2014 State of Colorado STATEWIDE Seat Belt Survey

Colorado Department of Transportation

Colorado State University

COLLEGE OF BUSINESS
Institute of Transportation Management

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	iii
PREFACE	1
EXECUTIVE SUMMARY	2
SURVEY DESIGN AND METHODOLOGY	4
RESULTS	7
CONCLUSIONS	12
APPENDICES	13

LIST OF TABLES

Table

1	2014 Statewide Seat Belt Usage for Colorado	7
2	Seat Belt Usage Annual Estimates for	
	All Vehicle Types 2010-2014	8
3	Seat Belt Usage for Vehicle Types 2010-2014	8
4	Seat Belt Usage by Speed 2010-2014	9
5	Seat Belt Usage by Road Class 2010-2014	9
6	County Results for 2014 Colorado Statewide Seat Belt Survey	10

LIST OF APPENDICES

Appendix

1	Colorado Average Motor Vehicle Crash-Related Fatalities by County	
	2007-2009	13
2	Codes for Road Segment File	14
3	Roadway Functional Strata by County, Road Segments Population (N),	
	Total Length, and Number of Segments Selected (n)	15
4	Weights for the Colorado State Seat Belt Usage Observational Survey	17
5	Training Syllabus	18
6	Data Collection Form	

PREFACE

This report presents the results of a statewide seat belt usage study conducted for the Colorado Department of Transportation (CDOT), Office of Transportation Safety (OTS). The primary objective of this study was to provide an estimate of the seat belt usage rate for the State of Colorado in 2014.

This objective was accomplished by conducting a comprehensive statewide seat belt usage survey at selected observation sites throughout the State. A team of observers was trained in making direct observations of traffic to properly collect and record data during a period of two consecutive weeks (June 1 through June 14, 2014) in order to determine actual seat belt usage among Colorado drivers and outboard front seat passengers. With the data and analyses emanating from this study, CDOT, Office of Transportation Safety will have current and accurate information upon which to base future transportation safety program decisions.

The Institute of Transportation Management is pleased to have had the opportunity to work with the Office of Transportation Safety in the conduct of the 2014 Colorado Statewide Seat Belt Survey. The design of this study takes into consideration the population movements and trends within the State of Colorado and thus provides a realistic projection of actual seat belt usage. With the submission of this report, the project objectives have been completed within the time parameters and budget agreed to by CDOT and ITM. The data and the analyses that are submitted to CDOT/OTS are, to the best of my knowledge, accurate and complete.

G. James Francis
Principal Investigator
Institute of Transportation Management
Colorado State University

EXECUTIVE SUMMARY

The Institute of Transportation Management (ITM) at Colorado State University conducted a comprehensive seat belt usage study in the State of Colorado from June 1 through June 14, 2014. Trained staff observed vehicles at 697 sites in 29 counties. A total of 128,788 vehicles were observed including cars, vans, sport utility vehicles (SUVs), pickup trucks, and select commercial vehicles (10,000 pounds and under). Drivers and front seat outboard passengers of the eligible vehicles were observed for seat belt usage at predetermined observation sites throughout the State.

Dr. G.J. Francis served as Principal Investigator, Burt Deines as Project Coordinator, and Felicia Zamora as Field Administrator for the statewide study. James zumBrunnen of the Franklin A. Graybill Statistical Laboratory in the College of Natural Sciences at Colorado State University served as the lead statistician in the analysis of the data. Mr. zumBrunnen and others within the Laboratory assumed major roles in the research design and methodology which gave the statistical analyses independence from the survey process.

Field observers and supervisors were trained by the ITM team in observation and recording methods in order to properly conduct the field survey and collect data. The need for consistency and accuracy in the process of data collection was emphasized in the training and pre-survey phase of the study. Each observer was supplied with data collection sheets, maps, and site locations, as well as safety vests and hard hats.

As in previous seat belt usage surveys conducted by the Institute of Transportation Management, retired Colorado State Highway Patrol Officers were used as observers whenever possible. Because of their familiarity with interstate and state highways, as well as local and county roads and safety procedures, many potential location and safety problems were minimized. The retired patrol officers have proven to be very conscientious and reliable and have helped strengthen the validity of the results. This staffing arrangement worked very well and the continued use of the patrol officers and the Graybill Statistical Laboratory is planned for future studies. By using these two groups of independent contractors, the Institute has taken measures to ensure the integrity of the survey and analyses while involving people in the study who have the most relevant skills.

The data collected through the observations were recorded, summarized, and entered into appropriate categories for analyses. Data were then entered into the SAS system database and submitted to the Graybill Statistical Laboratory in the College of Natural Sciences for analysis. Analyses of the data yielded the following seat belt usage among the various vehicle types:

	<u>Usage</u>	Standard
		<u>Error</u>
Cars	83.1%	0.8%
Vans	87.3%	0.8%
SUVs	87.1%	0.5%
Trucks	72.4%	1.0%
Commercial	67.5%	1.7%
All Vehicle Types	82.4%	0.7%

County usage rates, speed of vehicles, and road classification data will be presented under the "Results" section of this report. A conclusion section will provide an overall summary of the study followed by Appendices which contain examples of the forms and processes used during the survey stage of the study.

SURVEY DESIGN AND METHODOLOGY

The 2014 Colorado Statewide Seat Belt Usage Survey has been designed to meet all of the requirements established by the Uniform Criteria for State Observational Surveys of Seat Belt Use issued by the National Highway Traffic Safety Administration (NHTSA) Final Rule, Federal Register, Vol. 76, No. 63, April 1, 2011.

As required by the "Final Rule," the counties that account for 85% of the crash-related fatalities in the State are to be included in the survey sample. As shown in Appendix 1, 29 of the 64 counties accounted for 85% of the fatalities for the period of 2007 to 2009. These counties thus comprise the sample frame and were used as strata for sampling road segments. For 2013 and 2014, Elbert County was substituted for Alamosa County as the "last" county to be included as part of the top 85%. Any one of four counties could have been selected for the final sampling county as each was approximately the same percentage (.7%) of the state's total fatalities. Elbert County replaced Alamosa County in the study in part because Elbert experienced 13 fatalities from 2009-2011, and Alamosa had 8 fatalities in 2009-2011. Also contributing to the decision was the travel time of observers and the cost involved for 11 observation sites.

Road segments were selected systematically with probability proportional to size (PPS) from all segments in the stratified counties. The road segments were serpentine sorted by latitude and longitude within counties, which makes the sampling spatially more uniform within counties. The research design therefore involves a stratified system PPS sample of data collection sites.

Roads within the counties were grouped according to the primary, secondary, and local classifications. Classifications are determined by the length of the road and the volume of traffic. All road segments in the sample counties were identified, and a sample of these segments was selected for observation. Definitions for road segments are provided in Appendix 2, and the selected road segments within each county are listed in Appendix 3. Appendix 4 illustrates the weights of the segments within each county that were used in the calculation of the estimate of the statewide seat belt usage

Sample Size

A total of 697 sites (road segments) of primary, secondary, and local roads was determined to be a representative sample. Sample size determination was, in large measure, governed by time constraints and the precision requirement of the study since NHTSA requires the standard error to be <2.5%. A decision as to how many roadways to select and assign for observation during the observation period required a balance between issues of statistical reliability and observer productivity. There was a practical need to select an optimal number of road segments for study so that observers would not spend inordinate amounts of time traveling from site to site. With all

of those issues given consideration as well as the NHTSA requirements and needs of the contracting organizations, a total sample of 697 observational time periods and sites were selected.

Data Collection and Analysis

Observers and quality control monitors were trained in the appropriate procedures for observing seat belt usage and recording data. Scheduling, site locations, and internal operational protocol were also included in the training syllabus and give an overview of the topics covered during the session (Appendix 5).

For the purposes of this survey, an observational site was defined as a specific road intersection or interstate ramp where observations take place. Observations were conducted at each site for 40 minutes of each hour between the hours of 7:00 a.m. and 6:00 p.m. during a period of two consecutive weeks (June 1 through June 14, 2014). Twenty minutes were allowed for recording data and moving to the next observation site. Start times and days were staggered in order to have a representative sample from both peak and non-peak traffic. When possible, traffic was observed for safety reasons from inside the sample road segment at or near the point where the traffic was leaving the segment.

Drivers and front seat outboard passengers were observed in cars, vans, pickup trucks, SUVs, and select commercial vehicles (10,000 pounds and under). Observers generally chose one lane of traffic traveling in one direction to observe seat belt usage. The data were recorded as "yes," "no," or "non-observable" for the driver and front seat outboard passenger.

The data were transferred from the field summary sheets to forms placing the data in specific categories for analysis. The Graybill Statistical Laboratory of the College of Natural Sciences then performed the computer runs to complete the data analysis. The PROC SURVEYMEANS procedure of SAS was used to perform statistical analysis of the survey data. This analytical procedure takes into account the sample design used to select the road segments to be analyzed. The sample design was a complex design which incorporated stratification and unequal weighting. The SURVEYMEANS procedure computes ratio estimates and provides standard errors and confidence intervals for the ratios and for any specified domain analysis, such as road class and speed.

Using this procedure, seat belt usage rates in Colorado were estimated along with a determination of the standard errors and coefficients of variation. The survey sample size was large enough to allow estimates of usage rates for various domains of counties, vehicle types, speed, and road class.

In summary, the research design included the following elements that were critical to this study:

1. Samples were probability-based from the population of road segments within each county, yielding unbiased estimates of seat belt usage for the State's driver and outboard front seat passenger population for vehicles falling within the parameters of this study.

- 2. The sample data were collected through direct observation of seat belt usage at the predetermined sites by qualified and trained observers. Observation times were assigned and rescheduled if weather interfered or other conditions existed which made observations at a particular site unsafe or unproductive.
- 3. The population of interest was the driver and outboard front seat passenger of cars, vans, SUVs, light trucks, and select commercial vehicles (10,000 pounds and under).
- 4. Observations were conducted in daylight hours from June 1 through June 14, 2014 between the hours of 7:00 AM and 6:00 PM.
- 5. Observation start times were staggered in order to obtain a representative sample from rush hour (peak traffic) and non-rush hour (non-peak traffic) time frames.
- 6. Observational data were recorded on counting sheets and summarized (See Appendix 6). The data were then transcribed to create a digital record and entered onto field summary forms, which served as input into SAS programs for data reduction.

RESULTS

Statewide Survey Results

The 2014 Colorado Statewide Seat Belt Usage Survey was designed to meet all the requirements established by the Uniform Criteria for State Observational Surveys of Seat Belt Use issued by the National Highway Traffic Safety Administration (NHTSA) Final Rule, Federal Register, Vol. 76, No. 63, April 1, 2011.

The statewide survey collected data at 697 sites as a multistage, stratified, random sample. As shown in Table 1, the 2014 statewide seat belt usage for Colorado (cars, vans, SUVs, pickup trucks, and select commercial vehicles 10,000 pounds and under) over the sampling period was 82.4%. A 95% confidence interval constructed with regard to the overall seat belt usage rate is from 81.2% to 83.7%.

Table 1: 2014 Statewide Seat Belt Usage for Colorado

	Seat Belt Usage Estimate (%)	Standard Error	Lower 95% Conf Int	Upper 95% Conf Int
Cars	83.1%	0.8%	81.6%	84.7%
Vans	87.3%	0.8%	85.6%	88.9%
SUVs	87.1%	0.5%	86.1%	88.2%
Trucks	72.4%	1.0%	70.4%	74.5%
Commercial	67.5%	1.7%	64.1%	70.9%
All Vehicle Types	82.4%	0.7%	81.2%	83.7%

Table 2 illustrates the overall consistency in seat belt usage in the past five years. Although commercial vehicles influence the overall results in a negative fashion, the total usage rate for all vehicles (82.4%) is quite good for a secondary law state. It should be noted that in secondary law states, such as Colorado, a high seat belt usage rate requires considerable investment in media, and educational efforts must be significant in order to maintain current levels and to continue making even small gains.

Table 2: Seat Belt Usage Annual Estimates for All Vehicle Types 2010-2014

(Cars, Vans, SUVs, Trucks, and Commercial Vehicles)

*Note: Commercial vehicles 10,000 pounds and under were observed for the first time in 2012.

	2014	2013	2012*	2011	2010
Total	82.4%	82.1%	80.7%	82.1%	82.9%
Standard Error	0.7%	0.7%	0.6%	0.6%	0.8%

Seat belt usage for vehicle types and speed are shown in Tables 3 and 4, respectively. In 2014, seat belt usage remained the same at the slowest speed (0-30 mph) and at the highest speed (50+ mph). The .5% difference this year at speeds of 31-50 mph is likely statistically the same as 2013. These data seem to indicate that the usage rates are reaching a ceiling which will be difficult to surpass as a secondary law state.

Table 3: Seat Belt Usage for Vehicle Types 2010-2014

(Cars, Vans, SUVs, Trucks, and Commercial Vehicles)

*Note: Commercial vehicles 10,000 pounds and under were observed for the first time in 2012.

	2014	2013	2012	2011	2010
Cars	83.1%	82.6%	82.3%	83.9%	85.2%
Vans	87.3%	86.9%	85.2%	88.5%	87.9%
SUVs	87.1%	86.7%	84.6%	84.4%	84.6%
Trucks	72.4%	73.0%	71.7%	70.8%	72.7%
Commercial*	67.5%	65.5%	65.1%		

Table 4: Seat Belt Usage by Speed 2010-2014

	2014	2013	2012	2011	2010
0-30 mph	77.5%	77.5%	76.4%	73.7%	72.4%
31-50 mph	82.8%	83.3%	80.7%	81.4%	81.2%
50+ mph	88.0%	88.0%	85.5%	83.7%	85.1%

Seat belt usage by road class is displayed in Table 5. The differing usage rates for the road classes are in part explained by the speed of the traffic on the roads. In addition, the "local" classification has more traffic that is "neighborhood trip" oriented. The shorter the trip, the less likely people are to wear seat belts.

Table 5: Seat Belt Usage by Road Class 2010-2014

	2014	2013	2012	2011	2010
Primary	89.1%	89.6%	87.0%	82.5%	83.5%
Secondary	83.7%	83.1%	82.0%		
Local	81.2%	80.8%	78.8%	79.8%	79.0%

Table 6 displays individual county results for 2014. The county data also illustrate the differences in seat belt usage between urban and rural areas of the State. While the more urban counties in the Front Range generally have higher usage rates, these counties also tend to have a more balanced number of vehicle types (cars, SUVs, vans, pickup trucks, and select commercial vehicles 10,000 pounds and under). The more rural counties on the Western Slope and Eastern Plains have a higher proportion of pickup trucks influencing the usage rate in a downward manner. However, in those rural counties that have observation sites along one of the interstate highways, the usage rate is much higher. For example, Garfield County (Glenwood Springs) is the 12th most populous county, but there are observation sites along Interstate 70, which account for the majority of vehicles miles traveled within the county and contribute to a high seat belt usage of 91.1%.

Of the 29 counties included in the study this year, there were 19 counties with usage rates above the statewide average of 82.4% and 10 below. This is an improvement over last year when 17 counties were above the statewide average. The smaller differences among the county usage rates represent some "leveling" and demonstrate an improvement for rural areas. The counties

with the highest usage rate are Summit (98.4%), Montezuma (91.6%), and Grand (91.4%). Pueblo County, the most southern county along the Front Range with significant population, had the lowest seat belt usage rate in the State at 63.4%, and Baca County (68.1%) on the Eastern Plains and Delta County (69.1%) on the Western Slope were next lowest.

Table 6: County Results for 2014 Colorado Statewide Seat Belt Survey

County	Sites	Seat Belt Usage	Standard Error	Lower 95%	Upper 95%
				Conf Int	Conf Int
		Estimate	(%)		
Adams	37	(%) 86.5	1.4	(%) 83.7	(%) 89.3
	33	83.7	1.4	81.3	86.1
Arapahoe	33 11		6.0*		
Baca		68.1		56.3	79.8
Boulder	44	74.5	1.7	71.0	77.9
Delta	11	69.1	3.5	62.3	75.9
Denver	44	83.1	1.4	80.3	85.9
Douglas	44	86.8	1.3	84.3	89.2
Eagle	11	76.7	1.3	74.0	79.3
Elbert	11	82.0	1.3	79.5	84.6
El Paso	44	80.1	1.2	77.8	82.3
Fremont	11	76.2	2.7	70.8	81.5
Garfield	11	91.1	2.0	87.2	95.1
Grand	11	91.4	0.7	90.0	92.7
Huerferno	11	77.9	3.1	71.7	84.0
Jefferson	44	82.8	1.3	80.1	85.4
La Plata	11	90.3	1.2	87.9	92.8
Larimer	44	90.3	0.9	88.5	92.1
Las Animas	11	83.6	2.3	79.0	88.2
Lincoln	11	86.3	3.8	78.8	93.7
Logan	11	87.0	4.7	77.7	96.3
Mesa	44	88.7	2.8	83.1	94.3
Montezuma	11	91.6	1.2	89.2	94.0
Montrose	11	75.2	2.2	70.8	79.6
Morgan	11	86.8	1.0	84.9	88.7
Park	44	85.7	2.1	81.6	89.8
Pueblo	44	63.4	2.7	58.0	68.8
Routt	11	89.6	1.2	87.2	91.9
Summit	11	98.4	0.6	97.3	99.5
Weld	44	85.1	1.3	82.5	87.7

^{*}Baca County's estimate of seat belt usage, while useful, can be questioned because of the magnitude of the Standard Error. A Standard Error of 5.0 and over is generally suspect; the sample of seat belt usage was too small.

Non-Observables: The non-observable rate of 1.6% for the study was well below the 10% limit established by NHTSA. Overall, there were fewer than 2150 vehicles for which the use of seat belts could not be determined. Tinted windows, sun reflection, height of some trucks and commercial vehicles, and color of clothing/seat belts were among the reasons for the non-observable designation. Below are the non-observable rates by vehicle types:

Vehicle Type	Non-Observable Vehicles		
	2014	2013	
Car	1.7%	2.0%	
Van	0.4%	0.7%	
SUV	1.2%	1.5%	
Truck	2.9%	3.3%	
Commercial	1.6%	1.8%	
Overall	1.6%	1.4%	

Given the low non-observable rate and the exceptionally low standard error of 0.7% for the study, the overall seat belt usage rate of 82.4% statistically appears to be quite sound.

<u>Successes</u>: While it is difficult to track the impact of any one specific program or effort, the following list of possible explanations undoubtedly worked in concert to maintain the relatively high levels of seat belt usage in the State of Colorado.

- 1. The success of the educational efforts of CDOT and the Department of Public Health and Environment to inform the public of the dangers of not using seat belts.
- 2. An improvement in the general knowledge of the public of the need for the use of seat belts by vehicle operators and front seat passengers.
- 3. The "Click It or Ticket" program may have impacted drivers and front seat occupants enough to improve usage rates.
- 4. Enforcement efforts have impacted drivers and vehicle passengers and caused more awareness of the need to use seat belts.

<u>Travel Variables</u>: The following findings demonstrate the differences in seat belt usage when considering some of the variables involved in travel. For example, seat belt usage was higher on primary roads (89.1%) than on local roads (81.2%). Also as demonstrated in previous studies, seat belts are used more at higher speeds than at lower speeds (see below). Both the road class and vehicle speed showed statistical significance (p<0.05) in the differences in seat belt usage.

•	Road Class*:	Primary	89.1%
		Secondary	83.7%
		Local	81.2%

*Definitions of road classes are included in Appendix 2.

• Speed observations: 0-30 mph 77.5% 31-50 mph 82.8% 50+ mph 88.0%

CONCLUSIONS

The 697 observation sites included in this study were surveyed during the two-week period from June 1 through June 14, 2014. Total observations of 128,788 vehicles yielded a statewide estimate of 82.4%. Statistically, the results for the past five years have been relatively constant with four of the five years in the 82.1-82.9% range. Only 2012 at 80.7% was outside these parameters. The last five years represent a major improvement over previous five-year blocks.

To further demonstrate the improvement in rates, the overall 2001 seat belt usage in Colorado was 72.1%. Trucks were at 57.4% and SUVs were the highest at 78.3%. In 2006, the rates improved to 80.3% overall with 68.7% for trucks and 87.1% for SUVs. In 2013, trucks were at an all-time high of 73.0%. This year SUVs had an all-time best usage rate of 87.1%. Except for one "bump" upward in 2010, cars have had usage rates in the 82.3 to 83.9% range. In the current year, cars were at an 83.1% usage rate. Vans remain the highest of all vehicle types improving from 86.9% in 2013 to 87.3% in 2014.

The improvement in overall seat belt usage has been the result of significant effort and investment by the Occupant Safety and Protection Program of the Office of Transportation Safety. The relative stability over the past several years of the overall State seat belt usage rate reinforces the hypothesis that Colorado has reached a "ceiling" that will likely require either greater investments or the passage of a primary seat belt law in order to experience greater gains.

The required change in methodology has had an impact upon the reported seat belt usage rate. The inclusion of select commercial vehicles (10,000 pounds and under) lowered the overall seat belt usage as the commercial usage rate of 67.5% is well below the statewide average. As was the case last year, it is generally the "local" commercial vehicles whose drivers and passengers are out of compliance.

Pickup trucks dropped from a high of 73.0% to 72.4%. While higher than the commercial usage rate, it is still well below the other vehicle types. In agricultural states, secondary road traffic is likely to have more pickup trucks that travel at lower speeds. Both of these factors contribute to lower seat belt usage rates.

This was the third year wherein "non-observables" were officially recorded. By rule if observers are not able to see whether or not a driver or front seat occupant are buckled up, it is to be recorded as "non-observable." The overall non-observable rate for the study was 1.6%. Trucks had the highest rate at 2.9%.

The challenges of maintaining a high seat belt usage rate in a secondary law state will likely continue, but the investment in education and enforcement are proving worthwhile. The value of the return on investment, in terms of lives saved and social and economic savings, makes the effort one of the most important endeavors of the State of Colorado.

APPENDICES

APPENDIX 1 Colorado Average Motor Vehicle Crash-Related Fatalities by County 2007-2009*

County	FIPS	Average Fatality Counts (2007-2009)	Fatality Percentage Within Colorado	Cumulative Fatality Percentage	
WELD	123	43.7	8.2	8.2	
EL PASO	041	42.7	8.0	16.2	
DENVER	031	40.3	7.6	23.8	
ARAPAHOE	005	36.3	6.8	30.7	
JEFFERSON	059	35.3	6.6	37.3	
ADAMS	001	33.3	6.3	43.6	
LARIMER	069	26.0	4.9	48.5	
PUEBLO	101	23.7	4.5	52.9	
MESA	077	20.0	3.8	56.7	
BOULDER	013	19.0	3.6	60.3	
DOUGLAS	035	15.7	2.9	63.2	
GARFIELD	045	14.3	2.7	65.9	
LA PLATA	067	12.3	2.3	68.2	
DELTA	029	8.7	1.6	69.8	
EAGLE	037	8.7	1.6	71.5	
MONTROSE	085	6.7	1.3	72.7	
PARK	093	6.7	1.3	74.0	
FREMONT	043	6.0	1.1	75.1	
ROUTT	107	6.0	1.1	76.2	
LAS ANIMAS	071	5.7	1.1	77.3	
MONTEZUMA	083	5.3	1.0	78.3	
HUERFANO	055	5.0	0.9	79.2	
GRAND	049	4.7	0.9	80.1	
LINCOLN	073	4.7	0.9	81.0	
MORGAN	087	4.7	0.9	81.9	
SUMMIT	117	4.7	0.9	82.8	
BACA	009	4.0	0.8	83.5	
LOGAN	075	4.0	0.8	84.3	
ALAMOSA** 003 3.7 0.7 85.0 *Fatality data from the Fatality Analysis Reporting System (FARS) 2007-2009					

^{*}Fatality data from the Fatality Analysis Reporting System (FARS) 2007-2009
**Elbert was substituted for Alamosa in 2013, see page 4 of this report.

APPENDIX 2

Codes for Road Segment File

Code	Road Class	Definition	
S1100	Primary Road	Primary roads are generally divided, limited-access	
		highways within the interstate highway system or under	
		state management, and are distinguished by the presence	
		of interchanges. These highways are accessible by ramps	
		and may include some toll highways.	
S1200	Secondary Road	Secondary roads are main arteries, usually in the U.S.	
		Highway, State Highway or County Highway system.	
		These roads have one or more lanes of traffic in each	
		direction, may or may not be divided, and usually have	
		at-grade intersections with many other roads and	
		driveways. They often have both a local name and a	
		route number.	
S1400	Local Neighborhood	These are generally paved non-arterial streets, roads, or	
	Road, Rural Road,	byways that usually have a single lane of traffic in each	
	City Street	direction. Roads in this feature class may be privately or	
		publicly maintained. Scenic park roads would be included	
		in this feature class, as would (depending on the region of	
		the country) some unpaved roads.	

APPENDIX 3

Roadway Functional Strata by County, Road Segments Population (N), Total Length, and Number of Segments Selected (n)

County		Primary: S1100	Secondary: S1200	Local: S1400	Total
	N	1010	1476	28868	31354
ADAMS	Length(mi)	134	159	2945	3238
	n	15	16	13	44
ADADALIOE	N	419	784	30488	31691
ARAPAHOE	Length	77	79	2575	2731
	n	11	7	26	44
BACA	N		33		33
BACA	Length		155		155
	n		11		11
BOULDER	N	1	1998	21514	23513
BOULDER	Length	1	239	1894	2134
	n		28	16	44
DELTA	N		732		732
DELIA	Length		122		122
	n		11		11
DENVER	N	622	812	25307	26741
DENVER	Length	49	56	1921	2026
	n	15	9	20	44
	N	411	554	19308	20273
DOUGLAS	Length	87	91	2043	2221
	n	15	12	17	44
EAGLE	N	503	608		1111
EAGLE	Length	114	86		200
	n	4	7		11
	N	95	215	4497	4807
ELBERT	Length	52	69	1413	1534
	n		11		11
EL PASO	N	384	1880	51310	53574
ELFASO	Length	78	213	4378	4669
	n	2	21	21	44
FREMONT	N		858		858
FREIVIONI	Length		160		160
	n		11		11
GARFIELD	N	544	654		1198
GANFIELD	Length	126	99		225
	n	6	5		11
GRAND	N		722		722
GIVAIND	Length		166		166
	n		11		11
HUERFANO	N	175	533		708
HULKFANU	Length	59	112		171
	n	3	8		11

	N	498	1781	35498	37777
JEFFERSON	Length	78	211	3082	3371
	n	6	20	18	44
LA PLATA	N		996		996
	Length		156		156
	n		11		11
	N	293	1945	31878	34116
LARIMER	Length	78	266	3397	3741
	n	3	22	19	44
1 A C A NUMA A C	N	221	393		614
LAS ANIMAS	Length	78	170		248
	n	7	4		11
	N	175	382		557
LINCOLN	Length	59	162		221
	n	2	9		11
LOGAN	N	117	599		716
LOGAN	Length	92	161		253
	n	3	8		11
MESA	N	477	893	15317	16687
IVIESA	Length	129	181	2064	2374
	n	6	21	17	44
MONTEZUMA	N	3	1384		1387
WONTEZOWA	Length(mi)	0.2	229		229.2
	n		11		11
MONTROSE	N		908		908
WONTROOL	Length		190		190
	n		11		11
MORGAN	N	188	653		841
WOTO, UT	Length	72	146		218
	n	3	8		11
PARK	N		663	11386	12049
TAIN	Length		161	2215	2376
	n		25	19	44
PUEBLO	N	443	1380	18557	20380
	Length	94	216	2261	2571
	n	6	24	14	44
ROUTT	N		496		496
	Length		109		109
	n		11		11
OLD MAT	N	164	411		575
SUMMIT	Length	46	75		121
	n	6	5	27.125	11
WELD	N	343	2151	25488	27982
	Length	127	466	4288	4881
	n	3	28	13	44

APPENDIX 4
Weights for the Colorado State Seat Belt Usage Observational Survey

County	MTFC	Sampling Weight	Selection Probability	
Adams	S1100/S1200	93	0.0108	
Adams	S1400	1673	0.0006	
Arapahoe	S1100/S1200	66	0.0152	
Arapahoe	S1400	1185	0.0008	
Baca	S1200	31	0.0325	
Boulder	S1200	73	0.0138	
Boulder	S1400	1307	0.0008	
Delta	S1200	67	0.0150	
Denver	S1100/S1200	65	0.0155	
Denver	S1400	1162	0.0009	
Douglas	S1100/S1200	46	0.0216	
Douglas	S1400	834	0.0012	
Eagle	S1100/S1200	101	0.0099	
Elbert	S1200	29	0.0350	
El Paso	S1100/S1200	116	0.0086	
El Paso	S1400	2092	0.0005	
Fremont	S1200	78	0.0128	
Garfield	S1100/S1200	109	0.0092	
Grand	S1200	66	0.0152	
Huerfano	S1100/S1200	64	0.0155	
Jefferson	S1100/S1200	97	0.0104	
Jefferson	S1400	1739	0.0006	
La Plata	S1200	91	0.0110	
Larimer	S1100/S1200	91	0.0110	
Larimer	S1400	1640	0.0006	
Las Animas	S1100/S1200	56	0.0179	
Lincoln	S1100/S1200	51	0.0197	
Logan	S1100/S1200	65	0.0154	
Mesa	S1100/S1200	50	0.0198	
Mesa	S1400	909	0.0011	
Montezuma	S1200	126	0.0079	
Montrose	S1200	83	0.0121	
Morgan	S1100/S1200	76	0.0131	
Park	S1200	29	0.0340	
Park	S1400	530	0.0019	
Pueblo	S1100/S1200	65	0.0154	
Routt	S1200	45	0.0222	
Summit	S1100/S1200	52	0.0191	
Weld	S1100/S1200	89	0.0113	
Weld	S1400	1600	0.0006	

APPENDIX 5

Training Syllabus

Welcome and distribution of equipment

Survey overview

Data collection techniques

Definitions of belt/booster seat use, passenger vehicles

Observation protocol

Weekday/weekend/rush hour/non-rush hour

Weather conditions Duration at each site

Scheduling and rescheduling

Site Assignment Sheet

Daylight

Temporary impediments such as weather

Permanent impediments at data collection sites

Site locations

Locating assigned sites

Interstate ramps and surface streets

Direction of travel/number of observed lanes

Non-intersection requirement

Alternate site selection

Data collection forms

Cover sheet

Recording observations

Recording alternate site information

Assembling forms for shipment

Safety and security

Timesheet and expense reports

Field practice at ramps and surface streets

APPENDIX 6 Data Collection Form