 3.3  | 5.4  | 8.1  |      |
| Unsig. Movement Delay     | v. s/veh              | 1    |      |      |      |      |      |
| LnGrp Delay(d),s/veh      | 34.4                  | 2.5  | 70.4 | 7.0  | 35.6 | 54.3 |      |
| LnGrp LOS                 | С                     | A    | E    | A    | D    | D    |      |
| Approach Vol. veh/h       | 1793                  |      |      | 1484 | 587  |      |      |
| Approach Delay, s/veh     | 29.5                  |      |      | 21.9 | 45.6 |      |      |
| Approach LOS              | C                     |      |      | C    | D    |      |      |
| Timer - Assianed Phs      | 1                     | 2    |      |      |      | 6    | 8    |
| Phs Duration (G+Y+Rc)     | ). \$8.2              | 45.5 |      |      |      | 63.7 | 23.8 |
| Change Period (Y+Rc)      | s 4 5                 | 57   |      |      |      | 4.5  | 4.5  |
| Max Green Setting (Gr     | na <b>k</b> 3 Z       | 40.4 |      |      |      | 59.8 | 21.2 |
| Max Q Clear Time (q. c    | +111/1 7              | 38.0 |      |      |      | 16.0 | 18.8 |
| Green Ext Time (n_c)      | s 0.0                 | 1.8  |      |      |      | 89   | 0.6  |
|                           | 0.0                   | 1.0  |      |      |      | 0.0  |      |
| Intersection Summary      |                       |      |      |      |      |      |      |
| HCM 6th Ctrl Delay        |                       |      | 20.0 |      |      |      |      |

1

HCM 6th Ctrl Delay HCM 6th LOS

29.0 C

## HCM 6th Signalized Intersection Summary 27: Sundance Dr & SH 66

03/12/2020

|                           | ▲                 | -+   | $\mathbf{r}$ | 1    |      | *         | 1    | Ť    | 1    | 1    | ŧ    | 1    |  |
|---------------------------|-------------------|------|--------------|------|------|-----------|------|------|------|------|------|------|--|
| Movement                  | EBL               | EBT  | EBR          | WBL  | WBT  | WBR       | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 5                 | 44   | 1            | 5    | **   | 1         | 5    |      | 1    | 5    |      | 1    |  |
| Traffic Volume (veh/h)    | 40                | 1545 | 100          | 40   | 1320 | 5         | 40   | 20   | 85   | 5    | 20   | 5    |  |
| Future Volume (veh/h)     | 40                | 1545 | 100          | 40   | 1320 | 5         | 40   | 20   | 85   | 5    | 20   | 5    |  |
| Initial Q (Qb), veh       | 0                 | 0    | 0            | 0    | 0    | 0         | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00              |      | 1.00         | 1.00 |      | 1.00      | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00              | 1.00 | 1.00         | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approac      | h                 | No   |              |      | No   |           |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1870              | 1870 | 1870         | 1870 | 1870 | 1870      | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate, veh/h      | 43                | 1679 | 109          | 43   | 1435 | 5         | 43   | 22   | 92   | 5    | 22   | 5    |  |
| Peak Hour Factor          | 0.92              | 0.92 | 0.92         | 0.92 | 0.92 | 0.92      | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 2                 | 2    | 2            | 2    | 2    | 2         | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Cap, veh/h                | 289               | 2135 | 952          | 269  | 2135 | 952       | 260  | 188  | 159  | 250  | 188  | 159  |  |
| Arrive On Green           | 0.04              | 0.60 | 0.60         | 0.04 | 0.60 | 0.60      | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |  |
| Sat Flow, veh/h           | 1781              | 3554 | 1585         | 1781 | 3554 | 1585      | 1383 | 1870 | 1585 | 1279 | 1870 | 1585 |  |
| Grp Volume(v), veh/h      | 43                | 1679 | 109          | 43   | 1435 | 5         | 43   | 22   | 92   | 5    | 22   | 5    |  |
| Grp Sat Flow(s),veh/h/lr  | 1781              | 1777 | 1585         | 1781 | 1777 | 1585      | 1383 | 1870 | 1585 | 1279 | 1870 | 1585 |  |
| Q Serve(q s), s           | 0.6               | 19.0 | 1.6          | 0.0  | 14.3 | 0.1       | 1.5  | 0.6  | 2.9  | 0.2  | 0.6  | 0.2  |  |
| Cycle Q Clear(q c), s     | 0.6               | 19.0 | 1.6          | 0.0  | 14.3 | 0.1       | 2.1  | 0.6  | 2.9  | 0.8  | 0.6  | 0.2  |  |
| Prop In Lane              | 1.00              |      | 1.00         | 1.00 |      | 1.00      | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 289               | 2135 | 952          | 269  | 2135 | 952       | 260  | 188  | 159  | 250  | 188  | 159  |  |
| V/C Ratio(X)              | 0.15              | 0.79 | 0.11         | 0.16 | 0.67 | 0.01      | 0.17 | 0.12 | 0.58 | 0.02 | 0.12 | 0.03 |  |
| Avail Cap(c a), veh/h     | 378               | 2580 | 1151         | 358  | 2580 | 1151      | 590  | 635  | 538  | 556  | 635  | 538  |  |
| HCM Platoon Ratio         | 1.00              | 1.00 | 1.00         | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00              | 1.00 | 1.00         | 1.00 | 1.00 | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Uniform Delay (d), s/veh  | 1 8.3             | 8.0  | 4.5          | 17.8 | 7.1  | 4.2       | 22.7 | 21.7 | 22.8 | 22.1 | 21.7 | 21.5 |  |
| Incr Delay (d2), s/veh    | 0.2               | 1.4  | 0.1          | 0.3  | 0.5  | 0.0       | 0.3  | 0.3  | 3.3  | 0.0  | 0.3  | 0.1  |  |
| Initial Q Delav(d3).s/veh | 0.0               | 0.0  | 0.0          | 0.0  | 0.0  | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%).veh     | /In0.1            | 3.4  | 0.2          | 0.4  | 2.4  | 0.0       | 0.5  | 0.3  | 1.2  | 0.1  | 0.2  | 0.1  |  |
| Unsig. Movement Delay     | . s/veh           | 1    |              |      |      |           |      |      |      | -    | -    | -    |  |
| LnGrp Delav(d).s/veh      | 8.5               | 9.4  | 4.6          | 18.1 | 7.6  | 4.2       | 23.0 | 22.0 | 26.1 | 22.1 | 22.0 | 21.6 |  |
| LnGrp LOS                 | A                 | A    | A            | В    | A    | А         | С    | C    | С    | С    | C    | С    |  |
| Approach Vol. veh/h       |                   | 1831 |              |      | 1483 |           | -    | 157  |      |      | 32   | -    |  |
| Approach Delay s/veh      |                   | 91   |              |      | 7.9  |           |      | 24.7 |      |      | 21.9 |      |  |
| Approach LOS              |                   | A    |              |      | A    |           |      | C    |      |      | C    |      |  |
|                           | 4                 |      |              |      | -    | ~         |      | 0    |      |      | Ū    |      |  |
| Timer - Assigned Phs      | 1                 | 2    |              | 4    | 5    | b<br>26.4 |      | 8    |      |      |      |      |  |
| Change Derived (G+Y+RC)   | , 50.8            | 30.4 |              | 9.8  | 0.8  | 30.4      |      | 9.8  |      |      |      |      |  |
| Change Period (Y+RC),     | 5 4.5             | 4.5  |              | 4.5  | 4.5  | 4.5       |      | 4.5  |      |      |      |      |  |
| Max Green Setting (Gm     | ax, <b>9</b> , 19 | 38.5 |              | 18.0 | 5.0  | 38.5      |      | 18.0 |      |      |      |      |  |
| Max Q Clear Time (g_c-    | +112/,05          | 21.0 |              | 2.8  | 2.6  | 16.3      |      | 4.9  |      |      |      |      |  |
| Green Ext Time (p_c), s   | 0.0               | 10.9 |              | 0.1  | 0.0  | 10.1      |      | 0.4  |      |      |      |      |  |
| Intersection Summary      |                   |      |              |      |      |           |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |                   |      | 9.4          |      |      |           |      |      |      |      |      |      |  |
| HCM 6th LOS               |                   |      | А            |      |      |           |      |      |      |      |      |      |  |

## HCM 6th Signalized Intersection Summary 28: County Line Rd/CR 1 & SH 66

03/12/2020

|                           | ٠         | -+       | 7    | 1    |          | *    | 1    | Ť        | 1    | 1    | ŧ        | 1    |  |
|---------------------------|-----------|----------|------|------|----------|------|------|----------|------|------|----------|------|--|
| Movement                  | EBL       | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
| Lane Configurations       | 55        | <b>^</b> | 1    | 57   | <b>^</b> | 1    | 57   | <b>^</b> | 1    | 5    | <b>^</b> | 1    |  |
| Traffic Volume (veh/h)    | 205       | 950      | 480  | 560  | 850      | 35   | 435  | 260      | 795  | 30   | 120      | 80   |  |
| Future Volume (veh/h)     | 205       | 950      | 480  | 560  | 850      | 35   | 435  | 260      | 795  | 30   | 120      | 80   |  |
| Initial Q (Qb), veh       | 0         | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00      |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Parking Bus, Adj          | 1.00      | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Work Zone On Approac      | h         | No       |      |      | No       |      |      | No       |      |      | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1870      | 1856     | 1870 | 1758 | 1811     | 1263 | 1604 | 1870     | 1870 | 1781 | 1870     | 1900 |  |
| Adj Flow Rate, veh/h      | 223       | 1033     | 0    | 609  | 924      | 0    | 473  | 283      | 0    | 33   | 130      | 0    |  |
| Peak Hour Factor          | 0.92      | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 |  |
| Percent Heavy Veh, %      | 2         | 3        | 2    | 3    | 6        | 43   | 20   | 2        | 2    | 8    | 2        | 0    |  |
| Cap, veh/h                | 297       | 1044     |      | 632  | 1486     |      | 500  | 390      |      | 315  | 307      |      |  |
| Arrive On Green           | 0.09      | 0.30     | 0.00 | 0.19 | 0.43     | 0.00 | 0.17 | 0.11     | 0.00 | 0.14 | 0.09     | 0.00 |  |
| Sat Flow, veh/h           | 3456      | 3526     | 1585 | 3248 | 3441     | 1070 | 2963 | 3554     | 1585 | 1697 | 3554     | 1610 |  |
| Grp Volume(v), veh/h      | 223       | 1033     | 0    | 609  | 924      | 0    | 473  | 283      | 0    | 33   | 130      | 0    |  |
| Grp Sat Flow(s).veh/h/lr  | 1728      | 1763     | 1585 | 1624 | 1721     | 1070 | 1481 | 1777     | 1585 | 1697 | 1777     | 1610 |  |
| Q Serve(g_s), s           | 5.8       | 27.0     | 0.0  | 17.2 | 19.3     | 0.0  | 14.6 | 7.1      | 0.0  | 0.0  | 3.2      | 0.0  |  |
| Cycle Q Clear(q c), s     | 5.8       | 27.0     | 0.0  | 17.2 | 19.3     | 0.0  | 14.6 | 7.1      | 0.0  | 0.0  | 3.2      | 0.0  |  |
| Prop In Lane              | 1.00      |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 297       | 1044     |      | 632  | 1486     |      | 500  | 390      |      | 315  | 307      |      |  |
| V/C Ratio(X)              | 0.75      | 0.99     |      | 0.96 | 0.62     |      | 0.95 | 0.72     |      | 0.10 | 0.42     |      |  |
| Avail Cap(c a), veh/h     | 407       | 1044     |      | 632  | 1486     |      | 500  | 715      |      | 315  | 307      |      |  |
| HCM Platoon Ratio         | 1.00      | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00      | 1.00     | 0.00 | 1.00 | 1.00     | 0.00 | 1.00 | 1.00     | 0.00 | 1.00 | 1.00     | 0.00 |  |
| Uniform Delay (d), s/vel  | n 41.3    | 32.4     | 0.0  | 36.9 | 20.4     | 0.0  | 38.0 | 39.8     | 0.0  | 34.2 | 40.1     | 0.0  |  |
| Incr Delay (d2), s/veh    | 4.2       | 25.2     | 0.0  | 26.8 | 1.2      | 0.0  | 27.4 | 2.6      | 0.0  | 0.1  | 0.9      | 0.0  |  |
| Initial Q Delay(d3),s/veh | n 0.0     | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     | n/ln2.5   | 13.9     | 0.0  | 8.6  | 6.9      | 0.0  | 6.9  | 3.1      | 0.0  | 0.6  | 1.4      | 0.0  |  |
| Unsig. Movement Delay     | /, s/veh  |          |      |      |          |      |      |          |      |      |          |      |  |
| LnGrp Delay(d).s/veh      | 45.5      | 57.6     | 0.0  | 63.8 | 21.6     | 0.0  | 65.4 | 42.4     | 0.0  | 34.4 | 41.0     | 0.0  |  |
| LnGrp LOS                 | D         | Е        |      | Е    | С        |      | Е    | D        |      | С    | D        |      |  |
| Approach Vol. veh/h       |           | 1256     | А    |      | 1533     | А    |      | 756      | Α    |      | 163      | А    |  |
| Approach Delay, s/veh     |           | 55.5     |      |      | 38.3     |      |      | 56.8     |      |      | 39.6     |      |  |
| Approach LOS              |           | E        |      |      | D        |      |      | E        |      |      | D        |      |  |
| T' A ' D                  |           | _        | ~    |      |          | •    | _    | _        |      |      | -        |      |  |
| Timer - Assigned Phs      | 1         | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |      |  |
| Phs Duration (G+Y+Rc)     | , 25.0    | 34.4     | 20.1 | 13.0 | 12.5     | 46.9 | 17.9 | 15.2     |      |      |          |      |  |
| Change Period (Y+Rc),     | s 7.0     | * 7      | 4.5  | 5.0  | 4.5      | 7.0  | 5.0  | * 5      |      |      |          |      |  |
| Max Green Setting (Gm     | 1a%¢,.6   | * 27     | 15.6 | 8.0  | 10.9     | 34.5 | 5.0  | * 19     |      |      |          |      |  |
| Max Q Clear Time (g_c     | +1119),2s | 29.0     | 16.6 | 5.2  | 7.8      | 21.3 | 2.0  | 9.1      |      |      |          |      |  |
| Green Ext Time (p_c), s   | s 0.0     | 0.0      | 0.0  | 0.1  | 0.2      | 7.5  | 0.0  | 1.0      |      |      |          |      |  |
| Intersection Summary      |           |          |      |      |          |      |      |          |      |      |          |      |  |
| HCM 6th Ctrl Delay        |           |          | 48.0 |      |          |      |      |          |      |      |          |      |  |
| HCM 6th LOS               |           |          | D    |      |          |      |      |          |      |      |          |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP PM Peak

Synchro 10 Report Page 27

#### Intersection Int Delay, s/veh 0

| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
|------------------------|------|------|------|------|------|------|
| Lane Configurations    | 14   |      |      | 1    |      | 1    |
| Traffic Vol, veh/h     | 1765 | 10   | 0    | 1445 | 0    | 5    |
| Future Vol, veh/h      | 1765 | 10   | 0    | 1445 | 0    | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | -    | 0    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
|                        |      |      |      |      |      |      |

| Major/Minor          | Major1 | Ν     | /lajor2 | ľ   | /linor1 |      |
|----------------------|--------|-------|---------|-----|---------|------|
| Conflicting Flow All | 0      | 0     | -       | -   | -       | 965  |
| Stage 1              | -      | -     | -       | -   | -       | -    |
| Stage 2              | -      | -     | -       | -   | -       | -    |
| Critical Hdwy        | -      | -     | -       | -   | -       | 6.94 |
| Critical Hdwy Stg 1  | -      | -     | -       | -   | -       | -    |
| Critical Hdwy Stg 2  | -      | -     | -       | -   | -       | -    |
| Follow-up Hdwy       | -      | -     | -       | -   | -       | 3.32 |
| Pot Cap-1 Maneuver   | -      | -     | 0       | -   | 0       | 255  |
| Stage 1              | -      | -     | 0       | -   | 0       | -    |
| Stage 2              | -      | -     | 0       | -   | 0       | -    |
| Platoon blocked, %   | -      | -     |         | -   |         |      |
| Mov Cap-1 Maneuver   | -      | -     | -       | -   | -       | 255  |
| Mov Cap-2 Maneuver   | · _    | -     | -       | -   | -       | -    |
| Stage 1              | -      | -     | -       | -   | -       | -    |
| Stage 2              | -      | -     | -       | -   | -       | -    |
|                      |        |       |         |     |         |      |
| Annroach             | FR     |       | W/R     |     | NR      |      |
| HCM Control Dolay    |        |       | 0       |     | 10 /    |      |
| HCM CONTROL Delay, S | 0      |       | 0       |     | 19.4    |      |
|                      |        |       |         |     | U       |      |
|                      |        |       |         |     |         |      |
| Minor Lane/Major Mvi | mt N   | BLn1  | EBT     | EBR | WBT     |      |
| Capacity (veh/h)     |        | 255   | -       | -   | -       |      |
| HCM Lane V/C Ratio   | (      | ).021 | -       | -   | -       |      |
| HCM Control Delay (s | ;)     | 19.4  | -       | -   | -       |      |
| HCM Lane LOS         |        | С     | -       | -   | -       |      |

HCM 95th %tile Q(veh)

0.1

# HCM 6th Signalized Intersection Summary 30: CR 3 & SH 66

|                              | ٠    |      | $\mathbf{r}$ | 1    | +    | A.   | 1    | Ť        | 1    | 4    | Ļ        | ~        |
|------------------------------|------|------|--------------|------|------|------|------|----------|------|------|----------|----------|
| Movement                     | EBL  | EBT  | EBR          | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR      |
| Lane Configurations          | 5    | **   | 1            | 5    | **   | 1    | 5    | <b>↑</b> | 1    | 5    | <b>†</b> | 1        |
| Traffic Volume (veh/h)       | 185  | 1565 | 20           | 5    | 1320 | 85   | 10   | 15       | 10   | 150  | 5        | 115      |
| Future Volume (veh/h)        | 185  | 1565 | 20           | 5    | 1320 | 85   | 10   | 15       | 10   | 150  | 5        | 115      |
| Initial Q (Qb), veh          | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00         | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Work Zone On Approach        |      | No   |              |      | No   |      |      | No       |      |      | No       |          |
| Adj Sat Flow, veh/h/ln       | 1900 | 1856 | 1900         | 1900 | 1826 | 1900 | 1900 | 1900     | 1900 | 1900 | 1900     | 1900     |
| Adj Flow Rate, veh/h         | 201  | 1701 | 22           | 5    | 1435 | 92   | 11   | 16       | 11   | 163  | 5        | 125      |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92         | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92     |
| Percent Heavy Veh, %         | 0    | 3    | 0            | 0    | 5    | 0    | 0    | 0        | 0    | 0    | 0        | 0        |
| Cap, veh/h                   | 302  | 2040 | 932          | 172  | 1762 | 818  | 226  | 141      | 119  | 334  | 255      | 216      |
| Arrive On Green              | 0.08 | 0.58 | 0.58         | 0.01 | 0.51 | 0.51 | 0.01 | 0.07     | 0.07 | 0.07 | 0.13     | 0.13     |
| Sat Flow, veh/h              | 1810 | 3526 | 1610         | 1810 | 3469 | 1610 | 1810 | 1900     | 1610 | 1810 | 1900     | 1610     |
| Grp Volume(v), veh/h         | 201  | 1701 | 22           | 5    | 1435 | 92   | 11   | 16       | 11   | 163  | 5        | 125      |
| Grp Sat Flow(s),veh/h/ln     | 1810 | 1763 | 1610         | 1810 | 1735 | 1610 | 1810 | 1900     | 1610 | 1810 | 1900     | 1610     |
| Q Serve(g_s), s              | 3.2  | 26.5 | 0.4          | 0.1  | 23.4 | 2.0  | 0.4  | 0.5      | 0.4  | 5.0  | 0.2      | 4.9      |
| Cycle Q Clear(g_c), s        | 3.2  | 26.5 | 0.4          | 0.1  | 23.4 | 2.0  | 0.4  | 0.5      | 0.4  | 5.0  | 0.2      | 4.9      |
| Prop In Lane                 | 1.00 |      | 1.00         | 1.00 |      | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 302  | 2040 | 932          | 172  | 1762 | 818  | 226  | 141      | 119  | 334  | 255      | 216      |
| V/C Ratio(X)                 | 0.67 | 0.83 | 0.02         | 0.03 | 0.81 | 0.11 | 0.05 | 0.11     | 0.09 | 0.49 | 0.02     | 0.58     |
| Avail Cap(c_a), veh/h        | 353  | 2298 | 1050         | 294  | 2154 | 1000 | 336  | 507      | 429  | 334  | 507      | 429      |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     |
| Uniform Delay (d), s/veh     | 13.9 | 11.6 | 6.1          | 11.5 | 13.9 | 8.7  | 28.2 | 29.2     | 29.1 | 25.7 | 25.4     | 27.4     |
| Incr Delay (d2), s/veh       | 3.8  | 2.5  | 0.0          | 0.1  | 2.1  | 0.1  | 0.1  | 0.4      | 0.3  | 1.1  | 0.0      | 2.4      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/In     | 1.5  | 7.1  | 0.1          | 0.0  | 6.9  | 0.6  | 0.2  | 0.2      | 0.2  | 2.2  | 0.1      | 1.9      |
| Unsig. Movement Delay, s/veh |      |      |              |      |      |      |      |          |      |      |          |          |
| LnGrp Delay(d),s/veh         | 17.6 | 14.1 | 6.1          | 11.6 | 16.0 | 8.7  | 28.3 | 29.5     | 29.5 | 26.8 | 25.4     | 29.8     |
| LnGrp LOS                    | В    | В    | A            | В    | В    | A    | С    | С        | С    | С    | С        | <u> </u> |
| Approach Vol, veh/h          |      | 1924 |              |      | 1532 |      |      | 38       |      |      | 293      |          |
| Approach Delay, s/veh        |      | 14.4 |              |      | 15.6 |      |      | 29.2     |      |      | 28.1     |          |
| Approach LOS                 |      | В    |              |      | В    |      |      | С        |      |      | С        |          |
| Timer - Assigned Phs         | 1    | 2    | 3            | 4    | 5    | 6    | 7    | 8        |      |      |          |          |
| Phs Duration (G+Y+Rc), s     | 4.9  | 43.5 | 5.4          | 13.6 | 9.7  | 38.8 | 9.5  | 9.5      |      |      |          |          |
| Change Period (Y+Rc), s      | 4.5  | 4.5  | 4.5          | 4.5  | 4.5  | 4.5  | 4.5  | 4.5      |      |      |          |          |
| Max Green Setting (Gmax), s  | 5.0  | 44.0 | 5.0          | 18.0 | 7.1  | 41.9 | 5.0  | 18.0     |      |      |          |          |
| Max Q Clear Time (q c+l1), s | 2.1  | 28.5 | 2.4          | 6.9  | 5.2  | 25.4 | 7.0  | 2.5      |      |      |          |          |
| Green Ext Time (p_c), s      | 0.0  | 9.9  | 0.0          | 0.2  | 0.1  | 8.8  | 0.0  | 0.0      |      |      |          |          |
| Intersection Summary         |      |      |              |      |      |      |      |          |      |      |          |          |
| HCM 6th Ctrl Delav           |      |      | 16.1         |      |      |      |      |          |      |      |          |          |
| HCM 6th LOS                  |      |      | В            |      |      |      |      |          |      |      |          |          |

|                           | ۲       |          | $\mathbf{r}$ | •    | +        | *    | ▲    | Ť        | 1    | 1    | ŧ        | 1    |  |
|---------------------------|---------|----------|--------------|------|----------|------|------|----------|------|------|----------|------|--|
| Movement                  | EBL     | EBT      | EBR          | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
| Lane Configurations       | 5       | <b>^</b> | 1            | 5    | <b>^</b> | 1    | 5    | <b>†</b> | 1    | 5    | <b>†</b> | 1    |  |
| Traffic Volume (veh/h)    | 170     | 1460     | 95           | 40   | 1280     | 165  | 50   | 150      | 30   | 70   | 125      | 80   |  |
| Future Volume (veh/h)     | 170     | 1460     | 95           | 40   | 1280     | 165  | 50   | 150      | 30   | 70   | 125      | 80   |  |
| Initial Q (Qb), veh       | 0       | 0        | 0            | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Work Zone On Approacl     | h       | No       |              |      | No       |      |      | No       |      |      | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1811    | 1856     | 1900         | 1900 | 1826     | 1693 | 1900 | 1900     | 1011 | 1648 | 1900     | 1856 |  |
| Adj Flow Rate, veh/h      | 185     | 1587     | 103          | 43   | 1391     | 179  | 54   | 163      | 33   | 76   | 136      | 87   |  |
| Peak Hour Factor          | 0.92    | 0.92     | 0.92         | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 |  |
| Percent Heavy Veh, %      | 6       | 3        | 0            | 0    | 5        | 14   | 0    | 0        | 60   | 17   | 0        | 3    |  |
| Cap, veh/h                | 286     | 1888     | 862          | 219  | 1728     | 714  | 254  | 225      | 102  | 224  | 242      | 200  |  |
| Arrive On Green           | 0.08    | 0.54     | 0.54         | 0.04 | 0.50     | 0.50 | 0.05 | 0.12     | 0.12 | 0.05 | 0.13     | 0.13 |  |
| Sat Flow, veh/h           | 1725    | 3526     | 1610         | 1810 | 3469     | 1434 | 1810 | 1900     | 857  | 1570 | 1900     | 1572 |  |
| Grp Volume(v), veh/h      | 185     | 1587     | 103          | 43   | 1391     | 179  | 54   | 163      | 33   | 76   | 136      | 87   |  |
| Grp Sat Flow(s),veh/h/ln  | 1725    | 1763     | 1610         | 1810 | 1735     | 1434 | 1810 | 1900     | 857  | 1570 | 1900     | 1572 |  |
| Q Serve(g s), s           | 3.6     | 27.3     | 2.3          | 0.8  | 24.1     | 5.1  | 1.8  | 5.9      | 2.5  | 3.0  | 4.8      | 3.7  |  |
| Cycle Q Clear(g c), s     | 3.6     | 27.3     | 2.3          | 0.8  | 24.1     | 5.1  | 1.8  | 5.9      | 2.5  | 3.0  | 4.8      | 3.7  |  |
| Prop In Lane              | 1.00    |          | 1.00         | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 286     | 1888     | 862          | 219  | 1728     | 714  | 254  | 225      | 102  | 224  | 242      | 200  |  |
| V/C Ratio(X)              | 0.65    | 0.84     | 0.12         | 0.20 | 0.81     | 0.25 | 0.21 | 0.72     | 0.32 | 0.34 | 0.56     | 0.43 |  |
| Avail Cap(c_a), veh/h     | 332     | 2164     | 988          | 273  | 2008     | 830  | 297  | 477      | 215  | 247  | 477      | 395  |  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00    | 1.00     | 1.00         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh  | n 14.5  | 14.1     | 8.3          | 12.8 | 15.1     | 10.3 | 25.9 | 30.5     | 29.0 | 26.0 | 29.4     | 28.9 |  |
| Incr Delay (d2), s/veh    | 3.5     | 2.8      | 0.1          | 0.4  | 2.2      | 0.2  | 0.4  | 4.4      | 1.8  | 0.9  | 2.0      | 1.5  |  |
| Initial Q Delay(d3),s/veh | 0.0     | 0.0      | 0.0          | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     | /In1.4  | 8.3      | 0.6          | 0.3  | 7.5      | 1.4  | 0.8  | 2.8      | 0.5  | 1.1  | 2.2      | 1.4  |  |
| Unsig. Movement Delay     | , s/veh |          |              |      |          |      |      |          |      |      |          |      |  |
| LnGrp Delay(d),s/veh      | 18.0    | 16.9     | 8.3          | 13.2 | 17.3     | 10.5 | 26.3 | 34.8     | 30.8 | 26.9 | 31.5     | 30.4 |  |
| LnGrp LOS                 | В       | В        | А            | В    | В        | В    | С    | С        | С    | С    | С        | С    |  |
| Approach Vol, veh/h       |         | 1875     |              |      | 1613     |      |      | 250      |      |      | 299      |      |  |
| Approach Delay, s/veh     |         | 16.5     |              |      | 16.4     |      |      | 32.5     |      |      | 30.0     |      |  |
| Approach LOS              |         | В        |              |      | В        |      |      | С        |      |      | С        |      |  |
| Timer - Assigned Phs      | 1       | 2        | 3            | 4    | 5        | 6    | 7    | 8        |      |      |          |      |  |
| Phs Duration (G+Y+Rc)     | . s7.4  | 42.9     | 7.8          | 13.6 | 10.1     | 40.2 | 8.4  | 13.0     |      |      |          |      |  |
| Change Period (Y+Rc)      | s 4 5   | 4.5      | 4.5          | 4.5  | 4.5      | 4.5  | 4.5  | 4.5      |      |      |          |      |  |
| Max Green Setting (Gm     | ax5 @   | 44 0     | 5.0          | 18.0 | 7.5      | 41.5 | 5.0  | 18.0     |      |      |          |      |  |
| Max Q Clear Time (q. c.   | +112 8  | 29.3     | 3.8          | 6.8  | 5.6      | 26.1 | 5.0  | 7.9      |      |      |          |      |  |
| Green Ext Time (p c), s   | 0.0     | 9.1      | 0.0          | 0.6  | 0.1      | 8.5  | 0.0  | 0.6      |      |      |          |      |  |
| Intersection Summary      |         |          |              |      |          |      |      |          |      |      |          |      |  |
|                           |         |          | 10 /         |      |          |      |      |          |      |      |          |      |  |
|                           |         |          | 10.4<br>D    |      |          |      |      |          |      |      |          |      |  |
|                           |         |          | В            |      |          |      |      |          |      |      |          |      |  |

|                           | ٠         | -    | 7    | 1    | •          | *           | 1    | t    | 1    | 4    | ŧ    | 4    |  |
|---------------------------|-----------|------|------|------|------------|-------------|------|------|------|------|------|------|--|
| Movement                  | EBL       | EBT  | EBR  | WBL  | WBT        | WBR         | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 57        | **   | 1    | 57   | **         | 1           | 57   |      | 1    | 57   | ↑    | 1    |  |
| Traffic Volume (veh/h)    | 180       | 1135 | 245  | 400  | 1310       | 165         | 80   | 470  | 325  | 200  | 300  | 95   |  |
| Future Volume (veh/h)     | 180       | 1135 | 245  | 400  | 1310       | 165         | 80   | 470  | 325  | 200  | 300  | 95   |  |
| Initial Q (Qb), veh       | 0         | 0    | 0    | 0    | 0          | 0           | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00      |      | 1.00 | 1.00 |            | 1.00        | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00      | 1.00 | 1.00 | 1.00 | 1.00       | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approac      | h         | No   |      |      | No         |             |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1826      | 1856 | 1900 | 1900 | 1811       | 1737        | 1811 | 1856 | 1826 | 1900 | 1900 | 1885 |  |
| Adj Flow Rate, veh/h      | 196       | 1234 | 266  | 435  | 1424       | 179         | 87   | 511  | 0    | 217  | 326  | 103  |  |
| Peak Hour Factor          | 0.92      | 0.92 | 0.92 | 0.92 | 0.92       | 0.92        | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 5         | 3    | 0    | 0    | 6          | 11          | 6    | 3    | 5    | 0    | 0    | 1    |  |
| Cap, veh/h                | 369       | 1463 | 668  | 411  | 1398       | 598         | 484  | 497  |      | 285  | 515  | 433  |  |
| Arrive On Green           | 0.07      | 0.42 | 0.42 | 0.08 | 0.41       | 0.41        | 0.04 | 0.27 | 0.00 | 0.04 | 0.27 | 0.27 |  |
| Sat Flow, veh/h           | 3374      | 3526 | 1610 | 3510 | 3441       | 1472        | 3346 | 1856 | 1547 | 3510 | 1900 | 1598 |  |
| Grp Volume(v), veh/h      | 196       | 1234 | 266  | 435  | 1424       | 179         | 87   | 511  | 0    | 217  | 326  | 103  |  |
| Grp Sat Flow(s),veh/h/lr  | า1687     | 1763 | 1610 | 1755 | 1721       | 1472        | 1673 | 1856 | 1547 | 1755 | 1900 | 1598 |  |
| Q Serve(g s), s           | 1.9       | 35.3 | 13.0 | 9.0  | 45.5       | 6.9         | 2.1  | 30.0 | 0.0  | 5.0  | 16.9 | 4.2  |  |
| Cycle Q Clear(g c), s     | 1.9       | 35.3 | 13.0 | 9.0  | 45.5       | 6.9         | 2.1  | 30.0 | 0.0  | 5.0  | 16.9 | 4.2  |  |
| Prop In Lane              | 1.00      |      | 1.00 | 1.00 |            | 1.00        | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 369       | 1463 | 668  | 411  | 1398       | 598         | 484  | 497  |      | 285  | 515  | 433  |  |
| V/C Ratio(X)              | 0.53      | 0.84 | 0.40 | 1.06 | 1.02       | 0.30        | 0.18 | 1.03 |      | 0.76 | 0.63 | 0.24 |  |
| Avail Cap(c_a), veh/h     | 370       | 1463 | 668  | 411  | 1398       | 598         | 494  | 497  |      | 285  | 515  | 433  |  |
| HCM Platoon Ratio         | 1.00      | 1.00 | 1.00 | 1.00 | 1.00       | 1.00        | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00      | 1.00 | 1.00 | 1.00 | 1.00       | 1.00        | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 |  |
| Uniform Delay (d), s/vel  | n 48.6    | 29.5 | 22.9 | 29.9 | 33.2       | 12.7        | 28.7 | 41.0 | 0.0  | 32.5 | 35.9 | 18.1 |  |
| Incr Delay (d2), s/veh    | 1.4       | 5.1  | 0.8  | 60.9 | 28.8       | 0.6         | 0.2  | 47.7 | 0.0  | 11.3 | 2.5  | 0.3  |  |
| Initial Q Delay(d3),s/veh | n 0.0     | 0.0  | 0.0  | 0.0  | 0.0        | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh     | n/In2.5   | 14.5 | 5.0  | 7.0  | 22.6       | 3.1         | 0.8  | 19.9 | 0.0  | 2.5  | 7.9  | 2.1  |  |
| Unsig. Movement Delay     | /, s/veh  | 1    |      |      |            |             |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh      | 50.0      | 34.6 | 23.8 | 90.8 | 62.0       | 13.3        | 28.9 | 88.7 | 0.0  | 43.8 | 38.5 | 18.4 |  |
| LnGrp LOS                 | D         | С    | С    | F    | F          | В           | С    | F    |      | D    | D    | В    |  |
| Approach Vol, veh/h       |           | 1696 |      |      | 2038       |             |      | 598  | А    |      | 646  |      |  |
| Approach Delay, s/veh     |           | 34.7 |      |      | 63.9       |             |      | 80.0 |      |      | 37.1 |      |  |
| Approach LOS              |           | С    |      |      | Е          |             |      | Е    |      |      | D    |      |  |
| Timer - Assigned Phs      | 1         | 2    | 3    | 4    | 5          | 6           | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+V+Rc)     | <u></u>   | 53.5 | 92   | 35.3 | 15.0       | 52.5        | 9.5  | 35.0 |      |      |      |      |  |
| Change Deriod (V+Dc)      | s 5 0     | 7.0  | 9.Z  | 5.0  | 7.0        | JZ.J<br>* 7 | 9.J  | 5.0  |      |      |      |      |  |
| Max Green Setting (Gm     | 5 J.U     | 11.0 | 4.J  | 30.0 | 7.0<br>8.0 | * 46        | 4.J  | 30.0 |      |      |      |      |  |
| Max O Clear Time (g. c.   | ⊥1111. Ce | 37.3 | / 1  | 18.0 | 3.0        | 40          | 7.0  | 32.0 |      |      |      |      |  |
| Green Ext Time (n. c)     | × 0.0     | 61   | 4.1  | 10.9 | 0.9        | 47.5        | 0.0  | 0.0  |      |      |      |      |  |
|                           | 0.0       | 0.1  | 0.0  | 1.0  | 0.2        | 0.0         | 0.0  | 0.0  |      |      |      |      |  |
| Intersection Summary      |           |      |      |      |            |             |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |           |      | 52.4 |      |            |             |      |      |      |      |      |      |  |
| HCM 6th LOS               |           |      | D    |      |            |             |      |      |      |      |      |      |  |

### Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP PM Peak

Synchro 10 Report Page 31

## HCM 6th Signalized Intersection Summary 33: Foster Ridge Dr & SH 66

03/12/2020

## ショップチャッ インシナイ

| Movement                  | EBL     | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|---------------------------|---------|------|-------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations       | 5       | 114  |       | 1    | 114  |      | 5    | 1.   |      | 3    | 1    |      |  |
| Traffic Volume (veh/h)    | 15      | 1615 | 30    | 30   | 1830 | 15   | 30   | 10   | 30   | 15   | 20   | 15   |  |
| Future Volume (veh/h)     | 15      | 1615 | 30    | 30   | 1830 | 15   | 30   | 10   | 30   | 15   | 20   | 15   |  |
| Initial Q (Qb), veh       | 0       | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |      | 1.00  | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00    | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach     | า       | No   |       |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870 | 1870  | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate, veh/h      | 16      | 1755 | 33    | 33   | 1989 | 16   | 33   | 11   | 33   | 16   | 22   | 16   |  |
| Peak Hour Factor          | 0.92    | 0.92 | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 2       | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Cap, veh/h                | 145     | 2906 | 55    | 171  | 2942 | 24   | 431  | 98   | 294  | 386  | 201  | 146  |  |
| Arrive On Green           | 0.56    | 0.56 | 0.56  | 0.56 | 0.56 | 0.56 | 0.06 | 0.24 | 0.24 | 0.02 | 0.20 | 0.20 |  |
| Sat Flow, veh/h           | 214     | 5160 | 97    | 265  | 5225 | 42   | 1781 | 412  | 1236 | 1781 | 1007 | 732  |  |
| Grp Volume(v), veh/h      | 16      | 1158 | 630   | 33   | 1296 | 709  | 33   | 0    | 44   | 16   | 0    | 38   |  |
| Grp Sat Flow(s),veh/h/ln  | 214     | 1702 | 1853  | 265  | 1702 | 1863 | 1781 | 0    | 1648 | 1781 | 0    | 1739 |  |
| Q Serve(g_s), s           | 5.0     | 19.9 | 19.9  | 8.3  | 23.7 | 23.8 | 1.2  | 0.0  | 1.8  | 0.6  | 0.0  | 1.6  |  |
| Cycle Q Clear(g c), s     | 28.8    | 19.9 | 19.9  | 28.3 | 23.7 | 23.8 | 1.2  | 0.0  | 1.8  | 0.6  | 0.0  | 1.6  |  |
| Prop In Lane              | 1.00    |      | 0.05  | 1.00 |      | 0.02 | 1.00 |      | 0.75 | 1.00 |      | 0.42 |  |
| Lane Grp Cap(c), veh/h    | 145     | 1917 | 1043  | 171  | 1917 | 1049 | 431  | 0    | 391  | 386  | 0    | 347  |  |
| V/C Ratio(X)              | 0.11    | 0.60 | 0.60  | 0.19 | 0.68 | 0.68 | 0.08 | 0.00 | 0.11 | 0.04 | 0.00 | 0.11 |  |
| Avail Cap(c_a), veh/h     | 189     | 2618 | 1425  | 225  | 2618 | 1433 | 431  | 0    | 391  | 454  | 0    | 413  |  |
| HCM Platoon Ratio         | 1.00    | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00    | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh  | 23.8    | 12.8 | 12.8  | 22.1 | 13.6 | 13.6 | 24.7 | 0.0  | 26.4 | 27.3 | 0.0  | 29.0 |  |
| Incr Delay (d2), s/veh    | 0.3     | 0.3  | 0.6   | 0.5  | 0.4  | 0.8  | 0.3  | 0.0  | 0.6  | 0.0  | 0.0  | 0.1  |  |
| Initial Q Delay(d3),s/veh | 0.0     | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh     | /lr0.2  | 6.0  | 6.6   | 0.5  | 7.1  | 7.9  | 0.6  | 0.0  | 0.8  | 0.3  | 0.0  | 0.7  |  |
| Unsig. Movement Delay,    | , s/veł | ۱    |       |      |      |      |      |      |      |      |      |      |  |
| LnGrp Delay(d),s/veh      | 24.1    | 13.1 | 13.4  | 22.7 | 14.0 | 14.4 | 25.0 | 0.0  | 27.0 | 27.3 | 0.0  | 29.1 |  |
| LnGrp LOS                 | С       | В    | В     | С    | В    | В    | С    | А    | С    | С    | А    | С    |  |
| Approach Vol, veh/h       |         | 1804 |       |      | 2038 |      |      | 77   |      |      | 54   |      |  |
| Approach Delay, s/veh     |         | 13.3 |       |      | 14.3 |      |      | 26.1 |      |      | 28.6 |      |  |
| Approach LOS              |         | В    |       |      | В    |      |      | С    |      |      | С    |      |  |
| Timer - Assigned Phs      |         | 2    | 3     | 4    |      | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc)     | S       | 55.8 | 10.0  | 22.6 |      | 55.8 | 6.6  | 26.0 |      |      |      |      |  |
| Change Period (Y+Rc)      | S       | 6.0  | 5.0   | 5.0  |      | 6.0  | 5.0  | 5.0  |      |      |      |      |  |
| Max Green Setting (Gma    | ax). s  | 68.0 | 5.0   | 21.0 |      | 68.0 | 5.0  | 21.0 |      |      |      |      |  |
| Max Q Clear Time (g c+    | -11). s | 30.8 | 3.2   | 3.6  |      | 30.3 | 2.6  | 3.8  |      |      |      |      |  |
| Green Ext Time (p_c), s   | .,, J   | 15.9 | 0.0   | 0.1  |      | 19.5 | 0.0  | 0.1  |      |      |      |      |  |
| Intersection Summary      |         |      |       |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |         |      | 14.3  |      |      |      |      |      |      |      |      |      |  |
|                           |         |      | <br>B |      |      |      |      |      |      |      |      |      |  |

03/12/2020

### メーシュー イイ インシナイ

|                               | ГОТ      |      |                                                                                                                                              |      |              |      | NDT  |      | CDI  | ODT      |      |
|-------------------------------|----------|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------|------|------|------|----------|------|
| Movement EBI                  | EBI      | EBR  | VVBL                                                                                                                                         | VVBI | WBR          | INBL | INBI | INBR | SBL  | SBI      | SBR  |
|                               | TTT      | 7    | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | TT   | 0            | 0    | •    | 0    | 1    | <b>€</b> | 7    |
| Traffic Volume (veh/h)        | 1250     | 490  | 565                                                                                                                                          | 1625 | 0            | 0    | 0    | 0    | 220  | 10       | 330  |
| Future Volume (veh/h)         | 1250     | 490  | 565                                                                                                                                          | 1625 | 0            | 0    | 0    | 0    | 220  | 10       | 330  |
| Initial Q (Qb), veh           | 0        | 0    | 0                                                                                                                                            | 0    | 0            |      |      |      | 0    | 0        | 0    |
| Ped-Bike Adj(A_pb1) 1.00      | )        | 1.00 | 1.00                                                                                                                                         | 4.00 | 1.00         |      |      |      | 1.00 | 4 00     | 1.00 |
| Parking Bus, Adj 1.00         | 1.00     | 1.00 | 1.00                                                                                                                                         | 1.00 | 1.00         |      |      |      | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach         | NO       | 4050 | 4000                                                                                                                                         | NO   | 0            |      |      |      | 4707 | NO       | 4050 |
| Adj Sat Flow, ven/h/ln        | 1856     | 1856 | 1688                                                                                                                                         | 1796 | 0            |      |      |      | 1/3/ | 1411     | 1856 |
| Adj Flow Rate, veh/h          | 1359     | 0    | 614                                                                                                                                          | 1/66 | 0            |      |      |      | 247  | 0        | 0    |
| Peak Hour Factor 0.92         | 2 0.92   | 0.92 | 0.92                                                                                                                                         | 0.92 | 0.92         |      |      |      | 0.92 | 0.92     | 0.92 |
| Percent Heavy Veh, %          | ) 3      | 3    | 8                                                                                                                                            | /    | 0            |      |      |      | 11   | 33       | 3    |
| Cap, veh/h                    | 1520     |      | 1079                                                                                                                                         | 2503 | 0            |      |      |      | 344  | 0        |      |
| Arrive On Green 0.00          | 0.30     | 0.00 | 0.69                                                                                                                                         | 1.00 | 0.00         |      |      |      | 0.10 | 0.00     | 0.00 |
| Sat Flow, veh/h               | 5233     | 1572 | 3118                                                                                                                                         | 3503 | 0            |      |      |      | 3309 | 0        | 1572 |
| Grp Volume(v), veh/h          | ) 1359   | 0    | 614                                                                                                                                          | 1766 | 0            |      |      |      | 247  | 0        | 0    |
| Grp Sat Flow(s),veh/h/ln      | 1689     | 1572 | 1559                                                                                                                                         | 1706 | 0            |      |      |      | 1654 | 0        | 1572 |
| Q Serve(g_s), s 0.0           | 20.5     | 0.0  | 8.0                                                                                                                                          | 0.0  | 0.0          |      |      |      | 5.8  | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s 0.0     | 20.5     | 0.0  | 8.0                                                                                                                                          | 0.0  | 0.0          |      |      |      | 5.8  | 0.0      | 0.0  |
| Prop In Lane 0.00             | )        | 1.00 | 1.00                                                                                                                                         |      | 0.00         |      |      |      | 1.00 |          | 1.00 |
| Lane Grp Cap(c), veh/h        | ) 1520   |      | 1079                                                                                                                                         | 2503 | 0            |      |      |      | 344  | 0        |      |
| V/C Ratio(X) 0.00             | 0.89     |      | 0.57                                                                                                                                         | 0.71 | 0.00         |      |      |      | 0.72 | 0.00     |      |
| Avail Cap(c_a), veh/h         | ) 1520   |      | 1079                                                                                                                                         | 2503 | 0            |      |      |      | 744  | 0        |      |
| HCM Platoon Ratio 1.00        | ) 1.00   | 1.00 | 2.00                                                                                                                                         | 2.00 | 1.00         |      |      |      | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I) 0.00       | 0.73     | 0.00 | 0.38                                                                                                                                         | 0.38 | 0.00         |      |      |      | 1.00 | 0.00     | 0.00 |
| Uniform Delay (d), s/veh 0.0  | 26.8     | 0.0  | 9.3                                                                                                                                          | 0.0  | 0.0          |      |      |      | 34.7 | 0.0      | 0.0  |
| Incr Delay (d2), s/veh 0.0    | 6.4      | 0.0  | 0.3                                                                                                                                          | 0.7  | 0.0          |      |      |      | 2.8  | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0      | 0.0  | 0.0                                                                                                                                          | 0.0  | 0.0          |      |      |      | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/Ir0.0   | ) 8.1    | 0.0  | 1.7                                                                                                                                          | 0.2  | 0.0          |      |      |      | 2.3  | 0.0      | 0.0  |
| Unsig. Movement Delay, s/ve   | eh       |      |                                                                                                                                              |      |              |      |      |      |      |          |      |
| LnGrp Delay(d),s/veh 0.0      | ) 33.2   | 0.0  | 9.6                                                                                                                                          | 0.7  | 0.0          |      |      |      | 37.5 | 0.0      | 0.0  |
| LnGrp LOS A                   | <u> </u> |      | Α                                                                                                                                            | Α    | Α            |      |      |      | D    | Α        |      |
| Approach Vol, veh/h           | 1359     | А    |                                                                                                                                              | 2380 |              |      |      |      |      | 247      | А    |
| Approach Delay, s/veh         | 33.2     |      |                                                                                                                                              | 2.9  |              |      |      |      |      | 37.5     |      |
| Approach LOS                  | С        |      |                                                                                                                                              | А    |              |      |      |      |      | D        |      |
| Timer - Assigned Phs          | 2        |      | 4                                                                                                                                            |      | 6            |      |      |      |      |          |      |
| Phs Duration (G+Y+Rc) &4      | 310      |      | 14.3                                                                                                                                         |      | 65.7         |      |      |      |      |          |      |
| Change Period $(V+R_c) \in 7$ | ) 70     |      | 6.0                                                                                                                                          |      | 7 0          |      |      |      |      |          |      |
| Max Green Setting (Gmat/8 6   | 240      |      | 18.0                                                                                                                                         |      | <u>4</u> 9.0 |      |      |      |      |          |      |
| Max O Clear Time (a. c±lff)   | × 27.0   |      | 7.8                                                                                                                                          |      | 20           |      |      |      |      |          |      |
| Green Ext Time (n c) e 14     | 5 11     |      | 0.7                                                                                                                                          |      | 19.0         |      |      |      |      |          |      |
|                               | , 1.1    |      | 0.0                                                                                                                                          |      | 13.0         |      |      |      |      |          |      |
| Intersection Summary          |          |      |                                                                                                                                              |      |              |      |      |      |      |          |      |
| HCM 6th Ctrl Delay            |          | 15.4 |                                                                                                                                              |      |              |      |      |      |      |          |      |
| HCM 6th LOS                   |          | В    |                                                                                                                                              |      |              |      |      |      |      |          |      |

### Notes

User approved volume balancing among the lanes for turning movement. Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP PM Peak

03/12/2020

### メッシュー くく インシレイ

| Movement                  | EBL     | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL | SBT | SBR |  |
|---------------------------|---------|------|------|------|------|------|------|------|------|-----|-----|-----|--|
| Lane Configurations       | 57      | **   |      |      | ***  | 1    | 1    | र्भ  | 1    |     |     |     |  |
| Traffic Volume (veh/h)    | 275     | 1195 | 0    | 0    | 1700 | 310  | 490  | 0    | 685  | 0   | 0   | 0   |  |
| Future Volume (veh/h)     | 275     | 1195 | 0    | 0    | 1700 | 310  | 490  | 0    | 685  | 0   | 0   | 0   |  |
| Initial Q (Qb), veh       | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |     |     |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |     |     |     |  |
| Parking Bus, Adj          | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |     |     |  |
| Work Zone On Approac      | h       | No   |      |      | No   |      |      | No   |      |     |     |     |  |
| Adj Sat Flow, veh/h/ln    | 1758    | 1826 | 0    | 0    | 1781 | 1693 | 1716 | 1900 | 1737 |     |     |     |  |
| Adj Flow Rate, veh/h      | 299     | 1299 | 0    | 0    | 1848 | 0    | 533  | 0    | 0    |     |     |     |  |
| Peak Hour Factor          | 0.92    | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |     |     |     |  |
| Percent Heavy Veh, %      | 3       | 5    | 0    | 0    | 8    | 14   | 6    | 0    | 11   |     |     |     |  |
| Cap, veh/h                | 434     | 2242 | 0    | 0    | 2067 |      | 625  | 0    |      |     |     |     |  |
| Arrive On Green           | 0.27    | 1.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.19 | 0.00 | 0.00 |     |     |     |  |
| Sat Flow, veh/h           | 3248    | 3561 | 0    | 0    | 5024 | 1434 | 3268 | 0    | 1472 |     |     |     |  |
| Grp Volume(v), veh/h      | 299     | 1299 | 0    | 0    | 1848 | 0    | 533  | 0    | 0    |     |     |     |  |
| Grp Sat Flow(s),veh/h/lr  | า1624   | 1735 | 0    | 0    | 1621 | 1434 | 1634 | 0    | 1472 |     |     |     |  |
| Q Serve(g_s), s           | 6.6     | 0.0  | 0.0  | 0.0  | 28.2 | 0.0  | 12.6 | 0.0  | 0.0  |     |     |     |  |
| Cycle Q Clear(g_c), s     | 6.6     | 0.0  | 0.0  | 0.0  | 28.2 | 0.0  | 12.6 | 0.0  | 0.0  |     |     |     |  |
| Prop In Lane              | 1.00    |      | 0.00 | 0.00 |      | 1.00 | 1.00 |      | 1.00 |     |     |     |  |
| Lane Grp Cap(c), veh/h    | 434     | 2242 | 0    | 0    | 2067 |      | 625  | 0    |      |     |     |     |  |
| V/C Ratio(X)              | 0.69    | 0.58 | 0.00 | 0.00 | 0.89 |      | 0.85 | 0.00 |      |     |     |     |  |
| Avail Cap(c_a), veh/h     | 434     | 2242 | 0    | 0    | 2067 |      | 735  | 0    |      |     |     |     |  |
| HCM Platoon Ratio         | 2.00    | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |     |     |     |  |
| Upstream Filter(I)        | 0.64    | 0.64 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 |     |     |     |  |
| Uniform Delay (d), s/vel  | n 27.8  | 0.0  | 0.0  | 0.0  | 21.3 | 0.0  | 31.3 | 0.0  | 0.0  |     |     |     |  |
| Incr Delay (d2), s/veh    | 2.9     | 0.7  | 0.0  | 0.0  | 6.5  | 0.0  | 8.4  | 0.0  | 0.0  |     |     |     |  |
| Initial Q Delay(d3),s/veh | n 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |     |     |     |  |
| %ile BackOfQ(50%),veh     | n/In2.3 | 0.2  | 0.0  | 0.0  | 9.9  | 0.0  | 5.3  | 0.0  | 0.0  |     |     |     |  |
| Unsig. Movement Delay     | , s/veh |      |      |      |      |      |      |      |      |     |     |     |  |
| LnGrp Delay(d),s/veh      | 30.8    | 0.7  | 0.0  | 0.0  | 27.8 | 0.0  | 39.6 | 0.0  | 0.0  |     |     |     |  |
| LnGrp LOS                 | С       | А    | А    | А    | С    |      | D    | А    |      |     |     |     |  |
| Approach Vol, veh/h       |         | 1598 |      |      | 1848 | А    |      | 533  | А    |     |     |     |  |
| Approach Delay, s/veh     |         | 6.3  |      |      | 27.8 |      |      | 39.6 |      |     |     |     |  |
| Approach LOS              |         | А    |      |      | С    |      |      | D    |      |     |     |     |  |
| Timer - Assigned Phs      |         | 2    |      |      | 5    | 6    |      | 8    |      |     |     |     |  |
| Phs Duration (G+Y+Rc)     | , S     | 58.7 |      |      | 17.7 | 41.0 |      | 21.3 |      |     |     |     |  |
| Change Period (Y+Rc),     | S       | 7.0  |      |      | 7.0  | * 7  |      | 6.0  |      |     |     |     |  |
| Max Green Setting (Gm     | ax), s  | 49.0 |      |      | 10.0 | * 34 |      | 18.0 |      |     |     |     |  |
| Max Q Clear Time (g_c-    | +l1), s | 2.0  |      |      | 8.6  | 30.2 |      | 14.6 |      |     |     |     |  |
| Green Ext Time (p_c), s   | 6       | 11.1 |      |      | 0.1  | 3.1  |      | 0.7  |      |     |     |     |  |
| Intersection Summary      |         |      |      |      |      |      |      |      |      |     |     |     |  |
| HCM 6th Ctrl Delay        |         |      | 20.8 |      |      |      |      |      |      |     |     |     |  |
| HCM 6th LOS               |         |      | С    |      |      |      |      |      |      |     |     |     |  |

#### Notes

User approved volume balancing among the lanes for turning movement.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

SH 66 2040 Fully Implemented PEL with ACP PM Peak

Synchro 10 Report Page 34
| Intersection           |      |      |      |      |      |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Int Delay, s/veh       | 67.7 |      |      |      |      |      |      |      |      |      |      |      |  |
| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | ľ    | 朴朴   |      | 1    | ***  |      |      |      | 1    |      |      | 1    |  |
| Traffic Vol, veh/h     | 225  | 1540 | 115  | 20   | 1555 | 20   | 0    | 0    | 185  | 0    | 0    | 455  |  |
| Future Vol, veh/h      | 225  | 1540 | 115  | 20   | 1555 | 20   | 0    | 0    | 185  | 0    | 0    | 455  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | 275  | -    | -    | 225  | -    | -    | -    | -    | 0    | -    | -    | 0    |  |
| Veh in Median Storage, | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 10   | 7    | 3    | 8    | 2    | 7    | 2    | 3    | 2    | 2    | 2    |  |
| Mvmt Flow              | 245  | 1674 | 125  | 22   | 1690 | 22   | 0    | 0    | 201  | 0    | 0    | 495  |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Major1 |       | 1     | Major2 |     | I     | Minor1 |       | Ν     | /linor2 |   |       |  |
|----------------------|--------|-------|-------|--------|-----|-------|--------|-------|-------|---------|---|-------|--|
| Conflicting Flow All | 1712   | 0     | 0     | 1799   | 0   | 0     | -      | -     | 900   | -       | - | 856   |  |
| Stage 1              | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
| Stage 2              | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
| Critical Hdwy        | 5.34   | -     | -     | 5.36   | -   | -     | -      | -     | 7.16  | -       | - | 7.14  |  |
| Critical Hdwy Stg 1  | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
| Follow-up Hdwy       | 3.12   | -     | -     | 3.13   | -   | -     | -      | -     | 3.93  | -       | - | 3.92  |  |
| Pot Cap-1 Maneuver   | ~ 175  | -     | -     | 156    | -   | -     | 0      | 0     | 240   | 0       | 0 | ~ 259 |  |
| Stage 1              | -      | -     | -     | -      | -   | -     | 0      | 0     | -     | 0       | 0 | -     |  |
| Stage 2              | -      | -     | -     | -      | -   | -     | 0      | 0     | -     | 0       | 0 | -     |  |
| Platoon blocked, %   |        | -     | -     |        | -   | -     |        |       |       |         |   |       |  |
| Mov Cap-1 Maneuver   | ~ 175  | -     | -     | 156    | -   | -     | -      | -     | 240   | -       | - | ~ 259 |  |
| Mov Cap-2 Maneuver   | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
| Stage 1              | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
| Stage 2              | -      | -     | -     | -      | -   | -     | -      | -     | -     | -       | - | -     |  |
|                      |        |       |       |        |     |       |        |       |       |         |   |       |  |
| Approach             | EB     |       |       | WB     |     |       | NB     |       |       | SB      |   |       |  |
| HCM Control Delay, s | 31.1   |       |       | 0.4    |     |       | 67.1   |       | \$    | 455.5   |   |       |  |
| HCM LOS              |        |       |       |        |     |       | F      |       |       | F       |   |       |  |
|                      |        |       |       |        |     |       |        |       |       |         |   |       |  |
| Minor Lane/Major Mvr | nt     | NBLn1 | EBL   | EBT    | EBR | WBL   | WBT    | WBR S | SBLn1 |         |   |       |  |
| Capacity (veh/h)     |        | 240   | ~ 175 | -      | -   | 156   | -      | -     | 259   |         |   |       |  |
| HCM Lane V/C Ratio   |        | 0.838 | 1.398 | -      | -   | 0.139 | -      | -     | 1.91  |         |   |       |  |
| HCM Control Delay (s | )      | 67.1  | 259.7 | -      | -   | 31.8  | -      | -\$   | 455.5 |         |   |       |  |
| HCM Lane LOS         | ,      | F     | F     | -      | -   | D     | -      | -     | F     |         |   |       |  |
| HCM 95th %tile Q(veh | ı)     | 6.6   | 14.9  | -      | -   | 0.5   | -      | -     | 34.8  |         |   |       |  |
| Notes                |        |       |       |        |     |       |        |       |       |         |   |       |  |
|                      |        |       |       |        |     |       |        |       |       |         |   |       |  |

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined \*: All major volume in platoon

#### HCM 6th Signalized Intersection Summary 37: CR 9 1/2 & SH 66 EB off-ramp

| 03/12 | 2/2020 |
|-------|--------|
|-------|--------|

|                              | ٠    | -+   | 7    | 1    |     | *   | 1    | Ť        | 1    | 1    | ŧ    | 4    |
|------------------------------|------|------|------|------|-----|-----|------|----------|------|------|------|------|
| Movement                     | EBL  | EBT  | EBR  | WBL  | WBT | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | 57   |      | 1    |      |     |     |      | <b>^</b> | 1    | 5    | **   |      |
| Traffic Volume (veh/h)       | 415  | 0    | 400  | 0    | 0   | 0   | 0    | 745      | 475  | 100  | 490  | 0    |
| Future Volume (veh/h)        | 415  | 0    | 400  | 0    | 0   | 0   | 0    | 745      | 475  | 100  | 490  | 0    |
| Initial Q (Qb), veh          | 0    | 0    | 0    |      |     |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |      | 1.00 |      |     |     | 1.00 |          | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 |      |     |     | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No   |      |      |     |     |      | No       |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 0    | 1870 |      |     |     | 0    | 1870     | 1870 | 1870 | 1870 | 0    |
| Adj Flow Rate, veh/h         | 451  | 0    | 435  |      |     |     | 0    | 810      | 516  | 109  | 533  | 0    |
| Peak Hour Factor             | 0.92 | 0.92 | 0.92 |      |     |     | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %         | 2    | 0    | 2    |      |     |     | 0    | 2        | 2    | 2    | 2    | 0    |
| Cap, veh/h                   | 1419 | 0    | 651  |      |     |     | 0    | 1220     | 544  | 138  | 1694 | 0    |
| Arrive On Green              | 0.41 | 0.00 | 0.41 |      |     |     | 0.00 | 0.34     | 0.34 | 0.15 | 0.95 | 0.00 |
| Sat Flow, veh/h              | 3456 | 0    | 1585 |      |     |     | 0    | 3647     | 1585 | 1781 | 3647 | 0    |
| Grp Volume(v), veh/h         | 451  | 0    | 435  |      |     |     | 0    | 810      | 516  | 109  | 533  | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1728 | 0    | 1585 |      |     |     | 0    | 1777     | 1585 | 1781 | 1777 | 0    |
| Q Serve(q s), s              | 7.1  | 0.0  | 17.8 |      |     |     | 0.0  | 15.5     | 25.4 | 4.7  | 0.8  | 0.0  |
| Cycle Q Clear(q c), s        | 7.1  | 0.0  | 17.8 |      |     |     | 0.0  | 15.5     | 25.4 | 4.7  | 0.8  | 0.0  |
| Prop In Lane                 | 1.00 |      | 1.00 |      |     |     | 0.00 |          | 1.00 | 1.00 |      | 0.00 |
| Lane Grp Cap(c), veh/h       | 1419 | 0    | 651  |      |     |     | 0    | 1220     | 544  | 138  | 1694 | 0    |
| V/C Ratio(X)                 | 0.32 | 0.00 | 0.67 |      |     |     | 0.00 | 0.66     | 0.95 | 0.79 | 0.31 | 0.00 |
| Avail Cap(c a), veh/h        | 1419 | 0    | 651  |      |     |     | 0    | 1222     | 545  | 236  | 1892 | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 |      |     |     | 1.00 | 1.00     | 1.00 | 2.00 | 2.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 1.00 |      |     |     | 0.00 | 1.00     | 1.00 | 0.91 | 0.91 | 0.00 |
| Uniform Delay (d), s/veh     | 16.0 | 0.0  | 19.1 |      |     |     | 0.0  | 22.3     | 25.6 | 33.2 | 1.0  | 0.0  |
| Incr Delay (d2), s/veh       | 0.6  | 0.0  | 5.4  |      |     |     | 0.0  | 1.4      | 26.2 | 8.9  | 0.1  | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  |      |     |     | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.8  | 0.0  | 7.1  |      |     |     | 0.0  | 5.8      | 12.1 | 2.1  | 0.2  | 0.0  |
| Unsig. Movement Delay, s/veh |      |      |      |      |     |     |      |          |      |      |      |      |
| LnGrp Delay(d),s/veh         | 16.6 | 0.0  | 24.5 |      |     |     | 0.0  | 23.7     | 51.8 | 42.1 | 1.1  | 0.0  |
| LnGrp LOS                    | В    | А    | С    |      |     |     | А    | С        | D    | D    | А    | А    |
| Approach Vol. veh/h          |      | 886  |      |      |     |     |      | 1326     |      |      | 642  |      |
| Approach Delay, s/veh        |      | 20.5 |      |      |     |     |      | 34.6     |      |      | 8.1  |      |
| Approach LOS                 |      | С    |      |      |     |     |      | С        |      |      | A    |      |
| Timer - Assigned Phs         |      | 2    |      | 4    |     |     | 7    | 8        |      |      |      |      |
| Phs Duration (G+Y+Rc), s     |      | 37.4 |      | 42.6 |     |     | 10.7 | 32.0     |      |      |      |      |
| Change Period (Y+Rc), s      |      | 4.5  |      | 4.5  |     |     | 4.5  | 4.5      |      |      |      |      |
| Max Green Setting (Gmax), s  |      | 28.4 |      | 42.6 |     |     | 10.6 | 27.5     |      |      |      |      |
| Max Q Clear Time (g_c+I1), s |      | 19.8 |      | 2.8  |     |     | 6.7  | 27.4     |      |      |      |      |
| Green Ext Time (p_c), s      |      | 2.4  |      | 3.3  |     |     | 0.1  | 0.1      |      |      |      |      |
| Intersection Summary         |      |      |      |      |     |     |      |          |      |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 24.3 |      |     |     |      |          |      |      |      |      |
| HCM 6th LOS                  |      |      | С    |      |     |     |      |          |      |      |      |      |

# \* + > \* \* \* \* \* \* \* \* \* \*

| Movement                  | EBL        | EBT | EBR  | WBL               | WBT  | WBR          | NBL  | NBT          | NBR  | SBL  | SBT  | SBR  |
|---------------------------|------------|-----|------|-------------------|------|--------------|------|--------------|------|------|------|------|
| Lane Configurations       |            |     |      | 5                 | 445  |              | 55   | **           |      |      | **   | 1    |
| Traffic Volume (veh/h)    | 0          | 0   | 0    | 130               | 580  | 45           | 580  | 580          | 0    | 0    | 460  | 435  |
| Future Volume (veh/h)     | 0          | 0   | 0    | 130               | 580  | 45           | 580  | 580          | 0    | 0    | 460  | 435  |
| Initial Q (Qb), veh       |            |     |      | 0                 | 0    | 0            | 0    | 0            | 0    | 0    | 0    | 0    |
| Ped-Bike Adi(A pbT)       |            |     |      | 1.00              |      | 1.00         | 1.00 |              | 1.00 | 1.00 | -    | 1.00 |
| Parking Bus, Adi          |            |     |      | 1.00              | 1.00 | 1.00         | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approac      | h          |     |      |                   | No   |              |      | No           |      |      | No   |      |
| Adi Sat Flow, veh/h/ln    |            |     |      | 1870              | 1870 | 1870         | 1870 | 1870         | 0    | 0    | 1870 | 1870 |
| Adi Flow Rate, veh/h      |            |     |      | 141               | 630  | 49           | 630  | 630          | 0    | 0    | 500  | 473  |
| Peak Hour Factor          |            |     |      | 0.92              | 0.92 | 0.92         | 0.92 | 0.92         | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %      |            |     |      | 2                 | 2    | 2            | 2    | 2            | 0    | 0    | 2    | 2    |
| Cap, veh/h                |            |     |      | 528               | 1433 | 111          | 719  | 2100         | 0    | 0    | 1161 | 518  |
| Arrive On Green           |            |     |      | 0.50              | 0.50 | 0.50         | 0.28 | 0.79         | 0.00 | 0.00 | 0.33 | 0.33 |
| Sat Flow, veh/h           |            |     |      | 1781              | 4834 | 373          | 3456 | 3647         | 0    | 0    | 3647 | 1585 |
| Grp Volume(v), veh/h      |            |     |      | 141               | 442  | 237          | 630  | 630          | 0    | 0    | 500  | 473  |
| Grp Sat Flow(s) veh/h/lr  | n          |     |      | 1781              | 1702 | 1803         | 1728 | 1777         | 0    | 0    | 1777 | 1585 |
| Q Serve(q s), s           | -          |     |      | 3.7               | 6.7  | 6.8          | 13.9 | 4.0          | 0.0  | 0.0  | 8.8  | 22.9 |
| Cycle Q Clear(a c) s      |            |     |      | 3.7               | 6.7  | 6.8          | 13.9 | 4.0          | 0.0  | 0.0  | 8.8  | 22.9 |
| Prop In Lane              |            |     |      | 1.00              | •    | 0.21         | 1.00 |              | 0.00 | 0.00 | 2.0  | 1.00 |
| Lane Grp Cap(c), veh/h    |            |     |      | 528               | 1009 | 535          | 719  | 2100         | 0    | 0    | 1161 | 518  |
| V/C Ratio(X)              |            |     |      | 0.27              | 0.44 | 0.44         | 0.88 | 0.30         | 0.00 | 0.00 | 0.43 | 0.91 |
| Avail Cap(c_a), veh/h     |            |     |      | 528               | 1009 | 535          | 808  | 2252         | 0    | 0    | 1222 | 545  |
| HCM Platoon Ratio         |            |     |      | 1.67              | 1.67 | 1.67         | 1.33 | 1.33         | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)        |            |     |      | 1.00              | 1.00 | 1.00         | 0.79 | 0.79         | 0.00 | 0.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/vel  | h          |     |      | 15.1              | 15.9 | 15.9         | 28.0 | 3.9          | 0.0  | 0.0  | 21.1 | 25.8 |
| Incr Delay (d2), s/veh    |            |     |      | 1.2               | 1.4  | 2.6          | 8.0  | 0.1          | 0.0  | 0.0  | 0.3  | 19.4 |
| Initial Q Delav(d3).s/veh | ı          |     |      | 0.0               | 0.0  | 0.0          | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%).veh     | ı/ln       |     |      | 1.4               | 2.2  | 2.6          | 5.5  | 0.9          | 0.0  | 0.0  | 3.2  | 10.2 |
| Unsig. Movement Delay     | /, s/veh   |     |      |                   |      |              |      |              |      |      |      |      |
| LnGrp Delay(d),s/veh      |            |     |      | 16.4              | 17.3 | 18.6         | 36.0 | 4.0          | 0.0  | 0.0  | 21.4 | 45.2 |
| LnGrp LOS                 |            |     |      | В                 | В    | В            | D    | А            | А    | А    | С    | D    |
| Approach Vol. veh/h       |            |     |      |                   | 820  |              |      | 1260         |      |      | 973  |      |
| Approach Delay, s/veh     |            |     |      |                   | 17.5 |              |      | 20.0         |      |      | 33.0 |      |
| Approach LOS              |            |     |      |                   | В    |              |      | В            |      |      | С    |      |
| Timer - Assigned Pho      |            |     | 3    | Λ                 |      | 6            |      | 8            |      |      |      |      |
| Phs Duration (G+Y+Rc)     | ) S        |     | 21.1 | 30.6              |      | 28.2         |      | 51.8         |      |      |      |      |
| Change Period (Y+Rc)      | , J        |     | 4.5  | Δ.5               |      | Δ.Z          |      | 4 5          |      |      |      |      |
| Max Green Setting (Cm     | av) e      |     | 18.7 | +.J<br>27 5       |      | -+.5<br>20 3 |      | -1.5<br>50.7 |      |      |      |      |
| Max O Clear Time (g. o    | +11) c     |     | 15.0 | 27.J<br>24 Q      |      | 20.5         |      | 6.0          |      |      |      |      |
| Green Ext Time (n. c)     | · i i j, s |     | 0.7  | 2 <del>1</del> .3 |      | 3.0          |      | 0.0<br>∕I ∩  |      |      |      |      |
|                           | ,          |     | 0.7  | 1.2               |      | J.Z          |      | 4.0          |      |      |      |      |
| Intersection Summary      |            |     |      |                   |      |              |      |              |      |      |      |      |
| HCM 6th Ctrl Delay        |            |     | 23.5 |                   |      |              |      |              |      |      |      |      |
| HCM 6th LOS               |            |     | С    |                   |      |              |      |              |      |      |      |      |

|                           | ٨        | -+   | $\mathbf{\hat{v}}$ | 4    | +    | •    | 1            | t    | ۲    | 4    | ŧ    | 4            |  |
|---------------------------|----------|------|--------------------|------|------|------|--------------|------|------|------|------|--------------|--|
| Movement                  | EBL      | EBT  | EBR                | WBL  | WBT  | WBR  | NBL          | NBT  | NBR  | SBL  | SBT  | SBR          |  |
| Lane Configurations       | 3        | **   | 1                  | 5    | **   | 1    | 5            |      | 1    | 5    |      | 1            |  |
| Traffic Volume (veh/h)    | 110      | 1205 | 170                | 140  | 585  | 75   | 105          | 15   | 170  | 80   | 15   | 65           |  |
| Future Volume (veh/h)     | 110      | 1205 | 170                | 140  | 585  | 75   | 105          | 15   | 170  | 80   | 15   | 65           |  |
| Initial Q (Qb), veh       | 0        | 0    | 0                  | 0    | 0    | 0    | 0            | 0    | 0    | 0    | 0    | 0            |  |
| Ped-Bike Adj(A pbT)       | 1.00     |      | 1.00               | 1.00 |      | 1.00 | 1.00         |      | 1.00 | 1.00 |      | 1.00         |  |
| Parking Bus, Adj          | 1.00     | 1.00 | 1.00               | 1.00 | 1.00 | 1.00 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00         |  |
| Work Zone On Approac      | h        | No   |                    |      | No   |      |              | No   |      |      | No   |              |  |
| Adj Sat Flow, veh/h/ln    | 1900     | 1737 | 1530               | 1900 | 1781 | 1900 | 1900         | 1900 | 1900 | 1900 | 1900 | 1900         |  |
| Adj Flow Rate, veh/h      | 120      | 1310 | 185                | 152  | 636  | 82   | 114          | 16   | 185  | 87   | 16   | 0            |  |
| Peak Hour Factor          | 0.92     | 0.92 | 0.92               | 0.92 | 0.92 | 0.92 | 0.92         | 0.92 | 0.92 | 0.92 | 0.92 | 0.92         |  |
| Percent Heavy Veh, %      | 0        | 11   | 25                 | 0    | 8    | 0    | 0            | 0    | 0    | 0    | 0    | 0            |  |
| Cap, veh/h                | 298      | 1375 | 540                | 202  | 1397 | 665  | 528          | 465  | 394  | 469  | 447  |              |  |
| Arrive On Green           | 0.06     | 0.42 | 0.42               | 0.02 | 0.14 | 0.14 | 0.06         | 0.24 | 0.24 | 0.05 | 0.24 | 0.00         |  |
| Sat Flow, veh/h           | 1810     | 3300 | 1296               | 1810 | 3385 | 1610 | <u>18</u> 10 | 1900 | 1610 | 1810 | 1900 | <u>16</u> 10 |  |
| Grp Volume(v), veh/h      | 120      | 1310 | 185                | 152  | 636  | 82   | 114          | 16   | 185  | 87   | 16   | 0            |  |
| Grp Sat Flow(s),veh/h/li  | n1810    | 1650 | 1296               | 1810 | 1692 | 1610 | 1810         | 1900 | 1610 | 1810 | 1900 | 1610         |  |
| Q Serve(g_s), s           | 3.5      | 30.7 | 5.4                | 2.6  | 13.8 | 3.6  | 3.8          | 0.5  | 6.1  | 2.9  | 0.5  | 0.0          |  |
| Cycle Q Clear(g_c), s     | 3.5      | 30.7 | 5.4                | 2.6  | 13.8 | 3.6  | 3.8          | 0.5  | 6.1  | 2.9  | 0.5  | 0.0          |  |
| Prop In Lane              | 1.00     |      | 1.00               | 1.00 |      | 1.00 | 1.00         |      | 1.00 | 1.00 |      | 1.00         |  |
| Lane Grp Cap(c), veh/h    | 298      | 1375 | 540                | 202  | 1397 | 665  | 528          | 465  | 394  | 469  | 447  |              |  |
| V/C Ratio(X)              | 0.40     | 0.95 | 0.34               | 0.75 | 0.46 | 0.12 | 0.22         | 0.03 | 0.47 | 0.19 | 0.04 |              |  |
| Avail Cap(c_a), veh/h     | 338      | 1382 | 543                | 206  | 1397 | 665  | 528          | 465  | 394  | 486  | 447  |              |  |
| HCM Platoon Ratio         | 1.00     | 1.00 | 1.00               | 0.33 | 0.33 | 0.33 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 1.00         |  |
| Upstream Filter(I)        | 1.00     | 1.00 | 1.00               | 0.96 | 0.96 | 0.96 | 1.00         | 1.00 | 1.00 | 1.00 | 1.00 | 0.00         |  |
| Uniform Delay (d), s/vel  | h 18.1   | 22.6 | 7.8                | 37.3 | 26.3 | 21.8 | 21.0         | 23.0 | 15.3 | 21.2 | 23.6 | 0.0          |  |
| Incr Delay (d2), s/veh    | 0.9      | 14.4 | 0.4                | 13.7 | 0.2  | 0.1  | 0.2          | 0.1  | 4.0  | 0.2  | 0.1  | 0.0          |  |
| Initial Q Delay(d3),s/vel | n 0.0    | 0.0  | 0.0                | 0.0  | 0.0  | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0          |  |
| %ile BackOfQ(50%),vel     | n/In1.3  | 12.5 | 2.1                | 3.5  | 5.9  | 1.3  | 1.6          | 0.2  | 3.2  | 1.2  | 0.2  | 0.0          |  |
| Unsig. Movement Delay     | /, s/veh |      |                    |      |      |      |              |      |      |      |      |              |  |
| LnGrp Delay(d),s/veh      | 18.9     | 37.0 | 8.2                | 51.0 | 26.5 | 21.9 | 21.2         | 23.2 | 19.3 | 21.4 | 23.7 | 0.0          |  |
| LnGrp LOS                 | В        | D    | А                  | D    | С    | С    | С            | С    | В    | С    | С    |              |  |
| Approach Vol, veh/h       |          | 1615 |                    |      | 870  |      |              | 315  |      |      | 103  | А            |  |
| Approach Delay, s/veh     |          | 32.4 |                    |      | 30.3 |      |              | 20.2 |      |      | 21.8 |              |  |
| Approach LOS              |          | С    |                    |      | С    |      |              | С    |      |      | С    |              |  |
| Timer - Assigned Phs      | 1        | 2    | 3                  | 4    | 5    | 6    | 7            | 8    |      |      |      |              |  |
| Phs Duration (G+Y+Rc)     | . s9.3   | 37.8 | 9.5                | 23.3 | 9.6  | 37.5 | 8.8          | 24.1 |      |      |      |              |  |
| Change Period (Y+Rc).     | s 4.5    | 4.5  | 4.5                | 4.5  | 4.5  | 4.5  | 4.5          | 4.5  |      |      |      |              |  |
| Max Green Setting (Gr     | ax5.6    | 33.5 | 5.0                | 18.5 | 6.9  | 31.6 | 5.0          | 18.5 |      |      |      |              |  |
| Max Q Clear Time (g c     | + 14.6s  | 32.7 | 5.8                | 2.5  | 5.5  | 15.8 | 4.9          | 8.1  |      |      |      |              |  |
| Green Ext Time (p_c)      | s 0.0    | 0.6  | 0.0                | 0.0  | 0.0  | 3.5  | 0.0          | 0.5  |      |      |      |              |  |
| Intersection Summary      | 5.0      |      | 5.0                |      |      | 5.0  | 5.0          | 3.0  |      |      |      |              |  |
| HCM 6th Ctrl Delay        |          |      | 30.1               |      |      |      |              |      |      |      |      |              |  |
| HCM 6th LOS               |          |      | 50.1<br>C          |      |      |      |              |      |      |      |      |              |  |
|                           |          |      | U                  |      |      |      |              |      |      |      |      |              |  |

#### Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

## HCM 6th Signalized Intersection Summary 40: CR 11.5 & SH 66

03/12/2020

| ł                         | ٠             | -+   | 7    | •    |      | *    | 1    | Ť    | 1    | 1    | ŧ    | 4    |  |
|---------------------------|---------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Movement                  | EBL           | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 1             | **   | 1    | 1    | **   | 1    | 57   | Þ    |      | 1    | Þ    |      |  |
| Traffic Volume (veh/h)    | 30            | 1050 | 375  | 280  | 540  | 30   | 210  | 10   | 185  | 60   | 10   | 50   |  |
| Future Volume (veh/h)     | 30            | 1050 | 375  | 280  | 540  | 30   | 210  | 10   | 185  | 60   | 10   | 50   |  |
| Initial Q (Qb), veh       | 0             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00          |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |  |
| Parking Bus, Adj          | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach     | I             | No   |      |      | No   |      |      | No   |      |      | No   |      |  |
| Adj Sat Flow, veh/h/ln 1  | 1870          | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate, veh/h      | 33            | 1141 | 408  | 304  | 587  | 33   | 228  | 11   | 201  | 65   | 11   | 54   |  |
| Peak Hour Factor          | 0.92          | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 2             | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Cap, veh/h                | 241           | 1253 | 559  | 352  | 1618 | 722  | 894  | 19   | 341  | 325  | 62   | 304  |  |
| Arrive On Green           | 0.06          | 0.71 | 0.71 | 0.04 | 0.15 | 0.15 | 0.06 | 0.22 | 0.22 | 0.06 | 0.22 | 0.22 |  |
| Sat Flow, veh/h 1         | 1781          | 3554 | 1585 | 1781 | 3554 | 1585 | 3456 | 83   | 1515 | 1781 | 275  | 1352 |  |
| Grp Volume(v), veh/h      | 33            | 1141 | 408  | 304  | 587  | 33   | 228  | 0    | 212  | 65   | 0    | 65   |  |
| Grp Sat Flow(s),veh/h/In1 | 1781          | 1777 | 1585 | 1781 | 1777 | 1585 | 1728 | 0    | 1598 | 1781 | 0    | 1627 |  |
| Q Serve(g_s), s           | 1.0           | 21.2 | 12.5 | 8.5  | 11.9 | 1.0  | 0.0  | 0.0  | 9.5  | 0.0  | 0.0  | 2.6  |  |
| Cycle Q Clear(g_c), s     | 1.0           | 21.2 | 12.5 | 8.5  | 11.9 | 1.0  | 0.0  | 0.0  | 9.5  | 0.0  | 0.0  | 2.6  |  |
| Prop In Lane              | 1.00          |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.95 | 1.00 |      | 0.83 |  |
| Lane Grp Cap(c), veh/h    | 241           | 1253 | 559  | 352  | 1618 | 722  | 894  | 0    | 359  | 325  | 0    | 366  |  |
| V/C Ratio(X)              | 0.14          | 0.91 | 0.73 | 0.86 | 0.36 | 0.05 | 0.25 | 0.00 | 0.59 | 0.20 | 0.00 | 0.18 |  |
| Avail Cap(c_a), veh/h     | 294           | 1253 | 559  | 352  | 1618 | 722  | 896  | 0    | 359  | 326  | 0    | 366  |  |
| HCM Platoon Ratio         | 2.00          | 2.00 | 2.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 0.60          | 0.60 | 0.60 | 0.88 | 0.88 | 0.88 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |  |
| Uniform Delay (d), s/veh  | 19.4          | 10.8 | 9.5  | 35.4 | 23.6 | 8.8  | 24.4 | 0.0  | 27.7 | 29.3 | 0.0  | 25.0 |  |
| Incr Delay (d2), s/veh    | 0.2           | 7.4  | 5.0  | 17.4 | 0.6  | 0.1  | 0.1  | 0.0  | 6.9  | 0.3  | 0.0  | 1.1  |  |
| Initial Q Delay(d3),s/veh | 0.0           | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/    | In0.4         | 4.4  | 3.2  | 7.4  | 5.1  | 0.5  | 1./  | 0.0  | 4.2  | 1.1  | 0.0  | 1.1  |  |
| Unsig. Movement Delay,    | s/veh         | 40.0 |      | 50.0 | 04.4 | 0.0  | 045  | 0.0  | 04.0 | 00.0 | 0.0  | 00.4 |  |
| LnGrp Delay(d),s/ven      | 19.5          | 18.2 | 14.5 | 52.8 | 24.1 | 8.9  | 24.5 | 0.0  | 34.0 | 29.6 | 0.0  | 26.1 |  |
|                           | В             | 4500 | В    | U    | 0    | A    | U    | A    | U    | U    | A    | U    |  |
| Approach Vol, ven/h       |               | 1582 |      |      | 924  |      |      | 440  |      |      | 130  |      |  |
| Approach Delay, s/ven     |               | 17.3 |      |      | 33.0 |      |      | 29.4 |      |      | 27.8 |      |  |
| Approach LOS              |               | В    |      |      | C    |      |      | C    |      |      | C    |      |  |
| Timer - Assigned Phs      | 1             | 2    | 3    | 4    | 5    | 6    | 7    | 8    |      |      |      |      |  |
| Phs Duration (G+Y+Rc),    | <b>\$</b> 5.3 | 32.7 | 9.5  | 22.5 | 7.1  | 40.9 | 9.5  | 22.5 |      |      |      |      |  |
| Change Period (Y+Rc), s   | \$ 4.5        | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |      |      |  |
| Max Green Setting (Gma    | 1k0,.8        | 28.2 | 5.0  | 18.0 | 5.0  | 34.0 | 5.0  | 18.0 |      |      |      |      |  |
| Max Q Clear Time (g_c+    | 1110),5s      | 23.2 | 2.0  | 4.6  | 3.0  | 13.9 | 2.0  | 11.5 |      |      |      |      |  |
| Green Ext Time (p_c), s   | 0.0           | 3.4  | 0.2  | 0.2  | 0.0  | 3.4  | 0.0  | 0.6  |      |      |      |      |  |
| Intersection Summary      |               |      |      |      |      |      |      |      |      |      |      |      |  |
| HCM 6th Ctrl Delay        |               |      | 24.2 |      |      |      |      |      |      |      |      |      |  |
| HCM 6th LOS               |               |      | С    |      |      |      |      |      |      |      |      |      |  |

### HCM 6th Signalized Intersection Summary 41: CR 13 & SH 66

03/12/2020

|                           | ٠                        | -+       | 7    | 1    | -        | *    | 1    | Ť        | 1    | 1    | ŧ        | ~    |  |
|---------------------------|--------------------------|----------|------|------|----------|------|------|----------|------|------|----------|------|--|
| Movement                  | EBL                      | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
| Lane Configurations       | 5                        | <b>^</b> | 1    | 5    | <b>^</b> | 1    | 5    | <b>^</b> | 1    | 5    | <b>^</b> | 1    |  |
| Traffic Volume (veh/h)    | 130                      | 950      | 215  | 90   | 685      | 25   | 140  | 325      | 120  | 20   | 210      | 25   |  |
| Future Volume (veh/h)     | 130                      | 950      | 215  | 90   | 685      | 25   | 140  | 325      | 120  | 20   | 210      | 25   |  |
| Initial Q (Qb), veh       | 0                        | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00                     |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Parking Bus, Adj          | 1.00                     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Work Zone On Approac      | ch                       | No       |      |      | No       |      |      | No       |      |      | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1870                     | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 |  |
| Adj Flow Rate, veh/h      | 141                      | 1033     | 234  | 98   | 745      | 27   | 152  | 353      | 130  | 22   | 228      | 27   |  |
| Peak Hour Factor          | 0.92                     | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 |  |
| Percent Heavy Veh, %      | 2                        | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    |  |
| Cap, veh/h                | 252                      | 1174     | 524  | 315  | 1270     | 567  | 254  | 509      | 227  | 178  | 351      | 156  |  |
| Arrive On Green           | 0.16                     | 0.66     | 0.66 | 0.11 | 0.36     | 0.36 | 0.07 | 0.14     | 0.14 | 0.02 | 0.10     | 0.10 |  |
| Sat Flow, veh/h           | 1781                     | 3554     | 1585 | 1781 | 3554     | 1585 | 1781 | 3554     | 1585 | 1781 | 3554     | 1585 |  |
| Grp Volume(v), veh/h      | 141                      | 1033     | 234  | 98   | 745      | 27   | 152  | 353      | 130  | 22   | 228      | 27   |  |
| Grp Sat Flow(s),veh/h/li  | n1781                    | 1777     | 1585 | 1781 | 1777     | 1585 | 1781 | 1777     | 1585 | 1781 | 1777     | 1585 |  |
| Q Serve(g_s), s           | 4.8                      | 18.8     | 2.7  | 0.0  | 13.6     | 0.9  | 5.5  | 7.6      | 3.3  | 0.9  | 4.9      | 1.2  |  |
| Cycle Q Clear(g_c), s     | 4.8                      | 18.8     | 2.7  | 0.0  | 13.6     | 0.9  | 5.5  | 7.6      | 3.3  | 0.9  | 4.9      | 1.2  |  |
| Prop In Lane              | 1.00                     |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 252                      | 1174     | 524  | 315  | 1270     | 567  | 254  | 509      | 227  | 178  | 351      | 156  |  |
| V/C Ratio(X)              | 0.56                     | 0.88     | 0.45 | 0.31 | 0.59     | 0.05 | 0.60 | 0.69     | 0.57 | 0.12 | 0.65     | 0.17 |  |
| Avail Cap(c_a), veh/h     | 325                      | 1466     | 654  | 315  | 1270     | 567  | 254  | 822      | 367  | 246  | 800      | 357  |  |
| HCM Platoon Ratio         | 2.00                     | 2.00     | 2.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 0.36                     | 0.36     | 0.36 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |  |
| Uniform Delay (d), s/vel  | h 21.0                   | 12.3     | 2.3  | 30.9 | 20.9     | 16.8 | 30.2 | 32.6     | 9.5  | 31.3 | 34.7     | 33.1 |  |
| Incr Delay (d2), s/veh    | 0.7                      | 2.1      | 0.2  | 0.6  | 2.0      | 0.2  | 3.8  | 1.7      | 2.3  | 0.3  | 2.0      | 0.5  |  |
| Initial Q Delay(d3),s/vel | n 0.0                    | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),vel     | n/In1.6                  | 3.7      | 1.5  | 1.6  | 5.2      | 0.3  | 2.8  | 3.3      | 2.3  | 0.4  | 2.1      | 0.5  |  |
| Unsig. Movement Delay     | y, s/veh                 | 1        | 0.5  | 04.4 | 00.0     | 47.0 | 04.0 | 04.0     | 14.0 | 04.0 | 00.0     | 00.0 |  |
| LnGrp Delay(d),s/veh      | 21.7                     | 14.4     | 2.5  | 31.4 | 22.9     | 17.0 | 34.0 | 34.3     | 11.8 | 31.6 | 30.8     | 33.6 |  |
|                           | U                        | 4 4 0 0  | А    | U    | 070      | В    | U    | 0        | В    | U    | 077      | U    |  |
| Approach Vol, veh/h       |                          | 1408     |      |      | 8/0      |      |      | 635      |      |      | 2//      |      |  |
| Approach Delay, s/ven     |                          | 13.1     |      |      | 23.7     |      |      | 29.6     |      |      | 30.0     |      |  |
| Approach LOS              |                          | D        |      |      | U        |      |      | U        |      |      | U        |      |  |
| Timer - Assigned Phs      | 1                        | 2        | 3    | 4    | 5        | 6    | 7    | 8        |      |      |          |      |  |
| Phs Duration (G+Y+Rc)     | ), \$3.2                 | 30.9     | 10.0 | 12.4 | 11.1     | 33.1 | 6.4  | 16.0     |      |      |          |      |  |
| Change Period (Y+Rc),     | s 4.5                    | 4.5      | 4.5  | 4.5  | 4.5      | 4.5  | 4.5  | 4.5      |      |      |          |      |  |
| Max Green Setting (Gr     | 1ax <b>5</b> ,. <b>5</b> | 33.0     | 5.5  | 18.0 | 9.9      | 28.6 | 5.0  | 18.5     |      |      |          |      |  |
| Max Q Clear Time (g_c     | +112),0s                 | 20.8     | 7.5  | 6.9  | 6.8      | 15.6 | 2.9  | 9.6      |      |      |          |      |  |
| Green Ext Time (p_c), s   | s 0.1                    | 5.6      | 0.0  | 1.0  | 0.1      | 3.7  | 0.0  | 1.8      |      |      |          |      |  |
| Intersection Summary      |                          |          |      |      |          |      |      |          |      |      |          |      |  |
| HCM 6th Ctrl Delay        |                          |          | 21.3 |      |          |      |      |          |      |      |          |      |  |
| HCM 6th LOS               |                          |          | С    |      |          |      |      |          |      |      |          |      |  |

| 03/12 | /2020 |
|-------|-------|
|-------|-------|

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •             | -    | +    | *           | 1    | 1    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------|-------------|------|------|
| Movement E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EBL           | EBT  | WBT  | WBR         | SBL  | SBR  |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3             | **   | **   | 1           | 5    | 1    |
| Traffic Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190           | 900  | 745  | 15          | 15   | 55   |
| Future Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190           | 900  | 745  | 15          | 15   | 55   |
| Initial O (Ob) veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 000  | 0    | 0           | 0    | 0    |
| Ped-Rike Adi( $\Delta$ nhT) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | v    | Ū    | 1 00        | 1 00 | 1 00 |
| Parking Rus Adi 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00          | 1.00 | 1 00 | 0 00        | 1.00 | 1.00 |
| Work Zone On Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00          | No   | No   | 0.50        | No   | 1.00 |
| Adi Sat Elow, yoh/h/lp. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000           | 1750 | 1727 | 1010        | 1707 | 1000 |
| Adj Elow Poto veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200           | 070  | 040  | 1210        | 101  | 1900 |
| Auj Flow Rale, ven/n 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 207           | 9/0  | 010  | 0 00        | 0 00 | 00   |
| Peak Hour Factor U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J.9Z          | 0.92 | 0.92 | 0.92        | 0.92 | 0.92 |
| Percent Heavy Veh, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0             | 10   | 11   | 46          | 13   | 0    |
| Cap, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 533           | 2084 | 1280 | 360         | 217  | 215  |
| Arrive On Green 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ).12          | 0.63 | 0.39 | 0.39        | 0.13 | 0.13 |
| Sat Flow, veh/h 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810           | 3416 | 3387 | 929         | 1626 | 1610 |
| Grp Volume(v), veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 207           | 978  | 810  | 16          | 16   | 60   |
| Grp Sat Flow(s).veh/h/ln18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 810           | 1664 | 1650 | 929         | 1626 | 1610 |
| Q Serve(q s), s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1           | 5.8  | 7.5  | 0.4         | 0.3  | 1.3  |
| Cycle Q Clear(a c), s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1           | 5.8  | 7.5  | 0.4         | 0.3  | 1.3  |
| Prop In Lane 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00          | 0.0  |      | 1.00        | 1.00 | 1.00 |
| Lane Grn Can(c) veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 533           | 2084 | 1280 | 360         | 217  | 215  |
| V/C Ratio(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300           | 0/17 | 0.63 | 0.04        | 0.07 | 0.28 |
| $\frac{1}{2} \frac{1}{2} \frac{1}$ | 0.09          | 1100 | 2005 | 0.04<br>Q07 | 0.07 | 0.20 |
| HCM Diston Datio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JZ4           | 4400 | 1 00 | 1.00        | 1 00 | 320  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00          | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 |
| Upstream Flitter(I) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00          | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 |
| Uniform Delay (d), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.8           | 3.1  | 9.3  | 1.1         | 14.2 | 14.6 |
| Incr Delay (d2), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5           | 0.2  | 0.5  | 0.1         | 0.1  | 0.7  |
| Initial Q Delay(d3),s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0           | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/lr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n0.2          | 0.0  | 1.4  | 0.0         | 0.1  | 0.0  |
| Unsig. Movement Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s/veh         |      |      |             |      |      |
| LnGrp Delay(d),s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3           | 3.9  | 9.8  | 7.2         | 14.3 | 15.3 |
| LnGrp LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | А             | А    | А    | А           | В    | В    |
| Approach Vol. veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 1185 | 826  |             | 76   |      |
| Approach Delay s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 43   | 9.8  |             | 15.1 |      |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Δ    | A    |             | R    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | A    |      |             |      |      |
| Timer - Assigned Phs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 2    |      | 4           | 5    | 6    |
| Phs Duration (G+Y+Rc), s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S             | 27.9 |      | 9.5         | 8.9  | 19.0 |
| Change Period (Y+Rc), s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 4.5  |      | 4.5         | 4.5  | 4.5  |
| Max Green Setting (Gmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x), s         | 49.5 |      | 21.5        | 12.5 | 32.5 |
| Max Q Clear Time (g c+l1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1). s         | 7.8  |      | 3.3         | 4.1  | 9.5  |
| Green Ext Time (n_c) s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ,, <b>C</b> | 7 1  |      | 0.2         | 0.3  | 5.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |      |      | 0.2         | 0.0  | 0.1  |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |      |      |             |      |      |
| HCM 6th Ctrl Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | 6.9  |             |      |      |
| HCM 6th LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      | А    |             |      |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |      |      |             |      |      |

#### Notes

User approved pedestrian interval to be less than phase max green.

| 03/12 | /2020 |
|-------|-------|
|-------|-------|

|                           |                | 7    | 1    | -          | 1    | 1        |
|---------------------------|----------------|------|------|------------|------|----------|
| Movement                  | EBT            | EBR  | WBL  | WBT        | NBL  | NBR      |
| Lane Configurations       | **             | 1    | 5    | **         | 5    | 1        |
| Traffic Volume (veh/h)    | 825            | 90   | 5    | 700        | 60   | 5        |
| Future Volume (veh/h)     | 825            | 90   | 5    | 700        | 60   | 5        |
| Initial Q (Qb), veh       | 0              | 0    | 0    | 0          | 0    | 0        |
| Ped-Bike Adi(A pbT)       |                | 1.00 | 1.00 |            | 1.00 | 1.00     |
| Parking Bus, Adi          | 1.00           | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     |
| Work Zone On Approach     | h No           |      |      | No         | No   |          |
| Adj Sat Flow, veh/h/ln    | 1752           | 1900 | 1900 | 1693       | 1900 | 1900     |
| Adj Flow Rate, veh/h      | 897            | 98   | 5    | 761        | 65   | 5        |
| Peak Hour Factor          | 0.92           | 0.92 | 0.92 | 0.92       | 0.92 | 0.92     |
| Percent Heavy Veh. %      | 10             | 0    | 0    | 14         | 0    | 0        |
| Cap. veh/h                | 1268           | 614  | 212  | 1515       | 655  | 583      |
| Arrive On Green           | 0.38           | 0.38 | 0.01 | 0.47       | 0.36 | 0.36     |
| Sat Flow, veh/h           | 3416           | 1610 | 1810 | 3300       | 1810 | 1610     |
| Grn Volume(v) veh/h       | 807            | 08   | 5    | 761        | 65   | 5        |
| Grp Sat Flow(c) yob/b/lp  | 1664           | 1610 | 1810 | 1609       | 1810 | 1610     |
|                           | 12 2           | 2010 | 0.0  | 000<br>Q Q | 1010 | 010      |
| $Q$ Serve( $Q_S$ ), S     | 12.3           | 2.2  | 0.0  | 0.0<br>0.0 | 1.3  | 0.1      |
| Drop In Long              | 12.3           | 2.Z  | 1.00 | 0.0        | 1.0  | 1.00     |
| FIUP III Laile            | 1060           | 614  | 1.00 | 1515       | 1.00 | 1.00     |
| Larie Grp Cap(c), ven/n   | 1200           | 014  | 212  | 1010       | 000  | 0.04     |
|                           | 0.71           | 0.10 | 0.02 | 0.50       | 0.10 | 0.01     |
| Avail Cap(c_a), ven/h     | 2501           | 1210 | 418  | 3073       | 055  | 583      |
| HUM Platoon Ratio         | 1.00           | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     |
| Upstream Filter(I)        | 1.00           | 1.00 | 1.00 | 1.00       | 1.00 | 1.00     |
| Unitorm Delay (d), s/veh  | 14.1           | 11.0 | 20.9 | 9.9        | 11.4 | 11.0     |
| Incr Delay (d2), s/veh    | 0.7            | 0.1  | 0.0  | 0.3        | 0.3  | 0.0      |
| Initial Q Delay(d3),s/veh | 0.0            | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh     | /In3.4         | 0.6  | 0.0  | 2.0        | 0.5  | 0.0      |
| Unsig. Movement Delay     | , s/veh        |      |      |            |      |          |
| LnGrp Delay(d),s/veh      | 14.9           | 11.1 | 21.0 | 10.1       | 11.7 | 11.0     |
| LnGrp LOS                 | B              | B    | С    | B          | B    | В        |
| Approach Vol, veh/h       | 995            |      |      | 766        | 70   |          |
| Approach Delay, s/veh     | 14.5           |      |      | 10.2       | 11.6 |          |
| Approach LOS              | В              |      |      | В          | В    |          |
|                           | A              | 0    |      |            |      | <u>^</u> |
| Timer - Assigned Phs      | 1              | 2    |      |            |      | 6        |
| Phs Duration (G+Y+Rc)     | , s4.9         | 25.0 |      |            |      | 29.9     |
| Change Period (Y+Rc),     | s 4.5          | 4.5  |      |            |      | 4.5      |
| Max Green Setting (Gma    | ax∳,. <b>5</b> | 40.5 |      |            |      | 51.5     |
| Max Q Clear Time (g_c+    | ⊦l12),0s       | 14.3 |      |            |      | 10.8     |
| Green Ext Time (p_c), s   | 0.0            | 6.2  |      |            |      | 5.1      |
| Intersection Summary      |                |      |      |            |      |          |
| HCM 6th Ctrl Delav        |                |      | 12.6 |            |      |          |
| HCM 6th LOS               |                |      | В    |            |      |          |

|                           | ٨       | -    | 7    | 1    | +-   | •    | 1    | t    | ۲    | 4    | ţ    | 4    |
|---------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|
| Movement                  | EBL     | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       | 7       | **   | 1    | 3    | **   | 1    | 1    | 1.   |      | 1    | 1.   |      |
| Traffic Volume (veh/h)    | 20      | 755  | 55   | 65   | 635  | 5    | 60   | 65   | 75   | 5    | 30   | 10   |
| Future Volume (veh/h)     | 20      | 755  | 55   | 65   | 635  | 5    | 60   | 65   | 75   | 5    | 30   | 10   |
| Initial Q (Qb), veh       | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00    |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj          | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach     | h       | No   |      |      | No   |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln    | 1900    | 1752 | 1500 | 1841 | 1722 | 1900 | 1500 | 1811 | 1811 | 1900 | 1559 | 1559 |
| Adj Flow Rate, veh/h      | 22      | 821  | 60   | 71   | 690  | 5    | 65   | 71   | 82   | 5    | 33   | 11   |
| Peak Hour Factor          | 0.92    | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, %      | 0       | 10   | 27   | 4    | 12   | 0    | 27   | 6    | 6    | 0    | 23   | 23   |
| Cap, veh/h                | 397     | 1235 | 472  | 374  | 1340 | 659  | 335  | 126  | 145  | 268  | 122  | 41   |
| Arrive On Green           | 0.03    | 0.37 | 0.37 | 0.06 | 0.41 | 0.41 | 0.06 | 0.16 | 0.16 | 0.01 | 0.11 | 0.11 |
| Sat Flow, veh/h           | 1810    | 3328 | 1271 | 1753 | 3272 | 1610 | 1428 | 766  | 885  | 1810 | 1119 | 373  |
| Grp Volume(v), veh/h      | 22      | 821  | 60   | 71   | 690  | 5    | 65   | 0    | 153  | 5    | 0    | 44   |
| Grp Sat Flow(s),veh/h/ln  | 1810    | 1664 | 1271 | 1753 | 1636 | 1610 | 1428 | 0    | 1652 | 1810 | 0    | 1492 |
| Q Serve(g_s), s           | 0.3     | 9.4  | 1.4  | 1.1  | 7.2  | 0.1  | 1.8  | 0.0  | 3.9  | 0.1  | 0.0  | 1.2  |
| Cycle Q Clear(g_c), s     | 0.3     | 9.4  | 1.4  | 1.1  | 7.2  | 0.1  | 1.8  | 0.0  | 3.9  | 0.1  | 0.0  | 1.2  |
| Prop In Lane              | 1.00    |      | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 0.54 | 1.00 |      | 0.25 |
| Lane Grp Cap(c), veh/h    | 397     | 1235 | 472  | 374  | 1340 | 659  | 335  | 0    | 271  | 268  | 0    | 163  |
| V/C Ratio(X)              | 0.06    | 0.66 | 0.13 | 0.19 | 0.52 | 0.01 | 0.19 | 0.00 | 0.57 | 0.02 | 0.00 | 0.27 |
| Avail Cap(c_a), veh/h     | 566     | 2872 | 1097 | 509  | 2895 | 1425 | 481  | 0    | 740  | 473  | 0    | 603  |
| HCM Platoon Ratio         | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)        | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh  | 8.7     | 12.0 | 9.5  | 8.7  | 10.1 | 8.0  | 16.5 | 0.0  | 17.6 | 18.0 | 0.0  | 18.7 |
| Incr Delay (d2), s/veh    | 0.1     | 0.6  | 0.1  | 0.2  | 0.3  | 0.0  | 0.3  | 0.0  | 1.8  | 0.0  | 0.0  | 0.9  |
| Initial Q Delay(d3),s/veh | 0.0     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh     | /In0.1  | 2.3  | 0.3  | 0.3  | 1.6  | 0.0  | 0.5  | 0.0  | 1.3  | 0.0  | 0.0  | 0.4  |
| Unsig. Movement Delay     | , s/veh | 1    |      |      |      |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh      | 8.8     | 12.6 | 9.6  | 8.9  | 10.4 | 8.0  | 16.8 | 0.0  | 19.5 | 18.0 | 0.0  | 19.6 |
| LnGrp LOS                 | A       | В    | Α    | Α    | В    | A    | В    | A    | В    | В    | A    | В    |
| Approach Vol, veh/h       |         | 903  |      |      | 766  |      |      | 218  |      |      | 49   |      |
| Approach Delay, s/veh     |         | 12.3 |      |      | 10.3 |      |      | 18.7 |      |      | 19.4 |      |
| Approach LOS              |         | В    |      |      | В    |      |      | В    |      |      | В    |      |
| Timer - Assigned Phs      | 1       | 2    | 3    | 4    | 5    | 6    | 7    | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc).    | , s7.5  | 21.5 | 7.3  | 9.5  | 5.7  | 23.2 | 4.8  | 12.0 |      |      |      |      |
| Change Period (Y+Rc).     | s 4.5   | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |      |      |      |      |
| Max Green Setting (Gma    | ax6,.5  | 39.5 | 7.5  | 18.5 | 5.5  | 40.5 | 5.5  | 20.5 |      |      |      |      |
| Max Q Clear Time (g c+    | -113,15 | 11.4 | 3.8  | 3.2  | 2.3  | 9.2  | 2.1  | 5.9  |      |      |      |      |
| Green Ext Time (p c), s   | 0.0     | 5.6  | 0.0  | 0.1  | 0.0  | 4.4  | 0.0  | 0.6  |      |      |      |      |
|                           |         |      |      |      |      |      |      |      |      |      |      |      |
|                           |         |      | 10.4 |      |      |      |      |      |      |      |      |      |
| HUIVI bin Utri Delay      |         |      | 12.4 |      |      |      |      |      |      |      |      |      |

HCM 6th LOS

PM Peak

В