2023 Colorado Statewide Seat-Belt Study Results

Prepared for the
Colorado Department of Transportation

August 1, 2023

TABLE OF CONTENTS

List of Tables 4
List of Appendices 5
Executive Summary 6
Survey Design and Methodology 8
Results 9
Conclusions 16
Appendices 18

LIST OF TABLES

Table		Page
1.0	Statewide Seat-belt Usage by Vehicle Type..........................	7
2.0	Historical Statewide Usage Rate (\%)	9
3.0	Statewide Results Compared to 2023 Premobilization Study.......	11
4.0	Increases in Seat-Belt Usage in Past Nine Years (\%).................	12
5.0	Statewide Passenger Usage Rate by Vehicle Type..................	12
6.0	Statewide Seat-belt Usage by Vehicle Speed...	13
7.0	Statewide Seat-belt Usage by Road class..	14
8.0	Statewide Seat-belt Usage by County.................................	15

LIST OF APPENDICES

Appendix Page1 Statewide Seat-belt Usage by County in Alphabetical Order
2 Number of Segments Selected (n) by County and MTFCC 19
3
Weights for the Colorado State Seatbelt Usage Observational 20 Survey
4 Weights for the Colorado State Seat-belt Usage Observational 22 Survey by Survey Site
5
Training Syllabus 40
6
Colorado Average Motor Crash-Related Fatalities by County 2015- 41 2019
7
Codes by Road Segment File 43

EXECUTIVE SUMMARY

Colorado Department of Transportation (CDOT) contracted with Atélior, LLC to conduct a comprehensive state of seat belt usage in June 2023. This report highlights the findings of this study. Atélior hired a team of retired Colorado State Highway Patrol Officers to serve as observers. These individuals have a working knowledge of traffic safety procedures, as well as the interstate, state highway, local and country roads. Most of the observers have worked in this capacity for several years so they are well-trained in the process.

Atélior Research Team:

D. Todd Donavan, Ph.D. Principal Investigator
Jon Schroth
Tom Petersen
Richard Motzkus
Project Coordinator
Administration
Field Administration

Atélior works to assure the highest standards in reliability and validity of the data and results. To assure the results are at the highest standard, Atélior retrains and certifies the observers on the proper procedures of observation and recording each year. Additionally, we evaluate each observer during the weeks of data collection. Anyone who struggles to meet our standards is given additional training. An additional step towards accuracy is the introduction of IPads to collect data. This was the fourth year of using this technology.

We observed a total of 93,520 vehicles across the 744 site locations. A total of 114,637 occupants were recorded which includes the driver and any front seat passengers. While recording the seat belt usage, we also track the vehicle category across five vehicle categories of cars, vans, sports utility vehicles (SUVs), pickup trucks, and commercial vehicles (10,000 pounds or less). This year's usage rate stands at 88.6%, which is a slight improvement from the 2022 Statewide study of 87%.

D. Todd Donavan, Ph.D.

Principal Investigator, Atélior

Seatbelt Usage Across the Five Vehicle Categories

Table 1.0 presents the results of the 2023 Colorado Statewide seat-belt survey. The five vehicle categories from highest to lowest in seat-belt usage are as follows: SUVs 91.4\% (C.I. 87.33% to 95.47%), Vans 90.0% (C.I. 89.54% to 90.46%), Cars 88.8% (C.I. 86.73% to 90.87%), Commercial Vehicles 83.5% (C.I. 82.96% to 84.04%), and Trucks 82.9% (C.I. 81.42% to 84.38%).

The overall rate across all vehicle types stands at 88.6% (C.I. 88.35% to 88.75%). The confidence interval (C.I.) indicates that we are 95% confident that the overall rate, if we took a large number of samples, would be between 88.35% and 88.75%.

This year's overall rate of 88.6% is a slight improvement from 2022 when the overall rate stood at 87.0%. The confidence interval also improved from last year. Last year's confidence stood at 85.8% to 88.2%, hence both the upper and lower bounds of the confidence interval moved slightly upward.

Table 1.0
2023 Statewide Seat-belt Usage by Vehicle Type

		\# of Sites	Estimate \%	Std Error	CV \%	Lower 95\% Limit	Upper 95\% Limit
1	SUVs	744	91.4%	2.078	2.27	87.33	95.47
2	Vans	744	90.0%	.236	.262	89.54	90.46
3	Cars	744	88.8%	1.058	1.19	86.73	90.87
4	Commercial	744	83.5%	.276	.33	82.96	84.04
5	Trucks	744	82.9%	.756	.912	81.42	84.38
	Overall	744	88.6%	.1041	.1176	88.35	88.75

Statewide Seatbelt Survey

Sampling Methodology

There were 744 statewide sites chosen from 26 counties for the seat belt survey with 738 original sites and 6 alternate sites providing survey data for this study performed during a 2 -week period in June 2023. In selecting the sample, stratification by county was employed as well as an unequal weighting by road class. Each county had either 12 or 48 sites chosen for observation.

As in previous studies, we find several sites that produce very few, or zero observations. In 2023, we found 12 sites with ZERO observations and 7 sites with one observation. A total of 82 sites had ten or fewer observations.

Analysis Methodology

Driver and passenger observation data was combined with site characteristic data to create the input data file. Sampling weights were derived and utilized in the analysis. The data were analyzed using both SPSS (Statistical Package for the Social Sciences) and Excel.

Sample Characteristics

- $\quad 744$ of 744 sites surveyed.
- 93,520 vehicles were observed.
- 114,637 occupants (both drivers and front seat passengers) were observed.
- 7,032 occupants were surveyed as "unable to be observed" $(5,634$ of these were drivers)
- This represents 5.78% of all individuals surveyed (observable + non-observable)
- Non-observable rates by vehicle type (Richard Motzkus our field administrator confirmed that the number of illegal windshield tinting is increasing with people moving to Colorado from Arizona and California. This makes it more difficult to determine seat belt status).

Vehicle Type	$\mathbf{2 0 2 3}$
Car	6.10%
Van	3.78%
SUV	4.19%
Truck	9.15%
Commercial	7.10%
Overall	5.78%

RESULTS

Statewide Survey Results

The 2023 statewide survey exhibits similar results to those found in the 2022 statewide survey. A year ago, the overall rate stood at 87.0%, while the 2023 rate stands at 88.6%. Hence, the overall rate across the five vehicle categories increased by 1.6% for a percentage increase of 1.8% ((88.6-87.0)/87.0). The previous three year's rates all fell below 88% as shown below in Table 2.0. The last time a rate of 88.0% or better was observed was in 2019 when we scored an 88.3%.

The 2023 rate of 88.6% is the highest rate observed in the last ten years. Since 2014, the overall seat belt usage rate increased by 6.2%, or a percentage increase of 7.52% ((88.6-82.4)/82.4). The five-year moving average stands at 87.36\%.

We note improvements across all five vehicle categories. Trucks exhibited the largest increase since 2022 at 82.9%, up from 78.5%. This represents a 5.6% increase, ((82.9-78.5)/78.5). Commercial vehicles demonstrated a similar increase of 4.3% for a percentage increase of $5.4 \%((83.5-79.2) / 79.2)$. The other three categories increased by the following: Cars 1.2%, Vans 1.0%, and SUVs 1.1%.

Table 2.0
Historical Statewide Usage Rates (\%)

	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$
Car	83.1	85.2	83.9	83.7	86.0	88.3	86.1	87.0	87.6	88.8
Van	87.3	89.2	89.5	87.2	88.0	90.1	90.2	88.1	89.0	90.0
SUV	87.1	89.9	89.2	88.5	90.8	92.0	90.9	85.9	90.3	91.4
Truck	72.4	77.6	76.1	76.5	80.1	82.6	78.3	88.1	78.5	82.9
Commercial	67.5	73.9	68.2	70.8	74.7	75.8	74.8	76.2	79.2	83.5
Total	82.4	85.2	84.0	83.8	86.3	88.3	86.3	86.6	87.0	88.6

Graphical Representation

We provide the following graph to visually illustrate our data over the past ten years. As can be seen, the graph demonstrates a positive trend across all five vehicle types.

Comparing Statewide and Premobilization Results

We evaluated the impact of the "Click-It-Or-Ticket" program by comparing the seat belt usage rates during our Premobilization study versus this Statewide study. Table $\mathbf{3 . 0}$ below compares the two-time frames. The overall Premobilization rate stood at 84.7%, while the Statewide rate stood at 88.6%. This represents a 3.9% increase and a percentage increase of 4.6%, ($(88.6 \%-84.7 \%) / 84.7 \%)$. The largest increase by percentage growth is in the Commercial vehicles category which increased from 75.6% to 83.5%, an increase of 7.9% and a percentage increase of 10.4%.

All five vehicle categories improved since the Premobilization study. Trucks demonstrated the second largest increase, with an improvement of 5.9% and a percentage increase of 7.7%. Cars improved by 4.2%, SUVs improved by 3.1% and Vans had a modest improvement of 1.1%.

Table 3.0
2023 Seat Belt Usage Comparison Between Premobilization and Statewide Study

Vehicle Type	Premobilization Results	Statewide Results	Change	$\%$ Change
Car	84.6%	88.8%	4.2%	4.9%
Van	89.0%	90.0%	1.0%	1.1%
SUV	88.3%	91.4%	3.1%	3.5%
Truck	77.0%	82.9%	5.90%	7.7%
Commercial	75.6%	83.5%	7.9%	10.4%
Overall	84.7%	88.6%	3.9%	4.6%

Seat-belt Usage Since 2014

Table 4.0 captures the absolute increases in each vehicle category as well as the percentage increase since 2014. The results indicate that all five vehicle categories increased over the past nine years. Both Trucks and Commercial vehicles demonstrate dramatic increases since 2014. Trucks had an absolute increase of 10.5% for a percentage increase of 14.5% (82.9-72.4)/72.4). Commercial Vehicles exhibit the largest change with an absolute increase of 16.0% since 2014 , and a percentage increase of 23.7%, ((83.5-67.5)/67.5). It should be noted that these two categories were dramatically lower than the other categories in 2014. Hence, these categories had the greatest potential to improve as the other categories faced a ceiling effect, as they have a smaller opportunity to improve.

Table 4.0
Increases in Seat-belt Usage in Past Nine Years (\%)

Vehicle Type	Absolute Increase	Percentage Increase (2014 to 2023)
Car	5.7	6.9%
Van	2.7	3.0%
SUV	4.3	4.9%
Truck	10.5	14.5%
Commercial	16.0	23.7%
Overall	6.2	7.5%

Seat-belt Usage by Passengers

We provide Table 5.0 below to illustrate the rate of front-seat passenger seat belt usage. The 2023 rate of 87.88% is a small decrease from last year when the rate stood at 89.72%. However, the current rate is statistically equal to the rate obtained in $2021(87.57 \%)$. We note that the passenger rate is lower than the overall rate of 88.6%.

Vans showed the biggest drop from 99.17% in 2022 to 91.05% this year. Commercial vehicle passengers dropped from 74.64% to 71.91% this year. The remaining three categories of Cars, SUVs, and Trucks remained consistent from 2022.

Table 5.0
Statewide Passenger Usage Rate by Vehicle Type

Vehicle Type	2021	2022	2023
Car	85.56	88.20	88.8
Van	93.13	99.17	91.05
SUV	88.38	92.88	90.14
Truck	88.41	82.05	82.95
Commercial	72.33	74.64	71.91
Overall	87.57%	89.72%	87.88%

Seat-belt Usage and Speed

As mentioned, Atélior captures the seat belt usage, the vehicle category as well as the speed limit of the site location. This data allows us to evaluate whether occupants are more likely to comply with wearing the seat belt under varying speed limits. Table 6.0 provides the data for the three categories of $0-30,31-50$, and Greater than 50 miles per hour.

The results depict a steady increase in seat belt usage as the roadway speed limit increases from 0-30 to 31-50 and above 50 miles per hour. That is to say, seat belts are more likely to be worn when driving at higher speeds. The highest rate of seat belt usage was at greater than 50 miles an hour standing at 89.78%, (C.I. 89.45 to 90.11). As displayed in the table, there is a dramatic change between $0-30 \mathrm{mph}$ and $31-50 \mathrm{mph}$. The difference in seat belt usage between these two categories is 4.5% or a 5.4% percentage increase ((87.7-83.2)/83.2).

The three-speed categories all moved slightly since 2022. The $0-30$ dropped by 1% and the greater than 50 dropped by $.92 \%$. The sole category to increase was the $31-50$ category which increased by 1% since last year.

Table 6.0
Statewide Seat-belt Usage by Vehicle Speed

	\# of Sites	Estimate \%	Std Error	CV \%	Lower $\mathbf{9 5 \%}$ Limit	Upper $\mathbf{9 5 \%}$ Limit
$0-30 \mathrm{mph}$	143	83.2	.5262	.6325	82.17	84.23
$31-50 \mathrm{mph}$	171	87.7	.2034	.2319	87.30	88.10
> than 50 mph	191	89.78	.1811	.2063	89.45	90.11

Seat-belt Usage and Road Class

In addition to analyzing seat belt usage by the speed of the roadway, we also investigate the road class. As will be shown in this discussion, the roadway category is tied to the speed issue discussed earlier.

First, We have three different road classes of interest: Primary, Secondary, and Local. Primary roads typically have more lanes and higher speeds are allowed. Secondary roads fall between Primary and Local roads according to speed, access, and number of lanes. Finally, Local roads are neighborhood streets used for short trips and involve lower speeds. (See Appendix 7 for further details on the three road classes).

Table 7.0 below presents the seat-belt usage rate based on these three Road Classes. Drivers and passengers are most likely to wear seat belts on the Primary roads, followed by secondary and local roads. This difference appears to tie to the speed limit of the roadway as discussed in the previous section. Drivers and passengers wear their seat belts more often while driving on roadways with higher posted speeds.

Two of the three road classes have not changed significantly since 2022. Secondary roadways stood at 88.5% in 2022, and now stand at 88.89%. Its confidence interval was similar to last year as well. The Local roadways dropped from 85.6% in 2022 to 85.01% in 2023. The confidence interval is must tighter this year than last year. In 2022, the Local roadways confidence interval stood at (83.9% to 87.4%) and now stands at (84.33% to 85.69%). Last year's C.I. had a range of 3.5 and the new C.I. rests at a range of 1.36 . Finally, the primary road class dropped by 3.35% from 92.6% to 89.25% in 2023. While Primary roads hold the best rate of seat belt compliance, its rate dropped a meaningful amount since last year.

Table 7.0
Statewide Seat-belt Usage by Road Class

	\# of Sites	Estimate \%	Std Error	CV \%	Lower $\mathbf{9 5 \%}$ Limit	Upper $\mathbf{9 5 \%}$ Limit
Primary	89	89.25	.1916	.2147	88.87	89.63
Secondary	398	88.89	.1318	.1483	88.63	89.15
Local	257	85.01	.3473	.4086	84.33	85.69

Seat-belt Usage by County

Table 8.0 illustrates the seat belt estimates by Colorado Counties. This table is organized from highest to lowest percentage. (Note: Appendix 1 presents this same table with the counties in alphabetical order). Thirteen counties are now above the 90% threshold for seat belt usage rate. This thirteen number is half of the counties surveyed in this study. Last year, eleven counties exhibited a usage rate above 90%. This may be a positive trend of seat belt usage as in 2021, only nine counties were at 90% or above, and in 2020 , six counties were above 90%. This illustrates that perhaps more counties are realizing the importance of wearing seat belts for traffic safety.

Only three counties fell below 80% with those counties being, El Paso (79.35\%), Pueblo (74.46%), and Jefferson (73.50\%).

Table 8.0
Statewide Seat-belt Usage by County

County	\# of Sites	Estimate\%	n	std. Error	CV\%	Lower 95\% Limit	Upper 95\% Limit
Arapahoe	48	98.16	7545	0.1547	0.1576	97.86	98.46
Garfield	12	97.37	2014	0.3566	0.3662	96.67	98.07
Douglas	48	96.82	7913	0.1973	0.2037	96.43	97.21
Grand	12	96.73	918	0.5870	0.6068	95.58	97.88
Park	48	95.82	3226	0.3524	0.3677	95.13	96.51
Mesa	48	95.17	6335	0.2694	0.2830	94.64	95.70
La Plata	12	94.59	1479	0.5882	0.6219	93.44	95.74
Adams	48	93.72	5909	0.3156	0.3367	93.10	94.34
Boulder	48	93.72	5131	0.3387	0.3614	93.06	94.38
Eagle	12	92.63	1331	0.7162	0.7732	91.23	94.03
Montezuma	12	92.05	994	0.8580	0.9321	90.37	93.73
Fremont	12	90.66	1821	0.6819	0.7522	89.32	92.00
Chaffee	12	90.22	1636	0.7344	0.8140	88.78	91.66
Costilla	12	89.69	912	1.007	1.123	87.72	91.66
Las Animas	12	88.37	705	1.2074	1.3662	86.00	90.74
Larimer	48	88.18	5957	0.4183	0.4743	87.36	89.00
Otero	12	87.74	1272	0.9196	1.0481	85.94	89.54
Montrose	12	87.32	1049	1.0274	1.1766	85.31	89.33
Delta	12	87.01	1101	1.0132	1.1645	85.02	89.00
Weld	48	85.85	3943	0.5551	0.6465	84.76	86.94
Denver	48	85.41	6065	0.4533	0.5307	84.52	86.30
Morgan	12	84.34	894	1.2155	1.4412	81.96	86.72
Logan	12	83.78	598	1.5075	1.7993	80.83	86.73
El Paso	48	79.35	5981	0.5234	0.6596	78.32	80.38
Pueblo	48	74.46	5005	0.6164	0.8278	73.25	75.67
Jefferson	48	73.50	14587	0.3654	0.4972	72.78	74.22

CONCLUSIONS

The 2023 Statewide seat belt study was conducted between June $11^{\text {th }}$ and $24^{\text {th }}$, by Atélior, LLC. Data were collected across twenty-six counties and a total of 744 sites. The following details the findings of this study.

The team observed a total of 93,520 vehicles which included 114,637 occupants including both driver and any front seat passengers. We were unable to determine (unobservable) seat belt usage on 7,032 occupants for a percentage of 5.78% of the total occupants surveyed. Atélior further investigated the unobservable rate by visiting with Richard Motzkus (Field Administrator of Atélior, and retired Colorado Highway Patrolman). Richard indicated that the number of tinted front windshields has been increasing and this prohibits observers from viewing the seat belt. Richard has been in contact with active patrol officers and was told they are reluctant to stop vehicles for illegal tinting due to a lack of available time to enforce this law.

Overall Rate

The overall rate of seat belt usage across five vehicle categories stands at 88.6% (C.I. 88.35 to 88.75). The rates across the five vehicle categories are as follows. SUVs rated the highest with an estimate of 91.4% (C.I. 87.33 to 95.47). SUVs have scored around 90% for the past six years. The only year it failed to earn 90% or better was in 2021 when it scored an 85.9%. Vans ranks second among this group with a 90.0% (C.I. 89.54 to 90.46). Vans is another category that consistently scores around 90%. In the past six years, Vans has earned 90% or better three times.

Cars ranked third with an estimate of 88.8% (C.I. 86.73 to 90.87). Cars have dramatically improved over the past nine years. In 2014 Cars scored a rate of 83.1%. The 2023 rate for Cars represents a percentage increase of 6.86 ((88.8-83.1)/83.1). over the past nine years.

The last two categories, Trucks and Commercial vehicles are the only categories that historically rate in the lower 80% in seat belt usage. Commercial vehicles scored an 83.5% (C.I. 82.96% to 84.04%). This is the only year since 2014 that Commercial vehicles scored above an 80%. On a positive note, commercial vehicles improved from 67.5% in 2014 to 83.5% in 2023 . This represents an improvement of 23.7% in nine years. Trucks stood at 82.9% (C.I. 81.42% to 84.38%). Trucks have improved by 14.5% in nine years.

Premobilization

A premobilization study was completed from April $30^{\text {th }}$ to May $6^{\text {th }}$. The statewide seat belt usage rates compare nicely with the premobilization rates. Premobilization found an overall rate of 84.7% compared to our 88.6% for this statewide study. This represents an improvement of 4.6% in seat belt usage rate over the two studies.

Speed and Road Classification

Seat belt usage is invariably tied to the posted speed and road class. The lowest seat belt usage rates observed are in lower speed zones $(0-30 \mathrm{mph})$ and Local road classes, which are neighborhood streets with slower speeds. The rates for seat belt usage go from 83.2% at $0-30 \mathrm{mph}$ to 87.7% ($31-50 \mathrm{mph}$) to 89.78% in areas with speeds above 50 mph . Local roadways earn a rate of 85.01%, with Secondary roads at 88.89% and Primary roads at 89.25%.

County Performance

In 2022, eleven counties scored a rate above 90.0%. This year, thirteen counties scored above the 90% seat belt compliance rate. Currently, ten counties score between 80% and 89.70% with only three counties scoring below 80%. Those counties being El Paso (79.35\%), Pueblo (74.46), and Jefferson (73.50\%).

Overall, the 2023 statewide seat belt study demonstrates a positive trend. The 88.6% rate is the highest rate observed in the past ten years. Several vehicle categories improved dramatically since 2014, those being Commercial vehicles with a percentage increase of 23.7% since 2014, and Trucks at 82.9% improved by a percentage increase of 14.6% since 2014. The other three categories have steadily improved but at a lower rate.

Appendix 1

Statewide Seat-belt Usage by Counties in Alphabetical order

County	\# of Sites	Estimate \%	n	std. Error	CV\%	$\begin{gathered} \text { Lower } \\ 95 \% \\ \text { Limit } \\ \hline \end{gathered}$	$\begin{gathered} \text { Upper } \\ 95 \% \\ \text { Limit } \\ \hline \end{gathered}$
Adams	48	93.72	5909	0.3156	0.3367	93.1	94.34
Arapahoe	48	98.16	7545	0.1547	0.1576	97.86	98.46
Boulder	48	93.72	5131	0.3387	0.3614	93.06	94.38
Chaffee	12	90.22	1636	0.7344	0.814	88.78	91.66
Costilla	12	89.69	912	1.007	1.123	87.72	91.66
Delta	12	87.01	1101	1.0132	1.1645	85.02	89
Denver	48	85.41	6065	0.4533	0.5307	84.52	86.3
Douglas	48	96.82	7913	0.1973	0.2037	96.43	97.21
Eagle	12	92.63	1331	0.7162	0.7732	91.23	94.03
El Paso	48	79.35	5981	0.5234	0.6596	78.32	80.38
Fremont	12	90.66	1821	0.6819	0.7522	89.32	92
Garfield	12	97.37	2014	0.3566	0.3662	96.67	98.07
Grand	12	96.73	918	0.587	0.6068	95.58	97.88
Jefferson	48	73.5	14587	0.3654	0.4972	72.78	74.22
La Plata	12	94.59	1479	0.5882	0.6219	93.44	95.74
Larimer	48	88.18	5957	0.4183	0.4743	87.36	89
Las Animas	12	88.37	705	1.2074	1.3662	86	90.74
Logan	12	83.78	598	1.5075	1.7993	80.83	86.73
Mesa	48	95.17	6335	0.2694	0.283	94.64	95.7
Montezuma	12	92.05	994	0.858	0.9321	90.37	93.73
Montrose	12	87.32	1049	1.0274	1.1766	85.31	89.33
Morgan	12	84.34	894	1.2155	1.4412	81.96	86.72
Otero	12	87.74	1272	0.9196	1.0481	85.94	89.54
Park	48	95.82	3226	0.3524	0.3677	95.13	96.51
Pueblo	48	74.46	5005	0.6164	0.8278	73.25	75.67
Weld	48	85.85	3943	0.5551	0.6465	84.76	86.94

Appendix 2

Number of Segments Selected (n) by County and MTFCC

County	MTFCC Code			Total
	$\begin{gathered} \hline \text { Primary: } \\ \text { S1100 } \end{gathered}$	Secondary: S1200	Local: S1400	
Adams	12	15	21	48
Arapahoe	6	17	25	48
Boulder	0	29	19	48
Chaffee	0	12	0	12
Costilla	0	12	0	12
Delta	0	12	0	12
Denver	9	17	22	48
Douglas	8	14	26	48
Eagle	5	7	0	12
El Paso	3	15	30	48
Fremont	0	12	0	12
Garfield	4	8	0	12
Grand	0	12	0	12
Jefferson	10	17	21	48
La Plata	0	12	0	12
Larimer	4	24	20	48
Las Animas	2	10	0	12
Logan	2	10	0	12
Mesa	9	23	16	48
Montezuma	0	12	0	12
Montrose	0	12	0	12
Morgan	3	9	0	12
Otero	0	12	0	12
Park	0	25	23	48
Pueblo	8	22	18	48
Weld	4	28	16	48

Appendix 3

Weights for the Colorado State Seat-Belt Usage Observational Survey

County	MTFCC	Sampling Weight	Selection Probability
ADAMS	S1400	1215.14286	0.000822949
ADAMS	S1100/S1200	67.50794	0.014813073
ARAPAHOE	S1400	950.21429	0.001052394
ARAPAHOE	S1100/S1200	52.78968	0.018943096
BOULDER	S1400	976.35714	0.001024215
BOULDER	S1200	54.24206	0.018435877
CHAFFEE	S1200	42.21429	0.023688663
COSTILLA	S1200	24.78571	0.040345821
DELTA	S1200	50.21429	0.019914652
DENVER	S1400	1069.89286	0.000934673
DENVER	S1100/S1200	59.43849	0.016824115
DOUGLAS	S1400	639.03571	0.001564858
DOUGLAS	S1100/S1200	35.50198	0.02816744
EAGLE	S1100/S1200	71.85714	0.013916501
EL PASO	S1400	1465.07143	0.000682561
EL PASO	S1100/S1200	81.39286	0.01228609
FREMONT	S1200	58.21429	0.017177914
GARFIELD	S1100/S1200	87	0.011494253
GRAND	S1200	46.78571	0.021374046
JEFFERSON	S1400	1365.51786	0.000732323
JEFFERSON	S1100/S1200	75.8621	0.013181812
LA PLATA	S1200	73.42857	0.013618677
LARIMER	S1400	1267.42857	0.000788999
LARIMER	S1100/S1200	70.4127	0.014201984
LAS ANIMAS	S1100/S1200	59.21429	0.016887817
LOGAN	S1100/S1200	47.64286	0.020989505
MESA	S1400	804.46429	0.001243063
MESA	S1100/S1200	44.69246	0.022375139
MONTEZUMA	S1200	76.28571	0.013108614

MONTROSE	S1200	65.92857	0.015167931
MORGAN	S1100/S1200	54.85714	0.018229167
OTERO	S1200	89.64286	0.011155379
PARK	S1400	400.17857	0.002498884
PARK	S1200	22.23214	0.04497992
PUEBLO	S1400	896.82143	0.001115049
PUEBLO	S1100/S1200	49.82341	0.020070885
WELD	S1400	1195.76786	0.000836283
WELD	S1100/S1200	66.43155	0.015053089

Appendix 4

Weights for the Colorado State Seat Belt Usage Observational Survey by Survey Site (NOTE: There are 6 Alternate Sites used for Survey. Site IDs greater than 744 reference those Alternate Sites from Reserve Pool)

Site	County	MTFCC	Sampling Weight	Selection Prob
ADAMS				
1	ADAMS	Primary	67.50793651	0.014813073
2	ADAMS	Primary	67.50793651	0.014813073
3	ADAMS	Primary	67.50793651	0.014813073
4	ADAMS	Primary	67.50793651	0.014813073
5	ADAMS	Primary	67.50793651	0.014813073
6	ADAMS	Primary	67.50793651	0.014813073
7	ADAMS	Primary	67.50793651	0.014813073
8	ADAMS	Primary	67.50793651	0.014813073
9	ADAMS	Primary	67.50793651	0.014813073
10	ADAMS	Primary	67.50793651	0.014813073
11	ADAMS	Primary	67.50793651	0.014813073
12	ADAMS	Primary	67.50793651	0.014813073
13	ADAMS	Secondary	67.50793651	0.014813073
14	ADAMS	Secondary	67.50793651	0.014813073
15	ADAMS	Secondary	67.50793651	0.014813073
16	ADAMS	Secondary	67.50793651	0.014813073
17	ADAMS	Secondary	67.50793651	0.014813073
18	ADAMS	Secondary	67.50793651	0.014813073
19	ADAMS	Secondary	67.50793651	0.014813073
20	ADAMS	Secondary	67.50793651	0.014813073
21	ADAMS	Secondary	67.50793651	0.014813073
22	ADAMS	Secondary	67.50793651	0.014813073
23	ADAMS	Secondary	67.50793651	0.014813073
24	ADAMS	Secondary	67.50793651	0.014813073
25	ADAMS	Secondary	67.50793651	0.014813073
26	ADAMS	Secondary	67.50793651	0.014813073
27	ADAMS	Secondary	67.50793651	0.014813073
28	ADAMS	Local	1215.142857	0.000822949
29	ADAMS	Local	1215.142857	0.000822949
30	ADAMS	Local	1215.142857	0.000822949
31	ADAMS	Local	1215.142857	0.000822949
32	ADAMS	Local	1215.142857	0.000822949
33	ADAMS	Local	1215.142857	0.000822949
34	ADAMS	Local	1215.142857	0.000822949
35	ADAMS	Local	1215.142857	0.000822949
10				
1				

36	ADAMS	Local	1215.142857	0.000822949
37	ADAMS	Local	1215.142857	0.000822949
38	ADAMS	Local	1215.142857	0.000822949
39	ADAMS	Local	1215.142857	0.000822949
40	ADAMS	Local	1215.142857	0.000822949
41	ADAMS	Local	1215.142857	0.000822949
42	ADAMS	Local	1215.142857	0.000822949
43	ADAMS	Local	1215.142857	0.000822949
44	ADAMS	Local	1215.142857	0.000822949
45	ADAMS	Local	1215.142857	0.000822949
46	ADAMS	Local	1215.142857	0.000822949
47	ADAMS	Local	1215.142857	0.000822949
48	ADAMS	Local	1215.142857	0.000822949
ARAPAHOE				
49	ARAPAHOE	Primary	52.78968254	0.018943096
50	ARAPAHOE	Primary	52.78968254	0.018943096
51	ARAPAHOE	Primary	52.78968254	0.018943096
52	ARAPAHOE	Primary	52.78968254	0.018943096
53	ARAPAHOE	Primary	52.78968254	0.018943096
54	ARAPAHOE	Primary	52.78968254	0.018943096
55	ARAPAHOE	Secondary	52.78968254	0.018943096
56	ARAPAHOE	Secondary	52.78968254	0.018943096
57	ARAPAHOE	Secondary	52.78968254	0.018943096
58	ARAPAHOE	Secondary	52.78968254	0.018943096
59	ARAPAHOE	Secondary	52.78968254	0.018943096
60	ARAPAHOE	Secondary	52.78968254	0.018943096
61	ARAPAHOE	Secondary	52.78968254	0.018943096
62	ARAPAHOE	Secondary	52.78968254	0.018943096
63	ARAPAHOE	Secondary	52.78968254	0.018943096
64	ARAPAHOE	Secondary	52.78968254	0.018943096
65	ARAPAHOE	Secondary	52.78968254	0.018943096
66	ARAPAHOE	Secondary	52.78968254	0.018943096
67	ARAPAHOE	Secondary	52.78968254	0.018943096
68	ARAPAHOE	Secondary	52.78968254	0.018943096
69	ARAPAHOE	Secondary	52.78968254	0.018943096
70	ARAPAHOE	Secondary	52.78968254	0.018943096
71	ARAPAHOE	Secondary	52.78968254	0.018943096
72	ARAPAHOE	Local	950.2142857	0.001052394
73	ARAPAHOE	Local	950.2142857	0.001052394
74	ARAPAHOE	Local	950.2142857	0.001052394
75	ARAPAHOE	Local	950.2142857	0.001052394
76	ARAPAHOE	Local	950.2142857	0.001052394
77	ARAPAHOE	Local	950.2142857	0.001052394
78	ARAPAHOE	Local	950.2142857	0.001052394

79	ARAPAHOE	Local	950.2142857	0.001052394
80	ARAPAHOE	Local	950.2142857	0.001052394
81	ARAPAHOE	Local	950.2142857	0.001052394
82	ARAPAHOE	Local	950.2142857	0.001052394
83	ARAPAHOE	Local	950.2142857	0.001052394
84	ARAPAHOE	Local	950.2142857	0.001052394
85	ARAPAHOE	Local	950.2142857	0.001052394
86	ARAPAHOE	Local	950.2142857	0.001052394
87	ARAPAHOE	Local	950.2142857	0.001052394
88	ARAPAHOE	Local	950.2142857	0.001052394
89	ARAPAHOE	Local	950.2142857	0.001052394
90	ARAPAHOE	Local	950.2142857	0.001052394
91	ARAPAHOE	Local	950.2142857	0.001052394
92	ARAPAHOE	Local	950.2142857	0.001052394
93	ARAPAHOE	Local	950.2142857	0.001052394
94	ARAPAHOE	Local	950.2142857	0.001052394
95	ARAPAHOE	Local	950.2142857	0.001052394
96	ARAPAHOE	Local	950.2142857	0.001052394
BOULDER				
97	BOULDER	Secondary	54.24206349	0.018435877
98	BOULDER	Secondary	54.24206349	0.018435877
99	BOULDER	Secondary	54.24206349	0.018435877
100	BOULDER	Secondary	54.24206349	0.018435877
101	BOULDER	Secondary	54.24206349	0.018435877
102	BOULDER	Secondary	54.24206349	0.018435877
103	BOULDER	Secondary	54.24206349	0.018435877
104	BOULDER	Secondary	54.24206349	0.018435877
105	BOULDER	Secondary	54.24206349	0.018435877
106	BOULDER	Secondary	54.24206349	0.018435877
107	BOULDER	Secondary	54.24206349	0.018435877
108	BOULDER	Secondary	54.24206349	0.018435877
109	BOULDER	Secondary	54.24206349	0.018435877
110	BOULDER	Secondary	54.24206349	0.018435877
111	BOULDER	Secondary	54.24206349	0.018435877
112	BOULDER	Secondary	54.24206349	0.018435877
113	BOULDER	Secondary	54.24206349	0.018435877
114	BOULDER	Secondary	54.24206349	0.018435877
115	BOULDER	Secondary	54.24206349	0.018435877
116	BOULDER	Secondary	54.24206349	0.018435877
117	BOULDER	Secondary	54.24206349	0.018435877
118	BOULDER	Secondary	54.24206349	0.018435877
119	BOULDER	Secondary	54.24206349	0.018435877
120	BOULDER	Secondary	54.24206349	0.018435877
121	BOULDER	Secondary	54.24206349	0.018435877

122	BOULDER	Secondary	54.24206349	0.018435877
123	BOULDER	Secondary	54.24206349	0.018435877
124	BOULDER	Secondary	54.24206349	0.018435877
125	BOULDER	Secondary	54.24206349	0.018435877
126	BOULDER	Local	976.3571429	0.001024215
127	BOULDER	Local	976.3571429	0.001024215
128	BOULDER	Local	976.3571429	0.001024215
129	BOULDER	Local	976.3571429	0.001024215
130	BOULDER	Local	976.3571429	0.001024215
131	BOULDER	Local	976.3571429	0.001024215
132	BOULDER	Local	976.3571429	0.001024215
133	BOULDER	Local	976.3571429	0.001024215
134	BOULDER	Local	976.3571429	0.001024215
135	BOULDER	Local	976.3571429	0.001024215
136	BOULDER	Local	976.3571429	0.001024215
137	BOULDER	Local	976.3571429	0.001024215
138	BOULDER	Local	976.3571429	0.001024215
139	BOULDER	Local	976.3571429	0.001024215
140	BOULDER	Local	976.3571429	0.001024215
141	BOULDER	Local	976.3571429	0.001024215
142	BOULDER	Local	976.3571429	0.001024215
143	BOULDER	Local	976.3571429	0.001024215
144	BOULDER	Local	976.3571429	0.001024215
CHAFFEE				
145	CHAFFEE	Secondary	42.21428571	0.023688663
146	CHAFFEE	Secondary	42.21428571	0.023688663
147	CHAFFEE	Secondary	42.21428571	0.023688663
148	CHAFFEE	Secondary	42.21428571	0.023688663
149	CHAFFEE	Secondary	42.21428571	0.023688663
150	CHAFFEE	Secondary	42.21428571	0.023688663
151	CHAFFEE	Secondary	42.21428571	0.023688663
152	CHAFFEE	Secondary	42.21428571	0.023688663
153	CHAFFEE	Secondary	42.21428571	0.023688663
154	CHAFFEE	Secondary	42.21428571	0.023688663
155	CHAFFEE	Secondary	42.21428571	0.023688663
156	CHAFFEE	Secondary	42.21428571	0.023688663
COSTILLA				
157	COSTILLA	Secondary	24.78571429	0.040345821
158	COSTILLA	Secondary	24.78571429	0.040345821
159	COSTILLA	Secondary	24.78571429	0.040345821
160	COSTILLA	Secondary	24.78571429	0.040345821
161	COSTILLA	Secondary	24.78571429	0.040345821
162	COSTILLA	Secondary	24.78571429	0.040345821
163	COSTILLA	Secondary	24.78571429	0.040345821

164	COSTILLA	Secondary	24.78571429	0.040345821
165	COSTILLA	Secondary	24.78571429	0.040345821
166	COSTILLA	Secondary	24.78571429	0.040345821
167	COSTILLA	Secondary	24.78571429	0.040345821
168	COSTILLA	Secondary	24.78571429	0.040345821
DELTA				
169	DELTA	Secondary	50.21428571	0.019914651
170	DELTA	Secondary	50.21428571	0.019914651
171	DELTA	Secondary	50.21428571	0.019914651
172	DELTA	Secondary	50.21428571	0.019914651
173	DELTA	Secondary	50.21428571	0.019914651
174	DELTA	Secondary	50.21428571	0.019914651
175	DELTA	Secondary	50.21428571	0.019914651
176	DELTA	Secondary	50.21428571	0.019914651
177	DELTA	Secondary	50.21428571	0.019914651
178	DELTA	Secondary	50.21428571	0.019914651
179	DELTA	Secondary	50.21428571	0.019914651
180	DELTA	Secondary	50.21428571	0.019914651
DENVER				
181	DENVER	Primary	59.43849206	0.016824115
182	DENVER	Primary	59.43849206	0.016824115
183	DENVER	Primary	59.43849206	0.016824115
184	DENVER	Primary	59.43849206	0.016824115
185	DENVER	Primary	59.43849206	0.016824115
186	DENVER	Primary	59.43849206	0.016824115
187	DENVER	Primary	59.43849206	0.016824115
188	DENVER	Primary	59.43849206	0.016824115
189	DENVER	Primary	59.43849206	0.016824115
190	DENVER	Secondary	59.43849206	0.016824115
191	DENVER	Secondary	59.43849206	0.016824115
192	DENVER	Secondary	59.43849206	0.016824115
193	DENVER	Secondary	59.43849206	0.016824115
194	DENVER	Secondary	59.43849206	0.016824115
195	DENVER	Secondary	59.43849206	0.016824115
196	DENVER	Secondary	59.43849206	0.016824115
197	DENVER	Secondary	59.43849206	0.016824115
198	DENVER	Secondary	59.43849206	0.016824115
199	DENVER	Secondary	59.43849206	0.016824115
200	DENVER	Secondary	59.43849206	0.016824115
201	DENVER	Secondary	59.43849206	0.016824115
202	DENVER	Secondary	59.43849206	0.016824115
203	DENVER	Secondary	59.43849206	0.016824115
204	DENVER	Secondary	59.43849206	0.016824115
205	DENVER	Secondary	59.43849206	0.016824115

206	DENVER	Secondary	59.43849206	0.016824115
207	DENVER	Local	1069.892857	0.000934673
208	DENVER	Local	1069.892857	0.000934673
209	DENVER	Local	1069.892857	0.000934673
210	DENVER	Local	1069.892857	0.000934673
211	DENVER	Local	1069.892857	0.000934673
212	DENVER	Local	1069.892857	0.000934673
213	DENVER	Local	1069.892857	0.000934673
214	DENVER	Local	1069.892857	0.000934673
215	DENVER	Local	1069.892857	0.000934673
216	DENVER	Local	1069.892857	0.000934673
217	DENVER	Local	1069.892857	0.000934673
218	DENVER	Local	1069.892857	0.000934673
219	DENVER	Local	1069.892857	0.000934673
220	DENVER	Local	1069.892857	0.000934673
221	DENVER	Local	1069.892857	0.000934673
222	DENVER	Local	1069.892857	0.000934673
223	DENVER	Local	1069.892857	0.000934673
224	DENVER	Local	1069.892857	0.000934673
225	DENVER	Local	1069.892857	0.000934673
226	DENVER	Local	1069.892857	0.000934673
227	DENVER	Local	1069.892857	0.000934673
228	DENVER	Local	1069.892857	0.000934673
DOUGLAS				
229	DOUGLAS	Primary	35.50198413	0.02816744
230	DOUGLAS	Primary	35.50198413	0.02816744
231	DOUGLAS	Primary	35.50198413	0.02816744
232	DOUGLAS	Primary	35.50198413	0.02816744
233	DOUGLAS	Primary	35.50198413	0.02816744
234	DOUGLAS	Primary	35.50198413	0.02816744
235	DOUGLAS	Primary	35.50198413	0.02816744
236	DOUGLAS	Primary	35.50198413	0.02816744
237	DOUGLAS	Secondary	35.50198413	0.02816744
238	DOUGLAS	Secondary	35.50198413	0.02816744
239	DOUGLAS	Secondary	35.50198413	0.02816744
240	DOUGLAS	Secondary	35.50198413	0.02816744
241	DOUGLAS	Secondary	35.50198413	0.02816744
242	DOUGLAS	Secondary	35.50198413	0.02816744
243	DOUGLAS	Secondary	35.50198413	0.02816744
244	DOUGLAS	Secondary	35.50198413	0.02816744
245	DOUGLAS	Secondary	35.50198413	0.02816744
246	DOUGLAS	Secondary	35.50198413	0.02816744
247	DOUGLAS	Secondary	35.50198413	0.02816744
248	DOUGLAS	Secondary	35.50198413	0.02816744

249	DOUGLAS	Secondary	35.50198413	0.02816744
250	DOUGLAS	Secondary	35.50198413	0.02816744
251	DOUGLAS	Local	639.0357143	0.001564858
252	DOUGLAS	Local	639.0357143	0.001564858
253	DOUGLAS	Local	639.0357143	0.001564858
254	DOUGLAS	Local	639.0357143	0.001564858
255	DOUGLAS	Local	639.0357143	0.001564858
256	DOUGLAS	Local	639.0357143	0.001564858
257	DOUGLAS	Local	639.0357143	0.001564858
258	DOUGLAS	Local	639.0357143	0.001564858
259	DOUGLAS	Local	639.0357143	0.001564858
260	DOUGLAS	Local	639.0357143	0.001564858
261	DOUGLAS	Local	639.0357143	0.001564858
262	DOUGLAS	Local	639.0357143	0.001564858
263	DOUGLAS	Local	639.0357143	0.001564858
264	DOUGLAS	Local	639.0357143	0.001564858
265	DOUGLAS	Local	639.0357143	0.001564858
266	DOUGLAS	Local	639.0357143	0.001564858
267	DOUGLAS	Local	639.0357143	0.001564858
268	DOUGLAS	Local	639.0357143	0.001564858
269	DOUGLAS	Local	639.0357143	0.001564858
270	DOUGLAS	Local	639.0357143	0.001564858
271	DOUGLAS	Local	639.0357143	0.001564858
272	DOUGLAS	Local	639.0357143	0.001564858
273	DOUGLAS	Local	639.0357143	0.001564858
274	DOUGLAS	Local	639.0357143	0.001564858
275	DOUGLAS	Local	639.0357143	0.001564858
276	DOUGLAS	Local	639.0357143	0.001564858
EAGLE				
277	EAGLE	Primary	71.85714286	0.013916501
278	EAGLE	Primary	71.85714286	0.013916501
279	EAGLE	Primary	71.85714286	0.013916501
280	EAGLE	Primary	71.85714286	0.013916501
281	EAGLE	Primary	71.85714286	0.013916501
282	EAGLE	Secondary	71.85714286	0.013916501
283	EAGLE	Secondary	71.85714286	0.013916501
284	EAGLE	Secondary	71.85714286	0.013916501
285	EAGLE	Secondary	71.85714286	0.013916501
286	EAGLE	Secondary	71.85714286	0.013916501
287	EAGLE	Secondary	71.85714286	0.013916501
288	EAGLE	Secondary	71.85714286	0.013916501
EL PASO				
289	EL PASO	Primary	81.39285714	0.01228609
290	EL PASO	Primary	81.39285714	0.01228609

291	EL PASO	Primary	81.39285714	0.01228609
292	EL PASO	Secondary	81.39285714	0.01228609
293	EL PASO	Secondary	81.39285714	0.01228609
294	EL PASO	Secondary	81.39285714	0.01228609
295	EL PASO	Secondary	81.39285714	0.01228609
296	EL PASO	Secondary	81.39285714	0.01228609
297	EL PASO	Secondary	81.39285714	0.01228609
298	EL PASO	Secondary	81.39285714	0.01228609
299	EL PASO	Secondary	81.39285714	0.01228609
300	EL PASO	Secondary	81.39285714	0.01228609
301	EL PASO	Secondary	81.39285714	0.01228609
302	EL PASO	Secondary	81.39285714	0.01228609
303	EL PASO	Secondary	81.39285714	0.01228609
304	EL PASO	Secondary	81.39285714	0.01228609
305	EL PASO	Secondary	81.39285714	0.01228609
306	EL PASO	Secondary	81.39285714	0.01228609
307	EL PASO	Local	1465.071429	0.000682561
308	EL PASO	Local	1465.071429	0.000682561
309	EL PASO	Local	1465.071429	0.000682561
310	EL PASO	Local	1465.071429	0.000682561
311	EL PASO	Local	1465.071429	0.000682561
312	EL PASO	Local	1465.071429	0.000682561
313	EL PASO	Local	1465.071429	0.000682561
314	EL PASO	Local	1465.071429	0.000682561
315	EL PASO	Local	1465.071429	0.000682561
316	EL PASO	Local	1465.071429	0.000682561
317	EL PASO	Local	1465.071429	0.000682561
318	EL PASO	Local	1465.071429	0.000682561
319	EL PASO	Local	1465.071429	0.000682561
320	EL PASO	Local	1465.071429	0.000682561
321	EL PASO	Local	1465.071429	0.000682561
322	EL PASO	Local	1465.071429	0.000682561
323	EL PASO	Local	1465.071429	0.000682561
324	EL PASO	Local	1465.071429	0.000682561
325	EL PASO	Local	1465.071429	0.000682561
326	EL PASO	Local	1465.071429	0.000682561
327	EL PASO	Local	1465.071429	0.000682561
328	EL PASO	Local	1465.071429	0.000682561
329	EL PASO	Local	1465.071429	0.000682561
330	EL PASO	Local	1465.071429	0.000682561
331	EL PASO	Local	1465.071429	0.000682561
332	EL PASO	Local	1465.071429	0.000682561
333	EL PASO	Local	1465.071429	0.000682561
334	EL PASO	Local	1465.071429	0.000682561

335	EL PASO	Local	1465.071429	0.000682561
336	EL PASO	Local	1465.071429	0.000682561
FREMONT				
337	FREMONT	Secondary	58.21428571	0.017177914
338	FREMONT	Secondary	58.21428571	0.017177914
339	FREMONT	Secondary	58.21428571	0.017177914
340	FREMONT	Secondary	58.21428571	0.017177914
341	FREMONT	Secondary	58.21428571	0.017177914
342	FREMONT	Secondary	58.21428571	0.017177914
343	FREMONT	Secondary	58.21428571	0.017177914
344	FREMONT	Secondary	58.21428571	0.017177914
345	FREMONT	Secondary	58.21428571	0.017177914
346	FREMONT	Secondary	58.21428571	0.017177914
347	FREMONT	Secondary	58.21428571	0.017177914
348	FREMONT	Secondary	58.21428571	0.017177914
GARFIELD				
349	GARFIELD	Primary	87	0.011494253
350	GARFIELD	Primary	87	0.011494253
351	GARFIELD	Primary	87	0.011494253
352	GARFIELD	Primary	87	0.011494253
353	GARFIELD	Secondary	87	0.011494253
354	GARFIELD	Secondary	87	0.011494253
355	GARFIELD	Secondary	87	0.011494253
356	GARFIELD	Secondary	87	0.011494253
357	GARFIELD	Secondary	87	0.011494253
358	GARFIELD	Secondary	87	0.011494253
359	GARFIELD	Secondary	87	0.011494253
360	GARFIELD	Secondary	87	0.011494253
GRAND				
361	GRAND	Secondary	46.78571429	0.021374046
362	GRAND	Secondary	46.78571429	0.021374046
363	GRAND	Secondary	46.78571429	0.021374046
364	GRAND	Secondary	46.78571429	0.021374046
365	GRAND	Secondary	46.78571429	0.021374046
366	GRAND	Secondary	46.78571429	0.021374046
367	GRAND	Secondary	46.78571429	0.021374046
368	GRAND	Secondary	46.78571429	0.021374046
369	GRAND	Secondary	46.78571429	0.021374046
370	GRAND	Secondary	46.78571429	0.021374046
371	GRAND	Secondary	46.78571429	0.021374046
372	GRAND	Secondary	46.78571429	0.021374046
JEFFERSON				
373	JEFFERSON	Primary	75.86210317	0.013181812
374	JEFFERSON	Primary	75.86210317	0.013181812

375	JEFFERSON	Primary	75.86210317	0.013181812
376	JEFFERSON	Primary	75.86210317	0.013181812
377	JEFFERSON	Primary	75.86210317	0.013181812
378	JEFFERSON	Primary	75.86210317	0.013181812
379	JEFFERSON	Primary	75.86210317	0.013181812
380	JEFFERSON	Primary	75.86210317	0.013181812
381	JEFFERSON	Primary	75.86210317	0.013181812
382	JEFFERSON	Primary	75.86210317	0.013181812
383	JEFFERSON	Secondary	75.86210317	0.013181812
384	JEFFERSON	Secondary	75.86210317	0.013181812
385	JEFFERSON	Secondary	75.86210317	0.013181812
386	JEFFERSON	Secondary	75.86210317	0.013181812
387	JEFFERSON	Secondary	75.86210317	0.013181812
388	JEFFERSON	Secondary	75.86210317	0.013181812
389	JEFFERSON	Secondary	75.86210317	0.013181812
390	JEFFERSON	Secondary	75.86210317	0.013181812
391	JEFFERSON	Secondary	75.86210317	0.013181812
392	JEFFERSON	Secondary	75.86210317	0.013181812
393	JEFFERSON	Secondary	75.86210317	0.013181812
394	JEFFERSON	Secondary	75.86210317	0.013181812
395	JEFFERSON	Secondary	75.86210317	0.013181812
396	JEFFERSON	Secondary	75.86210317	0.013181812
397	JEFFERSON	Secondary	75.86210317	0.013181812
398	JEFFERSON	Secondary	75.86210317	0.013181812
399	JEFFERSON	Secondary	75.86210317	0.013181812
400	JEFFERSON	Local	1365.517857	0.000732323
401	JEFFERSON	Local	1365.517857	0.000732323
402	JEFFERSON	Local	1365.517857	0.000732323
403	JEFFERSON	Local	1365.517857	0.000732323
404	JEFFERSON	Local	1365.517857	0.000732323
405	JEFFERSON	Local	1365.517857	0.000732323
406	JEFFERSON	Local	1365.517857	0.000732323
407	JEFFERSON	Local	1365.517857	0.000732323
408	JEFFERSON	Local	1365.517857	0.000732323
409	JEFFERSON	Local	1365.517857	0.000732323
410	JEFFERSON	Local	1365.517857	0.000732323
411	JEFFERSON	Local	1365.517857	0.000732323
412	JEFFERSON	Local	1365.517857	0.000732323
413	JEFFERSON	Local	1365.517857	0.000732323
414	JEFFERSON	Local	1365.517857	0.000732323
415	JEFFERSON	Local	1365.517857	0.000732323
416	JEFFERSON	Local	1365.517857	0.000732323
417	JEFFERSON	Local	1365.517857	0.000732323
418	JEFFERSON	Local	1365.517857	0.000732323

419	JEFFERSON	Local	1365.517857	0.000732323
420	JEFFERSON	Local	1365.517857	0.000732323
LA PLATA				
421	LA PLATA	Secondary	73.42857143	0.013618677
422	LA PLATA	Secondary	73.42857143	0.013618677
423	LA PLATA	Secondary	73.42857143	0.013618677
424	LA PLATA	Secondary	73.42857143	0.013618677
425	LA PLATA	Secondary	73.42857143	0.013618677
426	LA PLATA	Secondary	73.42857143	0.013618677
427	LA PLATA	Secondary	73.42857143	0.013618677
428	LA PLATA	Secondary	73.42857143	0.013618677
429	LA PLATA	Secondary	73.42857143	0.013618677
430	LA PLATA	Secondary	73.42857143	0.013618677
431	LA PLATA	Secondary	73.42857143	0.013618677
432	LA PLATA	Secondary	73.42857143	0.013618677
LARIMER				
433	LARIMER	Primary	70.41269841	0.014201984
434	LARIMER	Primary	70.41269841	0.014201984
435	LARIMER	Primary	70.41269841	0.014201984
436	LARIMER	Primary	70.41269841	0.014201984
437	LARIMER	Secondary	70.41269841	0.014201984
438	LARIMER	Secondary	70.41269841	0.014201984
439	LARIMER	Secondary	70.41269841	0.014201984
440	LARIMER	Secondary	70.41269841	0.014201984
441	LARIMER	Secondary	70.41269841	0.014201984
442	LARIMER	Secondary	70.41269841	0.014201984
443	LARIMER	Secondary	70.41269841	0.014201984
444	LARIMER	Secondary	70.41269841	0.014201984
445	LARIMER	Secondary	70.41269841	0.014201984
446	LARIMER	Secondary	70.41269841	0.014201984
447	LARIMER	Secondary	70.41269841	0.014201984
448	LARIMER	Secondary	70.41269841	0.014201984
449	LARIMER	Secondary	70.41269841	0.014201984
450	LARIMER	Secondary	70.41269841	0.014201984
451	LARIMER	Secondary	70.41269841	0.014201984
452	LARIMER	Secondary	70.41269841	0.014201984
453	LARIMER	Secondary	70.41269841	0.014201984
454	LARIMER	Secondary	70.41269841	0.014201984
455	LARIMER	Secondary	70.41269841	0.014201984
456	LARIMER	Secondary	70.41269841	0.014201984
457	LARIMER	Secondary	70.41269841	0.014201984
458	LARIMER	Secondary	70.41269841	0.014201984
459	LARIMER	Secondary	70.41269841	0.014201984
460	LARIMER	Secondary	70.41269841	0.014201984

461	LARIMER	Local	1267.428571	0.000788999
462	LARIMER	Local	1267.428571	0.000788999
463	LARIMER	Local	1267.428571	0.000788999
464	LARIMER	Local	1267.428571	0.000788999
465	LARIMER	Local	1267.428571	0.000788999
466	LARIMER	Local	1267.428571	0.000788999
467	LARIMER	Local	1267.428571	0.000788999
468	LARIMER	Local	1267.428571	0.000788999
469	LARIMER	Local	1267.428571	0.000788999
470	LARIMER	Local	1267.428571	0.000788999
471	LARIMER	Local	1267.428571	0.000788999
472	LARIMER	Local	1267.428571	0.000788999
474	LARIMER	Local	1267.428571	0.000788999
475	LARIMER	Local	1267.428571	0.000788999
476	LARIMER	Local	1267.428571	0.000788999
477	LARIMER	Local	1267.428571	0.000788999
478	LARIMER	Local	1267.428571	0.000788999
820	LARIMER	Local	1267.428571	0.000788999
823	LARIMER	Local	1267.428571	0.000788999
824	LARIMER	Local	1267.428571	0.000788999
LAS ANIMAS				
481	LAS ANIMAS	Primary	59.21428571	0.016887817
482	LAS ANIMAS	Primary	59.21428571	0.016887817
483	LAS ANIMAS	Secondary	59.21428571	0.016887817
484	LAS ANIMAS	Secondary	59.21428571	0.016887817
485	LAS ANIMAS	Secondary	59.21428571	0.016887817
486	LAS ANIMAS	Secondary	59.21428571	0.016887817
487	LAS ANIMAS	Secondary	59.21428571	0.016887817
488	LAS ANIMAS	Secondary	59.21428571	0.016887817
489	LAS ANIMAS	Secondary	59.21428571	0.016887817
490	LAS ANIMAS	Secondary	59.21428571	0.016887817
491	LAS ANIMAS	Secondary	59.21428571	0.016887817
492	LAS ANIMAS	Secondary	59.21428571	0.016887817
LOGAN				
493	LOGAN	Primary	47.64285714	0.020989505
494	LOGAN	Primary	47.64285714	0.020989505
495	LOGAN	Secondary	47.64285714	0.020989505
496	LOGAN	Secondary	47.64285714	0.020989505
497	LOGAN	Secondary	47.64285714	0.020989505
498	LOGAN	Secondary	47.64285714	0.020989505
499	LOGAN	Secondary	47.64285714	0.020989505
500	LOGAN	Secondary	47.64285714	0.020989505
501	LOGAN	Secondary	47.64285714	0.020989505
502	LOGAN	Secondary	47.64285714	0.020989505

503	LOGAN	Secondary	47.64285714	0.020989505
504	LOGAN	Secondary	47.64285714	0.020989505
MESA				
505	MESA	Primary	44.69246032	0.022375139
506	MESA	Primary	44.69246032	0.022375139
507	MESA	Primary	44.69246032	0.022375139
508	MESA	Primary	44.69246032	0.022375139
509	MESA	Primary	44.69246032	0.022375139
510	MESA	Primary	44.69246032	0.022375139
511	MESA	Primary	44.69246032	0.022375139
512	MESA	Primary	44.69246032	0.022375139
513	MESA	Primary	44.69246032	0.022375139
514	MESA	Secondary	44.69246032	0.022375139
515	MESA	Secondary	44.69246032	0.022375139
516	MESA	Secondary	44.69246032	0.022375139
517	MESA	Secondary	44.69246032	0.022375139
518	MESA	Secondary	44.69246032	0.022375139
519	MESA	Secondary	44.69246032	0.022375139
520	MESA	Secondary	44.69246032	0.022375139
521	MESA	Secondary	44.69246032	0.022375139
522	MESA	Secondary	44.69246032	0.022375139
523	MESA	Secondary	44.69246032	0.022375139
524	MESA	Secondary	44.69246032	0.022375139
525	MESA	Secondary	44.69246032	0.022375139
526	MESA	Secondary	44.69246032	0.022375139
527	MESA	Secondary	44.69246032	0.022375139
528	MESA	Secondary	44.69246032	0.022375139
529	MESA	Secondary	44.69246032	0.022375139
530	MESA	Secondary	44.69246032	0.022375139
531	MESA	Secondary	44.69246032	0.022375139
532	MESA	Secondary	44.69246032	0.022375139
533	MESA	Secondary	44.69246032	0.022375139
534	MESA	Secondary	44.69246032	0.022375139
535	MESA	Secondary	44.69246032	0.022375139
536	MESA	Secondary	44.69246032	0.022375139
538	MESA	Local	804.4642857	0.001243063
539	MESA	Local	804.4642857	0.001243063
540	MESA	Local	804.4642857	0.001243063
541	MESA	Local	804.4642857	0.001243063
542	MESA	Local	804.4642857	0.001243063
543	MESA	Local	804.4642857	0.001243063
544	MESA	Local	804.4642857	0.001243063
545	MESA	Local	804.4642857	0.001243063
546	MESA	Local	804.4642857	0.001243063

547	MESA	Local	804.4642857	0.001243063
548	MESA	Local	804.4642857	0.001243063
549	MESA	Local	804.4642857	0.001243063
550	MESA	Local	804.4642857	0.001243063
551	MESA	Local	804.4642857	0.001243063
552	MESA	Local	804.4642857	0.001243063
834	MESA	Local	804.4642857	0.001243063
MONTEZUMA				
553	MONTEZUMA	Secondary	76.28571429	0.013108614
554	MONTEZUMA	Secondary	76.28571429	0.013108614
555	MONTEZUMA	Secondary	76.28571429	0.013108614
556	MONTEZUMA	Secondary	76.28571429	0.013108614
557	MONTEZUMA	Secondary	76.28571429	0.013108614
558	MONTEZUMA	Secondary	76.28571429	0.013108614
559	MONTEZUMA	Secondary	76.28571429	0.013108614
560	MONTEZUMA	Secondary	76.28571429	0.013108614
561	MONTEZUMA	Secondary	76.28571429	0.013108614
562	MONTEZUMA	Secondary	76.28571429	0.013108614
563	MONTEZUMA	Secondary	76.28571429	0.013108614
564	MONTEZUMA	Secondary	76.28571429	0.013108614
MONTROSE				
565	MONTROSE	Secondary	65.92857143	0.015167931
566	MONTROSE	Secondary	65.92857143	0.015167931
567	MONTROSE	Secondary	65.92857143	0.015167931
568	MONTROSE	Secondary	65.92857143	0.015167931
569	MONTROSE	Secondary	65.92857143	0.015167931
570	MONTROSE	Secondary	65.92857143	0.015167931
571	MONTROSE	Secondary	65.92857143	0.015167931
572	MONTROSE	Secondary	65.92857143	0.015167931
573	MONTROSE	Secondary	65.92857143	0.015167931
574	MONTROSE	Secondary	65.92857143	0.015167931
575	MONTROSE	Secondary	65.92857143	0.015167931
576	MONTROSE	Secondary	65.92857143	0.015167931
MORGAN				
577	MORGAN	Primary	54.85714286	0.018229167
578	MORGAN	Primary	54.85714286	0.018229167
579	MORGAN	Primary	54.85714286	0.018229167
580	MORGAN	Secondary	54.85714286	0.018229167
581	MORGAN	Secondary	54.85714286	0.018229167
582	MORGAN	Secondary	54.85714286	0.018229167
583	MORGAN	Secondary	54.85714286	0.018229167
584	MORGAN	Secondary	54.85714286	0.018229167
585	MORGAN	Secondary	54.85714286	0.018229167
586	MORGAN	Secondary	54.85714286	0.018229167

587	MORGAN	Secondary	54.85714286	0.018229167
588	MORGAN	Secondary	54.85714286	0.018229167
OTERO				
589	OTERO	Secondary	89.64285714	0.011155378
590	OTERO	Secondary	89.64285714	0.011155378
591	OTERO	Secondary	89.64285714	0.011155378
592	OTERO	Secondary	89.64285714	0.011155378
593	OTERO	Secondary	89.64285714	0.011155378
594	OTERO	Secondary	89.64285714	0.011155378
595	OTERO	Secondary	89.64285714	0.011155378
596	OTERO	Secondary	89.64285714	0.011155378
597	OTERO	Secondary	89.64285714	0.011155378
598	OTERO	Secondary	89.64285714	0.011155378
599	OTERO	Secondary	89.64285714	0.011155378
600	OTERO	Secondary	89.64285714	0.011155378
PARK				
601	PARK	Secondary	22.23214286	0.04497992
602	PARK	Secondary	22.23214286	0.04497992
603	PARK	Secondary	22.23214286	0.04497992
604	PARK	Secondary	22.23214286	0.04497992
605	PARK	Secondary	22.23214286	0.04497992
606	PARK	Secondary	22.23214286	0.04497992
607	PARK	Secondary	22.23214286	0.04497992
608	PARK	Secondary	22.23214286	0.04497992
609	PARK	Secondary	22.23214286	0.04497992
610	PARK	Secondary	22.23214286	0.04497992
611	PARK	Secondary	22.23214286	0.04497992
612	PARK	Secondary	22.23214286	0.04497992
613	PARK	Secondary	22.23214286	0.04497992
614	PARK	Secondary	22.23214286	0.04497992
615	PARK	Secondary	22.23214286	0.04497992
616	PARK	Secondary	22.23214286	0.04497992
617	PARK	Secondary	22.23214286	0.04497992
618	PARK	Secondary	22.23214286	0.04497992
619	PARK	Secondary	22.23214286	0.04497992
620	PARK	Secondary	22.23214286	0.04497992
621	PARK	Secondary	22.23214286	0.04497992
622	PARK	Secondary	22.23214286	0.04497992
623	PARK	Secondary	22.23214286	0.04497992
624	PARK	Secondary	22.23214286	0.04497992
625	PARK	Secondary	22.23214286	0.04497992
626	PARK	Local	400.1785714	0.002498884
627	PARK	Local	400.1785714	0.002498884
628	PARK	Local	400.1785714	0.002498884

630	PARK	Local	400.1785714	0.002498884
631	PARK	Local	400.1785714	0.002498884
632	PARK	Local	400.1785714	0.002498884
633	PARK	Local	400.1785714	0.002498884
635	PARK	Local	400.1785714	0.002498884
636	PARK	Local	400.1785714	0.002498884
637	PARK	Local	400.1785714	0.002498884
638	PARK	Local	400.1785714	0.002498884
639	PARK	Local	400.1785714	0.002498884
640	PARK	Local	400.1785714	0.002498884
641	PARK	Local	400.1785714	0.002498884
642	PARK	Local	400.1785714	0.002498884
643	PARK	Local	400.1785714	0.002498884
644	PARK	Local	400.1785714	0.002498884
645	PARK	Local	400.1785714	0.002498884
646	PARK	Local	400.1785714	0.002498884
647	PARK	Local	400.1785714	0.002498884
648	PARK	Local	400.1785714	0.002498884
849	PARK	Local	400.1785714	0.002498884
851	PARK	Local	400.1785714	0.002498884
PUEBLO				
649	PUEBLO	Primary	49.8234127	0.020070885
650	PUEBLO	Primary	49.8234127	0.020070885
651	PUEBLO	Primary	49.8234127	0.020070885
652	PUEBLO	Primary	49.8234127	0.020070885
653	PUEBLO	Primary	49.8234127	0.020070885
654	PUEBLO	Primary	49.8234127	0.020070885
655	PUEBLO	Primary	49.8234127	0.020070885
656	PUEBLO	Primary	49.8234127	0.020070885
657	PUEBLO	Secondary	49.8234127	0.020070885
658	PUEBLO	Secondary	49.8234127	0.020070885
659	PUEBLO	Secondary	49.8234127	0.020070885
660	PUEBLO	Secondary	49.8234127	0.020070885
669	PUEBLO	Secondary	49.8234127	0.020070885
667	PUEBLO	PUEBLO	Pecondary	49.8234127

672	PUEBLO	Secondary	49.8234127	0.020070885
673	PUEBLO	Secondary	49.8234127	0.020070885
674	PUEBLO	Secondary	49.8234127	0.020070885
675	PUEBLO	Secondary	49.8234127	0.020070885
676	PUEBLO	Secondary	49.8234127	0.020070885
677	PUEBLO	Secondary	49.8234127	0.020070885
678	PUEBLO	Secondary	49.8234127	0.020070885
679	PUEBLO	Local	896.8214286	0.001115049
680	PUEBLO	Local	896.8214286	0.001115049
681	PUEBLO	Local	896.8214286	0.001115049
682	PUEBLO	Local	896.8214286	0.001115049
683	PUEBLO	Local	896.8214286	0.001115049
684	PUEBLO	Local	896.8214286	0.001115049
685	PUEBLO	Local	896.8214286	0.001115049
686	PUEBLO	Local	896.8214286	0.001115049
687	PUEBLO	Local	896.8214286	0.001115049
688	PUEBLO	Local	896.8214286	0.001115049
689	PUEBLO	Local	896.8214286	0.001115049
690	PUEBLO	Local	896.8214286	0.001115049
691	PUEBLO	Local	896.8214286	0.001115049
692	PUEBLO	Local	896.8214286	0.001115049
693	PUEBLO	Local	896.8214286	0.001115049
694	PUEBLO	Local	896.8214286	0.001115049
695	PUEBLO	Local	896.8214286	0.001115049
696	PUEBLO	Local	896.8214286	0.001115049
WELD				
697	WELD	Primary	66.43154762	0.015053089
698	WELD	Primary	66.43154762	0.015053089
699	WELD	Primary	66.43154762	0.015053089
700	WELD	Primary	66.43154762	0.015053089
701	WELD	Secondary	66.43154762	0.015053089
702	WELD	Secondary	66.43154762	0.015053089
703	WELD	Secondary	66.43154762	0.015053089
704	WELD	Secondary	66.43154762	0.015053089
705	WELD	Secondary	66.43154762	0.015053089
706	WELD	Secondary	66.43154762	0.015053089
707	WELD	Secondary	66.43154762	0.015053089
708	WELD	Secondary	66.43154762	0.015053089
709	WELD	Secondary	66.43154762	0.015053089
710	WELD	Secondary	66.43154762	0.015053089
711	WELD	Secondary	66.43154762	0.015053089
712	WELD	Secondary	66.43154762	0.015053089
713	WELD	Secondary	66.43154762	0.015053089
714	WELD	Secondary	66.43154762	0.015053089

715	WELD	Secondary	66.43154762	0.015053089
716	WELD	Secondary	66.43154762	0.015053089
717	WELD	Secondary	66.43154762	0.015053089
718	WELD	Secondary	66.43154762	0.015053089
719	WELD	Secondary	66.43154762	0.015053089
720	WELD	Secondary	66.43154762	0.015053089
721	WELD	Secondary	66.43154762	0.015053089
722	WELD	Secondary	66.43154762	0.015053089
723	WELD	Secondary	66.43154762	0.015053089
724	WELD	Secondary	66.43154762	0.015053089
725	WELD	Secondary	66.43154762	0.015053089
726	WELD	Secondary	66.43154762	0.015053089
727	WELD	Secondary	66.43154762	0.015053089
728	WELD	Secondary	66.43154762	0.015053089
729	WELD	Local	1195.767857	0.000836283
730	WELD	Local	1195.767857	0.000836283
731	WELD	Local	1195.767857	0.000836283
732	WELD	Local	1195.767857	0.000836283
733	WELD	Local	1195.767857	0.000836283
734	WELD	Local	1195.767857	0.000836283
735	WELD	Local	1195.767857	0.000836283
736	WELD	Local	1195.767857	0.000836283
737	WELD	Local	1195.767857	0.000836283
738	WELD	Local	1195.767857	0.000836283
739	WELD	Local	1195.767857	0.000836283
740	WELD	Local	1195.767857	0.000836283
741	WELD	Local	1195.767857	0.000836283
742	WELD	Local	1195.767857	0.000836283
743	WELD	Local	1195.767857	0.000836283
744	WELD	Local	1195.767857	0.000836283

Appendix 5

Training Syllabus

Welcome and distribution of equipment
Survey overview
Data collection techniques
Definitions of belt/booster seat use, passenger vehicles
Observation protocol
Weekday/weekend/rush hour/non-rush hour
Weather conditions
Duration at each site
Scheduling and rescheduling
Site Assignment Sheet
Daylight
Temporary impediments such as weather
Permanent impediments at data collection sites
Site locations
Locating assigned sites
Interstate ramps and surface streets
Direction of travel/number of observed lanes
Non-intersection requirement
Alternate site selection
Data collection forms
Cover sheet
Recording observations
Recording alternate site information
Assembling forms for shipment
Safety and security
Timesheet and expense reports
Field practice at ramps and surface streets

Appendix 6
Colorado Average Motor Vehicle Crash-Related Fatalities by County 2015-2019

FARS (2015-2019) State=Colorado				
State	County	Aeragage fatality counts for syears	Fatality percentage within the state	Cumulative fatality percentage
Colorado	WELD	45.2	12	12
Colorado	EL PASO	39.8	10.5	22.5
Colorado	ADAMS	31.8	8.4	30.9
Colorado	ARAPAHOE	23.8	6.3	37.2
Colorado	JEFFERSON	22.8	6	43.3
Colorado	DENVER	22.2	5.9	49.1
Colorado	LARIMER	20.2	5.3	54.5
Colorado	PUEBLO	15.8	4.2	58.7
Colorado	BOULDER	14.2	3.8	62.4
Colorado	MESA	9.8	2.6	65
Colorado	DOUGLAS	9.6	2.5	67.5
Colorado	GARFIELD	7.8	2.1	69.6
Colorado	LA PLATA	6.6	1.7	71.4
Colorado	FREMONT	6.4	1.7	73.1
Colorado	MORGAN	5.2	1.4	74.4
Colorado	LOGAN	5	1.3	75.8
Colorado	MONTROSE	5	1.3	77.1
Colorado	EAGLE	4	1.1	78.1
Colorado	LAS ANIMAS	3.8	1	79.1
Colorado	PARK	3.6	1	80.1
Colorado	GRAND	3.4	0.9	81
Colorado	OTERO	3.4	0.9	81.9
Colorado	COSTILLA	3.2	0.8	82.7
Colorado	CHAFFEE	3	0.8	83.5
Colorado	DELTA	3	0.8	84.3
Colorado	MONTEZUMA	3	0.8	85.1
Colorado	ELBERT	2.8	0.7	85.9
Colorado	ROUTT	2.8	0.7	86.6
Colorado	SAGUACHE	2.8	0.7	87.3
Colorado	SUMMIT	2.8	0.7	88.1
Colorado	TELLER	2.8	0.7	88.8
Colorado	ALAMOSA	2.6	0.7	89.5
Colorado	KIT CARSON	2.6	0.7	90.2
Colorado	WASHINGTON	2.6	0.7	90.9
Colorado	RIO GRANDE	2.4	0.6	91.5
Colorado	HUERFANO	2.2	0.6	92.1
Colorado	YUMA	0.6	92.7	

Colorado	BACA	1.8	0.5	93.2
Colorado	GUNNISON	1.8	0.5	93.6
Colorado	LINCOLN	1.8	0.5	94.1
Colorado	MOFFAT	1.8	0.5	94.6
Colorado	OURAY	1.8	0.5	95.1
Colorado	ARCHULETA	1.6	0.4	95.5
	CLEAR			
Colorado	CREEK	1.6	0.4	95.9
Colorado	PROWERS	1.6	0.4	96.3
Colorado	BROOMFIELD	1.4	0.4	96.7
Colorado	JACKSON	1.2	0.3	97
Colorado	SEDGWICK	1.2	0.3	97.4
Colorado	BENT	1	0.3	97.6
Colorado	PITKIN	1	0.3	97.9
Colorado	RIO BLANCO	1	0.3	98.1
Colorado	SAN MIGUEL	1	0.3	98.4
Colorado	CROWLEY	0.8	0.2	98.6
Colorado	CUSTER	0.8	0.2	98.8
Colorado	DOLORES	0.6	0.2	99
Colorado	GILPIN	0.6	0.2	99.2
Colorado	KIOWA	0.6	0.2	99.3
Colorado	LAKE	0.6	0.2	99.5
Colorado	MINERAL	0.6	0.2	99.6
Colorado	PHILLIPS	0.4	0.1	99.7
Colorado	SAN JUAN	0.4	0.1	99.8
Colorado	CHEYENNE	0.2	0.1	99.9
Colorado	CONEJOS	0.2	0.1	99.9
Colorado	HINSDALE	0.2	0.1	100
Colorado	UNKNOWN	0	0	100

Appendix 7

Codes for Road Segment File

S1100	Primary Road	Primary roads are generally divided, limited-access highways within the interstate highway system or under state management, and are distinguished by the presence of interchanges. These highways are accessible by ramps and may include some toll highways.
S1200	Secondary Road	Secondary roads are main arteries, usually in the U.S. Highway, State Highway or County Highway system. These roads have one or more lanes of traffic in each direction, may or may not be divided, and usually have at-grade intersections with many other roads and driveways. They often have both a local name and a route number.
S1400	Local Neighborhood Road, Rural Road, City Street	These are generally paved non-arterial streets, roads, or byways that usually have a single lane of traffic in each direction. Roads in this feature class may be privately or publicly maintained. Scenic park roads would be included in this feature class, as would (depending on the region of the country) some unpaved roads.

