Yeh and Associates, Inc.
Consulting Engineers \& Scientists

DRAFT
 INTERIM GEOTECHNICAL DATA REPORT

CDOT I-70 TWIN TUNNELS WIDENING PROJECT
 IDAHO SPRINGS, COLORADO

PROJECT NO. 211-231
April 27, 2012

Prepared For:

Parsons Corporation
Attn: Ralph Trapani P.E.
1700 Broadway, Suite 900
Denver, Colorado 80290

Prepared By:

Yeh and Associates, Inc.
5700 East Evans Avenue
Denver, Colorado 80222
Phone: 303-781-9590
Fax: 303-781-9583

TABLE OF CONTENTS

PAGE

INTRODUCTION 1
Purpose and Scope 2
Survey Control 4
Report Organization 4
Report Limitations 4
BACKGROUND INFORMATION 4
General 4
Other investigations 6
Regional Geologic Setting 7
Local Geology 10
FIELD INVESTIGATIONS 18
Tunnel Coring 18
Tunnel Liner Observations 20
Mapping 21
Structural Mapping 21
Borehole Televiewing 25
Rock Mass Classification 26
Groundwater Conditions 27
LABORATORY TESTING 27
REFERENCES 31

TABLE OF FIGURES

Figure 1. Tunnel Location Map. 1
Figure 2. Layout of Boreholes in Eastbound I-70 Twin Tunnel 3
Figure 3. Regional Geology of the Site Area 9
Figure 4. Zone of Porphyritic Rock above West Portals. 11
Figure 5. Zone of Poor Quality Rock above the West Portal of the EB Bore. 11
Figure 6. Zone of Porphyry above West Portal. 12
Figure 7. Bostonite Porphyry with Pyrite. 12
Figure 8. Rockfall Source Area and Rockfall at the West Portals. 15

LIST OF TABLES

Table 1. Summary of Approximate Boring Orientations and Locations Measured from PortalFace.18
Table 2. Hole Collar Survey Coordinates. 19
Table 3. Average Foliation Measurements from Dips Program 22
Table 4. Average Joint/Fracture Measurements from Dips Program 24
Table 5. RQD and Recovery Values of Rock Core from Tunnel. 26
Table 6. RMR Ratings for the Tunnel Rock Core. 26
Table 7. Q Ratings for the Tunnel Rock Core 27
Table 8. Summary of Laboratory Rock Testing Results Performed by Advanced Terra Testing.29

APPENDICES

Appendix A Drawings
Appendix B Tunnel Investigation Photographs
Appendix C Boring Logs
Appendix D Tunnel Core Photographs
Appendix E Historical Tunnel Data
Appendix F Structural Mapping Data
Appendix G Borehole Televiewer Data
Appendix H Laboratory Testing Report

INTRODUCTION

This report presents geotechnical data for the proposed widening of the eastbound Twin
Tunnels on Interstate Highway I-70 east of Idaho Springs. The location of the tunnel is shown in
Figure 1.

Figure 1. Tunnel Location Map.

Purpose and Scope

The scope of the investigation was to determine the geotechnical conditions impacting the design and construction related to the widening of the eastbound bore of the Twin Tunnels. Currently the approach is to widen the two-lane eastbound (EB) bore to accommodate an additional lane and provide room for two, four and eight feet shoulders respectively plus barriers on each side of the tunnel for a total finished internal width of about 51 feet.

The scope of this evaluation included the following tasks:

- Conduct a preliminary field investigation to characterize the rock mass. The Investigation included:
- Structural mapping.
- Drilling 6 borings within the tunnel. Drilling inside the tunnel was performed to characterize three tunnel cross sections, each with two core borings into the existing rock mass surrounding the EB tunnel (see Figure 2).
- Borehole televiewing of the interior of each hole.
- Perform laboratory testing on rock samples obtained during the investigation to determine the engineering characteristics of the rock.
- Prepare this Geotechnical Data Report that summarizes the field and laboratory data.

Draft Interim Tunnel Geotechnical Data Report
Eastbound Twin Tunnel

Figure 2. Layout of Boreholes in Eastbound I-70 Twin Tunnel (Not To Scale).

Survey Control

Survey control was based on interpretation of existing topographic maps. Boring locations were surveyed by Woolpert Inc.

Report Organization

This report includes background information, a summary of the field investigation, with a discussion of the rock core borings, structural geologic mapping and groundwater conditions and a summary of the laboratory testing program. Detailed information and supporting documents are provided in Appendices A through H.

Report Limitations

The data submitted in this report were obtained as part of an initial tunnel investigation that was performed as a means of obtaining data in advance of conceptual tunnel design. The data are based on exploratory borings, laboratory testing, field mapping and reconnaissance included in our investigation in addition to appropriate historical data obtained from CDOT archives.

It has been anticipated from the outset of the preliminary investigation that additional supplemental data would be obtained during the design phase of the Twin Tunnels Widening project.

BACKGROUND INFORMATION

General

Located at approximately milepost 242 on Interstate Highway I-70, the Twin Tunnels were constructed in 1961 to replace the existing US Highway 40 that paralleled Clear Creek. Tunnels allowed the Interstate Highway System to pass through the large rock outcrop that the previous highway had curved around. Travelling east from Idaho Springs, US 40 followed along the north bank of Clear Creek proceeding southeast, around the outcrop. At the southern point of the outcrop, US 40 crossed Clear Creek on the Dog House Rail Bridge and continued to the east on the south bank of the creek on the current alignment of County Road 314 toward Denver. Southwest of the bridge, the Colorado Division of Wildlife operated a game check, and parking lanes were added south of the highway.

With the completion of the Interstate, the original US 40 alignment around the outcrop was abandoned, and the segment along the south bank of Clear Creek passed to county ownership and maintenance. The original highway pavement was left intact, but a guardrail was placed preventing motorists on I-70 from turning onto US 40 at the west end of the tunnels.

The tunnel alignment is driven through an outcrop of felsic gneiss, with localized mineralization, as further described in the geology section of this report. Previous site usage is unclear, but there appeared to be evidence of mining on the slope above and south of the west portal. Site drainage is in the form of channelized flow, following existing drainages and game trails. Vegetation across the site ranged from evergreen trees to natural grass and shrubs. Other site features included a high-tension power line approximately 300 feet south of the tunnels, a related tower south of the tunnels, and a deep slot canyon and draped mesh north of I-70 near the east portal. The slot canyon is not vegetated, and drains the plateau north of the rock outcrop. The draped mesh is approximately 200 feet east of the east portal and serves to prevent debris from falling onto the highway from the rock cut on the north side of I-70.

The Idaho Springs Twin Tunnels are approximately 690 to 740 feet long and 32 feet wide, allowing for two travel lanes in each direction. Concrete portals, with electrical utility panels, are present on both ends of the tunnel. A single array of lighting fixtures extends the length of both tunnels, mounted to the exterior of the concrete liner. Rock bolts are present in the outcrop at the east portal, to prevent rockfall/rockslide that may result due to the foliation plane of the rock outcrop that is steeply dipping toward I-70. A small rock fall fence is present at the west portal and has required repair and replacement from normal service.

Both tunnels have an underdrain system that discharges to an open bottomed concrete culvert outside of the east portal. The underdrain system in the tunnel was originally constructed with steel pipe and concrete cleanout boxes with manhole covers. Drains are present in the north lanes of both tunnels and were intended to drain only the rock. No inlets are present in either tunnel. The steel pipe outlets observed draining into the concrete culvert appeared to be severely corroded. The cleanouts were inspected in the south tunnel. At least two of the manhole covers had corroded and disintegrated and the cleanout boxes were visible below the roadway. Only one cover could be opened allowing further inspection of the cleanout box.

Other covers were either buried under asphalt pavement or roadway tracked sediment. Water flowing through the pipes and box was clear and did not appear to be transporting sediment at the time of investigation. At least 5 inches of deep orange colored sediment was observed in the bottom of the box, which could be easily disturbed by increased flow.

The culvert drains both the tunnels and a deep slot canyon to the north. Debris flows and rock fall are common down this canyon and deposits of both were present in the culvert.

Other investigations

Copies of historical tunnel-related documents can be found in Appendix E, Historical Tunnel Data. The information comes from the CDOT Geotechnical office archives. Some archive documents are difficult to read and have been transcribed. Not all documents are dated, but it is estimated that the original investigation and construction was performed from the late nineteen fifties to the early nineteen sixties.

An initial geologic reconnaissance of the tunnel area was performed by Colorado Department of Highways (CDOH) between August and October of 1958. The pilot bore was completed the summer of 1959, and the following December it was geologically mapped by CDOH. As described in the 1958 map, the "mica schist and gneiss bedrock exhibits a distinct stratification dipping 30 to 45 degrees to the north, with joint planes intersecting this at right angles." Bedrock was observed to be "quite sound" except for the west portal where faulting has resulted in "highly fractured, folded rock that exhibits fault gouge, ground to a clayey mass."

A geologic map, complete with plan and cross section, was developed circa 1960, after investigation of the outcrop and surrounding area. The entire bedrock outcrop was mapped as quartz-monzonite gneiss transected by a single large mineralized vein. A high tension tower shown at the top of this vein is still present and is a reliable reference point. The vein was mapped as dipping toward the tunnel alignment at 70 degrees from horizontal, but it was not mapped in its entirety. There was a large talus slope shown covering the entire west portal area and part of the slope above. Some pegmatites were mapped above the talus slope.

An undated map of the pilot bore indicated the presence of flowing water and faults in the rock. The pilot bore followed centerline of the north tunnel and was destroyed when the tunnel was
further excavated. The map indicated that approximately 100 feet east from the west portal water seepage from the roof was estimated at "1 to 2 gallons per minute." Further east into the tunnel water was noted coming out of the base of the north wall at 1 gallon per minute. The documents indicated the water flowing out of the tunnel contained very little acidity or presence of sulfates as tested by CDOH.

There are eight photographs of the tunnel construction in all, showing the north tunnel and pilot bore looking east, the east portal prior to the concrete facing and six views of the south tunnel. Photographs taken inside both tunnels show steel sets with extensive wood blocking between steel and rock. The floor of the tunnel shows damp areas.

Regional Geologic Setting

A wide range of geologic conditions are represented and exposed along the I-70 corridor due to the large period of time represented in the multiple rock formations. The geologic time reflected along the corridor ranges from recent river, debris and mudflow deposits to Precambrian rocks between 1 and 2 billion years old. The Precambrian age metamorphic and igneous rocks are intruded by Precambrian, Tertiary and Cretaceous age stocks and numerous porphyritic dikes. The regional rock types of most relevance to the tunnel are feldspar gneiss (Xf) and interlayered feldspar and hornblende gneiss (Xfh) identified in Figure 3. The most common porphyries range in composition from quartz monzonite to Bostonite and Alaskite. The sulfide ore deposits are Late Cretaceous to Tertiary in age and are genetically related to the porphyries. The ore contains deposits of precious metals (gold and silver) and base metals (iron, copper, lead, nickel, and zinc; as well as small quantities of arsenic, cadmium and manganese).

The tunnel project is located along the eastern fringe of historic metal mining activity known as the Idaho Springs Mining District. The area is one of the many mining districts within the Colorado Mineral Belt, a zone of highly mineralized rock that trends northeast-southwest across the mountainous regions of Colorado. This zone extends from the La Plata Mountains west of Durango to the north end of Boulder County near Denver. The Idaho Springs-Ralston Shear Zone (IRSZ) is a local expression within the Colorado Mineral Belt. The IRSZ is a northeast trending zone of cataclastic and ductile deformation in the Front Range. The shear zone parallels the axial plane of folds that occur to the southeast of the zone and within the project limits.

Most of the present configuration of the area is characterized by moderately rugged topographic relief. The mountains to the south and north are deeply incised by Clear Creek Canyon and its tributaries. The maximum local relief is about 3000 feet. The elevation in the project area ranges from slightly over 7200 feet along Clear Creek to more than 10,000 feet at Santa Fe Mountain to the south. Slopes are typically steep, averaging approximately 35 degrees in Clear Creek Canyon. Topographic forms are generally influenced by minor faulting, fractures, and zones of weakness in rock. In addition, rain, snowmelt. freeze-thaw, wind and the Clear Creek have created deposits of alluvium (stream deposits), talus (rockfall deposits) and alluvial fans (debris flow deposits).

Figure 3. Regional Geology of the Site Area (excerpt from USGS Squaw Pass Quadrangle).

LOCAL GEOLOGY

Bedrock

Bedrock is generally well exposed. Outcrops are most abundant on ridges and the sparsely vegetated south facing slopes. Bedrock in the project area consists primarily of metamorphic Precambrian aged quartz-feldspar gneiss, biotite gneiss, amphibolite and migmatite. The metamorphic rock is well foliated and trends at a regional strike of about 105 degrees (azimuthal bearing with respect to North) with a dip ranging from 35 to 65 degrees to the northeast. Locally, variations in the orientation in the rock structure are attributed to the numerous folds and minor faults along the corridor. Igneous intrusions of pink granite and pegmatite also reshaped the rock distribution and occur at various locations along the corridor.

In the vicinity of the Twin Tunnels, bedrock is composed of felsic gneiss, biotite gneiss, and hornblende gneiss (see sheet A-1 in Appendix A). Felsic gneiss is fine- to medium-grained light gray, tan, or pink and contains quartz, oligoclase, microcline, and colorless biotite. These units are interlayered on a scale ranging from about an inch to 30 feet or more.

According to the original mapping conducted for the north (westbound) tunnel pilot bore for the Twin Tunnels (CDOH, 1959); the rock encountered within the first 200 feet of tunnel from the east consisted of weathered schist to schistose gneiss. The strike of the foliation is 065 degrees with a dip ranging from 60 to 70 degrees to the north. Two fault zones were encountered in this area, one with a strike of 100 degrees and the other with a strike of 145 degrees. The remaining 500 feet of rock to the east was composed of gneiss to schistose gneiss with a foliation strike of approximately 075 degrees and a dip ranging from 31 to 61 degrees to the north.

Mineralized Rock

Small plutons of porphyritic rock are numerous in the mining district. The area is generally zoned with a large area of gold bearing pyrite-quartz veins in the interior, an intermediate zone of pyrite-quartz veins bearing copper, lead and zinc, minerals, and a peripheral one containing galena-sphalerite-quartz-carbonate veins (Sims, 1988). The veins are typically fault-filled fissures that strike northeast to east and dip north to northwest at medium angles. The principal vein minerals are pyrite, sphalerite, galena, chalcopyrite, arsenopyrite, tennanite, quartz and local carbonate minerals.

One of the "faults" identified during the original Twin Tunnels construction is exposed at the surface above the west portals. The original mapping indicate that a zone containing fault gouge, soft seams, platy crushed rock and some veins of pyrite was encountered in the first 100 to 150 feet of the tunnels. Recent mapping above the west portals confirms that a zone of weak mineralized rock is present in the area (Figure 5). The mineralized zone appeared to continue along a plane that appeared to strike northeast and dip to the northwest and was exposed in the area of the power line tower. The zone ranges in thickness from 6 to 12 feet and is comprised of

Figure 4. Zone of Porphyritic Rock above West Portals. Note Yellow Staining on Rock and Retaining Wall.

Figure 5. Zone of Poor Quality Rock above the West Portal of the EB Bore.
fractured, altered and porphyritic rock. Orientation of the seam appears to be consistent with the original pilot bore mapping. The mineralized zone investigated at the west portal appeared to be similar to the Cretaceous age fine grained Bostonite porphyry (Figures 6, 7 and 8) described and mapped west of the site in the 1976 USGS Squaw Pass Geologic map. Minerals that were observed in the samples collected from the altered zone at the site included arsenopyrite, iron pyrite, and biotite. Minerals observed in samples of the gneiss included those found in the altered zone and garnet, magnetite, and hematite. A thin yellow coating was present on the surface of the rocks at the west portal, possibly formed by leaching. A strong sulfur-like odor was noticed when the porphyry was excavated to collect samples. Most other veins observed within the project area are rarely more than a foot wide.

Figure 6. Zone of Porphyry above West Portal.

Figure 7. Bostonite Porphyry with Pyrite.

Mineral Resources

The Idaho Springs district represents a succession of gold deposits extending from Idaho Springs to Central City and Blackhawk in Gilpin County. Total production in this district was estimated to be about $1,800,000$ ounces of gold. The district has an area of about 25 square miles and its principal towns are Central City, Blackhawk, and Idaho Springs. Gold, silver, copper, lead, zinc, and uranium ores occur in the district, but the area is known primarily for its gold and silver production. The ore deposits are found in veins and stockworks and are genetically related to porphyritic intrusive rocks. The district is on the southeast side of the main porphyry belt at a place where the eastern edge of the mineralized part swings from eastnortheast to north.

The Cold Bar Placer mine was an underground placer mine located within the Hidden Valley area. Extensive workings are indicated on the 1884 mining claim map but likely only represent a portion of what was actually mined in the area. During construction of the current Hidden Valley Interchange in 1994, three drifts were encountered in the vicinity of the retaining wall along the south side in the interchange and in the area of the west bridge abutment. Some of these drifts are not indicated on the Cold Bar Placer claim map. Other workings are also evident by the numerous subsidence features that occurred in the area until the mid 1990s when a grouting program was implemented to fill many of the voids.

A strip mine is identified near Milepost 241.8 on the 1976 USGS geologic map of the area (Sheridan and Marsh 1976). Visual evidence of the workings no longer exists today and
appears to have been covered by the Interstate highway, chaining area and the earthen berm located between the highway and Clear Creek.

Intermittent placer mining continues in the district along Clear Creek, primarily in the valley of North Clear Creek and in Russell Gulch, in spite of the fact that nearly all this ground has been worked and reworked several times. As would be expected, present yields are low.

There is no visual evidence that there were any high-grade ore bodies mined within the project area such as glory holes or shallow workings. These are typical features that indicate that some evidence of precious metal deposits such as gold and silver may be present in the area. It is unlikely that these minerals will be encountered during construction of the proposed improvements.

Geologic Hazards

The varied and complex geologic and geomorphic processes have led to the development of several zones of instability and marginal subsurface material. Although a natural process, these features can pose a risk to the public either directly by an encounter with the hazard or indirectly through effect of the hazard on the highway, railway or multi-use trails. Geologic Hazards that may adversely affect the public and/or the proposed improvements in the corridor include but ar eno tlimited to, debris flows, unstable slopes, rockfall, and the potential for mine subsidence.

Unstable Slope Hazard Areas

Existing rock slopes along I-70 through the project area generate rock falls that occasionally impact the interstate. Isolated areas in these road cuts, particularly above the west portals of the existing Twin Tunnels, have generated larger and more problematic rockslides. Some of the slides have been of sufficient size to close portions of I-70 for short periods of time. As a result of one of these failures, a low-capacity fence was damaged between the two portals on the west side of the tunnels (Figure 8). The fence was replaced by a higher capacity rockfall barrier.

The highly fractured metamorphic and igneous rocks along the highway are vulnerable to rock fall along many of the existing cut slopes and natural slopes. Rock fall may occur during construction when new cut slopes adversely affect the boundaries between rock types, weakening the rock, or where they are subject to construction activities such as blasting. The vulnerability of the rock slopes depends on the material strength and the character and
geometric relationships of discontinuities in the rock mass.

The CDOT Rockfall Program has identified and rated 7 unstable slopes along I-70 in the project area with potential for rock fall. One of the sites occurs directly above the west portal of the Twin Tunnels and has received a level of mitigation as described above. Details on the locations and ratings for unstable slopes may be found in the Colorado Rockfall Hazard Rating System performed from 1991 to 1994 and subsequently updated as part of the CDOT Rockfall Management Plan.

Figure 8. Rockfall Source Area and Rockfall at the West Portals.

Debris Flows

A debris flow is a flood that incorporates, transports, and deposits enough solid material (such as rock debris, valley fill, bed load, and/or large woody debris) that the solid material is a major component of the event, drastically increasing the destructive power of the flood and the resulting damage. Infrequent, intense rains fall on the hillside cause flooding. The mountain watersheds can add to the flood waters both inorganic (rocky debris) and organic (woody debris) materials that can increase the destructiveness of the flood on the highway.

Debris flows in the project area occur at relatively infrequent intervals as compared to other locations to the west of the project. There are several debris flow deposits in the local area, with the largest located along the south slope of the Hidden Valley Interchange.

Mine Subsidence

Mine subsidence occurs when a void at depth collapses and causes vertical displacement (settlement) to the surface. Mine subsidence occurs at depth, rather than near the surface, as with collapsing soils. Underground placer mining occurred in the vicinity of the Hidden Valley Interchange in the 1880s, using a drift and pillar technique in which a placer deposit was mined into "chambers." Based on observations of the openings that were uncovered during construction of the interchange, many of these drifts were likely unsupported workings and those that were supported, used timber sets. Because the gravel deposits in the placer do not resist stress well, subsidence typically occurs relatively soon after mining ceases. In addition, in many of the mines, the pillars were removed when mining was completed to encourage collapse of the void space. Over time, the empty void propagates to the surface creating a collapse feature.

A series of subsurface investigations were conducted by the Colorado Department of Highways from 1981 to 1996 evaluating the potential for collapse. Investigation methods used both geophysical and exploratory borings to determine the extent of the workings. Over this time, several opening had propagated to the surface until the mid 1990s when a grouting program was implemented to fill the voids that affect the Interstate roadway platform.

Faults

The project area is considered to be in a seismically-inactive area. There are no known active faults either on or adjacent to the I-70 corridor, so the potential for surface fault rupture is low. A westerly finger of the Floyd Hill Fault passes through the project near Milepost 242.7 and several other minor faults were noted within the extents of the proposed project. All of the faults are believed to have been inactive for at least the last 45 million years. Therefore, seismic hazards at this site are a consequence of ground shaking caused by events on distant, active faults.

Soils

Soils are primarily a product of their parent material, climate, ecological system, slope and time. The varied geologic conditions in the corridor provide source material for the soils from gneiss, granite, to colluvium, alluvium and various glacial deposits. The slope angles vary from near horizontal along the valley bottoms, becoming steep to vertical valley sides on nearly all aspects.

Generalized soils from Idaho Springs to the junction of Highway 6 and I-70 are primarily Resort-Cathedral-Rubble land and Rock outcrop. Cathedral soils typically occur on 30-70 percent slopes and ridges primarily derived from weathered mica schist or granite. Resort soils are typically found on 30-60 percent slopes and ridges primarily derived from weathered mica schist or granite. Rubble land occurs on talus slopes at 30 to 60 percent. The Rock outcrop is found on 30-70 percent slopes and is typically composed of weathered mica schist or granite. All of these soils are severely susceptible to erosion.

Seismicity

The area generally has a low seismic hazard ranking. The Site Class has been selected as B therefore the Site Factor is 1 (modification factor). The seismicity of the local area based on the 2007 AASHTO Bridge Design Guidelines shows a peak ground acceleration (PGA) of 0.068g. Mapped Spectral Acceleration Values, Ss and S1 (period of 0.2 second and 1 second respectively), are presented below. The design ground motion parameters As, SDs, SD1 (design equivalent of PGA, Ss and S1 respectively) are the same as the ground motion parameters. These acceleration data have a 7% probability of exceedance in 75 years (equivalent to a recurrence interval of 1,033 years).

Site Class B

Data are based on a 0.05 deg grid spacing.
Period Sa
(sec) (g)
$0.0 \quad 0.068 \quad$ PGA - Site Class B
$0.2 \quad 0.141$ Ss - Site Class B
$1.0 \quad 0.036 \quad$ S1 - Site Class B

Spectral Response Accelerations As, SDs and SD1

Period (sec)	Sa (g)	
0.0	0.068	As - Site Class B
0.2	0.141	SDs - Site Class B
1.0	0.036	SD1 - Site Class B

FIELD INVESTIGATIONS

The preliminary investigation program included site reconnaissance, site structural mapping, subsurface core drilling, internal borehole visualization, laboratory testing and geologic data interpretation.

Tunnel Coring

A total of six test borings were drilled to lengths of between 19.3 to 60.0 feet from the tunnel liner into the rock (see Figure 2). Of the six borings, three were drilled in the column between the north and south tunnels and 3 were drilled on the south side of the south tunnel. The borings were advanced with a skid-mounted Ingetrol Explorer 75E drilling rig owned and operated by Agapito Associates. Coring of the rock was performed using NX size equipment. Photographs taken in the tunnel during the drilling operation are presented in Appendix B. Approximate field boring locations within the tunnel and the angle of drilling, measured above horizontal, are described in Table 1.

Table 1. Summary of Approximate Boring Orientations and Locations Measured from Portal Face.

Boring	Length (ft)	Angle (above horiz.)	Lane	Location (approx.)
YA-T-01	20.1	0 degrees	Left	75 ft East of West Portal
YA-T-02	48.4	45 degrees	Right	75 ft East of West Portal
YA-T-03	22.9	45 degrees	Right	52 ft East of West Portal
YA-T-04	19.3	0 degrees	Left	350 ft East of West Portal
YA-T-05	20.0	0 degrees	Left	52 ft West of East Portal
YA-T-06	60.0	45 degrees	Right	350 ft East of West Portal

The borings were located in the field by measuring in from the east and west portals of the south tunnel. Distances were measured using a wheel. Setting the drill angle was determined using a Brunton compass or a digital level. Accurate boring locations in the tunnel were later surveyed by Woolpert Inc. Hole collar survey coordinates are provided in Table 2. Engineering geology sheets showing the position, representative orientation and logs of holes bored within the tunnel are shown on sheets A-2 through A-4 in Appendix A.

Table 2. Hole Collar Survey Coordinates.

Boring	\mathbf{N}	\mathbf{E}	ELEV
YA-T-01	696113.585	1006831.090	7391.60
YA-T-02	696084.827	1006836.097	7400.04
YA-T-03	696190.610	1007392.707	7393.92
YA-T-04	696164.341	1007091.385	7388.57
YA-T-05	696221.408	1007389.984	7384.55
YA-T-06	696134.471	1007097.835	7397.28

All borings in the tunnel required drilling and setting anchor bolts into the concrete liner. The bolts were used in anchoring the drill to the tunnel wall, to prevent pushback of the rig while drilling. The concrete liner was cored with a separate concrete coring barrel, unless difficult conditions were encountered, which required using the rock coring barrel. After the concrete was cored a manifold was sealed into the hole to allow for circulation of drilling fluids. Drilling fluids were circulated and only minor loss was noted.

Logs of subsurface conditions were recorded for each boring during the drilling operations.
These logs can be found in Appendix C. The following information is recorded on each graphic core log:

- Hole coordinates,
- Collar elevation,
- Depth,
- Sample type,
- Core per cent recovery,
- RQD,
- Fracture frequency (fractures per foot),
- Joint spacing,
- Degree of weathering,
- Lithology,
- Material type,
- Laboratory test results, and
- Field notes.

Fractures present in the rock mass are highly variable, ranging from horizontal to vertical. But several major joint sets and faults were observed in the rock core. Generally the direction of the discontinuities appears to be perpendicular to the tunnel axis, based on the borings drilled in the right lane.

The rock core recovered (see photographs in Appendix D) shows fractures roughly following the drilling inclination, which is approximately in the range of the foliation dip angle of the rock mass. Many joints and fractures in the rock mass are healed. Weathering of the rock appears to occur mainly in joints and fractures and occurs more commonly in biotite rich rock. Most iron oxide deposition is along or through biotite gneiss. Clay infilling and scouring of the rock is along fractures, and shows indications of water transport. Boring YA-T-03 encountered highly fractured rock at approximately 19 feet and coring was very difficult to 22.9 feet, where the core barrel seized and could not be recovered.

TUNNEL LINER OBSERVATIONS

As presented on the boring logs, the concrete tunnel liner ranges in thickness from 2.0 to 2.7 feet. The concrete liner was cast-in-place in consecutively constructed sections. The original specifications for the tunnel liner included steel rib supports on 4 -foot centers, embedded in a 1.5 foot thick concrete lining. Spreaders between the supports were specified as angle iron. Rock bolts were installed in the pillar on 10 feet centers longitudinally according to the as-built drawings in Appendix E.

Some efflorescence was observed in both tunnels, originating from cracks and joints in the tunnel liner. The staining appeared to be more prevalent in the ceiling of the tunnels, but did run down the full length of the tunnel wall.

During tunnel inspections, a small hole was observed in the liner of the south tunnel, approximately 50 feet from the west portal. Further investigation of the liner hole determined that a large void was present behind the concrete liner and that steel rebar and beams were exposed in that section. The void was documented and reported to CDOT and Parsons. CDOT representatives opened the void for further inspection to expose the steel and concrete which were very corroded. Wood that had been used for blocking during construction was rotted and ice and frost were present inside the void. A marked temperature difference between the tunnel and the interior of the liner was noted. Several small cobble-size boulders had fallen from the rock face above and were resting on the inside of the liner.

Mapping

Mapping is an essential component of rock mass structural characterization. It can be accomplished using physical mapping, geophysical, photogrammetric or borehole methods. The most commonly used approach is visual field mapping in conjunction with field measurements.

The current investigation utilized structural mapping, data from tunnel core logging and optical downhole borehole viewing.

STRUCTURAL MAPPING

Structural mapping of contacts and dip-dip directions was performed at several mapping windows located across the site wherever rock was accessible. Dip data was collected at the west and east portals, the southernmost rock promontory, the slopes directly south of the portals, the mineralized "vein" from the west portal to the power line tower and from the borehole televiewer data obtained from holes drilled inside the tunnel (see sheets A-5 and A-6 in Appendix A).

Measurements were made along bedrock foliation planes, major joint sets, and fractures. The mineralized vein, as defined in early tunnel mapping prior to the construction of the current tunnel, was difficult to accurately measure because of the decomposed state of the rock and the talus cover. Mapping done during construction of the tunnel shows intersecting faults at the west end of the tunnel. The mineralized, or altered zone, may be following a fault. No offset was observed in the field during this investigation, so there is insufficient evidence to confirm a fault.

Data was also collected in the immediate vicinity of the power line tower, at the approximate apex of the vein

Above the west portal of the south tunnel the zone of mineralization was largest striking north and dipping to the east approximately 20 to 25 degrees. There is evidence that the mineralized zone may be present elsewhere in the vicinity, but additional excavation or drilling would be required for confirmation. Minerals including arsenopyrite and iron pyrite were observed and sampled in the exposure.

A complete record of the window mapping, core and borehole televiewer foliation and fracture data are provided in Appendix F. Orientation data are displayed on lower hemisphere stereonet projections.

Foliation

The average of all the outcrops mapped for this investigation indicated the foliation bands were found to dip 25 degrees with a dip direction of 343 degrees, as calculated using Dips. Average foliation measurements for the tunnel borings had dip angles that ranged between 38 and 71 degrees, dip directions that ranged between 13 and 243 degrees. Average foliation measurements at each outcrop mapping window and for each borehole are shown in Table 3 below and indicate the undulating nature, or folds, of the foliation plane. No foliation was observed at Outcrop \#3.

Table 3. Average Foliation Measurements from Dips Program (Degrees Clockwise with respect to North).

Mapping Area or Borehole	Dip angle	Dip Direction	Strike	Strike wrt Tunnel Axis
Outcrop \#1 (west end)	22	115	25	167
Outcrop \#2 (west side)	22	004	274	82
Outcrop\#4 (east side)	35	343	253	61
Outcrop\#5 (east end)	50	329	239	47
West side near tower	20	328	238	46

Mapping Area or Borehole	Dip angle	Dip Direction	Strike	Strike wrt Tunnel Axis
Borehole YA-T01, west	38	214	124	68
Borehole YA-T02, west	70	013	283	89
Borehole YA-T04, mid-tunnel	46	243	153	39
Borehole YA-T05, east	50	186	96	96
Borehole YA-T06, mid-tunnel	71	014	284	88

Joints and Fractures

Rock discontinuities include joint or fracture sets, folds and faults. Joint sets are generally parallel sets of fractures in the rock mass. In the recently mapped outcrops overall, the joint sets were found to dip 86 degrees with a dip direction of 009 degrees as calculated using Dips. Average joint and fractures measurements for the tunnel borings had dip angles that ranged between 9 to 82 degrees and dip directions that ranged between 21 and 292 degrees. Average joint/fracture measurements at each outcrop mapping window and for each borehole are shown in Table 4 below. No measurable fractures were visible at Outcrop \#1. In general the joint set labeled as J 1 (sheets A-5 and A-6 in Appendix A) show dip angles between 74 and 87 degrees dipping north easterly or south westerly along a strike direction between 326 and 347 degrees. The dip direction on these steep joints varies, but these joints appear to be nearly parallel.

Table 4. Average Joint/Fracture Measurements from Dips Program (Degrees Clockwise with respect to North).

Mapping Area or Borehole	Type	Dip angle	Dip Direction	Strike	Strike wrt tunnel axis
Outcrop \#2 (west side)	Joint J1	87	236	146	46
Outcrop \#2 (west side)	Fracture	86	164	74	118
Outcrop \#3 (south end)	Joint J1	83	257	167	25
Outcrop \#3 (south end)	Joint	90	162	72	120
Outcrop \#4 (east side)	Joint	45	179	89	103
Outcrop \#4 (east side)	Joint J1	86	056	326	46
Outcrop \#5 (east end)	Joint J1	76	253	163	29
Outcrop \#5 (east end)	Fracture	56	224	134	58
West side near tower	Joint	2	230	140	52
West side near tower	Joint	87	352	262	70
Regional north of tunnel	Joint J1	77	067	337	35
Borehole YA-T01, west	Fracture	9	021	291	81
Borehole YA-T01, west	Fracture	17	200	110	82
Borehole YA-T02, west	Fracture	48	292	202	10
Borehole YA-T02, west	Fracture	20	042	312	60
Borehole YA-T02, west	Fracture	12	220	130	62
Borehole YA-T04, mid-tunnel	Fracture	82	028	298	74
Borehole YA-T04, mid-tunnel	Fracture/J1	76	242	152	40
Borehole YA-T04, mid-tunnel	Fracture	48	119	29	163
Borehole YA-T05, east	Fracture/J1	74	140	344	28
Borehole YA-T06, mid-tunnel	Fracture	34	227	146	46
Borehole YA-T06, mid-tunnel	Fracture	19	278	74	118

BOREHOLE TELEVIEWING

Rock core provided samples for determining rock strength and quality and for developing an understanding of rock fabric, mineralogy and general character. Borehole televiewing added an extra dimension that allowed in-hole views of in-situ conditions within the rock mass. The data collected from the televiewer was used to correlate the rock core to the rock mass conditions.

Internal borehole inspection was performed by Colog Inc. using an OBI-40 optical televiewer from Advanced Logic Technologies. The six tunnel borings were viewed and 360 degree optical images of the inside of each hole were obtained. These images were evaluated and discontinuities, foliation planes and any other major features were classified and compiled. Dip angle and strike/dip direction of foliation, joint discontinuities are summarized in the form of pole plots and rose diagrams and presented in Appendix G. Three of the borings (YA-T-1, YA-T-4 and YA-T-5) were inspected full length. The remaining three borings (YA-T-2, YA-T-3 and YA-T-6) were inspected as far into the holes as access allowed. This data was then incorporated into the overall structural mapping of the rock mass.

Discontinuity features were determined from the optical borehole televiewer images by Colog and were reviewed and verified by Yeh \& Associates. Colog features labeled "0" or " 1 " appeared to follow the planes of foliation and were separated out as such. Features labeled " 2 " or " 3 " represented fractures and were assigned to that category. Some features were reclassified after review and the associated data was reassigned. A list of those changes is included in Appendix F with the other structural mapping data.

Data for the televiewer features was calculated by Colog using WelICAD software. This software also calculated the true feature orientation which includes the dip direction and dip angle. The data from Colog did not include magnetic declination. Yeh \& Associates transferred the Colog data to a spreadsheet and all dip directions were corrected to 9 degrees east (Natonal Oceanic and Atmospheric Administation data). Dip directions were also converted to strike direction using the American right hand rule. Features that were reassigned by Yeh were given new classifications in the spreadsheet. The converted spreadsheet data was transferred to the RocScience Dips program to produce stereonet representations of the prominent fracture and foliation planes. To compensate for under-representation of features that were parallel to the borings, a Terzaghi correction was applied to the data in Dips.

Rock Mass Classification

Rock structure and composition in both the center pillar and the southern limb of the tunnel appear to be highly variable. The character of discontinuities vary widely throughout the project area. Competency of the rock may increase in the middle of the tunnel, away from both portals, but overstressing of the rock from blasting may also be present. Some borings appear to be highly fractured in the first 3 to 5 feet of the core directly behind the concrete liner which may have been caused by previous blasting of the original tunnel.

Rock Quality Designation (RQD) and core recovery information obtained from the core drilling program is presented in Table 5. The recoveries and RQDs show averages over the entire length of the core as well as values for the lowest and highest intervals in the core Rock mass classification using Rock Mass Rating System (Bieniawski 1989) and the Tunneling Quality Index (Barton 1974) were performed, to produce RMR and Q ratings respectively, on the six core runs obtained from within the tunnel as shown in Tables 6 and 7.

Table 5. RQD and Recovery Values of Rock Core from Tunnel.

	Recovery (\%)			RQD (\%)		
	High	Wtd. Ave	Low	High	Wtd. Ave	Low
	-	100	-	81	61	45
YA-T-02	100	87	59	100	63	7
YA-T-03	100	93	64	100	82	36
YA-T-04	-	100	-	80	64	52
YA-T-05	-	100	-	100	72	46
YA-T-06	100	98	90	94	61	32

Table 6. RMR Ratings for the Tunnel Rock Core (Bieniawski 1989).

Core	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Rating	RMR Class
YA-T-01	$\mathbf{2}$	13	10	25	15	65	II
YA-T-02	7	13	8	20	15	63	II
YA-T-03	7	17	20	30	15	89	I
YA-T-04	7	13	10	25	15	70	II
YA-T-05	12	13	10	20	15	70	II
YA-T-06	12	13	8	10	15	58	III

Table 7. Q Ratings for the Tunnel Rock Core (Barton 1974.)

Boring	W.A. RQD	Jn Joint Set Number	Jr Joint Roughness Number	Ja Joint Alteration Number	Jw Joint Water Reduction Factor	SRF Stress Reduction Factor	Q
YA-T-01	61.5	9	2	2	1	2.5	2.7
YA-T-02	63.3	12	2	3	1	2.5	1.4
YA-T-03	81.7	9	4	0.75	1	2.5	19.4
YA-T-04	63.6	9	2	1	1	2.5	5.7
YA-T-05	72.0	9	3	1	1	2.5	9.6
YA-T-06	61.4	12	1.5	3	1	2.5	1.0

Groundwater Conditions

Groundwater was not observed in the borings at the time of drilling. No flowing water was observed in the south tunnel at the time of exploration. Ice formations were observed in two locations approximately one foot above the top of the barricade of the north wall of the north tunnel, near the west portal. The ice was apparently formed by water seeping out of tunnel liner joints, and formed 6 -inch to 12 -inch thick ice blocks. Water leaching out of rock into the space between the rock mass and the interior of the concrete liner void at the west end of the tunnel was frozen.

LABORATORY TESTING

Samples retrieved during the field exploration were returned to the laboratory for evaluation and samples of bedrock were classified in accordance with the general bedrock classification used in the Colorado Front Range area. A limited laboratory testing program was created to determine engineering properties of the bedrock. Following the completion of the laboratory testing, the field descriptions were confirmed or modified as necessary and boring logs were prepared. These logs are presented in Appendix C.

In order to determine small-sample rock strength, deformability and elastic constants, core obtained from the rock mass and the tunnel liner were tested by Advanced Terra Testing, Lakewood, Colorado. The following tests were performed on samples of the core:

- Unconfined Compressive Strength - Peak compressive strength
- Unconfined Compressive Strength - Stress-Strain relationship, Static Young's Modulus, Poisson's Ratio
- Sonic Velocity - P and S Wave velocities, Dynamic Young's Modulus, Poisson's Ratio
- Brazilian Tensile Strength - Indirect Tensile Strength

Two core samples taken from the concrete tunnel liner were tested to get a measurement of concrete strength.

A summary of the test data is presented as Table 8. Complete rock testing results can be found in Appendix H .

Table 8. Summary of Laboratory Rock Testing Results Performed by Advanced Terra Testing.

Summary of Laboratory Test Results												
Project No:		211-231		Project Name:			Twin Tunnel Preliminary Investigation			Date:		4/11/2012
Sample Location			$\begin{aligned} & \text { UCS } \\ & \text { (psi) } \end{aligned}$	Tensile Strength (psi)	STATIC			DYNAMIC				Type
Boring No.	Length (ft)	Sample Type			Peak UCS (psi)	Young's Modulus (ksi)	Poisson's Ratio	P-Wave (ft/sec)	S-Wave (ft-sec)	Young's Modulus (ksi)	Poisson's Ratio	
YA-T-1	4	CORE	7230	-	-	-	-	16127	10263	9287	0.160	Rock
YA-T-1	10.0	CORE	2320	-	-	-	-	15170	9481	7960	0.180	Rock
YA-T-1	15.0	CORE	-	1230	-	-	-	16468	9410	7867	0.260	Rock
YA-T-1	18.0	CORE	990	350	-	-	-	9888	6879	3763	0.030	Rock
YA-T-2	12.0	CORE	-	400	3830	4880	0.227	-	-	-	-	Rock
YA-T-2	27.0	CORE	-	1270	9400	7350	0.135	-	-	-	-	Rock
YA-T-2	38.0	CORE	-	1160	9490	8610	0209	-	-	-	-	Rock
YA-T-3	10	CORE	10600	-	-	-	-	13602	8228	5758	0.210	Rock
YA-T-4	0	CORE	4730	-	-	-	-	11835	7406	3949	0.180	Concrete
YA-T-4	7.0	CORE	-	1670	17960	8590	0.210	-	-	-	-	Rock
YA-T-4	15	CORE	-	1330	9910	6820	0.184	-	-	-	-	Rock
YA-T-5	0	CORE	7140	-	-	-	-	11079	7608	3866	0.050	Concrete
YA-T-5	12.0	CORE	16110	-	-	-	-	14427	8766	6670	0.210	Rock
YA-T-5	17.0	CORE	15860	-	-	-	-	16289	9406	7906	0.250	Rock
YA-T-6	5.0	CORE	-	1320	15310	5990	0.141	13384	8863	6268	0.110	Rock
YA-T-6	30.0	CORE	-	230	11290	4790	0.155	12938	7855	5285	0.210	Rock
YA-T-6	57.0	CORE	-	1390	19440	10690	0.183	16440	9715	8271	0.230	Rock

UCS = unconfined compressive strength

This report transmits geotechnical data only, for use by Parsons Corporation and CDOT, for the proposed widening of the I-70 Twin Tunnels near Idaho Springs, Colorado. The data submitted are based on the exploratory borings, laboratory testing, field mapping and reconnaissance included in our investigation. This Investigation has been conducted in accordance with generally accepted geotechnical engineering practices in this area. The nature and extent of subsurface variations across the site may not become evident until excavation is performed. During construction conditions may be different from those described herein. No warranty, expressed or implied, is made.

YEH AND ASSOCIATES, INC.

Prepared by:

Samantha C. Sherwood, P.E. Senior Geotechnical Engineer

Todd Hansen
Staff Engineer

Sylvia White
Staff Scientist

REFERENCES

USGS Seismic Design Parameters Version 2.10 program - AASHTO Guide Specifications for LRFD Seismic Bridge Design 2007.
Barton N.R., Lien, R., and Lunde, J. 1974. Engineering Classification Of Rock Masses For The Design Of Tunnel Support. Rock Mechanics, 6(4).
Bieniawski, Z.T., 1989, Engineering Rock Mass Classifications. New York: Wiley.
Kellogg, Geologic Map of the Greater Denver Area, Idaho Springs, Colorado, U.S. Geological Survey, l-856-H, Scale 1:100,000.
Sheridan, D.M. and Marsh, S.P., 1976, Geologic map of the Squaw Pass Quadrangle, Clear Creek, Jefferson, and Gilpin Counties, Colorado: U.S. Geological Survey, Geologic Quadrangle Map GQ-1337, scale 1:24000.
Sims, P.K., 1989, Ore Deposits of the Central City - Idaho Springs Area, Geological Society of America field trip guidebook, Colorado School of Mines Professional Contributions.

Appendix A
Drawings

Legend for Symbols Used on Borehole Logs

Sample Types

II
Bedrock Lithology

RQD
Rock Quality Designation
\% Recovery
Joint $^{\text {Noar near actual depth }}$
Fracture Frequency
Fractures per foot
Weathering Grade
$\begin{array}{lll}\text { WI } & \text { Fresh } \\ \text { WII } & \\ \text { Slightly }\end{array}$
WII Slightly Weathered
WIII Moderately Weathered
$\begin{array}{ll}\text { WIV } & \text { Completely, Weathered or Decomposed } \\ \text { WV } & \text { Residual Soil }\end{array}$

Print Date: 4/24/2012	$\stackrel{B+X)}{\rightleftarrows}$		Revisio		Colorado Department of Transportation 425 A Corporate Circle Golden, CO 80401 Phone: 720-497-6905 FAX: 720-497-6901 Region 1 CRC	As Constructed	I 70 - TWIN TUNNELS LEGEND			Project No./Code
File Name: $211-231$ Legend.dgn Heriz Scale: 1:1		Date:	Comments	Init.		No Revisions:				Project Number
Unit Information Unit Leader Initials						Revised:	Designer: H. Hume	Structure		17502
Yeh and Associates, Inc. Consulting Engineers \& Scientists	\rightleftarrows					Void:	Detailer: M. Walz Sheet Subset: Geology	Numbers	of	Sheet Number

Appendix B

Tunnel Investigation Photographs

Site setup and location for YA-T-01 in left/north lane of eastbound I-70. Total depth 20.1 ft , horizontal. This photo is also representative of borings YA-T-04 (19.3 ft, horizontal) and YA-T-05 (20.0 ft , horizontal)

Site setup and location for YA-T-02 in right/south lane of eastbound I-70. Total depth $48.4 \mathrm{ft}, 45^{\circ}$ angle from horizontal. This photo is also representative of YA-T-03 $\left(22.9 \mathrm{ft}, 45^{\circ}\right)$ and YA-T-06 $\left(60.0 \mathrm{ft}, 45^{\circ}\right)$.

Site setup and location for YA-T-06.

Site setup and location for YA-T-03.

West portal of eastbound tunnel, looking at YA-T-01 setup.

Looking east at left/north lane of eastbound tunnel, midesection.

Looking east at right/south lane of eastbound tunnel, midsection.

Appendix C

Boring Logs

```
Legend for Symbols Used on Borehole Logs
```

Sample Types

Bedrock Lithology

RQD
Rock Quality Designation
\% Recovery
Length of Core Recovered/Length of Core Drilling Run
Joint Spacing
Noted near actual depth
Fracture Frequency
Fractures per foot
Weathering Grade
WI Fresh
WII Slightly Weathered
WIII Moderately Weathered
WIV Completely Weathered or Decomposed
WV Residual Soil

Print Date: 4/26/2012	$\text { I } 70 \text { - TWIN TUNNELS }$ LEGEND			Project No./Code
File Name: 211-231 Legend.dgn				Project Number
Vert. Scale: As Noted	Designer: H. Hume		Region: 1	17502
Unit Information	Detailer: M. Walz		Unit Leader: CRC	
Unit Leader Initials	Sheet Subset:		Sheet: of	Sheet Number

Appendix D

Tunnel Core Photographs

YA-T-01 Box 1 of 2

YA-T-01 Box 2 of 2

YA-T-02 Box 1 of 3

YA-T-02 Box 2 of 3

YA-T-02 Box 3 of 3

YA-T-03 Box 1 of 2

YA-T-03 Box 2 of 2

YA-T-04 Box 1 of 2

YA-T-04 Box 2 of 2

YA-T-05 Box 1 of 2

YA-T-05 Box 2 of 2

YA-T-06 Box 1 of 4

YA-T-06 Box 2 of 4

YA-T-06 Box 3 of 4

YA-T-06 Box 4 of 4

Appendix E

Historical Tunnel Data

A. Zulian

E.G. Swanson

Geology of Pioneer Bore

At your request an inspection of the Pioneer Bore was made December $11^{\text {th }}$ and December $15^{\text {th }}, 1959$ by our engineering geologist, Stanley Mitchell assisted by Ralph Rhodes, a geologist attached to the Design Section. The purpose of this inspection was to make a geologic log of the Pioneer Bore and to establish limits for the need of concrete lining.

The Pioneer Bore was excavated last summer through a steep sided ridge located two miles east of Idaho Springs. The bore is approximately 800 feet long and 8 by 7 feet in cross section.

The bedrock through which it was cut consists of schist and gneiss of the Idaho Springs Formation. The U.S. Geological Survey has classified the rock as a quartz monzonite gneiss of Pre-Cambrian age. The foliation or bedding of the gneiss parallels closely the alignment of the tunnel and dips 40 to 70 degrees to the north.

At the west portal the formation has been folded and faulted. The rock has been sheared and crushed to some extent and shows considerable alteration by weathering processes. The foliation shows overturning to the south opposite the proposed right lane tunnel. Thin veins of pyrite $\left(\mathrm{FeSO}_{4}\right)$ were noted along the fault both in the bore and west of the portal. Water follows up along the fault and comes out into the bore in several places. The water was tested by the Chemistry Section and the tests indicate very little acidity or presence of sulfates. However, this does not preclude the possibility that the water may become acid and charged with sulfates at a future date, particularly is its circulation is restricted. The presence of pyrites suggests this possibility.

The effects of faulting are evident in the Pioneer Bore between Stations $173+10$ to $174+90$. Timber sets have been necessary in several places to help stabilize the roof. Some of the rocks tend to expand and slab off. Several layers of biotite schist, along with fault gouge and seepage, indicate locations of fault zones. The rocks in this area show jointing at approximately right angles to the foliation, and this jointing still further weakens the rock.

East of Station 175+00 the bedrock gneiss is harder, less weathered and appears to be reasonably sound, except for joints which tend to break the formation into disconnected slabs. Most of the joints appear to be tight except near the east portal. Here the formations show the effects of weathering and some open joints back approximately 40 feet from the portal.

The location of the faulted zone, weathering, the strike and dip of the foliation and joints have been plotted on the attached geologic log both in plan and in sections. This information can assist the engineer in determining the probable limits for concrete lining in both the left and right lane tunnels. The suggested limits shown for concrete lining are based upon rock conditions found in the Pioneer Bore. It is possible that the rock structure in the right lane tunnel might not be found to exist exactly as
projected on the Geologic Log. However, we feel the rock conditions between Stations 173+20 and $175+20$ me be similar to that found in the Pioneer Bore and may need to be concrete lined. The exact limits can be better determined at the time of excavation.

The original determination of the width of the pillar between the left and right lane tunnels was predicted upon the existence of relatively solid rock. However, the excavation made for eh west portals and Pioneer Bore indicates a zone of relatively weak rock between Stations 173 and 175. The structure and character of the rock between these stations suggests the need for a reevaluation of the pillar width, or consideration be given to extra support for the tunnel linings. We suggest that an expert in mining engineering be consulted on this matter before final plans and specifications are finalized.

E.G. Swanson

Staff Materials Engineer

Introduccton

Ghis report hat bea prepared co hlustrate and describe Geologke condtelone between stationa 170 and 105 on Colowado Hughay

 agytorixately 700 m00 seet tr leagth. Geologic condtclone (rock typoe. settrude of beding. dyeturden, and velnat on the present ground burkece axe show on the accoupayyng phan and grothe pheet. Fajection ot geologic condthons undergronnd ate tascmibed th the pollowhs report and LIMmerated on the geologtc erown section.

generst Geozony

medrock at che mand bite constuth of gray to pink netanomhte

 foliation is zeferved to an beddry. The atctcude of the beddug

 grathe of che beda is ganerally eastwork.

Talus (overburden) blatater the murtace owe cha wenterm portha of the proposed twnela, but ta that to absent at the enterm. poctal. 5he talue gangeg trom g so 15 leet in thatmesa.

Gequgse structure

Whe dip ma grive of the bedung of the rook along the
 and scrike aybola da the phan vew and in the geologic cxose nection,

 probaby be enomntered underrwow alond tha geate lina of the payoser tumels.

Whe report ealos mo as peolininary and heo

Wo Ratre Cauke vere abacryeut in the aron maped. Gank
 the bedung plones. jownt mat vemb, put these is no evidence of vovconat at whe rresmat thag.

 frow the portal to atation 17 .

Dyerturden

 Tho catus varion in chefners grow to 15 feek and fe conyosed of a
 contact betwan the ovarhurdon tad bedrock way cary man mownt of shtec durnns wet werther, and nay panatbly be subject to athpung th

 completedy atrapped oft.

Yater ysoblems

Thes rovort moloo mop is prelimancy and has not been ontwa ow arseron for ountormy

October 20, 3958
A. 5xten

Naterind Luboratory
Froposed tannel sta. 17. 160 .

 4sprovenents.


```
os: ULson
    H1es - Stexwe - Achammas
    mavmak
    *W0hely.
    moloct myo
```

 Att \(/ \mathrm{L} /=\)

The wort portek wit be near twa contart of loose wook

 Where thay have been consletely ground to a buyey manas phe bedrook

 foluondry observationg my thow sond ligh on this mattone
2. Thore is a faut that mun whowth the topographo
 mproximaty 350 st mutharly of the roposed burnel.

 the suctla donarmat abouta
 nuax the wost porth of the tanel proviousty desexthod Mut Fant appoare to be the watanty montumathon of the favet through the gordxa.

 by tha thrempant mothed.


```
#. zulam
batobor 20, 3958
Page }
```

doghy the top or whe xitur and ghow the bopographte

 Is comred then the frult dyp stomiy to the swat ab shom in tho
 wery blort section near the woth portal.
9. 敖. Butate

Aste Guter winact

COLORADO DEPARTMENT OF HIGHWAYS

4201 EAST ARKANSAS AVENUE
DENVER 22, COLORADO

December 14, 1959
TO: CE. SHUMATE
FROM: ADOLPH ZULIAN
SUBJECT: MEETING WITH BUREAU OF MINES
Messrs. Miles, Reseigh and the writer met with the following people on December 10 to discuss plans for our Idaho Springs tunnel:

Bureau of Mines Representatives:
J. H. East, Jr. - Regional Director, Region 3;
R. W. Geehan - Chief, Division of Mineral Resources
A. S. Konselman and S. R. Wilson;
J. Howard Bird - District Supervisor, District H, Health and Safety

Bureau of Public Roads:

A. R. Abelard, M. J. Ennis, A. J. Siccardi, D. C. Harrington and King Burghardt

In accordance with Mr. Rooney's suggestions we have previously conferred with three representatives of the Dupont Powder Company. These men have all advised that the new methods of shooting with millisecond and second delays in the charges have made tunneling with relief holes unnecessary. Representatives at this meeting state this is not true and the timing cannot be depended upon.

The primary discussion centered around the protection of the 25 -foot pillar to be left between the tunnels. There seems to be considerable concern that improper blasting might shatter this pillar and make the tunnels unsafe. The following suggestions were made:
(1) Specify maximum length of holes - 8 -foot suggested.
(2) Specify maximum 6 -inch overbreak on the pillar side of tunnels.
(3) Specify maximum 12-inch overbreak on outsides of tunnels. Permit tunneling of relief holes if the Contractor desires. Bureau of Mines people feel this would be a more economical method of boring the tunnels.
(4) Require that tunnel without pilot bore be advanced at least 25 feet ahead of any blasting to be done in the tunnel with pilot bore. (Some think this should be at least 50 feet ahead.)

$$
\begin{aligned}
& \text { I- } 70-3(2) 251 \text { Unit } 2 \\
& \text { Idaho Springs Tunnels }
\end{aligned}
$$

TO: C. E. SHUMATE
-2.
December 14, 1959
(5) Require 5-foot long rock bolts on approximate $4-f$ foot to $4 \frac{1}{2}$ foot centers along the pillar areas of the tunnel without pilot bore.
(6) Permit long hole method of tunneling which generally requires a pilot bore ahead of the main tunneling operation.
(7) Require that the Contractor's methods are subject to change during construction if the desired results are not obtained.
(8) Add an estimated quantity of tunnel enlargement excavation to cover possibility of lined section if needed.
(9) Provide requirement for rock bolts throughout the tunnels as required.

My memo of December 10 stated our people would be ready to begin making bolt retention tests in the pioneer bore on December 22 at 9:00 A. M. This should have been December 15 and all parties concerned have been notified.

It is our understanding that recommendations for rock bolt installation will be made by Mr. Rodriguez atter the retention tests are completed. We will add this item to the plans.

Many of the suggestions made during the meeting would require that the Department specify how the Contractor is to bore these tunnels. We pointed out that the Department policy is to specify end results rather than methods. It is hoped we can complete these plans in a satisfactory manner and still retain that policy.

Engineer of Surveys and Plans
AZ:b
cc: G. N. Miles - 4
F. O. Stearns

Chas. Kempf
S. N. Mitchell
T. C. Reseigh
A. Zulian
J. H. East, Jr.
R.W. Geehan
J. Howard Bird
W. J. Walsh
A. R. Abelard -6

G. H . MILES
A. ZULIANT

TUNOEL EINTNG AND BOLTITG

The following recomendations, for lining and bolting of our proposed tumels east of Idaho Springs, are an opinion of the writer based on oise cussions and suggestions involving BPR, Bureau of Mines, Department Geologist and others, Your comments will be appreciated in order that we might proceed with revision of plans.

There is approximately 303 feet of cover above the prorile grade of the south tunnel near Sta. $176+$ and approximately 309 feet of cover over the prom file grade of the north tunnel at Sta. $176+$.

1. LINIVG (ESTMMATED QUANTITIES FOR PLANS)
a. North Tumel Recommend 200 feet of lining at West end (to extend beyond fault) and recommend 40 feet of lining at East end.
b. South Tumnel - Recormend 150 feet of lining at West end (to 61 feet fast fault). Portal of South tunnel is approximately 61 feet East of portal for Morth tumnel. Also recommend 40 feet of lining at East end of South tunel.
c. Recommend approximately 50 feet of additfonal lining in estimate and plans for possible bad axeas that may be encountered. A quantity Tunnel Enlargement Excavation is also to be included in plans for bids.

2. ROCK BOLTTNG AREAS

a. Sta. $173+$ to $173+50$ - Shattered Material. Rock bolts in pillar side only. Bureau of Mines will investigate and make recommendations for rock bolting on floor of tunnel at West end to protect against apparent possibility of heave due to bad foliation.
b. Sta. $173+50$ to $174+00$ - Estimate scattered rock bolting for terporary support before lining is placed. No raesh required in lined sections. Rock bolts in pillar side.
c. Sta, $174+00$ to 175 a Feult area. Rock bolts in pillar side. Bolting of Roof not recomended section to be lined.
a. Sta. $175+$ to $179+80$ - Entire tumel section to be rook bolted (except floor). Chain link fence also to be placed over entire bolted section and secured under mock bolt nuts and washers.

2. ROCK BOLTHMG AREAS (Cont? ${ }^{\circ}$)

e. Sta $179+80$ to 180420 - Lined section Ho rock bolting except fox pillar side.
P. Estimate some rock bolting on hillsidej et both portals. Bureary of mines states that loose areas can be woll grotected by bolta ing.

3. ROCK BOLT DETAILS

a. Specify 2 13 diameter slotted wedge type 6 peet Iong. Fnd to be threaded 8 inches (Std. bolt is threaded $4^{\prime \prime}$). Minimum 60,000 Ibs. tensile strength per square inch. Anchor type bolts are not recommended since they require constant tension to keep in place. They are hard to install and if nut becomes loose, they are ineffective especially in hard rock.
b. Require minimum 200 root pounds of torque on Boles. Maximum allowble torque to be 300 foot pounds.
c. Use $6^{\mathrm{H}} \mathrm{x} 6^{\prime \prime}$ square washer $-3 / 8^{\prime \prime}$ thick. Extre washere and nuts required for every other bolt in full bolted twanel section. This will permit placenent of V mesh fencing.
a. Require 9 gage chainolink fencing under bolts in fully bolted section, Fencing at bottom can be placed horizontally with balance to be placed circumferentially. Probably a 54 inch wide mesh would be most suitable.
e. Bolting in tunnel to be on 4 foot centers with first row approximately $\frac{2}{z}$ feet above floor. Bolting need not be staggered. This requires 17 bolts per ring.
f. Bolting to progress to face of work after each section of twanel
is blasted.
g. Where bolting of pillax only is xequired vise 3 rows high on Worth Tumel and 4 rows high on South Thmel.
h. Chain link fence inside tunnel may be bolted to every other bolt with extra washer and nut, Balance of bolts can then be installed and the single washer and nut will suffice with fencing underneath.

1. Bolting on hillsides at, portals, where required, to be at 7 poot horizontal specting and 20 foot vertical spacing. Provide 8 foot wide 9 gage chain link rence.
2. Bolt holes in tunel to be as neax as possible vertical to the fece. Bolt holes on hillsides should be a Pew degrees down to prevent coming out if loosened. This will also keep bolt in shear support in case it should become loose.
3. Wedge of bott to be Iubricatod with grease if necessary. Why be required in the sotter rock areas.
4. BOIT RETENTTON TESTS
a. Tests conducted by the Bureau of Mines gave resistance results from 3,000 lbs . to $18,000 \mathrm{lbs}$. The 3,000 Ib . areas are not too suitable, but they state bolting is very feasible and highly recommended.
5. REVISION OF PIANS:

We will proceed to revise plans in accordance with the above outline unless you are not in agreement. Your comnents and recomendations will be appreciated. The Bureau of Mines will submit their report sometime aiter January 15, 1960.

Adolph Zulian
Engineer of Surveys and Plans
AZ:ipi
cc: M. U. Watrous
C. E. Shumate
T. C. Reseight
F. O. Stearns
A. Zulian
E. G. Swenson

BPR
J. Howard Bird - Bureau of Mines

January 14, 1960

T.C. Heseigh

Adolph Zulian

Tunnels

The following additional information is furnished in connection with plans for our tunnels east of Idaho Springs:

1. We should indicate the approximate location of the pioneer bore on the cross-section for the main tunnel.
2. BPH letter of Jan 6, 1960 state that provision should be made for lighting these tunnels. Plans for the portal structure should be revised to show suitable conduit which would receive the power from public service lines and distribute some to a box in each tunnel ceiling.

The lighting installation could then continue with exposed conduit through the tunnels. It would be very difficult to imbed conduit through the tunnels. It would be very difficult to imbed conduit in the gunite (shotcrete) sections of the tunnel due to the irregular surface. An exposed conduit installation would probably never be noticed by the average motorist. This would also permit placement of the conduit in the exact position recommended for the type of lighting to be installed. I understand there was no problem in fastening the conduit to the tunnel which is presently lighted.

Comments and recommendations as to light intensity are request from District personnel. Mr. Miles has also suggested that outside identification lighting be included in the plan. It appears preferable to have the lighting installed under a separate contract after the tunnels are completed. We might also consider the feasibility of having Public Service Company make the lighting installation. District comments are requested.
3. My memo of December $14^{\text {th }}$ (1959) stated we should specify 8 -foot maximum length of hole during the tunnel boring operation. Actually our specification should include a maximum length of tunnel to be blasted as 8 feet. It is sometimes necessary that holes be 9 to 10 feet long in order to accomplish this.
4. The end of holes for the wedge-type rock bolts must be $13 / 8^{\prime \prime}$ diameter for a minimum distance of 12 inches in order to hold the edge end of the bolt properly. The balance of the hole from the surface may be of larger diameter to facilitate drilling.
5. We have had considerable discussion regarding the chain link fencing to be installed under the rock bolts. You have pointed out that this fence will sag between bolts and protrude beyond the gunite lining in many areas. This would be a very unsightly appearance.

After considerable discussion with the Bureau of Mines and the Bureau of Public Roads, I believe we can eliminate the chain link fencing inside the tunnel. It might be desirable to include a note
stating the Contractor could install chain link fencing at his expense in the sections which are to be lined. This would be in lieu of timber lagging until the concrete lining is placed.
6. Mr. Miles is somewhat in disagreement with the number of rock bolts recommended by the Bureau of Mines. We will probably not have their definite report until after January 16 (1960). A copy of Mr. Miles memo has been forwarded to you.

A lengthy discussion with BPR indicates that rock bolts at 4-foot spacing in the unlined part of the tunnel would appear excessive. It is suggested that you estimate the bolts on the basis of 8foot spacing and specify that they are to be placed as determined necessary be field conditions. I believe we should withhold definite decision until the BM report is received.

It may be necessary, in some cases, to provide support between bolts by fastening a channel section under the bolts. This appears to be common practice and I believe there is some information regarding this in the BPR tunnel specifications which were sent you. It might be well to investigate this. If desirable to include this as a pay item, we should estimate a quantity. It appears advisable to retain the 4 -foot bolt spacing on the pillar side of the tunnels. I believe probably two rows high on the north tunnel, and three rows high on the south tunnel would be sufficient if the balance has bolting at approximate 8 -foot centers.

It also appears advisable to include an estimated number of bolts for bolting the flow (flow or flaw? unknown intention) on the west end of the tunnel. Mr. Miles is not in agreement with this, but BPR feels it might be very desirable if pressure exists due to the foliation.

Bolts inside the tunnels normally should be placed at right angles to the general surface. This may vary during construction to meet actual field conditions. Mr. Rodriguez feels that best support will be obtained by the placement at right angles tot eh general surface.
7. BPR still feels we should require a maximum 6 -inch overbreak on the pillar side of each tunnel. They feel this can be accomplished by drilling more holes along this area. It is suggested we specify maximum 6-inch overbreak up to 15 feet on the pillar side of the north tunnel and up to 20 feet on the pillar side of the south tunnel. The balance of the tunnels would require a maximum 12-inch overbreak.
8. We should also provide a quantity of drain pipe which would be installed as necessary to drain we areas into the sub-drainage system.

Adolph Zulian

Engineer of Surveys and Plans

Appendix F

Structural Mapping Data

Project: 211-231 Twin Tunnels, Idaho Springs					Roughness: Smooth->Rough :1->5			$J=$ Joint $\quad \mathrm{F}=$ Foliation	
Dip Direction	Strike (azimuth)	Dip (degrees)	Aperture (in)	Infilling	Roughness	J/F/X	Waviness	Rock Type	note
64	334	90	0	0	2	J-maj	1	Gneiss	
6	276	50	0	0	2	J	1	Gneiss	
166	76	55	0	0	3	J	2	Gneiss	
74	344	70	0	0	2	J	2	Gneiss	
110	20	39	0	0	3	J	2	Gneiss	
126	36	72	0	0	2	J	1	Gneiss	
0	270	37	0	0	2	F	1	Gneiss	
343	253	37	3.5	Mica	2	F	1	Gneiss	
221	131	39	0	0	2	J	1	Gneiss	
163	73	72	0	0	2	J	1	Gneiss	
4	274	39	0	0	2	F	1	Gneiss	
11	281	85	0	0	1	J	1	Gneiss	
349	259	33	0	0	2	F	1	Gneiss	Idaho Springs
6	276	45	0	0	3	F	2	Gneiss	
193	103	59	0	0	1	J	1	Gneiss	
20	290	40	0	0	1	F	2	Gneiss	
129	39	60	0	0	3	J	2	Gneiss	
211	121	38	0	0	2	J	1	Gneiss	
23	293	54	2	Mica	2	F	2	Gneiss	
266	176	70	0	0	2	J	1	Gneiss	
76	346	83	0	0	1	J	1	Gneiss	
130	40	59	0	0	3	J	2	Gneiss	
13	283	46	0	0	2	F	1	Gneiss	
195	105	47	0	0	2	J	1	Gneiss	
79	349	85	0	0	2	J-maj	1	Gneiss	
246	156	87	0	0	3	J-maj	4	Gneiss	Overturned
220	130	11	0	0	3	F	3	Gneiss	
346	256	32	0	0	2	F	3	Gneiss	Idaho Springs
358	268	41	0	0	3	F	3	Gneiss	Formation
267	177	86	0	0	3	J-maj	2	Gneiss	Overturned
354	264	21	0	0	2	F	3	Gneiss	
186	96	48	0	0	2	J-min	1	Gneiss	
81	351	82	0	0	1	J-maj	2	Gneiss	
181	91	48	0	0	2	J-min	1	Gneiss	Idaho Springs
354	264	31	0	0	1	F	4	Gneiss	Formation
347	257	34	0	0	2	F	4	Gneiss	
205	115	35	0	0	1	J	1	Gneiss	
229	139	63	0	0	1	X	1	Gneiss	

J=Joint $\mathrm{F}=$ Foliation

Project: 211-231 Twin Tunnels, Idaho Springs
$\stackrel{\backsim}{\square}$

Project: 211-231 Twin Tunnels, Idaho Springs

Outcrop area: All outcrops

F＝Foliation
$\mathrm{X}=$ Fracture

\times ㄴ

ㄴ
ー
ㄴ
ㄴ ㄴ
ㄴ
レー
ゅ
－
\qquad

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{F}=$ Foliation

$\mathrm{F}=$ Foliation
$\mathrm{X}=$ Fracture

Regional measurements North and West of Tunnel
Fisher Concentrations
$\%$ of total per 1.0% area

Terzaghi Correction Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=62.2329 \%$

Equal Angle
Lower Hemisphere
9 Poles
9 Entries

Fisher Concentrations \% of total per 1.0% area

$$
\begin{array}{r}
0.00 \sim 1.50 \% \\
1.50 \sim 3.00 \% \\
3.00 \sim 4.50 \% \\
4.50 \sim 6.00 \% \\
6.00 \sim 7.50 \% \\
7.50 \sim 9.00 \% \\
9.00 \sim 10.50 \% \\
10.50 \sim 12.00 \% \\
12.00 \sim 13.50 \% \\
13.50 \sim 15.00 \%
\end{array}
$$

Terzaghi Correction Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=10.5086 \%$

Equal Angle

Lower Hemisphere
143 Poles
143 Entries

Borehole YA-T1, West end, Eastbound. left lane
Fisher Concentrations $\%$ of total per 1.0% area

Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=20.2425 \%$

Equal Angle
Lower Hemisphere
74 Poles
74 Entries

Orientations		
ID		Dip / Direction

Equal Angle
Lower Hemisphere 5 Poles
5 Entries

Fisher Concentrations $\%$ of total per 1.0% area

$0.00 \sim 3.00 \%$
$3.00 \sim 6.00 \%$ 6.00 ~ 9.00%
$9.00 \sim 12.00 \%$
$12.00 \sim 15.00 \%$
$15.00 \sim 18.00 \%$
$18.00 \sim 21.00 \%$
$21.00 \sim 24.00 \%$
$24.00 \sim 27.00 \%$
$27.00 \sim 30.00 \%$
Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=29.0401 \%$

Lower Hemisphere
5 Poles
5 Entries

Fisher Concentrations
$\%$ of total per 1.0% area

$0.00 \sim 3.00 \%$
$3.00 \sim 6.00 \%$ $6.00 \sim 9.00 \%$ $9.00 \sim 12.00 \%$
$12.00 \sim 15.00 \%$
$15.00 \sim 18.00 \%$
$18.00 \sim 21.00 \%$
$21.00 \sim 24.00 \%$
$24.00 \sim 27.00 \%$
$27.00 \sim 30.00 \%$
Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=29.4817 \%$

Equal Angle
Lower Hemisphere
84 Poles
84 Entries

Orientations
ID Dip / Direction

| 1 | w | $48 / 292$ |
| :--- | :--- | :--- | :--- |
| 2 | w | $20 / 042$ |
| 3 | w | $12 / 220$ |

Equal Angle
Lower Hemisphere 16 Poles 16 Entries

Borehole YA-T2, West end, Eastbound, right lane
Fisher Concentrations
$\%$ of total per 1.0% area

$0.00 \sim 1.50 \%$
$1.50 \sim 3.00 \%$
$3.00 \sim 4.50 \%$
$4.50 \sim 6.00 \%$
$6.00 \sim 7.50 \%$
$7.50 \sim 9.00 \%$
$9.00 \sim 10.50 \%$
$10.50 \sim 12.00 \%$
$12.00 \sim 13.50 \%$
$13.50 \sim 15.00 \%$

Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=10.9682 \%$

Equal Angle
Lower Hemisphere
16 Poles
16 Entries

Fisher Concentrations $\%$ of total per 1.0% area
 $0.00 \sim 3.50 \%$
$3.50 \sim 7.00 \%$
$7.00 \sim 10.50 \%$
$10.50 \sim 14.00 \%$
$14.00 \sim 17.50 \%$
$17.50 \sim 21.00 \%$ $21.00 \sim 24.50 \%$
$24.50 \sim 28.00 \%$ $28.00 \sim 31.50 \%$ $31.50 \sim 35.00 \%$

Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=33.9418 \%$

Equal Angle
Lower Hemisphere
94 Poles
94 Entries

Borehole YA-T4, Mid-tunnel, Eastbound, left lane
Orientations
ID Dip / Direction

1 w 82 / 028
2 w 76 / 242
3 w $48 / 119$

Equal Angle
Lower Hemisphere
17 Poles
17 Entries

Borehole YA-T4, Mid-tunnel, Eastbound, left lane
Fisher Concentrations $\%$ of total per 1.0% area

Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=13.0988 \%$

Lower Hemisphere
17 Poles
17 Entries

Dip / Direction

1 w $50 / 186$

Equal Angle
Lower Hemisphere
45 Poles
45 Entries

Fisher Concentrations $\%$ of total per 1.0% area

Terzaghi Correction
Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=19.4947 \%$

Equal Angle
Lower Hemisphere
45 Poles
45 Entries

Borehole YA-T5, East end tunnel, Eastbound, left lane

Equal Angle
Lower Hemisphere 9 Poles
9 Entries

Borehole YA-T5, East end tunnel, Eastbound, left lane
Fisher Concentrations
$\%$ of total per 1.0% area

Terzaghi Correction Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=37.3867 \%$

Equal Angle
Lower Hemisphere
9 Poles
9 Entries

Borehole YA-T6, Mid-tunnel, Eastbound, right lane
Orientations
ID Dip / Direction

1 w 71 / 014
2 w 19 / 044

Equal Angle
Lower Hemisphere
149 Poles
149 Entries

Borehole YA-T6, Mid-tunnel, Eastbound, right lane
Fisher Concentrations
$\%$ of total per 1.0% area

$$
\begin{aligned}
& 0.00 \sim 1.00 \% \\
& 1.00 \sim 2.00 \% \\
& 2.00 \sim 3.00 \% \\
& 3.00 \sim 4.00 \% \\
& 4.00 \sim 5.00 \% \\
& 5.00 \sim 6.00 \% \\
& 6.00 \sim 7.00 \% \\
& 7.00 \sim 8.00 \% \\
& 8.00 \sim 9.00 \% \\
& 9.00 \sim 10.00 \%
\end{aligned}
$$

Terzaghi Correction Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=9.2138 \%$

Equal Angle
Lower Hemisphere
149 Poles
149 Entries

Borehole YA-T6, Mid-tunnel, Eastbound, right lane

Orientations
ID Dip / Direction

1 w
34 / 227
2 w 19 / 278

Equal Angle
Lower Hemisphere
36 Poles 36 Entries

Borehole YA-T6, Mid-tunnel, Eastbound, right lane
Fisher Concentrations
$\%$ of total per 1.0% area

$$
\begin{aligned}
& 0.00 \sim 2.00 \% \\
& 2.00 \sim 4.00 \% \\
& 4.00 \sim 6.00 \% \\
& 6.00 \sim 8.00 \% \\
& 8.00 \sim 10.00 \% \\
& 10.00 \sim 12.00 \% \\
& 12.00 \sim 14.00 \% \\
& 14.00 \sim 16.00 \% \\
& 16.00 \sim 18.00 \% \\
& 18.00 \sim 20.00 \%
\end{aligned}
$$

Terzaghi Correction Min. Bias Angle $=15 \mathrm{deg}$ Max. Conc. $=15.1020 \%$

Equal Angle
Lower Hemisphere
36 Poles
36 Entries

Appendix G

Borehole Televiewer Data

T]				-	
					\square -	
					\square 国	1
,	,					
,	\}				$\%$ -	
,	,		,		(Wow	- 8
,	,				Ther	-7
-	T		-	5	\%	14
						-
	$\}$					\%
,	,		,		\cdots.	
,	,				(i) Dich	
$\}$	$\{$					
,	,				\cdots	
	$\}$			${ }^{6}$		
	$\{$				-	
	,					
,	,					
\}	\}					
	\}				1 ,	
$\}$	$\}$					-
,	\}			7	-	
,	\}					
$\}$	3				\cdots	-ther
						8
				8		
\}	\}			8		

Stereonet Diagram - Schmidt Projection
 Optical Televiewer Features
 I-70 Tunnel
 YA-T1
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Stereonet Diagram - Schmidt Projection
Optical Televiewer Features
I-70 Tunnel
YA-T1
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Directions
 Optical Televiewer Features
 I-70 Tunnel
 YA-T1
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Angles

Optical Televiewer Features
I-70 Tunnel
YA-T1
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T1
Yeh and Associates
12 March 2012

Feature No.	$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$	Depth (feet)	Dip Direction (degrees)	Dip Angle (degrees)	
1	0.92	3.0	12	9	2
2	0.96	3.1	157	41	1
3	1.00	3.3	169	37	1
4	1.05	3.4	164	35	1
5	1.10	3.6	164	26	0
6	1.14	3.7	180	37	1
7	1.16	3.8	178	45	1
8	1.19	3.9	185	46	1
9	1.24	4.1	179	45	1
10	1.26	4.2	174	46	0
11	1.29	4.2	198	45	0
12	1.32	4.3	197	46	0
13	1.36	4.5	203	49	0
14	1.41	4.6	165	59	1
15	1.44	4.7	220	20	1
16	1.55	5.1	202	43	0
17	1.62	5.3	178	36	0
18	1.66	5.5	179	41	1
19	1.69	5.6	184	38	0
20	1.78	5.8	199	41	0
21	1.86	6.1	206	39	1
22	2.03	6.7	158	45	1
23	2.11	6.9	174	21	0
24	2.18	7.1	183	35	0
25	2.20	7.2	191	41	0
26	2.29	7.5	192	36	1
27	2.33	7.7	192	44	1
28	2.40	7.9	180	26	0
29	2.42	8.0	191	17	1
30	2.49	8.2	180	40	0
31	2.51	8.2	193	42	0
32	2.52	8.3	198	41	0
33	2.59	8.5	203	36	0
34	2.64	8.7	222	48	0
35	2.69	8.8	216	44	1
36	2.73	9.0	228	38	0
37	2.86	9.4	221	42	0
38	2.96	9.7	169	23	0
39	3.01	9.9	227	41	2
40	3.06	10.0	240	43	0
41	3.15	10.3	251	54	0
42	3.27	10.7	157	45	0
43	3.40	11.2	192	31	2
44	3.48	11.4	195	34	1
45	3.55	11.7	171	47	1

All directions are with respect to magnetic north.
Page 1

Orientation Summary Table
Image Features
I-70 Tunnel
YA-T1
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\ \text { (feet) }\end{array} & \begin{array}{c}\text { Angle } \\ \text { (degrees) }\end{array} \\ \text { (degrees) }\end{array} \begin{array}{c}\begin{array}{c}\text { Rank } \\ \text { (0 to 5) }\end{array} \\ \hline 46 \\ 3.67 \\ 12.0 \\ 274 \\ \hline 40\end{array}\right] 1$

All directions are with respect to magnetic north.
Page 2

)

Stereonet Diagram - Schmidt Projection
Optical Televiewer Features
I-70 Tunnel
YA-T2
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Stereonet Diagram - Schmidt Projection
 Optical Televiewer Features
 I-70 Tunnel
 YA-T2
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Directions
 Optical Televiewer Features
 I-70 Tunnel

YA-T2
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Angles

Optical Televiewer Features
I-70 Tunnel
YA-T2
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T2
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\ \text { (feet) }\end{array} & \begin{array}{c}\text { Angle } \\ \text { (degrees) }\end{array} \\ \text { (degrees) }\end{array} \begin{array}{c}\text { Feature } \\ \text { Rank } \\ \text { (0 to 5) }\end{array}\right]$

All directions are with respect to magnetic north.
Page 1

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T2
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\ \text { (feet) } \\ \text { (degrees) }\end{array} & \begin{array}{c}\text { Angle } \\ \text { (degrees) }\end{array}\end{array} \begin{array}{c}\text { Reature } \\ \text { Rank } \\ \text { (0 5) }\end{array}\right]$

All directions are with respect to magnetic north.
Page 2

Orientation Summary Table
Image Features
I-70 Tunnel
YA-T2
Yeh and Associates
12 March 2012

$\left.$| Feature
 No. | Depth | Depth | Dip
 (meters) | Dip
 (feet) | Feature
 (degrees) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (degrees) | | | | | | | Rank |
| :---: |
| (0 to 5) | \right\rvert\,

All directions are with respect to magnetic north.

Stereonet Diagram - Schmidt Projection
 Optical Televiewer Features
 I-70 Tunnel
 YA-T3
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Stereonet Diagram - Schmidt Projection
Optical Televiewer Features
I-70 Tunnel
YA-T3
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Angles

Optical Televiewer Features
I-70 Tunnel
YA-T3
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Directions
 Optical Televiewer Features
 I-70 Tunnel
 YA-T3
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Orientation Summary Table
Image Features
I-70 Tunnel
YA-T3
Yeh and Associates
12 March 2012

Feature No.	$\begin{gathered} \text { Depth } \\ \text { (meters) } \end{gathered}$	Depth (feet)	Dip Direction (degrees)	Dip Angle (degrees)	Feature Rank (0 to 5)
1	0.95	3.1	317	31	1
2	1.24	4.1	76	30	1
3	3.34	11.0	339	59	1
4	3.72	12.2	158	28	0
5	4.09	13.4	170	24	0
6	4.28	14.0	218	20	0
7	4.75	15.6	179	20	0
8	4.94	16.2	146	5	0
9	5.04	16.6	169	20	0
10	5.14	16.9	335	13	0
11	5.19	17.0	182	17	0
12	5.57	18.3	178	15	0
13	5.83	19.1	175	36	0
14	5.87	19.3	171	19	0
15	6.08	20.0	185	16	0
16	6.12	20.1	175	24	0
17	6.12	20.1	246	71	0
18	6.13	20.1	182	68	0
19	6.32	20.7	199	22	1
20	6.36	20.9	188	49	1
21	6.37	20.9	282	59	0
22	6.39	21.0	220	50	0
23	6.48	21.3	92	62	1

All directions are with respect to magnetic north.

Stereonet Diagram - Schmidt Projection
 Optical Televiewer Features
 I-70 Tunnel
 YA-T4
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Stereonet Diagram - Schmidt Projection
 Optical Televiewer Features
 I-70 Tunnel
 YA-T4
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Directions

Optical Televiewer Features
I-70 Tunnel
YA-T4
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Angles

Optical Televiewer Features
I-70 Tunnel
YA-T4
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T4
Yeh and Associates
12 March 2012
\(\left.\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\
\text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\
\text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\
\text { (feet) } \\
\text { (degrees) }\end{array} & \begin{array}{c}\text { Feature } \\
\text { (degrees) }\end{array}
$$

\hline Rank

(0 to 5)\end{array} \right\rvert\, $$
\begin{array}{ccccc|}\hline 1 & 0.66 & 2.2 & 173 & 33\end{array}
$$\right]\)| 1 |
| :---: |
| 2 |

All directions are with respect to magnetic north.
Page 1

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T4
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\ \text { (feet) } \\ \text { (degrees) }\end{array} & \begin{array}{c}\text { Feature } \\ \text { (degrees) }\end{array} \\ \hline 46 & 2.56 & 8.4 & 244 & 50 & 0 \\ \text { (0 to 5) }\end{array}\right]$

All directions are with respect to magnetic north.
Page 2

Orientation Summary Table
Image Features
I-70 Tunnel
YA-T4
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Dip } \\ \text { (feet) }\end{array} & \begin{array}{c}\text { Feature } \\ \text { (degrees) }\end{array} \\ \hline \text { Angle } \\ \text { (degrees) }\end{array} \begin{array}{c}\text { (0 to 5) }\end{array}\right]$

All directions are with respect to magnetic north.

Stereonet Diagram - Schmidt Projection
 Optical Televiewer Features
 I-70 Tunnel
 YA-T5
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Stereonet Diagram - Schmidt Projection Optical Televiewer Features
 I-70 Tunnel
 YA-T5
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Directions
 Optical Televiewer Features
 I-70 Tunnel
 YA-T5
 Yeh and Associates
 12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Angles

Optical Televiewer Features
I-70 Tunnel
YA-T5
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T5

Yeh and Associates

12 March 2012
\(\left.\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\
\text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\
\text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\
\text { (feet) } \\
\text { (degrees) }\end{array} & \begin{array}{c}\text { Feature } \\
\text { (degrees) }\end{array}
$$

\hline Rank

(0 to 5)\end{array} \right\rvert\, $$
\begin{array}{ccccc|}\hline 1 & 0.51 & 1.7 & 149 & 13\end{array}
$$\right]\)| 1 |
| :--- |
| 2 |

All directions are with respect to magnetic north.
Page 1

Orientation Summary Table
Image Features
I-70 Tunnel
YA-T5
Yeh and Associates
12 March 2012

Feature No.	Depth	Depth	Dip (meters)	Dipection (feet)	Feature (degrees) (degrees)
Rank					
(0 to 5)					

All directions are with respect to magnetic north.

Stereonet Diagram - Schmidt Projection

Optical Televiewer Features

I-70 Tunnel
 YA-T6

Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Stereonet Diagram - Schmidt Projection
Optical Televiewer Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Directions

Optical Televiewer Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Rose Diagram - Dip Angles

Optical Televiewer Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012

All directions are with respect to Magnetic North.

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T6

Yeh and Associates

12 March 2012

Feature No.	Depth	Depth	Dip (meters)	Direction (feet) (degrees)	Feature (degrees)
Rank					
(0 to 5)					

All directions are with respect to magnetic north.
Page 1

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\ \text { (feet) } \\ \text { (degrees) }\end{array} & \begin{array}{c}\text { Feature } \\ \text { (degrees) }\end{array} \\ \hline 46 & 4.32 & 14.2 & 318 & 10 & 2 \\ \text { (0 to 5) }\end{array}\right]$

All directions are with respect to magnetic north.
Page 2

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\ \text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Direction } \\ \text { (feet) } \\ \text { (degrees) }\end{array} & \begin{array}{c}\text { Angle } \\ \text { (degrees) }\end{array}\end{array} \begin{array}{c}\text { Rank } \\ \text { (0 to 5) }\end{array}\right]$

All directions are with respect to magnetic north.
Page 3

Orientation Summary Table

Image Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012

Feature No.	Depth (meters)	Depth (feet)	Dip Direction (degrees)	Dip Angle (degrees)	
136	10.07	33.0	99	84	1
137	10.17	33.4	3	65	0
138	10.19	33.4	197	45	0
139	10.24	33.6	4	69	0
140	10.30	33.8	3	70	0
141	10.34	33.9	277	77	1
142	10.56	34.6	17	69	0
143	10.60	34.8	14	69	0
144	10.63	34.9	11	71	0
145	10.79	35.4	1	71	0
146	10.84	35.6	358	72	0
147	10.88	35.7	359	70	0
148	10.91	35.8	359	70	0
149	10.98	36.0	9	69	0
150	11.03	36.2	360	70	0
151	11.03	36.2	222	37	1
152	11.08	36.3	0	68	0
153	11.13	36.5	359	72	0
154	11.26	36.9	1	72	1
155	11.33	37.2	13	73	0
156	11.38	37.3	10	74	0
157	11.44	37.5	7	73	1
158	11.54	37.9	6	70	0
159	11.63	38.2	10	60	0
160	11.63	38.2	203	28	1
161	11.70	38.4	27	67	0
162	11.73	38.5	15	72	0
163	11.77	38.6	0	70	2
164	11.80	38.7	6	71	0
165	11.87	38.9	7	75	0
166	11.96	39.2	12	71	0
167	12.23	40.1	257	40	1
168	12.29	40.3	18	83	0
169	12.34	40.5	9	75	0
170	12.67	41.6	196	86	0
171	12.74	41.8	187	44	0
172	12.75	41.8	7	85	3
173	12.81	42.0	215	68	0
174	12.84	42.1	247	32	1
175	13.34	43.8	211	88	3
176	13.37	43.9	248	67	2
177	13.50	44.3	348	55	0
178	13.58	44.5	292	29	1
179	13.97	45.8	158	44	1
180	14.17	46.5	212	38	0

All directions are with respect to magnetic north.
Page 4

Orientation Summary Table
Image Features
I-70 Tunnel
YA-T6
Yeh and Associates
12 March 2012
\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Feature } \\
\text { No. }\end{array} & \text { Depth } & \text { Depth } & \begin{array}{c}\text { Dip } \\
\text { (meters) }\end{array} & \begin{array}{c}\text { Dip } \\
\text { (feet) }\end{array} & \begin{array}{c}\text { Feature } \\
\text { (degrees) }\end{array}
$$

\hline (degrees)\end{array}\right\}\)| Rank |
| :---: |
| (0 to 5) |$|$

All directions are with respect to magnetic north.

Optical and Acoustic Televiewers

The OBI-40 optical televiewer and the ABI-40 acoustic televiewer (and its predecessor, the FAC40), from Advanced Logic Technologies (ALT), provide the highest resolution available for fracture and feature analysis in boreholes. Precise dip direction and angle measurements of bedding, fractures, and joint planes, along with other geological analyses, are possible.

The optical televiewer technology is based on direct optical observation of the borehole wall face and can be utilized in both air and clear fluid filled boreholes. The acoustic televiewer technology is based on the return amplitude and time of an acoustic wave reflected off the borehole wall face; it can be utilized in clear or murky fluid-filled boreholes, but not in air.

Varying borehole conditions often exist which preclude the usage of one or the other tool; therefore, the optical televiewer and acoustic televiewer are often used in conjunction to image the entire borehole. When doing so, it must be kept in mind that optical and acoustic properties are not necessarily yielding the same data set. For example, a transition between two similarly-colored beds may not stand out visually, but it may stand out acoustically if the densities of the two materials are different.

Optical Televiewer - Theory of Operation

The OBI-40 optical televiewer provides a detailed, oriented optical image of the borehole wall. A small ring of lights illuminates the borehole wall allowing a camera to directly image the borehole wall face. A conical mirror housed in a cylindrical window focuses a 360° optical "slice" of the borehole wall onto the camera's lens. As the optical televiewer tool is lowered down the hole, the video signal the camera is transmitted uphole via the wireline to the recording instrumentation.

Figures: Example of OBI40 optical Televiewer data (left) and sketch of OBI40 optical tool head (right).
The signal is digitized in real time by capturing up to 720 pixels from the conical optical image. A digital magnetometer and accelerometer package is used to determine the orientation of the probe, and thus the
digital image, for each conical image capture. The conical image rings are stacked and unwrapped to a 2 D, oriented image of the borehole wall.

Precise borehole trajectory/deviation and image orientation are achieved using a 3-axis magnetometer and three accelerometers. When the tool is well-centralized, azimuthal accuracy is to ± 1.0 degrees and inclination accuracy is to ± 0.5 degrees. Deviated or rugous boreholes and outside magnetic interference can contribute to reduced orientation accuracy of the tool, and thus the oriented image. The pink line seen in the example data above represents a fixed point on the tool; it is used in orienting the data with respect to magnetic north.

Tool image colors are calibrated in shop to true-color, however, varying light conditions downhole often lead to color images that are somewhat false-colored. This should be taken into account when reviewing images.

Main applications of the optical televiewer include: fracture detection and evaluation, detection of thin beds, determination of bedding dip, lithological characterization, and casing inspection.

Acoustic Televiewer (ATV) - Theory of Operation

The ABI-40 acoustic televiewer, from Advanced Logic Technologies (ALT), provides a detailed, oriented image of acoustic reflections from the borehole wall. A unique focusing system resolves bedding features as small as 2 mm and is capable of detecting fractures with apertures as small as 0.1 mm .

The acoustic televiewer transmits ultrasonic pulses from a rotating sensor (mirror) and records the signals reflected from the interface
 between the borehole fluid and the borehole wall. The amplitude of these reflections is representative of the hardness of the formation surrounding the borehole, while the travel time represents the borehole
shape and diameter. As many as 288 reflections may be recorded per revolution at up to 10 revolutions per second. The conical image rings are stacked and unwrapped to a 2-D, oriented image of the borehole wall. The digital amplitude and travel time data are presented using a variety of color schemes.

Precise borehole trajectory/deviation and acoustic image orientation are achieved using a 3 -axis magnetometer and three accelerometers. When the tool is well-centralized, azimuthal accuracy is to ± 1.0 degrees and inclination accuracy is to ± 0.5 degrees. Deviated or rugous boreholes and outside magnetic interference can contribute to reduced orientation accuracy of the tool, and thus the oriented image.

The high-resolution reflection images and the precise travel time measurements make the ABI-40 acoustic televiewer a versatile tool. Possible applications include: fracture detection and evaluation, detection of thin beds, determination of bedding dip, lithological characterization, casing inspection, and high-resolution caliper measurements.

Acoustic Televiewer Caliper Log

An unconventional caliper log may be generated from the travel time data acquired by the ABI-40 acoustic televiewer. Using WellCAD software, an estimation of the distance from the probe to the borehole wall can be made by incorporating the travel time of the acoustic signal with an estimation of the velocity of the borehole fluid. The time it takes the acoustic signal to travel through a known viscous medium and back to the probe is directly related to the distance between the signal generator and the borehole wall provided the borehole fluid viscosity remains constant and the probe is properly centralized. The distance from the probe to the borehole wall is then corrected for the radius of the probe, producing a borehole diameter value.

Understanding 2-D Televiewer Images

For both the optical and acoustic televiewer, the 2-D picture of the borehole wall is unwrapped from north to north. Planar features that intersect the borehole appear to be sinusoids on the unwrapped image. To calculate the dip angle of a fracture or bedding feature, the amplitude of the sinusoid (h) and the borehole diameter (d) are required. The angle of dip is equal to the arc tangent of h / d, and the dip direction is picked at the trough of the sinusoid.

Figure: Geometric representation of a north-dipping fracture plane and corresponding log.

Interpreting Optical and/or Acoustic Televiewer Data

Sinusoidal features are picked throughout the boreholes by visual inspection of the digital optical and acoustic televiewer images using the interactive software WellCAD. These sinusoidal feature projections can directly overlay the televiewer images or be plotted alongside the televiewer images.

The features can also be represented by tadpoles. The tail of the tadpole points in the azimuthal direction of dip, where north is up, east is 90° to the right, etcetera. The head of the tadpole is located vertically on the plot, at the projection's inflection point, that is, halfway between the peak and the trough depth of the sinusoidal projection. The horizontal head location represents the dip angle, with shallow features near the left side of the plot and steeper features near the right side.

Figure: Example projections and tadpoles for corresponding optical and acoustic televiewer data sets.
The WellCAD software calculates the true feature orientation (dip direction and angle) in either deviated or vertical boreholes. Depths are assigned to the fractures or bedding features at the inflection points (middles) of the sinusoids. Features are subjectively ranked for flow potential using COLOG's Ranking System for Optical Televiewer Features, included in this report. The features picked, along with their assigned ranks, orientations and depths are exported and presented in tables for each well. Orientations are based on magnetic north and are not corrected for magnetic declination, unless specified.

From the feature data tables, stereonet plots and rose diagrams are generated, as necessary. Stereonet plots and rose diagrams provide useful information concerning the statistical distribution and possible patterns or trends that may exist from the optical and/or acoustic televiewer feature orientation data set.

Rose Diagrams

A rose diagram is a polar diagram in which radial length of the petals indicates the relative frequency (percentage) of observation of a particular angle or fracture dip direction or range of angles or dip directions. Rose diagrams are used to identify patterns (if any) in the frequency of dip angles or directions for a particular data set. The following rose diagrams and stereonet plots all come from the same data set to help illustrate the relationships between the plot types.

Figure: Example rose diagram from an optical televiewer data set illustrating the frequency (\%) of dip angles.

With a quick glance at the above rose diagram of dip angle values, one can see two distinct sets of dip angles; one set with lower dip angles and one set with higher dip angles. Specifically, 40 percent of the features have a dip angle between 10° and $<20^{\circ}$, and 60 percent of the features have a dip angle between 60° and $<80^{\circ}$. The left-hand side of the above rose diagram will always be blank by convention of positive dip angle values only.

Figure: Example rose diagram from an optical televiewer data set illustrating the frequency (\%) of dip direction (azimuth).
With a quick glance at the above rose diagram of dip direction values, one can see that the features (and/or fractures) in this data set have two primary dip directions. Specifically, 40 percent of the features
dip to the east-northeast between 60° degrees and $<80^{\circ}$ in azimuth and 60 percent of the features dip to the south-southeast between 160° and $\angle 170^{\circ}$ in azimuth.

Stereonets

For stereonets, Colog utilizes a southern-hemisphere projected, equal-area Schmidt net to plot the poles to the feature planes. These plots are often used in plotting geologic data such as the dips and orientations of structural features. Here, the azimuthal angle indicates dip direction of the plane's pole (which dips 180 degrees opposite in azimuth from the plane's dip direction at a complementary angle). The distance from the center indicates the dip magnitude. The further from the center the steeper the dip angle; the closer to the center the more horizontal the feature is.

Figure: The above cartoon demonstrates the relationship between a plane and its pole, as projected onto the southern hemisphere of a sphere.

Figure: Example stereonet from an optical televiewer data set illustrating the frequency (\%) of dip direction and dip angle.

The figure above is an example stereonet diagram from the same televiewer data set of fractures and features as used previously to describe rose diagrams. It was created by binning the density (frequency) of poles per area. The figure below indicates, with a quick glance, that two distinct patterns exist in the example data set. A cluster of fractures/features with similar dip directions of approximately 160-170 degrees with steep dip angles of around $60-80$ degrees is apparent. A second cluster is apparent with similar dip directions of approximately $60-80$ degrees with moderate dip angles of approximately $10-20$ degrees. The white areas indicate low to zero density of poles.

Colog also often provides a Schmidt net with the qualitative rank of each fracture/feature plotted at the location of its planar pole. Please refer to the Ranking System for Optical/Acoustic Televiewer Features, included in the report, for an explanation of the qualitative ranks assigned each optical/acoustic televiewer feature identified.

With a quick glance at the above Schmidt net, one can see that the low dip angle features which dip to the east-northeast are bedding features, ranked " 0 "; the high dip angle features dipping to the south-southeast are primarily weak or partial fractures, ranked " 1 "; and there are several major fracture zones, ranked " 5 ", with strike/dip very similar to the majority of the partial/weak fractures in the well.

Ranking System for Optical Televiewer Features

	Rank	Color	Observation	Flow Rating System
Gray	Non-flow feature (bedding, healed fracture, staining, foliation, vein, etc.)	Sealed, No Flow		

Ranking System for Acoustic Televiewer Features

	Rank	Color	Observation	Flow Rating System
$\mathbf{0}$	Gray	No-Flow Feature (bedding, healed fracture, vein, etc.)	Sealed, No Flow	

Appendix H

Laboratory Testing Report

Earth Mechanics Institute Client: ATT Location: N/A Project Name: 2546-40 Colorado School o Mining Engineering De										
Date: 03/19/2012	Rock Type	Average Length	Average Diameter	Length to Diameter Ratio	Density	P-Wave Velocity	S-Wave Velocity	Dynamic Elastic Constants		
Sample ID								Young	odulus	Poisson's
		(in)	(in)		(Ib/ft3)	(ft/sec)	(ft/sec)	(ksi)	(GPa)	Ratio
YA-T1@4	Metamorphic	4.064	1.853	2.19	176	16,127	10,263	9,287	64.0	0.16
YA-T1@10	Metamorphic	4.096	1.869	2.19	174	15,170	9,481	7,960	54.9	0.18
YA-T1@15	Metamorphic	3.557	1.871	1.90	164	16,468	9,410	7,867	54.2	0.26
YA-T1@18	Metamorphic	3.797	1.870	2.03	179	9,888	6,879	3,763	25.9	0.03
YA-T5@12	Metamorphic	4.155	1.867	2.23	167	14,427	8,766	6,670	46.0	0.21
YA-T5@17	Metamorphic	4.007	1.888	2.12	166	16,289	9,406	7,906	54.5	0.25
YA-T3@10	Metamorphic	3.999	1.889	2.12	163	13,602	8,228	5,758	39.7	0.21
YA-T4@LINER	Concrete	6.888	3.216	2.14	142	11,835	7,406	3,949	27.2	0.18
YA-T5@LINER	Concrete	6.847	3.223	2.12	147	11,079	7,608	3,866	26.7	0.05
YA-T6@5	Metamorphic	3.935	1.869	2.11	167	13,384	8,863	6,268	43.2	0.11
YA-T6@30	Metamorphic	3.959	1.870	2.12	164	12,938	7,855	5,285	36.4	0.21
YA-T6@57	Metamorphic	3.847	1.872	2.06	165	16,440	9,715	8,271	57.0	0.23

SPLITTING TENSILE STRENGTH By Method of Brazilian Disk ASTM D 3967

SPLITTING TENSILE STRENGTH By Method of Brazilian Disk ASTM D 3967

CLIENT:	Yeh \& Associates	JOB NO:	$2546-40$
LOCATION:	DATE TESTED:	$3 / 15 / 12 \mathrm{HN} / \mathrm{BL}$	

PROJECT: 211-231

Page 1 of 1							
Specimen ID Boring, Sample No., Depth(ft.)	Diameter (in.)	Length (in.)	$\begin{aligned} & \text { Mass } \\ & \text { (gms) } \end{aligned}$	Wet Density (pcf)	Failure Load (lb)	Failure Type \square	Splitting Tensile Strength (psi)
YA-T6, 5	1.865	0.914	108.7	165.9	3,534	S	1,320
YA-T6, 30'	1.868	0.743	93.5	174.9	503	S	230
YA-T6, 57'	1.868	0.908	108.3	165.8	3,709	S	1,390
YA-T4, ${ }^{\prime}$	1.865	0.774	91.9	165.6	3,790	S	1,670
YA-T4, 15^{\prime}	1.865	0.812	97.9	168.1	3,171	S	1,330
YA-T2, 12'	1.871	0.728	92.2	175.5	853	S	400
YA-T2, 27^{\prime}	1.865	0.793	93.4	164.3	2,946	S	1,270
YA-T2, 38'	1.851	0.825	102.8	176.4	2,784	S	1,160
YA-T1, 18'	1.856	0.976	125.0	180.3	1,003	M	350
YA-T1, 15^{\prime}	1.871	0.892	105.6	164.0	3,234	S	1,230

Notes and Comments:
Splitting Tensile Strength=2P/piLD.
$\mathrm{P}=$ Failure Load
pi $=3.1415926 \ldots$
D = Sample Diameter
$\mathrm{L}=$ Sample Length

* Failure Type: S: Single Failure Plane, M: Multiple Failure Planes

UNCONFINED COMPRESSIVE STRENGTH ASTM D 7012 METHOD C

UNCONFINED COMPRESSIVE STRENGTH

ASTM D 7012; Method C (Previously ASTM D 2938)

Notes and Comments: \quad * Failure ty S: Shear Failure, M: Matrix Failure, F: Failure due to Fracture/Bedding, V: Void Failure,
C: Combination

BKL	
$\frac{\text { Hate: }}{\text { YHUC40U }}$	$03 / 22 / 2012$ Date:
0312212012	

UNCONFINDED COMPRESSIVE STRENGTH ASTM D 7012 Method D

UNCONFINED COMPRESSIVE STRENGTH
 With Stress / Strain Measurements
 ASTM D 7012; Method D (Previously ASTM D 3148)

CLIENT: Yeh \& Associates	JOB NO.:
Project	DATE TESTED:

LOCATION:

Specimen ID			Diameter (in.)	Length (in.)	Mass (gms)	Wet Density (pcf)	Failure Load (lb)	Failure Type\qquad	Compressive Strength (psi)	Young'sModulus(X10^6 psi)	Poisson's Ratio
Boring	Depth (ft.)	Rock type									
YA-T6	5.0		1.869	3.935	472.1	166.6	42,000	F	$\frac{15,310}{}$	(x)	0.141
YA-T6	30.0		1.870	3.959	468.2	164.0	31,000	F/S	11,290	4.79	0.155
YA-T6	57.0		1.872	3.847	458.1	164.8	53,500	F	19,440	10.69	0.183
YA-T4	7.0		1.864	3.942	472.1	167.2	49,000	F	17,960	8.59	0.210
YA-T4	15.0		1.871	4.025	486.3	167.4	27,250	F	9,910	6.82	0.184
YA-T2	12.0		1.869	4.094	519.7	176.3	10,500	F	3,830	4.88	0.227
YA-T2	27.0		1.868	3.793	447.9	164.1	25,750	F	9,400	7.35	0.135
YA-T2	38.0		1.855	3.928	487.0	174.8	25,650	F	9,490	8.61	0.209

Notes and Comments:

 * Failure Type:S: Shear Failure, M: Matrix Failure, F/V Fracture, Bedding/Void Collapse, C: Combination

HN	
$\frac{\text { BKL }}{\text { YHUCSS } 40}$	Date:
Date:	$\underline{301 / 21 / 2012}$
	$\underline{12}$

YH2546MHDP30T6
03/22/12

Ies 8 Associates
\# 2546 - 40

$$
Y_{A}-T 6,30 .-
$$

YH2546MHDP57I6 03/22/12

Lehy Associates \# 2546 - 40

$$
\text { LA-TG, } 57.0
$$

UNCONFINED COMPRESSIVE JOB NO: 2546-40
DATE TESTED: $3 / 17 / 12 \mathrm{HN}$

A

$\xrightarrow{\circ}$

$\operatorname{CH}_{-}^{+}{ }_{-}^{C}$

 ${ }_{7}^{\square}$
H
+1
$\rightarrow \square$
$\stackrel{H}{\square}$
$\boldsymbol{C l O}_{1}$

 $\because{ }^{+1}$
-

\because

+1)
\rightarrow
$\xrightarrow{+}$
$\rightarrow+$

$\rightarrow)^{+1}$
CLIENT: Yeh \& Associates
BORING: YA-T4

H	
H	

- H|ACM

\qquad
\qquad
\qquad $\%$
\square
I
$\xrightarrow{\rightarrow}$ 4 \because

 H

JOB NO: 2546-40

